
J U N E 2 0 0 0

WRL
Research Report 2000/5

Quantifying the Energy
Consumption of
a Pocket Computer and
a Java Virtual Machine

Keith I. Farkas
Jason Flinn
Godmar Back
Dirk Grunwald
Jennifer M. Anderson

Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

 The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate
Research group. Our focus is research on information technology that is relevant to the technical strategy of the
Corporation and has the potential to open new business opportunities. Research at WRL ranges from Web search
engines to tools to optimize binary codes, from hardware and software mechanisms to support scalable shared
memory paradigms to graphics VLSI ICs. As part of WRL tradition, we test our ideas by extensive software or
hardware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports and technical notes.
This document is a research report. Research reports are normally accounts of completed research and may in-
clude material from earlier technical notes, conference papers, or magazine articles. We use technical notes for
rapid distribution of technical material; usually this represents research in progress.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.compaq.com/wrl/

You can request research reports and technical notes from us by mailing your order to:

Technical Report Distribution
Compaq Western Research Laboratory
250 University Avenue
Palo Alto, CA 94301 U.S.A.

You can also request reports and notes via e-mail. For detailed instructions, put the word “Help” in the sub-
ject line of your message, and mail it to:

wrl-techreports@pa.dec.com

Quantifying the Energy Consumption of a Pocket
Computer and a Java Virtual Machine

Keith I. Farkas Jason Flinn
�

Godmar Back
�

Dirk Grunwald
�

Jennifer M. Anderson
�

Western Research Lab, Compaq Computer Corporation

250 University Ave., Palo Alto, CA. 94301 U.S.A.
keith.farkas@compaq.com

ABSTRACT
In this paper, we examine the energy consumption of a state-
of-the-art pocket computer. Using a data acquisition sys-
tem, we measure the energy consumption of the Itsy Pocket
Computer, developed by Compaq Computer Corporation's
Palo Alto Research Labs. We begin by showing that the
energy usage characteristics of the Itsy di�er markedly from
that of a notebook computer. Then, since we expect that

exible software environments will become increasingly pre-
valent on pocket computers, we consider applications run-
ning in a Java environment. In particular, we explain some
of the Java design tradeo�s applicable to pocket computers,
and quantify their energy costs. For the design options we
considered and the three workloads we studied, we �nd a
maximum change in energy use of 25%.

1. INTRODUCTION
Advances in battery technology and low-power circuit de-

sign cannot, by themselves, meet the energy demands of mo-
bile computers [1; 2]. Thus, it is critical that the software
running on these devices be designed to minimize energy
consumption. However, designing energy-e�cient software
requires that the software developer understand the energy-
usage characteristics of the computer on which the software
will be run and the energy impact of software design de-
cisions. In this paper, we seek to further the software com-
munity's understanding of these two issues by characteriz-
ing the energy usage of a high-performance pocket computer
and examining the energy impact of several options in the

�Jason is a graduate student at Carnegie Mellon University
(j
inn@cs.cmu.edu), Godmar is a graduate student at the
University of Utah (gback@cs.utah.edu), Dirk was on sab-
batical from the University of Colorado at Boulder (grun-
wald@cs.colorado.edu), Jennifer is now at VMware Inc.
(jennifer@vmware.com).

This report was published in the proceedings of ACM SIGMETRICS 2000,
the International Conference on Measurement and Modeling of Computer
Systems.
c
2000 Association for Computing Machinery, Inc.
c
2000 Compaq Computer Corporation.

design of a Java run-time environment.

Developers must understand the energy-usage character-
istics of the pocket computer for which they are developing
software because signi�cant energy costs may be incurred as
a result of how the software makes use of system resources.
For example, as the speed at which a system is run a�ects
its energy consumption, developers may want to judiciously
choose the system speed used to execute their applications.
This decision must take into account the nature of the ap-
plications, the low power modes o�ered by the system, and
the energy cost of the system when idle. In addition, the en-
ergy and power usage of pocket computers di�er markedly
from that of notebook computers. Thus, developers may
need to re-evaluate decisions made for notebooks when port-
ing applications to pocket computers.

Java, and similar programming environments, are essen-
tial enablers of mobile computing owing to their platform
neutrality and
exibility. In the future, the personal (and
mobile) computers that people will likely always carry with
them will be used to run both a small set of core applications
(e.g., web browser, e-mail client), and a potentially larger set
of applications downloaded over a wireless connection for a
speci�c purpose (e.g., a virtual tour guide). While the core
applications could be stored in the native binary format of
the computer, it is far simpler to distribute a single copy
of a mobile application than to require that each distribu-
tion point maintain a copy of the application compiled for
each platform in existence. Further, with platform neutral-
ity, the task of migrating applications to new generations of
platforms is much easier. For these reasons, we also discuss
some of the tradeo�s in the design of a Java runtime en-
vironment, and quantify the energy costs of these tradeo�s.
We also evaluate the design of the Ka�e [3] Java Virtual Ma-
chine (JVM) by quantitatively measuring the energy cost of
several important design options.

The work discussed in this paper is based on energy meas-
urements of the Itsy Pocket Computer [4], a state-of-the-art
pocket computer developed by Compaq Computer Corpor-
ation's Palo Alto Research Labs. We begin the paper by
reviewing important energy concepts, describing the Itsy
Pocket Computer, and explaining our methodology. Then,
we examine the energy-usage characteristics of the Itsy Pocket
Computer in Section 3, and the energy impact of several
Java design options in Section 4.

1

Figure 1: The Itsy Pocket Computer Version 1.5

2. BACKGROUND
In this section we present background material and de-

scribe our methodology.

2.1 Energy Background
In normal usage, pocket computers run o� batteries, which

provide a �nite amount of energy. The energy E, measured
in Joules, consumed by a device over T seconds is equal toR T

p(t), where p(t) is the instantaneous power measured in
Watts. Given a sequence of n instantaneous power meas-
urements, each taken � seconds apart, the energy consumed
may be estimated as

Pn

i=1
pi(t) � �. Finally, the average

power P for such a sequence is approximately 1

n

Pn

i=1 pi(t).
Considering again instantaneous power, we note that many

of the components used in pocket computers today, such as
memories and microprocessors, are implemented in CMOS.
For such components, the instantaneous power they con-
sume is proportional to V 2�F , where V is the voltage sup-
plying the component, and F is the frequency of the clock
driving the component.

2.2 The Itsy Pocket Computer
The Itsy Pocket Computer is a
exible research platform,

developed to enable hardware and software research in pocket
computing. It is a small, low-power, high-performance hand-
held device with a highly
exible interface, designed to en-
courage the development of innovative research projects,
such as novel user interfaces, new applications, power man-
agement techniques, and hardware extensions.
Several versions of the Itsy Pocket Computer have been

developed, with the di�erences between versions being small
changes in the hardware. These changes have little impact
on the results we report here. All versions are based on
the low-power StrongARM SA-1100 microprocessor [5]. Fur-
ther, all versions have a small, high-resolution display, which
o�ers 320�200 pixels on a 0.18mm pixel pitch, and 15 levels
of gray. All versions also include a touchscreen, a micro-
phone, a speaker, and serial and IrDA communication ports,
while the newest version (which was not used in this study)
also has an integrated USB port. The Itsy architecture can
support up to 128 Mbytes of DRAM and 128 Mbytes of
ash
memory. The
ash memory provides persistent storage for
the operating system, the root �le system, and other �le sys-
tems and data. Finally, the Itsy also provides a \daughter
card" interface, which allows the base hardware to be easily
extended.
The version 1.5 unit used as the basis for this work has

64 Mbytes of DRAM and 32 Mbytes of
ash memory. It is

StrongARM
SA-1100

DRAM
16 Mbyte

Power

IrDA

RS-232

9

1

32 32

200 x 320

15 Gray L.

LCD

Screen
Touch

Mother
Board

PCMCIA

32

SDLC

15 GPIO

SSP

USB

1

Interface
Analog

UART

Flash
Memory

4 Mbyte

Processor

Connectivity

DRAM
16 Mbyte

Static
Memory

16, 32

Card

A/D

Daughter

Figure 2: The Itsy system architecture (Version 1.5).

powered by two size AAA batteries, which can supply the
�2 Watts maximum demanded by the Itsy. Figure 1 shows
a picture of a version 1.5 unit, while Figure 2 shows a block
diagram of the Itsy architecture.
The system software includes a monitor and a port of

Linux operating system (version 2.0.30). The monitor allows
a user to adjust certain system parameters, to run applica-
tions directly on top of the hardware, and to download and
boot the operating system. Linux provides support for net-
working, �le systems and multi-user management. Applica-
tions can be developed using a number of programming en-
vironments, including C, X-Windows, SmallTalk and Java.
Applications can also take advantage of available speech syn-
thesis and speech recognition libraries.
Using a conventional pair of alkaline AAA batteries, the

Itsy computer can run for 1

2
hour in \high power" mode,

such as when playing an MPEG video or the popular action
game Doom. If the system is idle while the processor clock
is set to 206 MHz (the fastest speed), the integrated power
management modes stall the processor such that the same
batteries last for 2 hours. This time increases to 18 hours if
the processor is idle at 59 MHz (the slowest speed), and to
one week if the system is in sleep mode.
The capabilities of the Itsy are in stark contrast to existing

pocket computers such as the Palm Pilot. The processing
capability of the Itsy supports speech synthesis, speech re-
cognition, high quality MPEG video playback, audio codecs
and other advanced audio processing. The large dynamic
memory allows applications to be developed using rapid pro-
totyping environments that also enable mobile applications
and application reuse. The
ash �le systems allow complex
systems to be developed and con�gured.

2.3 Measuring Power and Total Energy
To measure the instantaneous power consumed by the Itsy,

we measure the voltage drop across a 0.02
 precision res-
istor that is located in the main power circuit. As power is
drawn, current
ows out of the battery or external voltage
supply, through this sense resistor, and into the computer.
This current induces a di�erential voltage Vsense across the
resistor, from which the current Isense may be calculated;
Isense = V

R
= 1

0:02
� Vsense. The power being consumed

may then be calculated by multiplying this current by the
voltage, Vsupply, that is being supplied to the computer.

We measure these two voltages using two di�erential amp-
li�ers and a data acquisition (DAQ) system while the Itsy
is powered by an external voltage supply. A block diagram

2

regulated
voltage
supply

other Itsy
components,
such as LCD,
& processor

Itsy

differential
amplifier

differential
amplifier

data
acquisition

system

gpio

tr
ig

ge
r

computer
(data

collection)

Vsense-amp

Vsupply-amp

Vsense

Rsense

Vsupply

Figure 3: Block diagram showing the infrastructure used to
measure the power consumed by the Itsy.

showing these components and the Itsy is given in Figure 3.
The ampli�ers minimize the error introduced into our meas-
urements of Vsense and Vsupply by electro-magnetic noise
and the limited precision of the DAQ system; we call the
output of these ampli�ers Vsense�amp and Vsupply�amp, re-
spectively. The output of each ampli�er is connected to one
of the analog inputs of the DAQ system.

When instructed to do so, the DAQ system reads the
voltage that is present on the speci�ed analog input, con-
verts it to a 16-bit binary value, and forwards it to the host
computer. The host computer stores these readings for sub-
sequent analysis. By instructing the DAQ system to read
the voltage on an input channel at regular time intervals, we
determine how the voltage varies over time. For our exper-
iments, we used a sampling rate of 5000 times per second.
From these time pro�les of the two voltages, we can compute
a time pro�le of the power used by an application as it runs
on the Itsy, and thus, the total energy consumed during this
time.

In this paper, we examine the power use of a number of
micro-benchmarks and several applications written in Java;
these workloads are described in Sections 3 and 4 respect-
ively. To determine the power-use pro�le of a workload, we
measure the time required to execute the workload and then
select the relevant set of voltage measurements from the data
collected by the DAQ system. For the micro-benchmarks,
we use the SA-1100's cycle counter to count the number of
clock cycles required to execute the benchmark, while for
the Java applications, we use the time function built in to
the csh command shell. To synchronize the collection of the
voltages with the start of execution of a workload, as the
workload begins executing, it toggles one of the SA1100's
general-purpose input-output pins. This pin is connected
to the external trigger of the DAQ system, and when it is
toggled, causes the DAQ system to begin recording meas-
urements. This connection is labeled gpio in Figure 3.

The DAQ system we use can make only one voltage meas-
urement at a time and measurement accuracy is decreased
by quickly switching between inputs, so we used the fol-
lowing strategy. Before running a workload on the Itsy,
we measure the supply voltage for several seconds and re-
cord its average value. Then, we con�gure the DAQ system
to measure only the voltage drop across the sense resistor,
Vsense�amp, and run the workload. Once the application
completes, we use the predetermined average supply voltage
to compute the instantaneous power at each time step dur-

ing the execution of the workload.
This strategy increased the error in our measurements

compared to what would have existed had we been able to
measure both voltages simultaneously. To estimate the error
in our supply voltage measurement, we measured the vari-
ation in the supply voltage during the replay of several of
the workloads we considered. The resulting range of values
varied less than � 2 millivolts (mV) from the mean value. A
second source of error corresponds to error induced by the
measurement equipment and noise. To estimate the error in
Vsense, we measured its variation for several seconds while
the Itsy was executing a benchmark with a constant load.
This measurement gave a � 0.075 mV variation about the
mean. The net e�ect of these errors is an error of � 0.005
Watts, which in our experiments, yields an error of at most
� 1.1 Joules. These values represent the maximum error;
we see much smaller variation in our measurements.

3. COMPONENT CHARACTERIZATION
In this section, we examine the energy-usage characterist-

ics of the Itsy Pocket Computer, beginning with the system
as a whole, and then for three important subsystems.

3.1 System Characterization
Using the methodology described in the previous section,

we obtained power-use pro�les such as the one shown in Fig-
ure 4. This pro�le shows the power consumption of the Itsy
for a workload comprised of booting the operating system
and a Java virtual machine several times and then running
several Java applications within a single virtual machine.
The �rst application lowered and then raised the clock speed
of the processor and of the system. Note that although ad-
justing the clock speed produces a clear power reduction,
running the calculator application or the drawing package
produces no clear power usage patterns. Also, when the
system is left idle for a period of time, a short power spike
occurs, probably due to garbage collection. Finally, the pro-
�le for this workload shows considerable variability in the
power demands of the Itsy, a characteristic shared by the
large number of other pro�les we have gathered. The Itsy's
dynamic range of power demand is much larger than that
reported in previous studies of notebook computers [6; 7];
we discuss the reasons for this di�erence in the next section.

3.2 Subsystem Characterization
To understand the power consumption of the processor,

display, and memory subsystems of the Itsy Pocket Com-
puter, we measured the power and energy consumption of a
number of micro-benchmarks. Each micro-benchmark dis-
abled (i.e., powered down) unused hardware components
whenever possible. Further, we ran these directly on top
of the hardware to eliminate any operating system e�ects.
Due to space constraints, we discuss only a subset of the
results; a more complete discussion can be found in [8].
The power and energy consumed by the benchmarks is

given in Table 1. Column 2 lists the benchmarks, while
columns 4 to 9 present the power and energy consumed by
the benchmarks when run on the Itsy. For each benchmark,
we report power and energy consumption for three clock
speeds: the slowest possible speed, 59 MHz (columns 4 and
7), the mid-point speed, 133 MHz (columns 5 and 8), and
the fastest possible speed, 206 MHz (columns 6 and 9). We
report energy for only those benchmarks that perform a task

3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 58 116 174 233 291 349 407 465 523 582 640

time (seconds)

rebooting the Itsy & having Java

boot (8 times)

varying clock speed

calculator

garbage

collector

more drawing

drawing

application

drawing app., no user input

W
a

tt
s

Figure 4: Power-use pro�le of an Itsy pocket computer as it boots a JVM and runs several applications.

with a speci�c completion condition, say executing a �xed
number of additions. For applications with no speci�c com-
pletion condition, only power is meaningful.
The table also provides data corresponding to powering

the processor from 1.5 Volts, the normal voltage, and 1.23
Volts, a reduced voltage; the voltage level is indicated in
column 3. Note that we present the data for operation at
the lower supply voltage only to illustrate the bene�ts of
voltage scaling; the StrongARM processor is not rated for
operation at the lower voltage level.
Finally, as a point of comparison, column 10 lists the

power consumed a subset of the benchmarks when they were
run on an IBM ThinkPad 560X notebook computer. This
notebook had a 233 MHz Pentium Processor and 64 Mbytes
of memory. We measured its power consumption using a
technique similar to the one used for the Itsy.

3.2.1 Processor and Display Subsystems
Consider �rst the sleep micro-benchmark (row 1). This

benchmark puts the system into a mode in which only the
DRAM is refreshed at a constant rate; thus, the clock speed
of the Itsy has no impact on the power used. In compar-
ison, with the idle mode benchmark (row 2), less power
is consumed by the Itsy at lower clock frequencies than at
the higher ones. This relationship exists because, in idle
mode the processor pipeline is stopped, but on-chip aux-
iliary components are still clocked. These components, in
turn, consume power proportional to the clock frequency.
Next, consider the busy wait micro-benchmark, in which

the processor executes a busy-wait loop for �ve seconds, and
the addition benchmark, in which the processor executes
300 million iterations of a compute-intensive loop. Observe
that there is a di�erence in the power consumption of each of
these benchmarks (compare rows 4 and 8, 5 and 9). In both
cases, this di�erence is due to di�erences in the instruction
types executed by the benchmarks.
We expect the busy wait and addition benchmarks to

be a \high power" test for the processor since during their
execution, the Itsy and the ThinkPad processors never stall
for memory. From the table, we note that the maximum
power consumption of the ThinkPad is 8.3W (row 4), and
between 314mW and 899mW for the Itsy (row 8) for these
two benchmarks. Comparing these values to the idle power
consumption (row 2), we see that the ThinkPad consumes
260% more power in the \high power" test, while the Itsy

consumes between �340% to�550% more power in this test.
The large percentages for the Itsy suggest that its processor
exhibits a wider dynamic range of power consumption. This
fact helps account for the Itsy's overall dynamic power de-
mand being greater than that of a notebook.

Consider again the execution of the busy wait bench-
mark, but this time with the LCD of each computer turned
on (row 6). For the ThinkPad computer, observe that turn-
ing on the LCD consumes between 2.1W and 4.8W, depend-
ing on the brightness of the backlight, while for the Itsy, the
LCD consumes an average of 38mW. Thus, relative to the
\high power" tests, turning on the LCD increases the power
consumption of the ThinkPad by 25% to 57%, while doing
so increases the Itsy's power consumption by 5% to 17%.
However, if this version of the Itsy used a backlight similar
to the one used in Version 2 of the Itsy Pocket Computer, we
estimate the maximum power consumption of the LCD to
be between 300mW and 600mW. Thus, the backlight would
increase the \high power" test power by up to �380%. Non-
etheless, we expect the backlight of a pocket computer to be
used infrequently, while the backlight of a notebook is used
almost continuously. Hence, the power consumption of the
backlight is less of an issue for a pocket computer.

The addition micro-benchmark is the �rst for which we
show both power and energy, because it performs a task with
a speci�c completion condition. Note that at the higher
clock rates, the Itsy consumes more power, but consumes
less energy. This trend is also suggested by the other bench-
marks for which energy is reported. Although lowering the
clock frequency reduces power usage, the task takes longer
to complete. Hence, the overall energy remains about the
same or increases slightly at lower clock frequencies.

If the voltage is reduced along with the clock frequency,
then the drop in power consumption dominates the corres-
ponding increase in execution time. To illustrate this e�ect,
consider again the addition benchmark. Note that when
the processor's voltage is reduced from 1.5 V (row 8) to
1.23 V (row 9) and the frequency is kept constant, the en-
ergy consumption drops by �20% (= 1 � 4:181

5:226
). However,

while this energy savings was achieved for this benchmark, in
practice, to achieve reliable operation, the processor's clock
speed must usually be reduced when its supply voltage is
reduced. Thus, a more practical illustration of the energy
savings brought about by voltage scaling is the energy sav-

4

Itsy ThinkPad
Power (Watts) Energy (Joules)

Micro-Benchmark Processor at Speci�ed MHz at Speci�ed MHz Power
Voltage 59.0 132.7 206.4 59.0 132.7 206.4 (Watts)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 Sleep mode normal 0.010 0.010 0.011 �� �� �� 0.312
2 Idle mode normal 0.094 0.128 0.162 �� �� �� 3.20
3 Idle mode, LCD enabled normal 0.134 0.164 0.198 �� �� �� 5.15-7.74
4 Busy wait normal 0.225 0.412 0.596 �� �� �� 8.30
5 reduced 0.177 0.324 0.469 �� �� ��

6 Busy wait, LCD enabled normal 0.263 0.447 0.632 �� �� �� 10.4-13.1
7 reduced 0.217 0.363 �� �� �� ��

8 Addition loop normal 0.314 0.612 0.899 6.388 5.534 5.226 7.43
9 reduced 0.247 0.490 0.719 5.030 4.427 4.181

Memory Test with instruction cache, MMU, write bu�er and data cache enabled
10 In-cache read test normal 0.385 0.763 1.133 0.228 0.201 0.191 7.51
11 Out-of-cache read test normal 0.458 0.719 0.777 8.439 6.419 6.880 6.74
12 In-cache write test normal 0.383 0.762 1.120 0.227 0.200 0.189 7.43
13 Out-of-cache write test normal 0.731 1.290 1.572 3.894 3.555 3.977 7.30

Memory Test with only instruction cache enabled
14 In-cache read-test normal 0.504 0.809 1.023 3.717 3.291 3.197
15 Out-of-cache read-test normal 0.523 0.840 1.063 3.853 3.415 3.320
16 In-cache write test normal 0.566 1.075 1.183 3.535 3.018 3.017
17 Out-of-cache write test normal 0.566 1.075 1.183 3.574 3.013 3.017

Table 1: Average power and energy consumption of select micro-benchmarks running on an IBM ThinkPad 560X notebook
computer and the Itsy Pocket Computer. The voltage supply of the Itsy's processor was either 1.5 V (normal) or 1.23 V
(reduced).

ings obtained by operating at 1.23 Volts and 133 MHz rather
than 1.5 Volts and 206 MHz. In this case, 16% (= 1� 4:427

5:226
)

less energy is consumed. Comparable energy savings occur
with the busy wait benchmark (compare row 4 to 5, row 6
to 7), but in this case, the StrongARM failed to operate at
the low voltage level and highest clock speed when the LCD
was turned on.

3.2.2 Memory Subsystem
The next set of benchmarks measure memory system de-

mands. They are divided into two subsets. The �rst subset
(rows 10-13) enables all aspects of the memory system, and
the second subset (rows 14-17) only enables the instruction
cache. Other measurements we did on the Itsy show that
disabling other components of the memory system (e.g. dis-
abling the MMU) had little impact on the power demands.
Each memory benchmark reads or writes 100 Mbytes of
data. The tests were designed to use a working set that
could either �t in the on-chip cache or explicitly not �t in
that cache. For the Itsy, the 16-fold di�erence in energy use
for the read test when data caching is enabled (row 10) and
disabled (row 14) demonstrates the bene�ts of data caches {
the additional energy is proportional to the additional time
needed to run the benchmark. What is more interesting
to note is that it takes less energy to conduct the out-of-
cache read tests when the cache is disabled (compare row
15 to row 11). In these benchmarks, the cache provides no
bene�t, and by disabling it, the execution time is reduced
signi�cantly while the power consumption is increased by a
small amount.

Finally, comparing the power consumption of the Itsy to
that of the ThinkPad when executing the memory bench-
marks, we note that unlike with the Itsy, the power con-

sumed by the ThinkPad's memory system had little impact
on its overall power consumption. Expressed as a fraction of
the power consumed by the \high power" tests, the power
variance across the memory benchmarks for the ThinkPad
is 9% (= 7:51�6:74

8:30
), while for the Itsy, the variance is 110%

(= 0:731�0:383
0:314

) to 88% (= 1:572�0:777
0:899

), depending on the
clock frequency. The di�erences in the fractions for the
computers is due to the ratio of the power consumed by
the processor to that consumed by the memory system be-
ing much larger for the ThinkPad than for the Itsy. Thus,
variations in the power consumed by the memory system
have a greater impact on the overall power consumption of
the Itsy. Consequently, because the memory behavior of
applications varies during their execution, applications run-
ning on pocket computers, such as the Itsy, will exhibit a
wider range of power demands than if they were run on a
notebook computer, such as the ThinkPad.

3.3 Discussion
In summary, the Itsy Pocket Computer exhibits a much

wider range of dynamic power demand than does the Think-
Pad computer. This wider range is due to two e�ects: the
processor used in the Itsy exhibits a wider range of power
demand; and the power consumption of the memory system
accounts for a greater fraction of the overall power consump-
tion of the Itsy.

The best clock frequency at which to run an applica-
tion depends on two main factors: the number of idle peri-
ods, and whether the system has the ability to scale down
the voltage along with the clock frequency. For compute-
intensive applications with little idle time running on sys-
tems with no voltage switching, applications should be run
at as fast a clock frequency as possible until completed, and

5

Java Class Libraries

Base AWT . . .

Native Libraries

Java Virtual Machine

Operating System

Java Applications and Applets

Figure 5: The Java Platform

then the system should be placed into a low-powered idle
mode. However, if voltage switching is available, then the
best clock frequency is the slowest speed at which the ap-
plication can still meet its deadline. For applications with
inherent idle time, the best clock frequency will depend on
the power cost of idling, and the power saved when the clock
frequency is reduced. Finally, we note that reducing the
clock speed also extends the lifetime of the battery, as the
capacity of batteries is reduced with increased power con-
sumption. The importance of the battery capacity and clock
speed tradeo� is a function of the type of battery used, and
the peak and average power consumption [9].

4. JAVA AND ENERGY CONSUMPTION
In this section, we discuss the energy impact of decisions

made in designing a Java virtual machine. We begin by
presenting an overview of the Java runtime environment.
Then, we enumerate the design tradeo�s we consider in Sec-
tion 4.2, and evaluate their energy impact in Section 4.4
using the workloads described in Section 4.3.

4.1 Java Background
The Java [10] language provides many features of mod-

ern programming languages, including object orientation,
strong typing, automatic memory management and multi-
threading. More importantly, it o�ers features that are
highly desirable for mobile applications. In particular, Java
source code is not directly compiled into native code, but
into an architectural-neutral intermediate form called Java
bytecode. This intermediate representation facilitates cross-
platform development and deployment, and allows for easy
migration of applications as system generations evolve. The
Java language also o�ers a security model that helps guard
against malicious applications.
Two key components are required to run a Java applica-

tion on a system: a set of class libraries, and a Java Virtual
Machine (JVM). These components are represented by the
shaded boxes in Figure 5.
A class library comprises a number of classes, each of

which is a collection of data and methods that operate on
that data. Taken together, the contents of the class lib-
raries o�er software components that provide the standard
functionality required by applications. One important set
of class �les is that provided by the Java Abstract Window
Toolkit (AWT). The class �les provided by this toolkit im-
plement common graphical user interface components, such
as those for displaying windows and receiving input from a
user.

The JVM is a run-time system that executes Java byte-
code instructions. Execution is done by either interpret-
ing each instruction, or by compiling the bytecode \just in
time" into native instructions, and executing these instruc-
tions directly. If during the execution of an application, a
reference is made to a class that has not been previously
accessed, the JVM suspends the application, and loads the
needed or referenced class. This task involves several steps:
First, the JVM reads and parses the �le containing the

missing class. This �le contains both symbolic type inform-
ation and the actual bytecode instructions of the class. Be-
cause this class �le may be stored in compressed format, the
JVMmay have to �rst decompress the �le. Second, the JVM
veri�es that the bytecode does not violate the safety guar-
antees demanded by the Java language. Third, the JVM
performs the necessary linking steps to resolve symbolic ref-
erences in the class. This task may involve loading and
linking referenced classes. Finally, the JVM resumes the
execution of the application.
Interpreters usually execute bytecode one or two orders

of magnitude slower than translated or compiled code [11].
However, just-in-time compilation takes time, and as such it
may not be bene�cial for infrequently invoked code. Ordin-
ary ahead of time compilation, which is used for languages
such as C or C++, is also available. However, ahead-of-time
compilation not only sacri�ces portability, but also the abil-
ity to verify the safety of untrusted code, such as mobile
code contained in applets loaded over the network.
Since Java is not yet in wide-spread use on pocket com-

puters, it is di�cult to extrapolate how Java virtual ma-
chines for such systems will be used. In conventional sys-
tems, a virtual machine is used in one of two modes. In
the \on line" mode, applications are downloaded and run
for short periods of time; thus the initialization and transla-
tion time may be a signi�cant fraction of the execution time.
Similar behavior is exhibited by users of devices such as the
Palm Pilot, where information is stored in and loaded from
persistent memory whenever the user switches to another
application. In contrast, in the \server" mode, applications
such as Java Server Beans execute for a considerable period
of time. Applications typically run in individual virtual ma-
chines, although they may share a virtual machine. At this
time, it is unclear if Java application programmers would
make the same design decisions if they wrote their applic-
ations for one mode or the other; thus, we consider both
modes.

4.2 The Design Options
We consider two sets of JVM design options: startup op-

tions and runtime options. The startup options a�ect the
costs of actually beginning the execution of an application
or required method. As the startup time is typically much
less than the execution time of an application, the energy
cost of the startup will be much smaller than that of ex-
ecuting the application. However, depending on the usage
pattern, startup costs may be incurred frequently. The run-
time options a�ect the cost of running an application, once
the startup process has completed. For this second set, the
overall energy consumed is of interest. We consider four
startup options, and two run-time options.

Startup:

� Use of a single JVM versus multiple JVMs: Tra-

6

ditionally, each Java application runs in its own vir-
tual machine. However, more recently, solutions have
emerged that allow multiple applications to be run in
the same virtual machine.

� Use of compressed versus uncompressed class

�les: Persistent storage space on portable devices is
at a premium. For this reason, the class �les containing
the bytecode for the supporting Java run-time libraries
are stored in compressed form. We consider either un-
compressing the class �les when the JVM loads them,
or when the Itsy Pocket Computer boots Linux. In
the former case, we say that compressed class �les are
used, while in the latter, we say that uncompressed

class �les are used.

� Class loading and just-in-time compilation: Typ-
ically, classes are loaded on demand as they are needed,
and methods are just-in-time compiled when they are
�rst invoked. The startup delay is reduced by prefetch-
ing classes that are likely to be loaded later.

� Cache
ushing after code generation: When code
is just-in-time compiled, the data cache, and in certain
cases the instruction cache, must be invalidated. We
consider various options on how and when to
ush or
invalidate the caches.

Run-time:

� Interpreting the byte code versus just-in-time
compilation: Our JVM can be con�gured to either
interpret or just-in-time compile bytecode.

� Polling frequency: User input devices, such as the
buttons or the touchscreen, are polled at regular inter-
vals. Higher polling frequencies improve responsive-
ness, but also use more energy.

4.3 The Workload
To evaluate the impact on energy consumption of the

design options mentioned in the previous section, we imple-
mented each of them using the Java run-time environment
that runs on the Itsy Pocket Computer. This environment is
a port of the Ka�e JVM [3]. Then, we measured the power
consumed by several benchmarks as they were executed by
the Itsy Pocket Computer.
Our workload is designed to capture the two modes in

which a pocket computer will likely be used. The �rst mode
corresponds to using a single application for extended peri-
ods of time, such as a game or web browser. The second
mode corresponds to using one or more applications for short
periods of time, and either re-invoking the same application
repeatedly, or switching between applications. An example
of this mode is the use of an e-mail application to read e-
mail messages with embedded attachments. To view each
attachment, it may be necessary to start up helper applic-
ations, such as an MPEG player, and to switch repeatedly
between such applications.
Our workload is comprised of the following activities: a

human browsing web pages stored on the Itsy, (the web

activity); a human playing a chess game against the Itsy
Pocket Computer (the chess activity); and a human play-
ing a chess game, then browsing a web page, then using a
calculator, (the composite activity).

We modi�ed the Java platform to allow user-generated
events of button presses and touchscreen activations to be
recorded into a �le and then replayed at a later time. To en-
sure these subsequent replays mimicked as much as possible
the original human's interaction with the Itsy, we also time
stamped the events. We recorded three such trace �les, one
for each of the above activities in our workload. We then
took power measurements while replaying the traces with
each of the di�erent JVM design options, with as close to
the original inter-event timing as possible.

4.4 Discussion and Quantification
In this section, we describe the tradeo�s involved in each

of the design decisions, the issues arising from their imple-
mentation, and their impact on energy consumption. We
analyze each design option in relation to a baseline system
that employs multiple JVMs, uncompressed class �les loaded
on demand, just-in-time compilation of class methods, and
an AWT polling frequency of 0.03 seconds, which balances
the energy cost of polling against response time.
We collected power pro�les of the traces described in Sec-

tion 4.3 for the baseline system and each variation. We re-
peated each experiment �ve times, and for each trial, com-
puted the time required to execute the trace, the average
power consumed, and the total energy consumed. In the
following, when we report time, average power, and total
energy, we are reporting the average of the �ve trials. Note
that across all trials for all experiments, the standard devi-
ation in the time, average power and total energy was less
than 0.5 seconds, 0.002 Watts, and 0.6 Joules respectively.
We begin by discussing design decisions that impact the

startup costs, and then follow in Sections 4.4.5 and 4.4.6
with those that impact the execution costs.

4.4.1 Single JVM versus Multiple JVMs
There are a number of tradeo�s regarding the use of a

single JVM or multiple JVMs to run multiple applications.
These tradeo�s a�ect both the (time and energy) startup
costs as well as the overall consumption of resources, such
as memory.
Running multiple applications in a single JVM reduces

startup costs because these applications can share the Java
classes contained in the Java run-time libraries. Therefore,
these classes have to be processed only once for all applic-
ations. Other data structures are shared as well, such as
the internal table of loaded classes and the symbol table.
Due to Java's late binding, the JVM's run-time linker needs
to maintain a large amount of symbolic information, which
can be shared to avoid having to store multiple copies of
a given symbol string. If applications need to communic-
ate with each other, they can often do so by direct method
invocation.
To evaluate the energy costs of using a single JVM versus

multiple JVMs, we gathered power-use pro�les of the exe-
cution of the composite trace. Average power and the total
energy computed from the pro�les are shown graphically in
Figure 6. In this �gure, there is a set of two bars for each
Java design option, with one in each set giving the average
power, and the second giving total energy. The x-axis in-
dicates the design options, while the left-hand y-axis plots
the average power in Watts, and the right-hand y-axis plots
the total energy in Joules. In this graph and all that follow,
the baseline con�guration is noted by appending an asterisk

7

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

M JVM* S JVM M JVM* S JVM

50

60

70

80

90

100

110

power

energyP
o
w

e
r

(W
)

E
n
e
rg

y
 (

J
)

Figure 6: The energy consumption of the composite trace
when a single JVM (SJVM) is used instead of multiple JVMs
(MJVM).

(*) to the x-axis label. The error bars represent an error of
� 0.005 Watts, and � 1.1 Joules (see Section 2.3). Finally,
the execution time, average power, and total energy data for
this experiment and all others are given in Table 2 of the
Appendix.
For the composite trace, the use of a single JVM resulted

in a 10% reduction in the average power, and a 25% reduc-
tion in the total energy. At the same time, the execution
time decreased by 17%, due to the time not spent repeatedly
loading virtual machines. Clearly, the single JVM is more
energy e�cient for this trace. However, the sharing of re-
sources required by a single JVM has drawbacks: because
resources are shared, one application's use or misuse of a re-
source may a�ect other applications. For instance, since the
memory allocator and garbage collector are shared, excess-
ive allocations by one application will reduce the amount
of memory available to all other applications. Also, applic-
ations may be delayed during garbage collection for other
applications. If one application fails because of a bug in the
run-time libraries or in the JVM, sometimes the whole JVM
cannot continue to execute, resulting in all applications be-
ing aborted. Because we assume co-operating applications,
our implementation did not need to address these issues.
Current research [12] tries to address the challenges of

enabling a JVM to run multiple applications safely and
without allowing one application to impact another|we be-
lieve that while such a JVM is more complex than the tra-
ditional single application per JVM model, the increase in
resource e�ciency outweighs the increased implementation
e�ciency.

4.4.2 Compressed versus Uncompressed Class Files
JAR (Java ARchive) �les are used to store together some

or all of the class �les that are required to execute an ap-
plication. Two approaches are used to form a JAR �le: (1)
compress all the class �les individually and then combine
them together to form the JAR �le, or (2) combine all the
class �les together and then compress the resulting JAR
�le. These two approaches impact how the class �les of an
archive are accessed at run time, and the resulting size of
the JAR �le.
If the �rst approach is used, compress-then-aggregate, when

an application requires a method at run time, the section of
the JAR �le that contains the associated class �le is read into
memory, this class �le is then decompressed, and the method

50

100

150

0.5

0.7

0.9

1.1

E
n
e
rg

y
 (

J
)

startup chess web

U* C

P
o
w

e
r

(W
)

U* C U* C

Figure 7: The energy consumption of all three traces when
compressed JAR �les (C) are used instead of uncompressed
JAR �les (U).

is interpreted or compiled. Because the JVM accesses the
class �les in their compressed format, we say compressed

class �les are used.
On the other hand, if the second approach is used, aggregate-

then-compress, all class �les are decompressed into RAM
when the Itsy boots. Any JVMs that are started later can
access these archives directly without having to uncompress
them �rst. Thus, when an application requires a method,
the class �le has already been decompressed. Because the
JVM accesses the class �les in their uncompressed format,
we say uncompressed class �les are used.
The advantage of the aggregate-then-compress approach

is that the resulting JAR �le tends to be smaller, and thus,
less persistent storage is required to store it. For example,
the JAR �le containing the basic class �les for our standard
Java libraries is 500 Kbytes under aggregate-then-compress
and 800 Kbytes under compress-then-aggregate. However,
the uncompressed size of the basic class �les is 1500 Kbytes.
Clearly, there is a run time memory cost of decompressing
the entire JAR �le should only a portion of it be required.
These two approaches not only di�er in their static and dy-

namic memory footprints, but also result in di�erent energy
and time costs when a method is required. Figure 7 presents
the energy and power costs when the JVM accessed un-
compressed JAR �les (aggregate-then-compress) and com-
pressed JAR �les (compress-then-aggregate); in this �gure,
we plot power and energy in di�erent graphs. For the com-
posite and chess traces, using uncompressed JAR �les does
not save any power or energy, while for the web trace, there
is a 5% saving in average power and total energy.

The lack of energy saving in the �rst two traces is due
to two competing e�ects. The use of uncompressed JAR
�les reduces the startup time of the applications, thus re-
ducing both the energy and time required to perform the
tasks speci�ed by the traces. However, because the events
in the traces are time stamped and thus are not replayed
until the correct inter-event time spacing has occured, the
execution times of the traces do not change (see Table 2 for
the execution times). Since energy is consumed even while
processes are idle, the overall energy saving from the use of
uncompressed JAR �les is less than that which would occur
without the time stamping of events. The idle power cost is
�0.3 Watts, as shown in Figure 4 during the period of time
in which there was no user input to the drawing application.
In comparison, the web trace keeps the system busy for a

8

0.5

0.6

0.7

0.8

0.9

1.0

dem* min com dem* min com

50

55

60

65

70

75

80

85

90

95

power

energy

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

J
)

Figure 8: The energy consumption of the composite trace
when two class preloading variants, minimal (min) and com-
plete (com), are used instead of on-demand (dem) class load-
ing.

greater proportion of the time, and hence, idle time e�ects
are less important.

4.4.3 Class Loading and Just-in-time Compilation
Java provides for very late dynamic linking. Instead of

linking all required code for a given application statically
into one big binary, Java classes are loaded into the virtual
machine as they are needed. While dynamic class loading
allows for programming techniques that require very late
binding, such as the techniques used to implement mobile
code, a great deal of work must be done at execution time
instead of at compile time.
The just-in-time compilation or translation of Java byte-

code into native instructions is done lazily as well. As a
method is translated, references to other yet untranslated
methods are �lled with trampolines. Trampolines are small
pieces of code that, when invoked, translate a method and
invoke it. After the method is invoked the �rst time, the
trampoline is destroyed. Subsequent invocations will dir-
ectly reach the translated method.

The loading and linking process takes time. Aside from
the energy costs, it also increases the time users have to wait
for applications to start. We hid some of the startup latency
through the use of a low-priority thread that runs when the
JVM would be otherwise idle, and preloads a set of prede-
termined classes and translates the associated methods.
For preloading to be successful, the number of preloaded

classes that turn out not to be needed must be minimized.
Otherwise, unnecessary memory, time, and energy costs will
be incurred. If no class mispredicts occur, the amount of
work done and energy consumed will be roughly equal to
that if preloading is not used. However, startup time will
be reduced.
To illustrate the e�ects of choosing the preload set poorly,

we assembled two preload sets: the minimal set, which in-
cludes only the classes required to load and begin executing
the composite trace; and the complete set, which includes a
large number of classes, many of which are not used by any
of the applications that are exercised by the composite trace.
Figure 8 shows the average power and the total energy con-
sumed by the composite trace when on-demand loading is
replaced with either of these two preloading variants. In all
cases, a single JVM con�guration was used. Observe that
there is � 18% di�erence in energy consumption between
the two variants.

50

100

150

0.5

0.7

0.9

1.1

E
n
e
rg

y
 (

J
)

startup chess web

b
a

s
e

*

D
 o

n
ly

I
&

 D

b
a

s
e

*

D
 o

n
ly

I
&

 D

b
a

s
e

*

D
 o

n
ly

I
&

 D

P
o
w

e
r

(W
)

Figure 9: The energy consumption of the three traces when
the baseline cache
ushing algorithm (base) is replaced with
two variants: complete data cache
ush (D only), and com-
plete data cache
ush combined with instruction cache in-
validate (I and D).

4.4.4 Cache Flushing after Code Generation
The translation of Java bytecode into native code may

incur additional costs depending on the support provided by
the computer system for memory coherence. In particular,
once new native instructions are written to a sequence of
memory locations, references to these locations must return
the new instructions. For processors designed with separate
instruction and data caches, such as the SA-1100 processor,
this requirement can be met by
ushing the data cache once
the code has been generated and before the new sequence is
referenced.
In addition, if the processor does not keep the instruction

cache coherent with main memory, it may be necessary to

ush the instruction cache as well. Flushing the instruction
cache is only necessary if regions of memory are reused and
the code stored in those regions is replaced. In most cases,
a JVM can use bookkeeping information from its memory
allocator to determine whether the instruction cache must
be
ushed or not.
The SA-1100 processor provides a mechanism for
ushing

only speci�c lines of the data cache, and thus, the entire
data cache need not be
ushed after code is generated. Our
baseline design takes advantage of this feature of the SA-
1100. Further, because our JVM keeps track of the memory
regions that may contain stale code and does not reuse these,
we never have to
ush the instruction cache.
To obtain an estimate of how expensive these memory-

system-induced penalties are for the startup process, we
considered the energy impact of the worst cases:
ushing
the complete data cache at every method translation, or
invalidating the complete instruction cache at every trans-
lation in addition to
ushing the data cache. The energy
consequences of these two worse-case scenarios on our three
traces are given in Figure 9. Observe that for our traces,
cache
ushing has little energy impact, a likely result of
the SA-1100 having fairly small caches (16 Kbyte instruc-
tion and 8 Kbyte data) and its ability to enter a low-power
mode during the resolution of a cache miss.

4.4.5 Interpreting and Just-in-Time Compilation
We now turn to the run-time options. First, as noted

in Section 4.1, just-in-time compilation reduces execution
time and therefore energy consumption for a method if the

9

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

jit* interp. jit* interp.

50

60

70

80

90

100

110

120

130

140

power

energy

P
o
w

e
r

(W
)

E
n
e
rg

y
 (

J
)

Figure 10: The energy consumption of the chess trace when
the interpreter is used instead of just-in-time compilation.

time saved by translating the method exceeds the time spent
translating it. For infrequently invoked methods, interpret-
ation may be the better option. As the Ka�e JVM does
not support choosing at run time whether to interpret or
compile a method, for our experiments, we compared the
cost of using only a just-in-time compiler to using only the
interpreter.
Figure 10 presents the average power and the total en-

ergy consumed by the chess trace for both of these bytecode
translation options. For this trace, interpretation results in
an increase of 21% in the average power and 22% in the
total energy. Further, while in both cases the total execu-
tion time was nearly the same, the amount of time that the
processor was idle with the use of the just-in-time compiler
was greater.
While our results show pronounced bene�ts from using a

just-in-time compiler, we note that we do not expect such
large di�erences to occur with the use of other JVMs and dif-
ferent interpreters. First, the Ka�e interpreter is very simple
and does not include optimizations that are often found in
production interpreters. These optimizations include the
use of special routines written in assembly to interpret fre-
quently used bytecode instructions. Second, more modern
JVMs are capable of choosing whether to interpret or com-
pile on a method-by-method basis at run time. Nonetheless,
our comparison provides insight into the amount of energy
that might be saved should a system be able to support the
larger memory footprint of a just-in-time compiler.

4.4.6 AWT Polling Frequency
The AWT implementation for the Itsy relies on periodic

polling of the attached input devices. The default polling
interval is 0.03 seconds. If there is a sequence of related input
events, such as a sequence of touchscreen down, drag, and
up events resulting from a touchscreen stroke, this delay will
only a�ect the initiating down events. The AWT is designed
to poll for events that are expected (such as drag or up

events following a down event) in a tight loop.
If the polling interval is short, more time and hence more

energy is spent polling for events. If the polling interval is
long, less time is spent polling: however, users may per-
ceive the device as sluggish in its response, especially if
the polling interval is chosen to be much larger than 0.25
seconds. Choosing an extremely large polling interval also
has the e�ect that a task takes longer to execute overall;
more time is spent idling between when an event becomes
pending and when it is dispatched. Depending on the cost

50

70

90

110

0.5

0.7

0.9

E
n
e
rg

y
 (

J
)

chess web

250

P
o
w

e
r

(W
)

12530*1525012530*15

Figure 11: The energy consumption of the web and chess
traces when the AWT polling interval is varied between 15
milliseconds and 250 milliseconds.

of idling, this delay may increase overall energy costs.

The e�ect of the AWT polling interval on average power
and total energy consumption is shown in Figure 11. As
the polling interval is increased from 0.015 seconds to 0.125
seconds, energy consumption decreases. The chess trace uses
3% less energy with a polling interval of 0.125 seconds than
at 0.015 seconds. Even though the total execution times
tend to increase as the polling interval is increased (see
Table 2), the drop in average power { due to a larger fraction
of idle time { accounts for the decrease in energy. However,
when the polling interval is increased to 0.25 seconds, the
energy usage increases slightly. We believe this increase is
due to an artifact of how we replay events from the traces
and is not a property of the JVM.

5. RELATED WORK
We believe this work is the �rst to characterize the energy

usage of a high-performance pocket computer, and also the
�rst to measure the energy impact of running Java.

Ellis [1] has characterized the power usage of a Palm Pilot,
a pocket computer o�ering signi�cantly lower performance
that the Itsy, and has provided coarse estimates of the en-
ergy cost of various tasks. Martin [9] has also measured the
e�ect on battery life of running a Itsy Pocket Computer at
di�erent clock frequencies.

A number of studies have pro�led the energy consumption
of notebook computers. Li et al. [13] report that of the power
consumed by a notebook, the display consumes 68%, a disk
consumes 20%, and the CPU and memory consume only
12%. Other studies have provided a more detailed charac-
terization of power consumption for notebooks [14; 15; 16].

The PowerScope energy pro�ler maps energy usage to ap-
plication structure by reporting the energy consumption of
processes and procedures [17]. This tool has been used to
provide detailed pro�les of the energy usage of applications
running on laptop computers [18]. We are currently explor-
ing how the methodology described in this paper can be
combined with PowerScope to produce similar pro�les for
applications running on the Itsy Pocket Computer.

In a broader scope, there has been considerable work in
low-power or energy-conscious computer system design. This
includes circuit-level design issues [19], CAD tools [20], op-
timizing the memory subsystem [21; 22], reducing the waste
from speculative execution [23], instruction-level software

10

optimizations [24], and CPU scheduling with voltage scal-
ing [7; 25; 26].

6. CONCLUSION
Pocket computers must operate on battery power for ex-

tended periods of time. Application design in this envir-
onment should therefore treat energy and power usage as
primary concerns. In this paper, we have presented a two
level characterization of the energy consumption of the Itsy
Pocket Computer, with the aim of furthering the software
community's understanding of designing software to be en-
ergy e�cient. We began by characterizing the energy con-
sumption of the Itsy hardware and three important subsys-
tems. Then, we evaluated the energy and power impact of
several tradeo�s in the design of a Java Virtual Machine for
that environment.

There are four key messages of this study. First, the en-
ergy and power usage in pocket computers di�er markedly
from that of notebook computers. Compared to a Think-
Pad notebook computer, the Itsy exhibited a wider dynamic
range of power consumption, a result of two factors: the
processor used in the Itsy exhibited a wider range of power
demand; and the power consumption of the memory system
accounted for a greater fraction of the overall power con-
sumption of the Itsy. We believe these factors to be true in
general of pocket and notebook computers, with the result
that the variation in power usage during typical application
scenarios is much higher than for notebook computers.

Second, using a single JVM to run multiple applications
can have considerable energy bene�t. Executing our com-
posite trace with a single JVM reduced energy usage by
25%, demonstrating that current research e�orts to safely
execute multiple applications within a single JVM can be
of signi�cant bene�t in extending the battery life of pocket
computers.

Third, preloading Java classes can reduce startup time
without impacting energy consumption, if one can accur-
ately predict which classes will be used. Measures to reduce
the delay a user observes when starting applications, can
be undertaken without additional energy costs if additional
work is avoided. For instance, preloading Java classes re-
duces startup time while not a�ecting energy costs, only if
misprediction is averted.

Fourth, techniques that reduce overall execution time, pri-
marily just-in-time compilation, are likely to provide signi-
�cant energy savings for pocket computers. These savings
are likely to outweigh the costs associated with them, which
we believe to be mainly increased memory consumption and
added implementation complexity.

Acknowledgments
We would like to thank the members of Compaq's Western
Research Lab and Systems Research Center who created
the Itsy Pocket Computer and built the infrastructure that
made this work possible. We would also like to thank the
anonymous referees for their comments.

APPENDIX
Table 2 presents the execution time, power and energy for
each JVM design option presented in the paper.

A. REFERENCES

[1] C. S. Ellis. The case for higher-level power management.
In Proceedings of the 7th IEEEWorkshop on Hot Topics

in Operating Systems, pages 162{167, March 1999.

[2] Board on Army Science and Technology, National Re-
search Council, Washington DC. Energy-e�cient tech-
nologies for dismounted soldier, 1997.

[3] Transvirtual Technologies Inc. Ka�e Java Virtual Ma-
chine. http://www.transvirtual.com.

[4] M. A. Viredaz. The Itsy Pocket Computer version 1.5:
user's manual. Technical Report TN-54, Western Re-
search Lab, Compaq Computer Corporation, July 1998.

[5] R. Stephany, K. Anne, J. Bell, G. Cheney, J. Eno,
G. Hoeppner, G. Joe, R. Kaye, J. Lear, T. Litch,
J. Meyer, J. Montanaro, K. Patton, T. Pham, R. Reis,
M. Silla, J. Slaton, K. Snyder, and R. Witek. A 200MHz
32b 0.5W CMOS RISC Microprocessor. In IEEE In-

ternational Solid-State Circuits Conference Digest of

Technical Papers, pages 15.5{15.5{9, February 1998.

[6] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In First Sym-

posium on Operating Systems Design and Implement-

ation, pages 13{23, November 1994.

[7] K. Govil, E. Chan, and H. Wasserman. Compar-
ing algorithms for dynamic speed-setting of a low-
power CPU. In Proceedings of The First ACM Interna-

tional Conference on Mobile Computing and Network-

ing, pages 13{25, November 1995.

[8] J. Flinn, K. I. Farkas, and J. Anderson. Power and en-
ergy characterization of the Itsy Pocket Computer (ver-
sion 1.5). Technical Report TN-56, Western Research
Lab, Compaq Computer Corporation, February 2000.

[9] T. L. Martin and D. P. Siewiorek. The impact of bat-
tery capacity and memory bandwidth on cpu speed-
setting: a case study. In Proceedings of the 1999 In-

ternational Symposium on Low Power Electronics and

Design, pages 200{205, August 1999.

[10] J. Gosling, B. Joy, and G. L. Steele, Jr. The Java Lan-
guage Speci�cation. The Java Series. Addison-Wesley,
September 1996.

[11] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A.
Wong, J.-L. Baer, B. N. Bershad, and H. M. Levy. The
structure and performance of interpreters. In Proceed-

ings of the Seventh International Conference on Archi-

tectural Support for Programming Languages and Op-

erating Systems, pages 150{159, October 1996.

[12] G. Back and W. C. Hsieh. Drawing the red line in Java.
In Proceedings of the Seventh Workshop on Hot Topics

in Operating Systems, pages 116{121, March 1999.

[13] K. Li, R. Kumpf, P. Horton, and T. Anderson. A quant-
itative analysis of disk drive power management in
portable computers. In Proceedings of the 1994 Winter

USENIX Conference, pages 279{291, January 1994.

11

Time (seconds) Power (Watts) Energy (Joules)
Composite Trace

baseline 116.4 0.900 104.7
use a single JVM 96.6 (0.83) 0.815 (0.91) 78.7 (0.75)
use compressed JAR �les 117.3 (1.01) 0.912 (1.01) 107.0 (1.02)
preload class �les, using minimal set 97.1 (1.00) 0.789 (0.97) 76.6 (0.97)
preload class �les, using complete set 98.1 (1.01) 0.934 (1.15) 91.6 (1.16)
data cache
ush 117.1 (1.01) 0.909 (1.01) 106.5 (1.02)
data cache
ush, instruction invalidate 117.8 (1.01) 0.920 (1.02) 108.3 (1.03)

Chess Trace

baseline 140.7 0.737 103.7
use compressed JAR �les 141.5 (1.01) 0.747 (1.01) 105.8 (1.02)
data cache
ush 141.5 (1.01) 0.740 (1.00) 104.7 (1.01)
data cache
ush, instruction invalidate 142.2 (1.01) 0.742 (1.01) 105.3 (1.02)
interpreted 141.1 (1.00) 0.894 (1.21) 126.1 (1.22)
AWT polling frequency = 15 ms 140.9 (1.00) 0.747 (1.01) 104.9 (1.01)
AWT polling frequency = 125 ms 141.3 (1.00) 0.721 (0.98) 101.9 (0.98)
AWT polling frequency = 250 ms 142.1 (1.01) 0.722 (0.98) 102.5 (0.99)

Web Trace

baseline 80.2 0.787 63.0
use compressed JAR �les 80.5 (1.00) 0.824 (1.05) 66.4 (1.05)
data cache
ush 80.6 (1.01) 0.794 (1.01) 63.9 (1.01)
data cache
ush, instruction invalidate 80.4 (1.00) 0.803 (1.02) 64.6 (1.02)
AWT polling frequency = 15 ms 79.8 (1.00) 0.793 (1.01) 63.3 (1.00)
AWT polling frequency = 125 ms 80.7 (1.01) 0.771 (0.98) 62.3 (0.98)
AWT polling frequency = 250 ms 81.9 (1.02) 0.787 (1.00) 64.4 (1.02)

Table 2: Execution time, power and energy for each JVM design option presented in the paper. The numbers in parenthesis
are ratios over the baseline, with the exception of the preload experiments where the ratio is over the single JVM case. The
values in this table are the average of �ve trials. The measurement error is � 0.005 Watts for the power data and � 1.1 Joules
for the energy data.

[14] J. Lorch. A complete picture of energy consumption
of a portable computer. Master's thesis, University of
California, Berkeley, 1995.

[15] J. Lorch and A. J. Smith. Energy consumption of
Apple Macintosh computers. IEEE Micro, 18(6):54{63,
Nov/Dec 1998.

[16] T. Ikeda. Thinkpad low-power evolution. In IEEE

International Symposium on Low-Power Electronics,
pages 6{7, October 1995.

[17] J. Flinn and M. Satyanarayanan. Powerscope: a tool
for pro�ling the energy usage of mobile applications.
In Proceedings of the Second IEEE Workshop on Mo-

bile Computing Systems and Applications, pages 2{10,
February 1999.

[18] J. Flinn and M. Satyanarayanan. Energy-aware adapt-
ation for mobile applications. In Proceedings of the 17th
ACM Symposium on Operating Systems and Principles,
pages 48{63, December 1999.

[19] W. Nebel and J. Mermet (Eds.). Low Power Design in

Deep Submicron Electronics. Kluwer, 1997.

[20] M.B. Kamble and K. Ghose. Analytical energy dissip-
ation models for low power caches. In Proceedings of

the International Symposium on Low-Power Electron-

ics and Design, pages 143{148, August 1997.

[21] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyra-
kis, B. McGaughy, D. Patterson, T. Anderson, and
K. Yelick. The energy e�ciency of IRAM architectures.
In Proceedings of the 24rd Annual International Sym-

posium on Computer Architecture, pages 327{337, June
1997.

[22] J. Kin, M. Gupta, and W. H. Mangione-Smith. The
�lter cache: An energy e�cient memory structure.
In Proceedings of the 30th Annual International Sym-

posium on Microarchitecture, pages 184{193, December
1997.

[23] S. Manne, A. Klauser, and D. Grunwald. Pipeline
gating: speculation control for energy reduction. In
Proceedings 25th Annual International Symposium on

Computer Architecture, pages 132{141, June 1998.

[24] V. Tiwari, S. Malik, and A. Wolfe. Instruction-level
power analysis and optimization of software. Journal
of VLSI Signal Processing, 13:223{238, 1996.

[25] M. Weiser. Some computer science issues in ubiquit-
ous computing. Communications of The ACM, 36:74{
83, July 1993.

[26] T. D. Burd and R. W. Brodersen. Processor design for
portable systems. Journal ov VLSI Signal Processing,
13(2/3):203{222, August 1996.

12

