
A P R I L 2 0 0 2

Fay Chang
Keith Farkas
Parthasarathy Ranganathan

Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

 The Western Research Laboratory (WRL), located in Palo Alto, California, is part of Compaq’s Corporate
Research group. WRL was founded by Digital Equipment Corporation in 1982. We focus on information tech-
nology that is relevant to the technical strategy of the Corporation, and that has the potential to open new business
opportunities. Research at WRL includes Internet protocol design and implementation, tools to optimize com-
piled binary code files, hardware and software mechanisms to support scalable shared memory, graphics VLSI
ICs, handheld computing, and more. As part of WRL tradition, we test our ideas by extensive software or hard-
ware prototyping.

We publish the results of our work in a variety of journals, conferences, research reports, and technical notes.
This document is a technical note. We use technical notes for rapid distribution of technical material; usually this
represents research in progress. Research reports are normally accounts of completed research and may include
material from earlier technical notes, conference papers, or magazine articles.

You can retrieve research reports and technical notes via the World Wide Web at:

http://www.research.compaq.com/wrl/

You can contact us about research reports and technical notes by sending e-mail to:

WRL-techreports@research.compaq.com

Detecting Energy Hot Spots:
Experiences with the iPAQ Pocket PC

Fay Chang, Keith Farkas, and Parthasarathy Ranganathan

Palo Alto Research Laboratories
Compaq Computer Corporation

fFay.Chang, Keith.Farkas, Parthasarathy Ranganathang@Compaq.com

1 Introduction

Energy is a critical resource for many computing systems, spurring the desire for energy-efficient
software. To build such software, developers need to understand the energy impact of their software
design decisions. Currently, when developers reason about such decisions, they tend to rely on intu-
ition. However, intuition can be misleading because most developers do not internalize an accurate
model of the energy cost of different operations, or properly account for the relative frequency of the
operations that take place.

In this report, we describe a tool that can help developers quickly determine the energy impact
of their design decisions. In particular, using our tool, a developer can quickly obtain a wealth of
information about the system's power and energy consumption while executing some software. For
example, our tool can provide answers to questions like:

1. How does power consumption vary while executing the software?

2. What power states are exercised while executing the software, and how much energy is con-
sumed in each of these power states?

3. Of the energy that is consumed, how much is consumed while executing each individual in-
struction, procedure, and application?

Our tool is based on statistical sampling. Statistical sampling tools introduce a periodic source
of interrupts. Whenever such an interrupt is received by the system, the tool records a sample that
contains information about the system's state, such as a timestamp and the program counter of the
interrupted instruction. The samples gathered during a given time period can then be analyzed to
produce estimates of the system's behavior during that time period.

Previous statistical sampling tools introduce sampling interrupts that are separated by a fixed
amount of time, possibly with some small variation to diminish the risk of synchronization [1, 7, 8]. In
contrast, our tool uses sampling interrupts that are separated by a fixed amount of energy consumption,
which we refer to as the energy quanta. We refer to this approach as energy-driven statistical sampling
(in contrast to previous time-driven statistical sampling approaches).

2

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

The samples collected during energy-driven statistical sampling can be analyzed in a variety of
ways. First, the average power consumed by the system during some time period is equal to the
product of the energy quanta and the interrupt frequency during that period. Using this relationship,
we can extract information about the system's power consumption. Second, the amount of energy
consumed while executing some software is estimated by the product of the energy quanta and the
number of samples that are attributed to that software. Consequently, we can extract information
about the system's energy consumption from the distribution of samples, i.e. the energy profile.

In this report, we illustrate the type of information that can be obtained from our tool using a
prototype we built of the tool for an iPAQ handheld running PocketPC. We begin in the next section by
comparing our tool to other approaches for obtaining this information. Then,we describe our prototype
implementation with Section 3 covering the hardware and Section 4 the software. Results are then
presented in Section 6 for an energy-consumption study of 14 benchmarks. Finally, we summarize
our findings in Section 7, and present an analysis of the errors in our approach in Section A.

2 Other Tools

Energy-driven statistical sampling can be used to measure average power consumption and to obtain
temporal profiles or histograms of power consumption. It can also be used to measure total energy
consumption and extract energy profiles that attribute that energy consumption to the software ex-
ecuted during the sampling period. While there are other tools that can provide such information, we
believe our tool offers several advantages.

First, a computer system's power usage could also be characterized using measurement equipment
like digital meters or data acquisition systems. However, the accuracy provided by such measurement
equipment would often be excessive, so that our tool is a better option owing to its much lower
hardware cost and greater ease of use.

Second, there are several other tools that seek to assist developers in mapping energy consumption
to software components. Most of these tools estimate energy consumption by multiplying activation
counts for various activities (e.g. executing a particular type of instruction) with estimates of the en-
ergy consumed to perform each activity [2, 4, 9]. One advantage of this approach is that it can leverage
activation counts for background activities to more easily attribute energy consumed asynchronously.
However, an activation-based approach has the disadvantage of requiring system-specific knowledge
about what activities should be counted, and system-specific estimates of the energy consumed to
perform each such activity.

An alternate approach, PowerScope [8], uses time-driven statistical sampling but adjusts for in-
congruities between duration and energy consumption by including in each sample an estimate of the
system's instantaneous power consumption. This feature allows PowerScope to weight each sample
by its instantaneous power measurement to produce, as with our tool, an energy profile. However, we
believe that our energy-driven approach is simpler to implement and while our tool and the Power-
Scope approach yield similar results for current-generation systems, we believe this equality will not
necessarily hold for future-generation systems [3].

3

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

current-sense
amplifier

monostable
multivibrator

12-bit binary
counter

Q

Energy Counter iPAQ H36xx

processor
(SA 1110)

gpio

battery
terminals

Bench
Power Supply

i_s

i_m

Vs

C

Vb

Vx

Figure 1: Block diagram of the iPAQ-based energy-driven sampling prototypes. The energy counter
is interposed between the power supply and the iPAQ handheld computer.

3 Hardware

In this section, we describe our hardware implementation of the energy-counter and the two iPAQ-
based prototype systems that use it. Both of our prototypes are based on iPAQ units that had their
Flash ROM capacity upgraded from 16 MB to 32 MB. Unit 1 is a production H3630 unit, while unit 2
is a pre-production H3600 unit.

3.1 Hardware Overview

Figure 1 presents a block diagram of our two prototypes. As shown, we replaced the battery of the
iPAQ handheld with a power supply, and interposed an energy counter between the power supply
and the iPAQ's electronics. We used a power supply rather than the battery to simplify our experi-
mental procedure and to ensure that the iPAQ's power efficiency stays constant during experiments;
Section A.1.1 discusses the consequences of using a battery. The purpose of the energy counter is to
generate an interrupt whenever a predetermined amount of energy has been consumed. The energy
counter operates as follows.

As current is is drawn from the power supply by the iPAQ, a current mirror composed of a resistor
and a current-sense amplifier generates a current im = � � is (the value of � is given in column 3 of
Table 1). This current im deposits charge on the positive plate of a capacitor, which acts as a current
integrator. When the voltage across the capacitor plates reaches 2

3 of the voltage (Vx) powering the
monostable multivibrator this IC generates an output pulseP , and discharges the capacitor to a voltage
of Vx

3 . The capacitor then begins to accumulate charge again via im.
Each pulse P indicates that the capacitor (with capacitance C Farads) has accumulated Qc Col-

oumbs, where Qc is given by Equation 1. During this time, the iPAQ will have consumed Q i =
Qc

�

Coloumbs. The energy Eq consumed by the iPAQ during this time is merely the product of the charge
and the essentially constant battery-terminal voltage Vb; Equation 2 derives this equivalence.

Qc =

Z t

0
im(t)dt = C �

Vx

3
(1)

4

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Eq =
Z t

0
vb(t)� is(t)dt = Qi �

Z t

0
vb(t)dt = Qi � Vb (2)

We refer to Eq as the minimum energy quanta. The minimum energy quanta in our prototypes is
given in column 4 of Table 1.

Each pulse increments the value of a 12-bit binary counter. This counter allows the user to select
the number of minimum energy quantas that must be consumed before an interrupt is generated.
Specifically, if the iPAQ's general purpose I/O line (GPIO) is connected to bit q of the counter, then
an interrupt is generated once 2(q+1) quantas of energy have been consumed. We refer to this quantity
as the energy quanta. The user must select the the value of q manually.

3.2 Hardware Implementation Details

One of our design goals was to support profiling of the energy consumed by applications that use an
802.11b wireless radio. To this end, we designed the energy counter so that it would measure the
current drawn by an iPAQ handheld and a PCMCIA sleeve. Figure 2 presents a picture of one of
the two nearly-identical prototypes. The wiring diagram of the prototypes is shown in Figure 3(a);
for ease of comparison with the block diagram of Figure 1, we have reproduced Figure 1 here as
Figure 3(b).

As illustrated in Figure 3(a), we have added the current mirror to the flex that is used to convey
power to the iPAQ handheld, while the rest of the energy-counter functionality is implemented by the
energy-counter PCB. We also modified the PCMCIA sleeve so as to monitor its current consumption
and to interface the energy-counter PCB to the iPAQ handheld.

We have removed the battery from both the iPAQ handheld and the PCMCIA sleeve, and replaced
each with a piece of flex that contains a battery connector at one end, and power leads at the other
(P1 and P3 in Figure 3(a)). With the iPAQ handheld, we then inserted the sense resistor R in series
with the positive power lead (P3); Column 2 of Table 1 lists the value of the sense resistor for each
prototype. To avoid measuring the current dissipated as heat in the fuse, we located R downstream of
the fuse. With the PCMCIA sleeve, we shorted its fuse, and connected the positive power lead (P3) to

Prototype Resistor � Minimum Energy Quanta (Eq)
1, upgraded H3630 unit 100m
 0.001 46�J
2, upgraded pre-production H3600 unit 120m
 0.0012 38�J

Table 1: Characteristics of the two prototypes. The key difference in the two prototypes is the value of
the sense resistors used, which in turn, leads to different current-scaling factors (�) and energy quanta
values. The energy quanta was measured by running on each prototype a workload that consumed
a relatively constant amount of current, and, recording this current and the period of the pulse train
that was generated by the multivibrator. The energy quanta was then calculated as the product of
the period, current, and the voltage at the battery terminals (4.07 V and 4.05 V respectively). The
energy-quanta values shown in the this table are the average values obtained using three different
workloads.

5

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Figure 2: One of our two iPAQ prototypes showing the iPAQ handheld and PCMCIA sleeve, the
energy-counter PCB, and the bench supply that powers all three.

MAX 4172
Rs+ Rs-V+

gnd

out

P3
(+)

battery
connector

iPAQ H3xxx
battery flex

P1
(gnd)

4.1

PCMCIA sleeve
battery flex

(fuse removed)

P3 (+)P1

existing
fuse

int_op
(gpio 24)

pcm_vdd_on
(U37 pin 8)

energy counter PCB

current in

interrupt enable

R

Vddgnd

(a) Wiring diagram

current-sense
amplifier

monostable
multivibrator

12-bit binary
counter

Q

Energy Counter iPAQ H36xx

processor
(SA 1110)

gpio

battery
terminals

Bench
Power Supply

i_s

i_m

Vs

C

Vb

Vx

(b) Block diagram

Figure 3: The wiring diagram (a) shows the energy-counter PCB and its connection to the iPAQ
handheld and associated PCMCIA sleeve. The block diagram of Figure 1 is reproduced here as Figure
(b) for ease of comparison.

6

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

LMC 555
cmos timer

V+

gnd

out

threshdischg

reset

trig gnd

V+ Q11 Q1 Q0

clr

interrupt (select one)

current in

Vddenable

5000pF
(polystyrene)

1uF 10nF

10nF
10

0k

10
0k

74VHC4040
binary counter

Figure 4: The energy-counter PCB.

the downstream end of the resistor R such that the current consumed by both the sleeve and the iPAQ
handheld would flow through R.

To maximize the signal to noise ratio, we installed the current mirror (MAX 4172) adjacent to the
sense resistor and connected its output to the energy-counter PCB. The energy-counter PCB (shown
in Figure 4) contains the monostable multivibrator and the 12-bit binary counter.

The energy-counter PCB (Figure 4) is powered by the 3.3 V source (Vdd) generated by the iPAQ
handheld and distributed to the sleeve. However, since the sleeve cannot draw more than 10 mA during
sleeve initialization [5], two transistors disconnect the ICs from Vdd until a signal generated by the
PCMCIA sleeve (pcm vdd on) is asserted. The 5000 pF capacitor integrates the current generated by
the current mirror and conveyed to the capacitor via the signal current in. When the pre-determined
amount of energy is consumed, the energy quanta, an interrupt request is signaled to the processor
via int op (GPIO 24). The user must manually connect this signal to one of the outputs of the binary
counter.

4 Software

In this section, we describe the software for energy-driven statistical sampling, and the simple exten-
sion of this software that allows it to also support time-driven statistical sampling. The software runs
within/on the Merlin build of PocketPC for the iPAQ.

4.1 Software Overview

The software for energy-driven statistical sampling consists of on-line software for collecting sample
data, and off-line tools for processing that data. The on-line data-collection software can be divided
into three components: (1) a set of kernel-level modifications, (2) a device driver, and (3) a program
that enables users to control data collection via a simple GUI. The kernel-level modifications include

7

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

modifications
Other kernel

PID RAM
executable
mappings

sample buffer
64KB

Data-

Sample
data files

buffered
sample

info

Kernel device driver

program
copy

copy

Sampling

interrupt
ISR

Sampling
Sampling

Enable/disable profiling
collection

Figure 5: Data collection software

the addition of an interrupt service routine (ISR) for handling sampling interrupts, the reservation of
memory buffers for holding sample data, and support for controlling (e.g. enabling and disabling)
sampling via the device driver.

Figure 5 presents a block diagram of the data-collection software. A user enables and disables
sampling via the user-level data-collection program (which issues calls to the device driver, which may
in turn issue calls to the kernel). Sampling interrupts are generated only when sampling is enabled.
When the kernel receives a sampling interrupt, it suspends the executable that was being executed and
calls the added ISR. The ISR records a 16 B sample in a pre-allocated 64 KB RAM buffer, where each
sample consists of:

PC – the program counter address of the interrupted instruction;

Module ID – a value that identifies the software module (executable or dynamically linked library)
in which this instruction resides;

Executable ID – a value that identifies the interrupted executable (so that the interrupted executable
can be identified even if the interrupted instruction resides in a DLL); and

Time stamp – the value in the operating system count register, which is incremented autonomously
by the processor every �271 ns.

Each executable and DLL stored in ROM is identified uniquely using its readily-available table-of-
contents pointer. Unfortunately, there is no corresponding identifier for executables and DLLs stored
in RAM. To enable efficient identification of RAM executables, the ISR maintains (in another pre-
allocated RAM buffer) a mapping from the process identifiers of sampled RAM executables to their
executable names. These process identifiers are used by the ISR as the Executable ID for the samples
that belong to such executables. The software does not currently, but could easily be extended to,
uniquely identify RAM DLLs as well. (We did not include this functionality because the percentage
of samples in RAM DLLs was insignificant during all of our benchmarks.)

A user also starts and stops data collection via the user-level data-collection program. In particular,
in response to user directions, the user program issues calls to the device driver to obtain the samples
recorded by the ISR – as well as the mappings from table-of-contents pointers to module names,
and from process identifiers to executable names – and then writes this sample data to one or more

8

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

data files. Such data files can be processed using the data-processing tools at any subsequent time to
produce various textual and graphical summaries of the sample data that was collected.

We have also extended the software to support time-driven sampling. In this mode, rather than
using our energy counter to generate an aperiodic stream of sampling interrupts, we use one of the
processor's operating system timers to generate a periodic stream of sampling interrupts. Thus, our
time-driven sampler does not require any additional hardware. The user-level data-collection program
allows a user to enable either energy-driven or time-driven sampling. It also allows a user to set the
sampling frequency for time-driven sampling.

4.2 Software Implementation Details

We found that attempting to write all of the sample data to the RAM-based file system while sampling
is enabled noticeably disrupted the performance of the system, and therefore the samples that were
collected. Two possible approaches for addressing this problem are: 1) to decrease the amount of
data written by writing only a subset or a summary of the sample data, and 2) to buffer the sample
data in RAM until sample collection is stopped. The first approach loses some information. Notice,
however, that some of the information that can be extracted from the sample data may not be of
interest to the particular user of the sampling system. For example, if a user of the sampling tool is
interested in energy consumption, but not in power consumption, then the time stamps in the samples
are superfluous. The amount of data saved could also be reduced by coalescing samples (e.g. by
executable ID). In order to demonstrate the different types of information that could be extracted from
the sample data recorded by the ISR, we currently use the second approach of buffering sample data
until sample collection is stopped.

Table 2 summarizes the modifications and additions we made to the OEM Adaptation Layer
(OAL) for the iPAQ.

5 Experimental Methodology

The experimental data we present in Section 6 was obtained using our H3630-based prototype (pro-
totype #1 in Table 1); results obtained using the other prototype were similar. Using this unit, we
gathered sample data with both energy-driven and time-driven sampling for the 14 benchmarks de-
scribed in Table 3. While gathering this data, the iPAQ unit was not docked to a PC. Also, the PCM-
CIA expansion pack was empty for all but two of the benchmarks, Idle-Conn and Download. For
those two benchmarks, we plugged a Compaq WL100 11 Mbps Wireless LAN card into the PCMCIA
expansion pack. Before gathering any data, we changed the default system battery setting to prevent
the unit from automatically powering down. We also changed the default system backlight setting to
prevent the backlight from turning on (i.e. we set the brightness level to “Power Save”) for all but two
of the benchmarks, Idle-Low and Idle-Super (during which the brightness level was set to the
lowest and highest on setting, respectively). We did not change any other system settings.

9

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

File Modification
kernel/hal/cfwzilker.c Added code to allow the sampling device driver to con-

trol whether energy/time-driven sampling is enabled or
disabled.

kernel/hal/arm/int1110.c Added interrupt service routine (ISR) that records a
sample upon receiving a sampling interrupt.

drivers/eprof/* New sampling device driver (which exports a stream in-
terface).

drivers/dirs Added statement that causes the sampling device driver
to be built by the code generation tools.

inc/drv glob.h Added global variables shared by the sampling device
driver and the kernel.

inc/eprof.h New definitions shared by the sampling device driver
and the kernel.

inc/oalintr.h Added definition of an interrupt value for sampling.
files/config.bib Reserved a fixed 64 KB RAM buffer in which the

sampling ISR records samples.
files/eprofgui.exe New program via which users can control sampling.

While the source for this program was not added to the
OAL, it was convenient to include the executable in the
iPAQ PocketPC build.

files/platform.bib Added entries so that sampling device driver and user-
level program would be included in iPAQ PocketPC
build.

files/platform.reg Added entries so that sampling device driver would be
included as a built-in driver.

Table 2: Modifications in the OAL to implement energy-driven and time-driven statistical sampling.

Sample Collection

In our experiments, as discussed in Section 4.2, the user-level data-collection program buffered all
sample data in memory until profiling was stopped in order to retain all the sample data without in-
curring excessive overhead. In our energy-driven sampling experiments, we used an energy quanta
of 2.94 mJ. As shown in Table 4, this quanta resulted in average sampling frequencies of between
93 and 535 Hz. For our time-driven sampling experiments, we used an average sampling frequency
of 247 Hz for Record and Download and 349 Hz for all other benchmarks. As further discussed
in Section A.2, this energy quanta and these sampling frequencies were small enough to ensure that
sufficient samples were collected during each of our benchmarks, but large enough to avoid notice-
ably perturbing the collected sample data. For our benchmarks, they resulted in a maximum average
data collection rate of approximately 8 KB/second, and a peak data collection rate of approximately
10 KB/second. During our benchmarks, new sample data is copied into the data-collection program's

10

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Benchmark Description Duration (s)
Idle Idle –
Idle-Low Idle with brightness level set to “Low Bright” –
Idle-Super Idle with brightness level set to “Super Bright” –
Idle-Conn Idle with wireless card –
CPU-cached Dummy CPU application that repeatedly updates a cached

integer variable
34

CPU-uncached Dummy CPU application that accesses a large uncached ar-
ray

40

Music Use Windows Media Player to play an MP3 file 66
Music-Silent Use Windows Media Player to play the MP3 file without pro-

ducing sound
65

Music-Loudest Use Windows Media Player to play the MP3 file at the
loudest volume setting

65

Movie Use Windows Media Player to play a WMV file 110
Record Record the MP3 file played from another machine 65
Game Play Christmas Rush, a multimedia game 54
Download Use Pocket Internet Explorer and wireless card to download

an uncached web page that contains many JPEG images
35

CPU-cached+Game The CPU-cached benchmark followed by the Game bench-
mark

84

Table 3: Benchmarks and their run time.

user-level buffer (and the data-collection program is awakened) at most once every 1024 samples.

6 Results

Energy-driven statistical sampling can be used to measure the average power consumption and to ob-
tain temporal profiles or histograms of power consumption. It can also be used to measure total energy
consumption and extract energy profiles that attribute that energy consumption to the software ex-
ecuted during the sampling period. In this section, we illustrate these uses for energy-driven sampling
and the insights they provide. We also compare the results that can be obtained through energy-driven
statistical sampling to those that can be obtained through time-driven statistical sampling, which has
the advantage of requiring no additional hardware support.

6.1 Power consumption

Energy-driven statistical sampling can be used to measure and compare the base power consumption
of the system in various modes (e.g. idle with the backlight powered at various intensities). Spe-
cifically, the power consumption in some mode can be calculated as the product of the energy quanta

11

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Benchmark Ave sampling Ave power Number of % samples
frequency (Hz) (mW) samples in OEMIdle

(1) (2) (3) (4)
Idle 93 273 – 98
Idle-Low 251 738 – 99
Idle-Super 417 1226 – 99
Idle-Conn 383 1126 – 99
CPU-cached 260 765 8192 7
CPU-uncached 381 1120 14336 14
Music 230 676 16384 45
Music-Silent 218 641 14216 44
Music-Loudest 256 753 16384 47
Movie 303 891 32768 19
Record 157 462 10196 74
Game 409 1202 21504 1
Download 535 1573 18932 18
CPU-cached+Game 348 1023 28672 3

Table 4: Average sampling frequency, corresponding average power consumption, number of samples,
and percentage of samples attributed to the OEMIdle routine for each of our benchmarks. Average
power consumption is the product of average sample frequency and the energy quanta, 2.94 mJ.

and the average sampling frequency in that mode. Further the relative sampling frequency in two
modes indicates the relative power consumption of those modes. Table 4 presents the average power
consumption for our benchmarks.

Column 1 of the table shows the average sampling frequency during each of our benchmarks,
while column 2 provides the corresponding average power consumption. Observe that, for example,
idling with the backlight on at its lowest setting (Idle-Low) causes the unit to consume 2.7 times the
power of idling with the backlight off (Idle). Alternatively, idling with the backlight off and the wire-
less card inserted (Idle-Conn) causes the system to consume almost as much power as idling with
the backlight on at its highest setting without the wireless card (Idle-Super). In contrast, changing
the speaker volume at which an MP3 file is played from the lowest setting (Music-Silent) to the
highest setting (Music-Loudest) offered by Windows Media Player increased the system's power
consumption by only 17%.

Average power consumption figures, such as those given in Column 2, do not reveal the variation
in power consumption during a benchmark. However, since the energy consumed between the oc-
currence of any two interrupts (samples) is constant, the average power consumed during the interval
between the two samples is simply the energy quanta divided by the time since the last sample. There-
fore, energy-driven statistical sampling can also provide temporal profiles and histograms of power
consumption.

12

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

6.1.1 Temporal Power-Consumption Profiles

Figures 6 and 7 show temporal profiles of power consumption for a representative subset of our bench-
marks. In each graph, the samples are ordered in time sequence along the x-axis, and the correspond-
ing power consumption values are plotted on the y-axis. In order to show details that are obscured
when data points are spaced very closely, Figure 6 includes a close-up of a portion of the temporal
profile for the Music benchmark.

Spikes or shifts in temporal profiles can be correlated with events that occur during a bench-
mark. For example, the noisy interval at the beginning and end of the temporal profiles of many of
the benchmarks corresponds to touch screen navigation to start up and terminate the benchmark ap-
plication, while the CPU-intensive benchmarks experience a downward shift in power consumption
when the audio system times out and powers itself down1. In addition, the Download benchmark
experiences downward spikes in power consumption which correspond to times during which the
iPAQ is simply waiting to receive more data, while the shift from lower to higher power consump-
tion during the sequential CPU-cached + Game benchmark corresponds to the transition between
running CPU-cached and running Game. The detail of the temporal profile for the Music bench-
mark reveals the granularity at which the CPU alternates between idle and busy times while playing
an MP3 file. During most of the benchmarks, however, sampling intervals corresponding to lower
and higher power consumption are interspersed very finely, indicating that those benchmarks do not
contain distinct phases in which they operate at different power consumption levels.

The temporal profiles also reveal that, unsurprisingly, power varies the least for the benchmarks
that contain the least amount of variation in activity (i.e. the idle and CPU-intensive benchmarks).
The temporal profiles of all the other benchmarks show frequent incidence of power consumption at
substantially different levels.

As another example of the insight that temporal profiles provide, we investigated how power and
energy consumption change depending on whether a program is stored compressed in the RAM file
system, compressed in ROM, or uncompressed in ROM. In the first two cases, the program is uncom-
pressed and paged into RAM when executed; in the latter case, the program is executed directly out
of ROM. We used two benchmarks: 1) executing a contrived CPU-intensive program which consists
of a loop of simple arithmetic operations that does not fit in the processor's instruction cache and 2)
playing an MP3 file that is stored in RAM with Windows Media Player. For the execute-in-place case
of the second benchmark, we use the default compression settings in the Merlin iPAQ build, which
specify that the resources should be compressed in ROM (and therefore decompressed and copied into
RAM before use).

For the uncacheable benchmark, Figure 8(a) shows the temporal power-consumption profiles,
and Figure 8(b) shows total time and energy consumption, for all three cases. These results show
that, when executing out of ROM, this program takes much more time to complete, but consumes
much less power. The decrease in power consumption is not sufficient to offset the increase in time,
however, so that executing this program out of ROM consumes more energy. For the music playback
benchmark, however, the average power, total time and total energy consumption are basically the

1The audio system is powered at the beginning of all the benchmarks except the idle benchmarks because the system
emits some beeps during touch screen navigation to start up the benchmark applications.

13

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

10
24

20
48

30
72

40
96

S
am

pl
e

nu
m

be
r

0123 Average power since last sample (W)

Id
le

Id
le

−
S

up
er

Id
le

−
C

on
n

Id
le

−
Lo

w
Id

le

0
50

00
10

00
0

15
00

0
S

am
pl

e
nu

m
be

r

0123 Average power since last sample (W)

C
P

U
−

in
te

ns
iv

e

C
P

U
−

un
ca

ch
ed

C
P

U
−

ca
ch

ed

0
50

00
10

00
0

15
00

0
S

am
pl

e
nu

m
be

r

0123 Average power since last sample (W)

M
us

ic

50
00

52
50

55
00

57
50

60
00

S
am

pl
e

nu
m

be
r

0123 Average power since last sample (W)

M
us

ic
 (

de
ta

il)

Fi
gu

re
6:

Te
m

po
ra

lp
ro

fil
es

of
po

w
er

co
ns

um
pt

io
n

(fi
gu

re
1

of
2)

14

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
S

am
pl

e
nu

m
be

r

0123 Average power since last sample (W)

M
ov

ie

0
50

00
10

00
0

S
am

pl
e

nu
m

be
r

0123 Average power since last sample (W)

R
ec

or
d

0
50

00
10

00
0

15
00

0
20

00
0

S
am

pl
e

nu
m

be
r

0123 Average power since last sample (W)

D
ow

nl
oa

d

0
10

00
0

20
00

0
30

00
0

S
am

pl
e

nu
m

be
r

0123 Average power since last sample (W)

C
P

U
−

ca
ch

ed
 +

 G
am

e

Fi
gu

re
7:

Te
m

po
ra

lp
ro

fil
es

of
po

w
er

co
ns

um
pt

io
n

(fi
gu

re
2

of
2)

15

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

0 5000 10000 15000
Sample number

0

1

2

3

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

CPU−intensive with large loop

cpu.exe in RAM
cpu.exe in ROM
cpu.exe in ROM, XIP

(a) Temporal power-consumption profile

Storage of cpu.exe Time (s) Energy (J)
RAM (compressed) 31 26
ROM, compressed 31 25
ROM, uncompressed 71 39

(b) Energy consumption

Figure 8: Impact on power and energy consumption of storing an executable compressed in either
the RAM file system or ROM, so that it is uncompressed into and executed out of RAM, or storing it
uncompressed in ROM so that it executes in place.

same for all three cases. This reflects the fact that, relative to the prior benchmark, the instruction
cache hit rate is much higher and instruction fetch is a much smaller component of the benchmark's
power consumption. From these results, it is clear that, for many applications, execute-in-place would
save memory without increasing energy consumption. On the other hand, the slower access time of
ROM could appreciably increase the latency and/or energy consumption of some applications that
have high instruction cache miss rates.

6.1.2 Power-Consumption Histograms

Power-consumption histograms are useful for understanding the power levels during a benchmark.
Figures 9 and 10 present power-consumption histograms for a representative subset of our bench-
marks. In each histogram, the point (x,y) indicates that, for y% of the samples that were collected,
the average power consumed by the system during the preceding inter-sample interval was xW. For
clarity, the power values are grouped into 50 mW buckets.

The power-consumption histogram for the Idle benchmark shows that there is a single dom-
inant power level while the system is idling. This is not surprising given that the temporal power-
consumption profiles for the Idle benchmark shows that the system consumes a relatively constant
amount of power while idling. The histogram for the Game benchmark also contains a single peak.
However, the peak is wider, indicating that a range of power levels is exercised during the Game
benchmark. Finally, the histograms for all the other benchmarks show two significant peaks, indicat-
ing that there are two significant power levels during each of these benchmarks.

The main power level during the CPU-cached and CPU-uncached benchmarks corresponds

16

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

02040608010
0

% samples

Id
le

C
P

U
−

ca
ch

ed
C

P
U

−
un

ca
ch

ed

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

0102030

% samples

M
us

ic

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

01020

% samples

M
ov

ie

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

0102030405060

% samples

R
ec

or
d

Fi
gu

re
9:

Po
w

er
-c

on
su

m
pt

io
n

hi
st

og
ra

m
s

(fi
gu

re
1

of
2)

17

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

0102030

% samples

G
am

e

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

010203040

% samples

D
ow

nl
oa

d

0.
0

0.
5

1.
0

1.
5

2.
0

A
ve

ra
ge

 p
ow

er
 s

in
ce

 la
st

 s
am

pl
e

(W
)

01020

% samples

C
P

U
−

ca
ch

ed
 +

 G
am

e

Fi
gu

re
10

:
Po

w
er

-c
on

su
m

pt
io

n
hi

st
og

ra
m

s
(fi

gu
re

2
of

2)

18

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

0.0 0.5 1.0 1.5 2.0
Average power since last sample (W)

0

10

20

30

40

%
 s

am
pl

es

Music

Audio system powered
Audio system de−powered

0.0 0.5 1.0 1.5 2.0
Average power since last sample (W)

0

10

20

30

%
 s

am
pl

es

Game

Audio & LCD powered
Audio & LCD de−powered

Figure 11: Power-consumption histograms for the Music and Game benchmarks with various sub-
systems enabled or disabled.

to the power consumption after the audio system timed out and powered down. The higher, secondary
power level corresponds to the power consumption while the audio system was powered. The two
peaks in the power-consumption histogram for the sequential CPU-cached + Game benchmark
correspond to the peaks in the histograms of the individual benchmarks. Finally, to explicate the
bi-modal nature of the remaining power-consumption histograms, Column 4 of Table 4 shows the
percentage of samples attributed to the OEMIdle routine for each benchmark. For each benchmark,
this percentage is an estimate of the percentage of energy that was consumed while the CPU was
idling during that benchmark. Notice that the system tends to consume much less power when the
CPU is idle than busy (as indicated by the power consumption figures in Column 2 of Table 4).
Consequently, it is not surprising that there would be two separate peaks in the histogram of every
benchmark that consumed a substantial percentage of energy while the CPU was idling as well as a
substantial percentage of energy while the CPU was not idling. Moreover, it is not surprising that
the lower peak should be less pronounced for the benchmarks that consumed a smaller percentage of
energy while the CPU was idling.

Notice that the lower peak in each of the bi-modal histograms for the single-application bench-
marks corresponds to a higher power level than the dominant power level during the Idle benchmark.
There are several possible reasons for this difference. One hypothesis is that the periods of time dur-
ing which the CPU is busy are so finely interspersed with those during which it is idle that the CPU
will have been busy for some percentage of the time between any two samples. A second hypothesis
is that, when the CPU is idle, the system is not necessarily idle, and the power consumed by such
“asynchronous” system activity is responsible for the increased power level.

To investigate this latter hypothesis, we modified the OAL such that we could disable the audio
system (by powering down the speaker and audio codec, and eliminating DMA to the audio subsys-

19

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

tem) and/or the LCD subsystem (by eliminating LCD refresh and DMA to the LCD subsystem). We
then experimented with disabling these subsystem while running the multimedia benchmarks. Our
experiments validated this hypothesis. For example, Figure 11(a) shows power-consumption histo-
grams for the Music benchmark when the audio subsystem was enabled or disabled. Disabling the
audio subsystem shifted the power consumption histogram such that the lower mode is at the dominant
power level of an idle system.

From Figure 11(a) we can also gain some insight into the characteristics of this asynchronous
power consumption. In particular, note that the two peaks become more pronounced when the au-
dio subsystem is disabled. This indicates that there was some variation in the asynchronous power
consumption of the audio subsystem. This variation can obscure differences in synchronous power
consumption. For example, Figure 11(b) shows power histograms for a game benchmark (that uses
the same game as the Game benchmark, but runs for a longer duration) when the audio and LCD sub-
systems were either both enabled or both disabled. Notice that, with the audio and LCD subsystems
disabled, the power histogram suggests a second, smaller peak at approximately 1.2 W.

Finally, leveraging this ability to power down the LCD subsystems, we found that the LCD sub-
system consumes about 120 mW when the system is idle. In other words, LCD refresh is responsible
for 44% of the power that is consumed when the system is idle with the backlight off and the expansion
pack empty.

6.2 Energy consumption

Energy-driven statistical sampling can also be used to develop insights into energy consumption.
For example, the energy consumed to perform a task can be calculated as the product of the energy
quanta and the number of samples recorded while performing that task. Further, the relative number
of samples that are recorded while performing different tasks are indicative of their relative energy
consumption. Column 3 of Table 4 shows the number of samples for each of the benchmarks that
involved a particular task. From these figures, it can be seen that, for example, playing a particular
MP3 file at the default volume consumed 1.6 times as much energy as recording that music (played
from a separate system) with the default microphone settings.

Energy-driven statistical sampling can also be used to extract energy profiles that apportion the
energy consumed to the software executed while the samples were collected. Specifically, since the
rate at which sampling interrupts occur is proportional to the rate at which energy is being consumed,
the percentage of samples attributed to some software is an estimate of the percentage of energy
consumed while executing that software.

Energy profiles can be extracted at different granularities. Instruction-level profiles can be pre-
pared by coalescing the samples attributed to each unique static instruction, while procedure-level
profiles can be prepared by coalescing the samples of all instructions in a given procedure. Such
profiles can be leveraged by application developers and system designers to direct their optimization
efforts more effectively. Module-level and executable-level profiles can be similarly obtained – the
latter could be leveraged by users of a system to understand how they are using up the charge stored
in the battery.

Given that energy-driven statistical sampling requires a small amount of hardware support that
is not provided by most current systems, one question that warrants investigation is to what degree

20

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

duration can serve as an approximation for energy consumption. To help answer this question, the rest
of this section compares energy and time profiles.

6.2.1 Procedure-level Profiles

Figure 12 presents the procedure-level time and energy profiles for eight of our benchmarks. For each
benchmark, the time and energy profiles individually identify all the procedures and modules to which
10% or more of the samples were attributed within either profile. All other procedures and modules
are combined in “Other”. Procedures whose names were stripped from their binary are named as
UNKNOWN <starting address> <size>. Finally, the procedures and modules in each graph
are ordered according to the number of samples that time profiling attributed to that procedure/module,
so that it is easy to detect when energy profiling reveals a different ordering.

Time and energy profiles differ if the profiled workload exercises multiple, distinct power levels,
which, as discussed in Section 6.1.2, is true for many of our benchmarks. For example, observe that,
for the benchmarks that spend a lot of time with the CPU idle, the idle routine component of the
time profile (i.e. OEMIdle) is much larger than the corresponding component of the energy profile.
Similarly, the profiles for CPU-cached+Game show differences in the proportion of time and energy
spent in the two executables. In particular, since time profiling is oblivious to the fact that Game
consumes energy at a much higher rate than CPU-cached, time profiling greatly underestimates the
relative energy consumption of playing the game.

If the profiled execution contains only a single dominant power level, however, time and energy
profiles will not differ substantially. This is demonstrated by the similarity of the time and energy
profiles for theGame andDownload benchmarks. It is also demonstrated by the similarity of the time
and energy profiles of all of the benchmarks except CPU-cached+Game if the samples attributed to
the OEMIdle routine are ignored, as shown in Figure 13.

6.2.2 Discussion

The similarity in most of the profiles once the OEMIdle samples are ignored is an artifact of the
current-generation iPAQ platform. In particular, with the exception of cache misses, all instruc-
tions consume approximately the same amount of power [10]. The difference in power consump-
tion due to cache misses is substantial, as illustrated by the histograms for the CPU-cached and
CPU-uncached benchmarks in Figure 9. However, most procedures include a mixture of instruc-
tions and, as discussed in Section 6.1.2, the power consumed by background activity represents a
noteworthy fraction of the overall power consumption. As a result, the higher power consumption of
instructions that cause cache misses is usually not sufficient to create a substantial difference between
time and energy profiles.

Thus, the current platform exhibits only two processor-provided power states – CPU idle and
CPU non-idle – that frequently result in differences between time and energy profiles. Therefore,
time-driven statistical sampling can usually be used to approximate energy-driven statistical sampling
by ignoring the samples attributed to the OEMIdle routine. This conclusion, however, would not ne-
cessarily apply to a system that offered the ability to dynamically and quickly change the speed at the
which the processor runs. Such frequency changes would introduce other power states. Furthermore,

21

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Figure 12: Summarized procedure-level time and energy profiles.

22

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Figure 13: Summarized time and energy profiles, excluding samples attributed to the OEMIdle
routine (i.e., while the CPU was idle).

23

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

Module Time (%) Energy (%)
App-206 22.01 41.13
App-59 77.44 57.50
Other 0.56 1.37

Module Time (%) Energy (%)
App-59 31.36 20.52
App-89 20.84 17.56
App-118 15.67 16.32
App-148 12.47 15.57
App-176 10.33 14.92
App-206 8.85 14.56
Other 0.46 0.54

Table 5: Time and energy profiles that illustrate the impact of frequency scaling. This data was
collected using our prototype built on top of an Itsy Pocket Computer.

future-generation processors that support voltage scaling in addition to frequency scaling are likely to
display even greater variance in power states.

The impact that frequency and voltage scaling may have is suggested by the following two ex-
periments. These two experiments were performed on a prototype we built using the Itsy Pocket
Computer [3]. In the first experiment, we obtained time and energy profiles for a workload consisting
of running a long benchmark twice, first at a clock frequency of 206 MHz, then at a clock frequency
of 59 MHz. In the second experiment, we obtained time and energy profiles for a workload consist-
ing of running a short benchmark six times, each time with a different clock frequency (206 MHz,
176 MHz, 148 MHz, 118 MHz, 89 MHz and 59 MHz). Table 5 summarizes the results of these two
experiments. While these workloads are synthetic, the results indicate the inappropriateness of time
profiles for estimating the energy consumption of applications that exploit frequency scaling.

7 Summary and Future Work

While the issues with designing applications to reduce execution time are fairly well understood, a
similar understanding of how to design applications to reduce their energy consumption is lacking.
This report presented a new approach, energy-driven statistical sampling, that exposes information
about energy consumption. Energy-driven statistical sampling tools can help developers both reason
about the energy impact of software design decisions and identify application energy hot spots.

Energy-driven statistical sampling uses a small amount of hardware to trigger an interrupt at pre-
defined quanta of energy consumption. The interrupt is used to collect information about the program
currently executing, and the information thus collected is processed off-line to generate an energy
profile of where energy was spent during the program's execution. Sample summaries may also be
generated that offer developers insight into the temporal power profile of the workload and the power
states that it exercises. We have developed a prototype of this approach for the iPAQ handheld and
have presented in this report some of the insights we gathered with it. Our studies of this prototype
and the one we built for the Itsy pocket computer [3] indicate that energy-driven statistical sampling
can provide an accurate system-level software energy profile with very little dynamic overhead or
hardware cost.

For the iPAQ prototype, we have compared energy-driven statistical sampling to time-driven stat-

24

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

istical sampling by comparing the profiles generated by these approaches for 14 benchmarks pro-
grams. Our results show that there are often significant differences between the profiles generated
by energy- and time-driven statistical sampling when the workload cycles through multiple power
states. On simple handheld systems, such as current-generation iPAQ handhelds, many applications
may exercise only a single power state other than idle mode. In such cases, time profiling should suffi-
ciently approximate energy profiling for the purpose of assisting programmers. However, preliminary
investigations indicate that emerging functionality, like frequency and voltage scaling, will increase
the differences between time and energy profiles, and therefore the benefit of energy-driven statistical
sampling.

A Sources of Error

In this appendix, we discuss the sources of error in our energy-driving profiling approach. Broadly,
the sources of error can be classified into two categories: (i) energy measurement related, and (ii)
attribution and analysis related. The rest of this section discusses each of these in detail.

A.1 Measurement-related Errors

We begin our discussion of measurement-related errors with a discussion in Section A.1.1 of an error
relating to battery-terminal voltage variation, and follow with a discussion of other errors in Sec-
tion A.1.2.

A.1.1 Battery-terminal Voltage Variations

Energy-driven profiling operates on the assumption that each interrupt signifies that the iPAQ hand-
held has consumed a fixed amount of energy. Since our energy counter integrates only the current
being drawn by the iPAQ handheld, an equivalent assumption is that each interrupt signifies that a
fixed amount of charge has been consumed. For an iPAQ handheld, the degree to which this latter
assumption holds depends on the degree to which the battery-terminal voltage varies.

To examine this relationship, for a range of battery-terminal voltages, we measured the current
drawn by one of our prototypes as it ran two workloads, each of which consumed a (relatively) con-
stant amount of power. Figure 14 presents the results of these experiments. Observe that there is
an inverse relationship between supply current and power consumption – in particular, the current
increases by approximately 10%, while the power consumption decreases by approximately 3%, as
the battery-terminal voltage drops from 4.2 V to 3.8 V. We hypothesize that these relationships exists
because: (1) for a workload consuming constant power, as the battery-terminal voltage drops, the
current drawn must increase, and (2) as the battery-terminal voltage drops, an iPAQ handheld appears
to become more energy-efficient, and thus, the power consumption decreases.

The dependence on battery-terminal voltage can be ignored if (1) the battery-terminal voltage is
held (essentially) constant, and (2) if the user of the profiler is interested only in comparing the relative
energy cost of applications. If the first requirement is satisfied, then each interrupt will correspond
to a fixed amount of energy. If the second requirement is true, then the user may safely ignored the

25

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

70

71

72

73

74

75

76

77

3.70 3.80 3.90 4.00 4.10 4.20 4.30

battery voltage

m
A

290

291

292

293

294

295

296

297

298

299

m
W

current

power

(current * voltage)

(a) Backlight off

370

375

380

385

390

395

400

405

3.70 3.80 3.90 4.00 4.10 4.20 4.30

battery voltage

m
A

1510

1520

1530

1540

1550

1560

1570

m
W

current

power

(current * voltage)

(b) Backlight full on and WL100 802.11b card

Figure 14: Current draw and power consumption as a function of supply voltage for iPAQ prototype
#2 while the iPAQ was displaying the initial PocketPC “start” screen. (a) shows the relationship with
the backlight off, while (b) shows the relationship with the backlight on at its highest setting and the
WL100 802.11b card powered but with no driver loaded. Similar data was obtained with the other
prototype and other scenarios.

exact value of the battery-terminal voltage since he/she does not need to know the value of the energy
quanta. If, on the other hand, the user requires the value of the energy quanta, then an experiment,
such as described in the caption of Table 1, must be done at each battery voltage of interest.

For our prototype, which uses a bench power supply, the battery-terminal voltage is sufficiently
constant. The battery-terminal voltage is affected by two components: the regulation of the bench
supply and the voltage drop across the fuse and sense resistor (see Figure 3(a)). The second component
is the most significant since our bench supply is well-regulated. The impact of this component can be
estimated by computing the relative increase in the number of samples attributed to a workload that
occurs with decreasing battery voltage. This increase, S, is given by Equation 3, where P is the power
the workload consumes at the nominal operating point, �P is the change in power consumption due
to a decrease in battery voltage, while I and �I are the comparable quantities for current.

S = 100�

�
P ��P

P
�

I +�I

I
� 1

�
(3)

To quantify the increase in the number of samples due to decreasing battery voltage, we determ-
ined experimentally that the voltage drop across the fuse and sense resistor was at most 140 mV for a
workload with a power consumption similar to the one used for Figure 14(b). Linear interpolation of
the data shown in this figure gives �P = 14:04mW and �I = 9:8mA, and thus, from Equation 3,
we get S = 1.6%. This error is well within the margin of error of our approach.

If the iPAQ were powered by a battery rather than a bench supply, it may be important to explicitly
account for the current-power relationship. One possibility would be to characterize the current-power
relationship of the iPAQ, and then, using periodic sampling of the battery voltage, dynamically change

26

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

current-sense
amplifier

monostable
multivibrator

preloadable
count-down

counter
zero

Energy Counter iPAQ H36xx

processor
(SA 1110)

gpio

battery
terminals

Bench
Power Supply

i_s

i_m

Vs

C

Vb

Vx
new count

Figure 15: Block diagram showing in bold the components required to support software control of the
energy quanta value.

the amount of energy that must be consumed before an interrupt is generated. Figure 15 illustrates
how the basic energy-counter design can be modified to provide this functionality. As shown by the
use of bold in the figure, we replace the 12-bit binary counter with a preloadable count-down counter,
connect its zero-detect signal to one of the processor's GPIOs, and map the counter into the memory
space of the processor. The interrupt service routine used for profiling can then be modified so that,
on servicing each interrupt, it writes a new count into the counter. Since this count is decremented
each time the iPAQ consumes a minimum quanta of energy (see page 5), the software can change
the amount of energy associated with an interrupt (the energy quanta) in steps equal to the minimum
energy quanta.

A.1.2 Other Measurement-related Errors

A second measurement-related error is the inherent non-ideal characteristics of electrical compon-
ents. Of particular note is the time required for the multivibrator to discharge the capacitor, which
we determined empirically to be approximately 300 ns. For our benchmarks, the total time spent dur-
ing such discharges of the capacitor represents a very small fraction of each benchmark's run time.
The other component-related errors are also negligible due to careful selection of components and
operating ranges.

A third measurement-related error arises from the energy counter measuring the energy being
consumed by some of the components (monostable vibrator and the binary counter, Figure 1) of
which it is built. However, in practice, these components consume a negligible amount of energy
compared to that consumed by the iPAQ.

Finally, a fourth source of error is the degree to which the time-/energy-driven sampling software
perturbs the resulting energy profiles. An estimate of this error is the percentage of samples attributed
to executing the data-collection program. In our experiments, this percentage was 0.11% or less for
energy profiling, and 0.13% or less for time profiling. Although the interrupt service routine cannot
be profiled, we can measure the time spent in the routine. For time-driven sampling, the percentage
of the total run time spent in the interrupt service routine is an estimate of the error it induces in the
resulting time profiles. In our experiments, this percentage was 0.48% or less.

27

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

For energy-driven sampling, to estimate the error that the interrupt service routine induces in the
resulting energy profiles, we first estimate the number of samples that would have been attributed to
the routine, and then express this estimate as a percentage of the total number of samples. We estimate
the number of samples that would have been attributed to the interrupt service handling routine by
assuming that the average power consumption while executing the routine is approximately the same
as during the initial portion of the CPU-uncached benchmark (i.e. before the audio system was
powered down) since, as with the interrupt service routine, this benchmark is memory-intensive, does
not include any idling, and does not use any devices. (We use the average power consumption while
the audio system was powered because executing the interrupt service routine will not cause the audio
system to be powered down if it is already powered.) For the Download benchmark, we adjust
the assumed power consumption of the interrupt service routine by the increase in average power
consumption due to the wireless card (i.e. the difference between the average power consumption of
Idle and Idle-Conn). Using this process, we estimate that the percentage of samples that would
have been attributed to the interrupt sampling routine is 0.70% or less for all of our benchmarks. We
have not estimated the error induced by calls to the sampling device driver because, with only the
information currently recorded in each sample, the corresponding samples cannot be distinguished
from samples due to other work performed by the device manager. However, experiments on the Itsy
suggest that this error will also be very small.

A.2 Attribution Error

To accurately attribute a sample to an instruction, it is important to minimize the delay between the
following two events: the monostable multivibrator generating a pulse P that will cause bit q of the
binary counter to be asserted (see Section 3.1), and the interruption of the program in execution so
that the interrupt can be serviced. This delay is composed of the time required for the interrupt to be
conveyed to the processor core, and the time required for the processor to begin servicing the interrupt.
For our prototype, the first component is on the order of nano-seconds, and is thus a small fraction of
the time between interrupts, which is on the order of milliseconds. Given that the power consumed
during such small time intervals does not vary significantly, the first component's impact is a marginal
variation in the energy quanta.

Regarding the second component, deferred interrupt handling could incur delay in some specific
situations (because the processor is handling a higher priority interrupt, for example), but such situ-
ations occur infrequently. In addition, the iPAQ uses a StrongARM SA1110 processor. Based on our
analysis of the SA1100 processor, which we believe uses the same core as the SA1110, one char-
acteristic of this processor is that, before servicing a trap or exception, the processor first completes
execution of all instructions in the decode and later pipeline stages. Thus, when the energy-counter
interrupt is processed, the sample will be attributed to the instruction that was fetched after the instruc-
tion that was in execution at the time that the interrupt was delivered to the core. Detailed information
about instruction delays, pipeline scheduling rules and interrupt handling on the SA1110 processor
could be leveraged to adjust for this processor-induced skew in attribution.

A second source of error arises if phases of the application being profiled are synchronized ex-
actly with the discharging of the capacitor. While we believe that this source of error is not likely to
be exercised by applications, it may be guarded against by modifying the energy counter as suggested

28

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

in Section A.1.1 to allow the value of the binary counter to be written by software. With this modi-
fication, the energy quanta could be jittered by the interrupt service routine about some mean value.
Our time-driven sampler trivially supports the ability to jitter its sampling frequency; in particular,
during each interrupt, the time til the next sample was set to a random value within a small range such
that the sampling frequency varied between 283 and 310 Hz during our Record and Download
benchmarks, and between 328 and 367 Hz during all of the other benchmarks.

Finally, a third source of error concerns sensitivity to the sampling rate. The accuracy with which a
sample distribution reflects the true allocation of energy consumption for an application is proportional
to the square root of the number of samples [6]. However, larger number of samples can lead to greater
processing overhead and increased profiler intrusiveness. We performed sensitivity experiments in
which we lowered the energy quanta to as little as 92�J, thereby increasing the number of samples by
a factor of 32. We did not observe any significant difference in the procedure-level profiles.

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, D. Sites, M. Vandevoorde,
C. Waldspurger, and W. Weihl. Continuous profiling: where have all the cycles gone. In Pro-
ceedings of the 16th Symposium on Operating Systems Principles, October 1997.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power
analysis and optimizations. In Proceedings of the 27th International Symposium on Computer
Architecture (ISCA), June 2000.

[3] Fay Chang, Keith I. Farkas, and Parthasarathy Ranganathan. Energy-driven statistical sampling:
Detecting software hotspots. Technical Report WRL2002.1, Compaq Western Research Labor-
atory, March 2002. This report is a reprint of a paper by the same title that appeared in the
proceedings of the PACS 2002 workshop.

[4] T. L. Cignetti, K. Komarov, and C. Ellis. Energy estimation tools for the Palm. In Proceedings
of the ACM MSWiM'2000: Modeling, Analysis and Simulation of Wireless and Mobile Systems,
August 2000.

[5] Compaq. iPAQ H3000 series expansion pack developer guide, July 2000.

[6] J. Dean, J. E. Hicks, C. Waldspurger, B. Weihl, and George Chrysos. ProfileMe: Hardware
support for instruction-level profiling on out-of-order processors. In Proceedings of the 30th
Annual International Symposium on Microarchitecture, December 1997.

[7] X. Zhang et al. Operating system support for automated profiling and optimization. In Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles, October 1997.

[8] J. Flinn and M. Satyanarayanan. PowerScope: A tool for profiling the energy usage of mobile
applications. In Proceedings of the Workshop on Mobile Computing Systems and Applications
(WMCSA), pages 2–10, February 1999.

29

WRL TECHICAL NOTE TN-62 DETECTING ENERGY HOT SPOTS

[9] J. Lorch and A. J. Smith. Energy consumption of Apple Macintosh computers. IEEE Micro
Magazine, 18(6), November/December 1998.

[10] Amit Sinha and Anantha P. Chandrakasan. Jouletrack - a web based tool for software energy
profiling. In Design Automation Conference (DAC 2001), June 2001.

30

