
The Packet Filter:
An Efficient Mechanism for User-level Network Code

Jeffrey C. Mogul

Digital Equipment Corporation
Western Research Lab

Richard F. Rashid
Michael J. Accetta

Department of Computer Science
Carnegie-Mellon University

November, 1987

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Abstract

Code to implement network protocols can be either inside the kernel of an
operating system or in user-level processes. Kernel-resident code is hard to
develop, debug, and maintain, but user-level implementations typically incur
significant overhead and perform poorly.

The performance of user-level network code depends on the mechanism
used to demultiplex received packets. Demultiplexing in a user-level process
increases the rate of context switches and system calls, resulting in poor per-
formance. Demultiplexing in the kernel eliminates unnecessary overhead.

This paper describes the packet filter, a kernel-resident, protocol-
independent packet demultiplexer. Individual user processes have great
flexibility in selecting which packets they will receive. Protocol implemen-
tations using the packet filter perform quite well, and have been in produc-
tion use for several years.

This paper, in essentially the same form, was originally published in Proceedings of the 11th
Symposium on Operating Systems Principles, ACM SIGOPS, Austin, Texas, November 1987.

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

i

1. Introduction
It is not always appropriate to implement networking protocols inside the kernel of an operat-

ing system. Although kernel-resident network code can often outperform a user-level implemen-
tation, it is usually harder to implement and maintain, and much less portable. If optimal perfor-
mance is not the primary goal of a protocol implementation, one might well prefer to implement
it outside the kernel. Unfortunately, in most operating systems user-level network code is
doomed to terrible performance.

In this paper we show that it is possible to get adequate performance from a user-level
protocol implementation, while retaining all the features of user-level programming that make it
far more pleasant than kernel programming.

The key to good performance is the mechanism used to demultiplex received packets to the
appropriate user process. Demultiplexing can be done either in the kernel, or in a user-level
switching process. User-mode demultiplexing allows flexible control over how packets are dis-
tributed, but is expensive because it normally involves at least two context switches and three
system calls per received packet. Kernel demultiplexing is efficient, but in existing systems the
criteria used to distinguish between packets are too crude.

This paper describes the packet filter, a facility that combines both performance and
flexibility. The packet filter is part of the operating system kernel, so it delivers packets with a
minimum of system calls and context switches, yet it is able to distinguish between packets ac-
cording to arbitrary and dynamically variable user-specified criteria. The result is a reasonably
efficient, easy-to-use abstraction for developing and running network applications.

The facility we describe is not a paper design, but the evolutionary result of much experience
and tinkering. The packet filter has been in use at several sites for many years, for both develop-
ment and production use in a wide variety of applications, and has insulated these applications
from substantial changes in the underlying operating system. It has been of clear practical value.

In section 2, we discuss in greater detail the motivation for the packet filter. We describe the
abstract interface in section 3, and briefly sketch the implementation in section 4. We then il-
lustrate, in section 5, some uses to which the packet filter has been put, and in section 6 discuss
its performance.

1

THE PACKET FILTER

2. Motivation
Software to support networking protocols has become tremendously important as a result of

use of LAN technology and workstations. The sheer bulk of this software is an indication that it
may be overwhelming our ability to create reliable, efficient code: for example, 30% of the
4.3BSD Unix [8, 21] kernel source, 25% of the TOPS-20 [10] (Version 6.1) kernel source, and
32% of the V-system [4] kernel source are devoted to networking.

Development of network software is slow and seldom yields finished systems; debugging may
continue long after the software is put into operation. Continual debugging of production code
results not only from deficiencies in the original code, but also from inevitable evolution of the
protocols and changes in the network environment.

In many operating systems, network code resides in the kernel. This makes it much harder to
write and debug:

• Each time a bug is found, the kernel must be recompiled and rebooted.

• Bugs in kernel code are likely to cause system crashes.

• Functionally independent kernel modules may have complex interactions over
shared resources.

• Kernel-code debugging cannot be done during normal timesharing; single-user time
must be scheduled, resulting in inconvenience for timesharing users and odd work
hours for system programmers.

• Sophisticated debugging and monitoring facilities available for developing user-
level programs may not be available for developing kernel code.

• Kernel source code is not always available.
In spite of these drawbacks, network code is still usually put in the kernel because the drawbacks
of putting it outside the kernel seem worse. If a single user-level process is used for demul-
tiplexing packets, then for each received packet the system will have to switch into the demul-
tiplexing process, notify that process of the packet, then switch again as the demultiplexing
process transfers the packet to the appropriate destination process. (Figure 1 depicts the costs
associated with this approach.) Context switching and inter-process communication are usually
expensive, so clearly it would be more efficient to immediately deliver each packet to the ul-
timate destination process. (Figure 2 shows how this approach reduces costs.) This requires that
the kernel be able to determine to which process each packet should go; the problem is how to
allow user-level processes to specify which packets they want.

One simple mechanism is for the kernel to use a specific packet field as a key; a user process
registers with the kernel the field value for packets it wants to receive. Since the kernel does not
know the structure of higher-layer protocol headers, the discriminant field must be in the lowest
layer, such as an Ethernet [9] ‘‘type’’ field. This is not always a good solution. For example, in
most environments the Ethernet type field serves only to identify one of a small set of protocol
families; almost all packets must be further discriminated by some protocol-specific field. If the
kernel can demultiplex only on the type field, then one must still use a user-level switching
process with its attendant high cost.

2

THE PACKET FILTER

Demux
process

Destination
processKernelNetwork

Figure 1: Costs of demultiplexing in a user process

Destination
processNetwork Kernel

Figure 2: Costs of demultiplexing in the kernel

The packet filter is a more flexible kernel-resident demultiplexer. A user process specifies an
arbitrary predicate to select the packets it wants; all protocol-specific knowledge is in the
program that receives the packets. There is no need to modify the kernel to support a new
protocol. This mechanism evolved for use with Ethernet data-link layers, but will work with
most similar datagram networks.

The packet filter not only isolates the kernel from the details of specific protocols; it insulates
protocol code from the details of the kernel implementation. The packet filter is not strongly tied
to a particular system; in its Unix implementation, it is cleanly separated from other kernel
facilities and the novel part of the user-level interface is not specific to Unix. Because protocol
code lives outside the kernel it does not have to be modified to be useful with a wide variety of
kernel implementations. In systems where context-switching is inexpensive, the performance
advantage of kernel demultiplexing will be reduced, but the packet filter may still be a good
model for a user-level demultiplexer to emulate.

In addition to the cost and inconvenience of demultiplexing, the cost of domain crossing
whenever control crosses between kernel and user domains has discouraged the implementation
of protocol code in user processes. In many protocols, far more packets are exchanged at lower
levels than are seen at higher levels (these include control, acknowledgement, and duplicate

3

THE PACKET FILTER

packets). A kernel-resident implementation confines these overhead packets to the kernel and
greatly reduces domain crossing, as depicted in figure 3. The packet filter mechanism cannot
eliminate this problem; we can reduce it through careful implementation and by batching
together domain-crossing events (see section 3).

ACK

ACK

Data

Data

Destination
processNetwork Kernel

Figure 3: Kernel-resident protocols
reduce domain-crossing

User-level access to the data-link layer is not universally regarded as a good thing. Some have
suggested that user programs never need access to explicit network communication [23]; others
might argue that all networking should be done within a transport protocol such as IP [19] or the
ISO Transport Protocol [15], with demultiplexing done by the transport layer code. Both these
arguments implicitly assume a homogeneous networking environment, but heterogeneity is often
a fact of life: machines from different manufacturers speak various transport protocols, and
research on new protocol designs at the data-link level is still profitable.

The packet filter allows rapid development of networking programs, by relatively in-
experienced programmers, without disrupting other users of a timesharing system. It places few
constraints on the protocols that may be implemented, but in spite of this flexibility it performs
well enough for many uses.

2.1. Historical background
As far as we are aware, the idea (and name) of the packet filter first arose in 1976, in the

Xerox Alto [3]. Because the Alto operating system shared a single address space with all
processes, and because security was not important, the filters were simply procedures in the user-
level programs; these procedures were called by the packet demultiplexing mechanism. The first
Unix implementation of the packet filter was done in 1980.

3. User-level interface abstraction
Figure 4 shows how the packet filter is related to other parts of a system. Packets received

from the network are passed through the packet filter and distributed to user processes; code to
implement protocols lives in each process. Figure 5 shows, for contrast, how networking is done

4

THE PACKET FILTER

in ‘‘vanilla’’ 4.3BSD Unix; protocols are implemented inside the kernel and data buffers are
passed from protocol code to user processes. Figure 6 shows how both models can coexist; some
programs may even use both means to access the network.

Packet Filter

Device Driver

User Processes

PUP VMTP Network
Monitor

Kernel

Network

Figure 4: Relationship between packet filter
and other system components

The programmer’s interface to the packet filter has three major components: packet trans-
mission, packet reception, and control and status information. We describe these in the context
of the 4.3BSD Unix implementation.

Packet transmission is simple; the user presents a buffer containing a complete packet, includ-
ing data-link header, to the kernel using the normal Unix write system call; control returns to the
user once the packet is queued for transmission. Transmission is unreliable if the data link is
unreliable; the user must discover transmission failure through lack of response rather than an
explicit error.

Device Driver

User Processes

TCP UDP

IP

Kernel

Network

Figure 5: 4.3BSD networking model

Packet reception is more complicated. The packet filter manages some number of ports, each
of which may be opened by a Unix program as a ‘‘character special device.’’ Associated with
each port is a filter, a user-specified predicate on received packets. If a filter accepts a packet,
the packet is queued for delivery to the associated port. A filter is specified using a small stack-
based ‘‘language,’’ in which one can push arbitrary constants or words from the received packet,

5

THE PACKET FILTER

Device Driver

User Processes

TCP UDP

VMTPPUP

Packet
Filter

IP

Kernel

Network

Figure 6: Packet filter coexisting with
4.3BSD networking model

and apply binary operations to the top of the stack. The filter language is discussed in more
detail in section 3.1. A process binds a filter to a port using an ioctl system call; a new filter can
be bound at any time, at a cost comparable to that of receiving a packet; in practice, filters are
not replaced very often.

Two processes implementing different communication streams under the same protocol must
specify slightly different predicates so that packets are delivered appropriately. For example, a
program implementing a Pup [2] protocol would include a test on the Pup destination socket
number as part of its predicate. The layering in a protocol architecture is not necessarily
reflected in a filter predicate, which may well examine packet fields from several layers.

When a program performs a read system call on the file descriptor corresponding to a packet
filter port, the first of any queued packets is returned. The entire packet, including the data-link
layer header, is returned, so that user programs may implement protocols that depend on header
information. The program may ask that all pending packets be returned in a batch; this is useful
for high-volume communications because it can amortize the overhead of performing a system
call over several packets. Figure 7 depicts per-packet overheads without batching; figure 8
shows how these are reduced when batching is used.

If no packets are queued, the read system call blocks until a packet is available; if no packet
arrives during a timeout period, the read call terminates and reports an error. Simple programs
can be written using a ‘‘write; read with timeout; retry if necessary’’ paradigm. More elaborate
programs may take advantage of two more sophisticated synchronization mechanisms: the
4.3BSD select system call, or a interrupt-like facility using Unix ‘‘signals,’’ either of which al-
lows non-blocking network I/O.

6

THE PACKET FILTER

Read

Read

Read

Destination
processNetwork Kernel

Figure 7: Delivery without
received-packet batching

Read

Destination
processNetwork Kernel

Figure 8: Delivery with received-packet batching

7

THE PACKET FILTER

3.1. Filter language details
The heart of the packet filter is an interpreter for the ‘‘language’’ shown in figure 9. A filter is

a data structure including an array of 16-bit words. Each word is normally interpreted as an
instruction with two fields, a stack action field and a binary operation field.

A stack action may cause either a word from the received packet or a constant to be pushed on
the stack. A binary operation pops the top two words from the stack, and pushes a result. Thus,
filter programs evaluate a logical expression composed of tests on the values of various fields in
the received packet. The filter is normally evaluated until the program is exhausted. If the value
remaining on top of the stack is non-zero, the filter is deemed to have accepted the packet.

It is sometimes possible to avoid evaluating the entire filter before deciding whether to accept
a packet. This is especially important for performance, since on a busy system several dozen
filters may be applied to an incoming packet before it is accepted. The filter language therefore
includes four ‘‘short-circuit’’ binary logical operations, that when evaluated either push a result
and allow the program to continue, or terminate the program and return an appropriate boolean.

Figure 11 shows an example of a simple filter program; figure 12 shows an example of a filter
program using short-circuit operations. Both are used with Pup [2] packets on a 3Mbit/sec. Ex-
perimental Ethernet [17]; the data-link header is 4 bytes (two words) long, with the packet type
in the second word (see figure 10.) In normal use, the filters are not directly constructed by the
programmer, but are ‘‘compiled’’ at run time by a library procedure.

The design of the filter language is not the result of careful analysis but rather embodies
several accidents of history, such as its bias towards 16-bit fields. It has evolved over the years;
in particular, the short-circuit operations were added after an analysis showed that they would
reduce the cost of interpreting filter predicates. One could imagine alternatives to the stack lan-
guage structure; for example, a predicate could be an array of (field-offset, expected-value) pairs,
and the predicate would be satisfied if all the specified fields had the specified values. However,
the additional flexibility of the stack language has often proved useful in constructing efficient
filters. Since the ‘‘instruction set’’ is implemented in software, not hardware, there is no
execution-time penalty associated with supporting a broad range of operations.

3.2. Access Control
Normally, once a packet has been accepted for delivery to a process, it will not be submitted to

the filters of any other processes. Because it is not possible to determine if two filters will accept
overlapping sets of packets, we need a way to prevent one process from inappropriately diverting
packets meant for another process.

Associated with each filter is a priority; filters are applied in order of decreasing priority, so if
two filters would both accept a packet, it goes to the one with higher priority. (Priority has
another purpose; if priorities are assigned proportional to the likelihood that a filter will accept a
packet, then the ‘‘average’’ packet will match one of the first few filters it is tested against,
consequently reducing the amount of filter interpretation overhead.) If two filters have the same
priority, the order of application is unspecified (the interpreter may occasionally reorder such
filters to place the busier ones first); in these cases one must take care to ensure that the filters
accept disjoint sets of packets.

8

THE PACKET FILTER

Second
 word:

First
 word:

Literal constant

16 bits

Binary Operator

6 bits10 bits

Stack Action

(second word used only if Stack Action = PUSHLIT)

Instruction format

Stack Action Effect on stack
NOPUSH None
PUSHLIT Following instruction word is pushed
PUSHZERO Constant zero is pushed
PUSHONE Constant one is pushed
PUSHFFFF Constant 0xFFFF is pushed
PUSHFF00 Constant 0xFF00 is pushed
PUSH00FF Constant 0x00FF is pushed
PUSHWORD+n nth word of packet is pushed

All binary operations except NOP remove two words from the top of the stack and push
one result word. In the table that follows, the original top of stack is abbreviated T1, the word
below that is T2, and the result is R. For logical operations (AND, OR, XOR), a value is
interpreted as TRUE if it is non-zero.

Binary
Operation Result on stack
EQ R := TRUE if T2 == T1, else FALSE
NEQ R := TRUE if T2 <> T1, else FALSE
LT R := TRUE if T2 < T1, else FALSE
LE R := TRUE if T2 <= T1, else FALSE
GT R := TRUE if T2 > T1, else FALSE
GE R := TRUE if T2 >= T1, else FALSE
AND R := T2 AND T1
OR R := T2 OR T1
XOR R := T2 XOR T1
NOP No effect on stack

The following ‘‘short-circuit’’ binary operations all evaluate R := (T1 == T2) and push the
result R on the stack. They return immediately under specified conditions, otherwise the
program continues.

Binary Returns
operation immediately if result is
COR TRUE TRUE
CAND FALSE FALSE
CNOR FALSE TRUE
CNAND TRUE FALSE

Figure 9: Packet filter language summary

9

THE PACKET FILTER

Ethernet
header EtherType

12Data

11
10

SrcSocket

9SrcNet SrcHost
8

DstSocket

DstNet

PupTypeHopCount
PupLength

EtherSrc

16 bits

7
6DstHost

PupIdentifier
5
4

3
2
1
0

Pup
header

EtherDst

Figure 10: Format of Pup Packet header
on 3Mb Ethernet (after [2])

This filter accepts all Pup packets with Pup Types between 1 and 100. The Pup Type field is a one byte
field, so it must be masked out of the appropriate word in the packet.

struct enfilter f = {
10, 12, /* priority and length */
PUSHWORD+1, PUSHLIT | EQ, 2, /* packet type == PUP */
PUSHWORD+3, PUSH00FF | AND, /* mask low byte */
PUSHZERO | GT, /* PupType > 0 */
PUSHWORD+3, PUSH00FF | AND, /* mask low byte */
PUSHLIT | LE, 100, /* PupType <= 100 */
AND, /* 0 < PupType <= 100 */
AND /* && packet type == PUP */

};

Figure 11: Example filter program

This filter accepts Pup packets with a Pup DstSocket field of 35. The DstSocket field occupies two words,
so the filter must test both words and combine them with an AND operation. The DstSocket field is checked
before the packet type field, since in most packets the DstSocket is likely not to match and so the short-circuit
operation will exit immediately.

struct enfilter f = {
10, 8, /* priority and length */
PUSHWORD+8, PUSHLIT | CAND, 35, /* Low word of socket == 35 */
PUSHWORD+7, PUSHZERO | CAND, /* High word of socket == 0 */
PUSHWORD+1, PUSHLIT | EQ, 2 /* packet type == Pup */

};

Figure 12: Example filter program
using short-circuit operations

10

THE PACKET FILTER

Optionally, a process may specify that the packets accepted by its filter should be submitted to
other, lower-priority, filters as well; multiple copies of such packets may be delivered. This is
useful in implementing monitoring facilities without disturbing the processes being monitored, in
‘‘group’’ communication where a packet may be multicast to several processes on one host, or
when it is not possible to filter precisely enough within the kernel.

This access control mechanism does not in itself protect against malicious or erroneous
processes attempting to divert packets; it only works when processes play by the rules. In the
research environment for which the packet filter was developed, this has not been a problem,
especially since there are many other ways to eavesdrop on an Ethernet. An earlier version of
the packet filter did provide some security by restricting the use of high-priority filters to certain
users, allowing these users first rights to all packets, but this mechanism went unused.

Because typical networks are easily tapped, most proposals for secure communication rely on
encryption to protect against eavesdropping. If packets are encrypted, some header fields must
be transmitted in cleartext to allow demultiplexing; this is not peculiar to use of the packet filter,
especially if encryption is on a per-process basis.

3.3. Control and status information
The user can control the packet filter’s action in a variety of ways, by specifying: the filter to

be associated with a packet filter port; the timeout duration for blocking reads (or optionally,
immediate return or indefinite blocking); the signal, if any, to be delivered upon packet recep-
tion; and the maximum length of the per-port input queue.

Information provided by the packet filter to programs includes: the type of the underlying
data-link layer; the lengths of a data-link layer address and of a data-link layer header; the max-
imum packet size for the data-link; the data-link address for incoming packets; and the address
used for data-link layer broadcasts, if one exists.

The user can also ask that each received packet be marked with a timestamp and a count of the
number of packets lost due to queue overflows in the network interface and in the kernel.

11

THE PACKET FILTER

4. Implementation
The packet filter is implemented in 4.3BSD Unix as a ‘‘character special device’’ driver. Just

as the Unix terminal driver is layered above communications device drivers to provide a uniform
abstraction, the packet filter is layered above network interface device drivers. As with any
character device driver, it is called from user code via open, close, read, write, and ioctl system
calls. The packet filter is called from the network interface drivers upon receipt of packets not
destined for kernel-resident protocols.

Most of the complexity in the implementation is involved in bookkeeping and in managing
asynchrony. When a packet is received, it is checked against each filter, in order of decreasing
priority, until it is accepted or until all filters have rejected it (see figure 13). The filter inter-
preter is straightforward, but must be carefully coded since its inner loop is quite busy. It simply
iterates through the ‘‘instruction words’’ of a filter (there are no branch instructions), evaluating
the filter predicate using a small stack. When it reaches the end of the filter, or a short-circuit
conditional is satisfied, or an error is detected, it returns the predicate value to indicate accep-
tance or rejection of the packet.

Accepted := false;
for priority := MaxPriority downto MinPriority do
for i := FirstFilter[priority] to

LastFilter[priority] do
if Apply(Filter[i], rcvd_pkt) = MATCH then
Deliver(Port[i], rcvd_pkt);
Accepted := true;

end;
end;

end;
if not Accepted then

Drop(rcvd_pkt);
end;

Figure 13: Pseudo-code for filter application loop

The packet filter module is about 2000 lines of heavily-commented C source code (under 6K
bytes of Vax machine code); each of the network interface device drivers must be modified with
a few dozen lines of linkage code. Aside from this, the packet filter requires no modification of
the Unix kernel. Because it is well-isolated from the rest of the kernel, it is easily ported to
different Unix implementations. Ports have been made to the Sun Microsystems Inc. operating
system, which is internally quite similar to 4.2BSD, and to the Ridge Operating System (ROS) of
Ridge Computers, Inc. ROS is a message-based operating system with inexpensive
processes [1]; its internal structure is distinctly different from that of Unix. The packet filter has
also been ported to Pyramid Technology’s Unix system, with minor modification for use in a
multi-processor. It appears to be relatively easy to port the packet filter to a variety of operating
systems; this in turn makes it possible to port user-level networking code without further kernel
modifications.

12

THE PACKET FILTER

5. Uses of the packet filter
The packet filter is successful because it provides a useful facility with adequate performance.

Section 6 provides quantitative measures of performance; in this section we consider qualitative
utility.

The primary goal of the packet filter is to simplify the development and improvement of net-
working software and protocols. Since networking software is often in a continual state of
development, anything that speeds debugging and modification reduces the mismatch between
the software and the networking environment. This is especially important for the experimental
development of new protocols. Similarly, since operating systems are continually changing,
decoupling network code from the rest of the system reduces the risk of ‘‘software rot.’’

The remainder of this section describes examples demonstrating how the packet filter has been
of practical use.

5.1. Pup protocols
The Pup [2] protocol suite includes a variety of applications using both datagram (request-

response) and stream transport protocols. At Stanford, almost all of the Pup protocols were im-
plemented for Unix, based entirely on the packet filter. Although Pup, as an experimental ar-
chitecture, has some notable flaws, for about five years this implementation served as the
primary link between Stanford’s Unix systems and other campus hosts and workstations. Pup is
still in relatively heavy use in a number of organizations, most of which have used the Stanford
implementation.

The experience with Pup has shown the value of decoupling the networking implementation
from the Unix kernel. Not only did this make it possible to develop the Pup code without the
effort of kernel debugging, it also made it possible to modify the kernel without having to worry
about the integrity of the Pup code. When, every few years, a new release of the Berkeley Unix
kernel became available, it sufficed to re-install the kernel module implementing the packet fil-
ter. The Pup code could then be run, often without recompilation, under the new operating sys-
tem. The initial port of the packet filter code from 4.1BSD to 4.2BSD took several evenings; for
comparison, it took six programmer-months to port BBN’s TCP implementation from 4.1BSD to
4.2BSD [14]. That the BBN TCP code is kernel-resident undoubtedly contributed to the time it
took to port.

5.2. V-system protocols
The V-system is a message-based distributed operating system. As an ongoing research

project, it is under continual development and revision. The architects of the V-system have
chosen to design their own protocols, to obtain high performance and so that they could make
use of the multicast feature of Ethernet hardware [6].

Although the V-system is primarily a collection of workstations and servers running the V
kernel, Unix hosts were integrated into the distributed system to provide disk storage, compute
cycles, mail service, and other amenities not available in a new operating system. The Unix
hosts had to be taught to speak the V-system Inter-Kernel Protocol (IKP). Fortunately, the
packet filter was available for use as the basis of a user-level V IKP server process.

13

THE PACKET FILTER

The V IKP is a simple protocol and could have been put in the Unix kernel. This, however,
would have required the V researchers to learn about the details of the Unix kernel, to participate
in the maintenance of the kernel, and to re-install the IKP implementation in each new release of
the operating system. Instead, they were able to devote their attention to research on the topics
that interested them. One result of this research was the VMTP protocol [5], a replacement for
the V IKP. Although there is a kernel-resident implementation of VMTP for 4.3BSD, the first
implementation used the packet filter. The user-level implementation allowed rapid develop-
ment of the protocol specification through experimentation with easily-modified code. (Section
6.3 contrasts the performance differences between the two VMTP implementations.)

5.3. RARP
The Reverse Address Resolution Protocol (RARP) [12] was designed to allow workstations to

determine their Internet Protocol (IP) addresses without relying on any local stable storage. One
issue in the definition of this protocol was whether it should be a layer above IP, or a parallel
layer. The former leads to a chicken-or-egg dilemma; the latter is cleaner but raised question of
implementability under 4.2BSD. With the packet filter, however, a RARP implementation was
easy; the work was done in a few weeks by a student who had no experience with network
programming, and who had no need to learn how to modify the Unix kernel.

5.4. Network Monitoring
For the developer or maintainer of network software, no tool is as valuable as a network

monitor. A network monitor captures and displays traces of the packets flowing among hosts; a
packet trace makes it much easier to understand why two hosts are unable to communicate, or
why performance is not up to par.

Most commercially-available network monitors (including the Excelan LANalyzer [11], the
Network General Sniffer [18], and the Communications Machinery Corp. LanScan [7]) are
stand-alone units dedicated to monitoring specific protocols. A network monitor closely in-
tegrated with a general-purpose operating system, running on a workstation, has several impor-
tant advantages over a dedicated monitor:

• All the tools of the workstation are available for manipulating and analyzing packet
traces.

• A user can write new monitoring programs to display data in novel ways, or to
monitor new or unusual protocols.

One of us has been using the packet filter, on a MicroVAX-II workstation, as the basis for a
variety of experimental network monitoring tools. This system has sufficient performance to
record all packets flowing on a moderately busy Ethernet (with rare lapses), and more than suf-
ficient performance to capture all packets between a pair of communicating hosts. Since one can
easily write arbitrarily elaborate programs to analyze the trace data, and even to do substantial
analysis in real time, an integrated network monitor appears to be far more useful than a dedi-
cated one. (Sun Microsystems’ etherfind program is another example of an integrated network
monitor. It is based on Sun’s Network Interface Tap (NIT) facility, which is similar to the packet

1filter but only allows filtering on a single packet field [22].)

1Sun expects to include our packet-filtering mechanism in a future release of NIT.

14

THE PACKET FILTER

6. Performance
We measured the performance of the packet filter in several ways. We determined the amount

of processor time spent on packet filter routines, and we measured the throughput of protocol
implementations based on the packet filter. We compared these measurements with those for
kernel-resident implementations of similar protocols, and found that in practice packet-filter-
based protocol implementations perform fairly well.

All measurements were made using VAX processors running 4.2BSD or 4.3BSD Unix, using
either a 10Mbit/sec or 3Mbit/sec Ethernet. Note that the packet filter coexists with kernel-
resident protocol implementations, without affecting their performance.

6.1. Kernel per-packet processing time
One indication of the packet filter’s cost is the kernel CPU time required to process an

‘‘average’’ received packet. We measured this time for the packet filter, and for analogous func-
tions of kernel-resident protocols. A 4.3BSD Unix kernel was configured to collect the CPU
time spent in and number of calls made to each kernel subroutine. The profiled kernel was run
for 28 hours on a timesharing VAX-11/780, and gprof [13] was used to format the data.

During the profiling period, the system handled 1.3 million packets. 21% of these packets
were processed by the packet filter; of the remainder, 69% were IP packets and 10% were ARP
packets. All per-packet processing times reported are for ‘‘average’’ packets and ‘‘typical’’ fil-
ter predicates.

Processing times for transmitted packets are about the same for either the packet filter or the
kernel-resident IP implementation; it takes about 1 mSec to send a datagram. The packet filter
has a slight edge, since it does not need to choose a route for the datagram or compute a check-
sum.
Packet filter: The packet filter spends an average of 1.57 mSec processing each packet. 41% of

this time is spent evaluating filter predicates; the average packet is tested against 6.3 predi-
cates. We derived a crude estimate for the time to process a packet: 0.8 mSec + (0.122 *
number of predicates tested) mSec. The average number of predicates tested will normally
be somewhat less than half the number of active ports, because the priority mechanism
described in section 3.2 can cause the most likely filters to be tested first.

Kernel-resident IP implementation: The average time required to process a received IP packet
was 1.77 mSec. This includes all protocol processing up to the TCP and UDP layers; if only
the IP layer processing is counted, the average packet requires about 0.49 mSec. This means
that the kernel-resident IP layer is about three times faster than the packet filter at processing
an average packet.

6.2. Total per-packet processing time
The kernel profile does not account for the entire cost of handling packets. We measured

actual packet rates into and out of user processes on a microVax-II running Ultrix 1.2, using a
synthetic load. The results for packet reception are included in tables 8 and 9 in section 6.5.

Although sending datagrams via the packet filter costs less than sending an unchecksummed
UDP datagram of the same size (see table 1), we estimate that this is still about twice the cost for

15

THE PACKET FILTER

the kernel to send a datagram on its own. For packets that carry no useful data
(acknowledgements, for example) user-level protocol implementations pay this additional
penalty.

Elapsed time per packet Elapsed time per packet
Total packet size sent via packet filter sent via UDP

128 bytes 1.9 mSec 3.1 mSec
1500 bytes 3.6 mSec 4.9 mSec

Table 1: Cost of sending packets

6.3. VMTP performance
The only interesting protocol for which there is both a packet-filter based implementation and

a kernel-resident implementation is VMTP [5]. This provides a basis for a direct measurement
of the cost of user-level implementation; while there are minor differences in the actual protocols
implemented, and the two implementations are not of precisely equal quality, they follow essen-
tially the same pattern of packet transport. All these measurements, unless noted, were carried
out using microVax-II processors, 4.3BSD Unix, and a 10Mbit/sec Ethernet. In each case, both
ends of the transfer used identical protocol implementations.

We measured the cost for a minimal round-trip operation (reading zero bytes from a file). The
results, shown in table 2 (and figure 14), indicate that the penalty for user-level implementation
is almost exactly a factor of two. On this measurement, the Unix kernel implementation of
VMTP is quite close to the V kernel implementation, indicating that there is no obvious in-
efficiency in the Unix kernel implementation.

VMTP Implementation Elapsed time per operation

Packet filter 14.7 mSec
Unix kernel 7.44 mSec

V kernel 7.32 mSec

Table 2: Relative performance of VMTP for small messages

7.3 7.4

14.7

V Kernel Unix Kernel Packet Filter

m
S

ec
/o

pe
ra

tio
n

Figure 14: Relative performance of VMTP for small messages

We also measured the cost for transferring bulk data using VMTP. This was done by
repeatedly reading the same segment of a file, which therefore stayed in the file system buffer

16

THE PACKET FILTER

cache; consequently, the measured rates should be nearly independent of disk I/O speed. (In
each trial about 1 Mb was transferred.) We also measured TCP performance, for comparison;
note that TCP checksums all data, whereas these implementations of VTMP do not. The results,
shown in table 3 (and in figure 15), show that in this case the penalty for user-level implemen-
tation of VMTP is almost exactly a factor of three.

Implementation Rate

Packet filter 112 Kbytes/sec
Unix kernel VMTP 336 Kbytes/sec

V kernel VMTP 278 Kbytes/sec
Unix kernel TCP 222 Kbytes/sec

Table 3: Relative performance of VMTP for bulk data transfer

278

336

112

222

38

V Kernel
VMTP

Unix Kernel
VMTP

Packet Filter
VMTP

4.3BSD
Kernel TCP

Packet Filter
Pup/BSP

K
by

te
s/

S
ec

Figure 15: Relative performance of VMTP for bulk data transfer

The packet-filter based implementation measured in table 3 uses received-packet batching.
Table 4 (and figure 16) shows that batching improves throughput by about 75% over identical
code that reads just one packet per system call; the difference cannot be entirely due to decreased
system call overhead, but may reflect reductions in context switching and dropped packets.

Batching Rate

Yes 112 Kbytes/sec
No 64 Kbytes/sec

Table 4: Effect of received-packet batching on performance

17

THE PACKET FILTER

112

K
by

te
s/

S
ec

64

25

Packet Filter
no batching

User-level
demultiplexing

Packet Filter
with batching

Figure 16: Effect of received-packet batching and user-level demultiplexing
on performance

We also tried to measure the cost of a user-level demultiplexing process, by simulating it
within the client VTMP implementation. This is done by using an extra process to receive pack-
ets, which are then passed to the actual VMTP process via a Unix pipe. (In this case, the server
process was not modified.) Table 5 (and figures 16 and 17) shows that user-level demultiplexing
has a small cost (20% greater latency) for short messages, but decreases bulk throughput by
more than a factor of four (much of this is attributable to the poor IPC facilities in 4.3BSD).

Elapsed time per
Demultiplexing done in minimal operation Bulk rate

Kernel 14.72 112 Kbytes/sec
User process 18.08 25 Kbytes/sec

Table 5: Effect of user-level demultiplexing on performance

14.7

Packet Filter

m
S

ec
/o

pe
ra

tio
n 18.1

User-level
demultiplexing

Figure 17: Effect of user-level demultiplexing for small VMTP messages

6.4. Byte-stream throughput
We compared the performance of a Pup/BSP (Byte-Stream Protocol) implementation using

the packet filter with that of the IP/TCP [20] implementation in the 4.3BSD kernel. These
measurements were carried out using microVax-II processors, 4.3BSD Unix, and a 10Mbit/sec
Ethernet.

18

THE PACKET FILTER

Table 6 (and figure 15) shows the rates at which the two implementations can transfer bulk
data from process to process. TCP is faster by almost a factor of six. When used to implement a
File Transfer Protocol (FTP), TCP slows by a factor of two if the source of data is a disk file, but
the BSP throughput remains unchanged, indicating that network performance is the rate-limiting
factor for BSP file transfer.

Implementation Rate

Packet filter BSP 38 Kbytes/sec
Unix kernel TCP 222 Kbytes/sec

Table 6: Relative performance of stream protocol implementations

Pup (hence BSP) allows a maximum packet size of 568 bytes, whereas TCP in 4.3BSD uses
1078-byte packets and so sends only half as many; we found that if TCP is forced to use the
smaller packet size, its performance is cut in half. After this correction, TCP throughput is still
three times that of BSP; most of difference is attributable to the cost of BSP’s user-level im-
plementation. This is consistent with the factor-of-two difference we measured for VMTP.

2We also measured performance for Telnet (remote terminal access) . A program on the
‘‘server’’ host (Vax-11/780) prints characters which are transmitted across the network and dis-
played at the ‘‘user’’ host. The results are shown in table 7. The ‘‘Output rate’’ column shows
the overall throughput, in characters per second, for each configuration.

Telnet Network Output
protocol bandwidth rate

Pup/BSP 10 Mbit/sec 1635
IP/TCP 10 Mbit/sec 1757

Pup/BSP 3 Mbit/sec 878
IP/TCP 3 Mbit/sec 933

Table 7: Relative performance of Telnet

The first two rows of the table show throughput using an MC68010-based workstation capable
of displaying about 3350 characters per second. The achieved throughput is about half that,
varying only slightly according to whether TCP or BSP (and thus the packet filter) is used. The
last two rows, measured with characters displayed on a 9600 baud terminal, show almost no
difference between BSP and TCP performance. These output rates are clearly limited by the
display terminal, not by network performance.

In summary, a kernel-resident implementation of a stream protocol such as VMTP or BSP
appears to be about two or three times as fast as an implementation based on the packet filter. In
many applications, the actual performance difference may be much smaller; the packet-filter im-
plementation of VMTP is only 40% slower than the kernel-resident TCP when used for file
transfer. The VMTP and BSP implementations are quite useful in practice; disks and terminals
are more often serious bottlenecks than the packet filter.

2This test was done under 4.2BSD.

19

THE PACKET FILTER

6.5. Costs of demultiplexing outside the kernel
We asserted in section 2 that using a user-level process to demultiplex received packets to

other processes would result in poor performance. In section 6.3 we showed that this appears to
be true, especially for bulk-data transfer. In this section, we analyze the additional cost using
measurements of Ultrix 1.2; the measurements are inspired by those made by McKusick, Karels,
and Leffler [16].

6.5.1. Analytical model
If a demultiplexing process is used, each received packet results in at least two context

3switches: one into the demultiplexing process and one into the receiving process . If the system
has other active processes, an additional context switch to an unrelated process may occur, when
the receiving process blocks waiting for the next packet.

With direct delivery of received packets, in the best case the receiving process will never be
suspended, and no context switches take place. In the worst case, with other active processes, a
received packet will cause two context switches.

Either mechanism requires at least one data transfer between kernel and process. Since Unix
does not support memory sharing, the demultiplexing process requires two additional data trans-
fers to get the packet into the final receiving process.

6.5.2. Cost of overhead operations
Benchmarks indicate that a MicroVAX-II running Ultrix 1.2 requires about 0.4 mSec of CPU

time to switch between processes, and about 0.5 mSec of CPU time to transfer a short packet
between the kernel and a process. Therefore, we predict that receiving a short packet using a
demultiplexing process should take at least 2.3 mSec while for the packet filter, these overhead
costs may be as low as 0.5 mSec per packet; the difference increases for longer packets because
data copying requires about 1 mSec/Kbyte.

6.5.3. Measured costs
These costs are not the only ones associated with receiving a packet; they are the ones that are

affected by the use of user-level demultiplexing. We measured the actual elapsed time required
to receive packets of various sizes; the ‘‘demultiplexing process’’ receives packets from the net-
work and passes them to a second process via a Unix pipe. The results are shown in table 8. The
additional cost of user-level demultiplexing agrees fairly closely with our predication.

Elapsed time if demultiplexing Elapsed time if demultiplexing
Packet size done in kernel done in user process

128 bytes 2.3 mSec 5.0 mSec
1500 bytes 4.0 mSec 9.0 mSec

Table 8: Per-packet cost of user-level demultiplexing

3We assume that no batching of packets takes place; this assumption breaks down when packets arrive faster than
the system can switch contexts.

20

THE PACKET FILTER

Since received-packet batching, as we saw in section 6.3, can amortize the costs of context-
switching over many packets, we repeated our measurements with batching enabled; the batch
size was hard to control but the results are about the same for four or more packets per batch.
The results are shown in table 9; batching clearly reduces the penalty associated with user-level
demultiplexing, but the difference remains significant.

Elapsed time if demultiplexing Elapsed time if demultiplexing
Packet size done in kernel done in user process

128 bytes 1.9 mSec 2.4 mSec
1500 bytes 3.5 mSec 5.9 mSec

Table 9: Per-packet cost of user-level demultiplexing with
received-packet batching

The measurements in tables 8 and 9 were made without any real decision-making on the part
of the demultiplexer. Before we condemn user-level demultiplexing on the basis of its high
overhead, we must show that the cost of interpreting packet filters in the kernel does not dwarf
the benefit of avoiding context switches (presumably, a user-level demultiplexer could make
decisions at least as efficiently and possibly more so). We measured the cost of interpreting
filter programs of various lengths; the results are shown in table 10. (Batching was enabled and
all packets were 128 bytes long.) It usually takes two or three filter instructions to test one
packet field; even with rather long filters (21 instructions) the additional cost for filter inter-
pretation is less than the cost of user-level demultiplexing if no more than three such long filters
are applied to an incoming packet before one filter accepts it.

Filter length (instructions) Elapsed time per packet

0 1.9 mSec
1 2.0 mSec
9 2.2 mSec
21 2.5 mSec

Table 10: Cost of interpreting packet filters

For filters using short-circuit conditionals, the break-even point is closer to an average of
about ten filters before acceptance, which should occur when more than twenty filters are active.
This means that even if one assumes zero cost for decision-making in a user-level demultiplexer,
the break-even point comes with twenty different processes using the network. For packets
longer than 128 bytes, the break-even point comes with even more active processes.

In summary, kernel demultiplexing performs significantly better than user-level demultiplex-
ing for a wide range of situations. This advantage disappears only if a very large number of
processes are receiving packets.

21

THE PACKET FILTER

7. Problems and possible improvements
Since its beginnings in early 1980, the packet filter has often been revised to support ad-

ditional applications or provide better performance. There is still room for improvement.

The filter language described in section 3 only allows the user to specify packet fields at con-
stant offsets from the beginning of a packet. This has been adequate for protocols with fixed-
format headers (such as Pup), but many network protocols allow variable-format headers. For
example, since the IP header may include optional fields, fields in higher layer protocol headers
are not at constant offsets. The current packet filter can be made to handle non-constant offsets
only with considerable awkwardness and inefficiency; the filter language needs to be extended to
include an ‘‘indirect push’’ operator, as well as arithmetic operators to assist in addressing-unit
conversions.

The current filter mechanism deals with 16-bit values, requiring multiple filter instructions to
load packet fields that are wider or narrower. It is possible that direct support for other field
sizes would improve filter-evaluation efficiency. The existing read-batching mechanism clearly
improves performance for bulk data transfer; a write-batching option (to send several packets in
one system call) might also improve performance.

In addition to these problems, which may be regarded as deficiencies in the abstract interface,
there is room for improvement in the existing implementation. During evaluation of each filter
instruction, the interpreter verifies that the instruction is valid, that it doesn’t overflow or under-
flow the evaluation stack, and that it doesn’t refer to a field outside the current packet. Since the
filter language does not include branching instructions, all these tests can be performed ahead of
time (except for indirect-push instructions); this might significantly speed filter evaluation. Even
more speed could be gained by compiling filters into machine code, at the cost of greatly in-
creased implementation complexity. Finally, with a redesigned filter language it might be pos-
sible to compile the set of active filters into a decision table, which should provide the best pos-
sible performance.

Idiosyncrasies of the 4.3BSD kernel create other inefficiencies. For example, because 4.3BSD
network interface drivers strip the data-link layer header from incoming packets, the packet filter
may be spending a significant amount of time to restore these headers. Also, in order to mark
each packet with a unique timestamp, the packet filter calls a kernel subroutine called microtime;
on a VAX-11/780, this costs about 70 uSec, probably more than the timestamp is worth.

8. Summary
The performance of the packet filter is clearly better than that of a user-level demultiplexer,

and the performance of protocol code based on the packet filter is clearly worse than that of
kernel-resident protocol code. Since the packet filter is just as flexible as a user-level demul-
tiplexer, we believe that in systems where context-switching has a substantial cost, it is the right
basis for implementing network code outside the kernel.

Are the advantages of user-level network code, even with the packet filter, worth the extra
cost? Our experience has convinced us that in many cases, it is. The performance of such code
is quite acceptable, and it greatly eases the task of developing protocols and their implemen-
tations. The packet filter appears to put just enough mechanism in the kernel to provide decent
performance, while retaining the flexibility of a user-level demultiplexer.

22

THE PACKET FILTER

Acknowledgments
Many people have used or worked on the packet filter implementation over the years; without

their support and comments it would not be nearly as useful as it is. Especially notable are those
who ported the code to other operating systems: Jon Reichbach of Ridge Computers, Inc., Glenn
Skinner of Sun Microsystems, Inc., and Charles Hedrick of Rutgers University, who ported it to
Pyramid Technology’s system. Steve Deering and Ross Finlayson of Stanford made the VMTP
measurements possible. We would like to thank the program committee and student reviewers
for their comments.

23

THE PACKET FILTER

24

THE PACKET FILTER

References
[1] Ed Basart.

The Ridge Operating System: High performance through message-passing and virtual
memory.

In Proceedings of the 1st International Conference on Computer Workstations, pages
134-143. IEEE, November, 1985.

[2] David R. Boggs, John F. Shoch, Edward A. Taft, and Robert M. Metcalfe.
Pup: An internetwork architecture.
IEEE Transactions on Communications COM-28(4):612-624, April, 1980.

[3] David Boggs and Edward Taft.
Private communication.
1987.

[4] David R. Cheriton.
The V Kernel: A software base for distributed systems.
IEEE Software 1(2):19-42, April, 1984.

[5] David R. Cheriton.
VMTP: A Transport Protocol for the Next Generation of Communication Systems.
In Proceedings of SIGCOMM ’86 Symposium on Communications Architectures and

Protocols, pages 406-415. ACM SIGCOMM, Stowe, Vt., August, 1986.

[6] David R. Cheriton and Willy Zwaenepoel.
Distributed process groups in the V kernel.
ACM Transactions on Computer Systems 3(2):77-107, May, 1985.

[7] Communications Machinery Corporation.
DRN-1700 LanScan Ethernet Monitor User’s Guide
4th edition, Communications Machinery Corporation, Santa Barbara, California, 1986.

[8] Computer Systems Research Group.
Unix Programmer’s Reference Manual, 4.3 Berkeley Software Distribution, Virtual

VAX-11 Version
Computer Science Division, University of California at Berkeley, 1986.

[9] The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specifications
(Version 1.0)
Digital Equipment Corporation, Intel, Xerox, 1980.

[10] TOPS-20 User’s Guide
Digital Equipment Corporation, Maynard, MA., 1980.
Form No. AA-4179C-TM.

[11] LANalyzer EX 5000E Ethernet Network Analyzer User Manual
Revision A edition, Excelan, Inc., San Jose, California, 1986.

[12] Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin Theimer.
A Reverse Address Resolution Protocol.
RFC 903, Network Information Center, SRI International, June, 1984.

25

THE PACKET FILTER

[13] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a Call Graph Execution Profiler.
In Proceedings of the ACM SIGPLAN ’82 Symposium on Compiler Construction, pages

120-126. ACM SIGPLAN, June, 1982.

[14] Robert Gurwitz.
Private communication.
1986.

[15] ISO.
ISO Transport Protocol Specification: ISO DP 8073.
RFC 905, Network Information Center, SRI International, April, 1984.

[16] M. Kirk McKusick, Mike Karels, and Sam Leffler.
Performance Improvements and Functional Enhancements in 4.3BSD.
In Proc. Summer USENIX Conference, pages 519-531. June, 1985.

[17] Robert. M. Metcalfe and David. R. Boggs.
Ethernet: Distributed packet switching for local computer networks.
Communications of the ACM 19(7):395-404, July, 1976.

[18] The Sniffer: Operation and Reference Manual
Network General Corporation, Sunnyvale, California, 1986.

[19] Jon Postel.
Internet Protocol.
RFC 791, Network Information Center, SRI International, September, 1981.

[20] Jon Postel.
Transmission Control Protocol.
RFC 793, Network Information Center, SRI International, September, 1981.

[21] D. M. Ritchie and K. Thompson.
The UNIX timesharing system.
The Bell System Technical Journal 57(6):1905-1929, July/August, 1978.

[22] Sun Microsystems, Inc.
Unix Interface Reference Manual
Sun Microsystems, Inc., Mountain View, California, 1986.
Revision A.

[23] Brent B. Welch.
The Sprite Remote Procedure Call System.
UCB/CSD 86/302, Department of Electrical Engineering and Computer Science, Univer-

sity of California ---- Berkeley, June, 1986.

26

THE PACKET FILTER

ii

THE PACKET FILTER

Table of Contents
1. Introduction 1
2. Motivation 2

2.1. Historical background 4
3. User-level interface abstraction 4

3.1. Filter language details 8
3.2. Access Control 8
3.3. Control and status information 11

4. Implementation 12
5. Uses of the packet filter 13

5.1. Pup protocols 13
5.2. V-system protocols 13
5.3. RARP 14
5.4. Network Monitoring 14

6. Performance 15
6.1. Kernel per-packet processing time 15
6.2. Total per-packet processing time 15
6.3. VMTP performance 16
6.4. Byte-stream throughput 18
6.5. Costs of demultiplexing outside the kernel 20

6.5.1. Analytical model 20
6.5.2. Cost of overhead operations 20
6.5.3. Measured costs 20

7. Problems and possible improvements 22
8. Summary 22
Acknowledgments 23
References 25

iii

THE PACKET FILTER

iv

THE PACKET FILTER

List of Figures
Figure 1: Costs of demultiplexing in a user process 3
Figure 2: Costs of demultiplexing in the kernel 3
Figure 3: Kernel-resident protocols reduce domain-crossing 4
Figure 4: Relationship between packet filter and other system components 5
Figure 5: 4.3BSD networking model 5
Figure 6: Packet filter coexisting with 4.3BSD networking model 6
Figure 7: Delivery without received-packet batching 7
Figure 8: Delivery with received-packet batching 7
Figure 9: Packet filter language summary 9
Figure 10: Format of Pup Packet header on 3Mb Ethernet (after [2]) 10
Figure 11: Example filter program 10
Figure 12: Example filter program using short-circuit operations 10
Figure 13: Pseudo-code for filter application loop 12
Figure 14: Relative performance of VMTP for small messages 16
Figure 15: Relative performance of VMTP for bulk data transfer 17
Figure 16: Effect of received-packet batching and user-level demultiplexing on 18

performance
Figure 17: Effect of user-level demultiplexing for small VMTP messages 18

v

THE PACKET FILTER

vi

THE PACKET FILTER

List of Tables
Table 1: Cost of sending packets 16
Table 2: Relative performance of VMTP for small messages 16
Table 3: Relative performance of VMTP for bulk data transfer 17
Table 4: Effect of received-packet batching on performance 17
Table 5: Effect of user-level demultiplexing on performance 18
Table 6: Relative performance of stream protocol implementations 19
Table 7: Relative performance of Telnet 19
Table 8: Per-packet cost of user-level demultiplexing 20
Table 9: Per-packet cost of user-level demultiplexing with received-packet 21

batching
Table 10: Cost of interpreting packet filters 21

vii

