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The original motivation for this note is the following problem: We would
like to compute “averages” or “centers of gravity” in the quotient space S3/H
where S3 denotes the 3-sphere (sitting in 4-space) and H is a certain subgroup
of S3 of size 48. So the points of the 3-sphere are being identified into cosets,
each of size 48. This note does not directly address that original problem.
Instead, it discusses the easier problem of computing averages either

• in Sn, the n-sphere itself, with no identification going on, or

• in the space Sn/{+1,−1}, the n-sphere in which each point is identified
with its antipode, forming a coset of size 2.

Those easier problems have fairly satisfactory solutions.

1 The n-sphere with no identification

If there is no identification going on, things are pretty easy. Suppose that we
are given a set of points on the n-sphere, each with an associated nonnegative
weight. We want to compute the average of those points.

We can think of each point as a unit vector in Euclidean (n + 1)-space.
We scale each vector by its associated weight, add the resulting vectors (as
vectors), and rescale the sum to have unit norm.

The only subtle point is that the sum might turn out to be the zero vector.
In that case, we have to return “undefined” as our average, since arbitrarily
small changes to the input points or their weights might cause the intended
average to assume any value on Sn.

Technically speaking, this need for an undefined result arises even when
averaging weighted points in an affine space: When all of the weights are
zero, we have no information about what point should be the average, so the
only reasonable answer is “undefined”. But undefinedness is a more severe
problem when averaging on spheres, since it can arise even when the input
includes points with positive weight.

1



2 The n-sphere with antipodes identified

Things get more subtle if we assume that antipodal points on the n-sphere
are to be treated as the same.

How might such a situation arise? Suppose that we are working in Eu-
clidean (n+1)-space. Someone gives us a set of undirected lines through the
origin, where each line has an associated nonnegative weight. We want to
compute the average of the given lines. Since the lines are undirected, each
line corresponds to a pair of antipodal points on the unit n-sphere; so our
goal becomes computing an average in the n-sphere with antipodal points
identified.

2.1 The case n = 1: Lines through a point in the plane

Let’s start with a simple case: a circle with opposite points identified. So
someone has given us a set of weighted, undirected lines through the origin
of a plane.

A simple way to average the lines would be to average their slopes; but
this is a lousy scheme. In part, it is lousy because “slope” gives the wrong
geometry. The difference in slope between two lines is not a good measure
of the distance between them; it inflates the difference between close-by lines
that happen to be nearly vertical. Thus, given a set of lines whose slopes are
clustered around some finite value, say +1, outliers that are closer to vertical
will exert too strong a pull on the average, while outliers that are closer to
horizontal will pull too weakly.

That problem is easy to fix; rather than measuring a line by computing
its slope, we instead compute its angle — say, the angle that the line makes
with the positive x-axis, where that angle is constrained to lie in the half-
open interval [0 . . 180). If we average these angles, rather than averaging
slopes, we will correctly capture the local geometry.

But averaging angles is still a poor scheme, since it doesn’t get the global
geometry correct; it gets confused when the circle “wraps around”. Consider
a set of lines, all of which are nearly horizontal. Some of the lines will have
angles near 0, while others will have angles near 180. When we average these
angles, we might end up with any angle in the interval [0 . .180) — bad news.

2.2 The 2-theta trick for n = 1

There is a special trick — the 2-theta trick — that solves the case n = 1
quite neatly. What makes the 2-theta trick work is a geometric coincidence:
The space that results when we identify antipodal points on a circle is again
a circle, just of half the length. That coincidence does not extend to higher
dimensions. For example, when n = 2, identifying antipodal points on a
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2-sphere results in a projective plane, which is quite different from a 2-sphere,
even topologically.

Here is how the 2-theta trick works. We replace each of our unoriented
input lines by one of the two unit vectors that lie along that line. It doesn’t
matter which we choose, because we next double the angle that each such
vector makes with the positive x-axis. That is to say, if we temporarily view
our plane as the complex plane, we replace the vector exp(iθ) with exp(2iθ).
The equation

exp(2i(θ + π)) = exp(2iθ + 2πi) = exp(2iθ)

shows that it doesn’t matter which vector we chose to represent each unori-
ented input line.

Now that the angles have been doubled, we can treat our vectors as points
on a vanilla circle — a circle with no identifications. That problem, we know
how to solve: We scale each vector by its weight, add the results as vectors,
and rescale their sum to have unit norm.

It remains only to undo the effect of the angle-doubling. We note that the
normalized sum will have the form exp(2iφ), for some angle φ in the interval
[0 . . 180), and that φ is the “average angle” that we output.

2.3 The moments-of-inertia trick for n = 2

Here is a different trick that handles the case n = 2, using ideas from physics.
Given an undirected line through the origin of 3-space with an associated

weight w, we fasten two point masses of weight w along that line, both at
unit distance from the origin, one on each side of the origin. We do this for
each input line, and we view the resulting assemblage of masses as a rigid
body. The center of gravity of that body will be at the origin, obviously. But
it will have various moments of inertia around various axes of rotation.

A basic result of physics tells us that there exists a unique ellipsoid of unit
density, centered at the origin, that has the same moments of inertia around
all axes as our assemblage of point masses. That ellipsoid has 3 orthogonal
axes, of various lengths. If the longest of those axes is unique, we take that
line to be our average. If two or more of the axes tie for being longest, we
must return “undefined”, since any line in the linear space spanned by the
tying axes has an equally valid claim to be the average.

2.4 The general case: Diagonalizing a quadratic form

We have seen tricks that handle the cases n = 1 and n = 2. Here is a
general technique, based on diagonalizing a quadratic form, that gets the
same answers as those tricks in the cases n = 1 and n = 2, but also extends
to arbitrary n.
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Working in (n + 1)-space, let v1 through vm be unit vectors in the di-
rections of the m input lines; as we shall see, it doesn’t matter whether we
choose vi or −vi as the direction vector for the ith line. Let the associated
weights be w1 through wm. The average line that we want, I claim, is the
line in the direction of that unit vector u that maximizes the sum

F (u) :=
∑

i

wi cos
2(angle between u and vi).

Note that the angle between u and −vi is supplementary to the angle between
u and vi, so the cosines of those angles will be negatives of each other, but the
squares of those cosines will be the same. Hence, it doesn’t matter whether
we chose vi or −vi as the direction of the ith line.

Since u and vi are both unit vectors, we can rewrite the sum as

F (u) =
∑

i

wi(u · vi)
2,

where the dot here indicates the dot product of vectors. This formula makes
sense for any vector u; in fact, it defines F to be a quadratic form — a linear
combination of squares of linear forms. Since the wi are nonnegative, the
quadratic form F is positive semidefinite, that is, satisfies F (u) ≥ 0 for all
vectors u.

Every quadratic form can be diagonalized. So there is some orthogonal
coordinate system for our (n + 1)-space in which F (u) takes the form

F (u) = a0u
2
0 + · · ·+ anu2

n,

where (u0, . . . , un) are the coordinates of the vector u. Since F is positive
semidefinite, the coefficients a0 through an are nonnegative, and we might as
well assume that they are sorted:

a0 ≥ a1 ≥ · · · ≥ an ≥ 0.

We are trying to maximize F (u), subject to u being of unit norm. The
vector (1, 0, 0, . . . , 0) pointing along the 0th coordinate axis clearly achieves
that maximum, and it is the unique maximal vector precisely when a0 > a1.
So we compute a coordinate system that diagonalizes F ; if the maximum
element on the diagonal is unique, we output the corresponding axis line as
our “average”, else we output “undefined”.

It remains to verify that this general technique gets the same answers as
our tricks above in the cases n = 1 and n = 2. Here are sketches of arguments
to that effect.

When n = 2, finding the longest axis of the unit-density ellipsoid corre-
sponds to finding the axis of rotation around which the moment of inertia
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of our rigid body is minimal. Minimizing the moment of inertia around the
axis through a vector u corresponds to minimizing the sum

∑

i

wi sin
2(angle between u and vi).

But sin2 +cos2 = 1, so minimizing this sum is the same as maximizing F (u).
When n = 1, the 2-theta trick ends up computing, as its average, the unit

vector u whose angle φ maximises

∑

i

wi cos(2θ − 2φ).

But cos(2x) = 2 cos2(x)−1; so maximizing this sum is the same as maximiz-
ing

F (u) =
∑

i

wi cos
2(θ − φ).

3 Cosets of size greater than 2

So we have a clear definition of what it means to average on an n-sphere and
an efficient algorithm for computing those averages in two situations:

• when no identifications are going on, or

• when each point is identified with its antipode.

Unfortunately, the original problem motivating this note involved identifying
points on S3 into cosets of size 48, rather than size 2. What can we say about
that?

Before we can talk meaningfully about identifying points more than an-
tipodally, we must restrict n to have one of the special values 1, 3, or 7.
The key thing about those values is that the spheres S1, S3, and S7 are
multiplicative groups:

• S1 is the group of unit-norm complex numbers,

• S3 is the group of unit-norm quaternions, and

• S7 is the group of unit-norm octonions (a.k.a. Cayley numbers).

(To complete this list, we should include S0 = {+1,−1}, the group of unit-
norm real numbers; but that case is not interesting here.)

The advantage of a group structure is that it gives us a coherent way to
identify points into cosets of sizes larger than 2. Given a finite subgroup G
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of Sn, say of size k, we can form the set of left (or right) cosets Sn/G. Those
cosets won’t themselves form a group unless G is normal. But we can still
construct the cosets and try to compute averages in the space Sn/G of all
cosets.

The case n = 1 is quite straightforward. For each positive integer k,
the group S1 of unit-norm complex numbers has a unique finite subgroup of
order k, and it is both normal and cyclic — call it Ck. If we want to compute
averages in the quotient group S1/Ck, we can simply use the “k-theta trick”,
multiplying angles by k in the same way that the 2-theta trick multiplies
them by 2. This exploits the coincidence that the group S1/Ck is isomorphic
to the group S1; both groups are simply circles.

The case n = 3 is more subtle. We know how to compute averages in S3

itself and in the quotient S3/{+1,−1}. That quotient is a group, by the way,
since the subgroup {+1,−1} is normal; in fact, the quotient S3/{+1,−1}
is better known as SO(3). But what about modding out by some larger
subgroup G — which won’t be normal?

3.1 General comments on S3/G, where |G| > 2

By analogy with the quadratic-form-based method above, it is tempting to
define the “average” in a quotient S3/G as the unit vector u that maximizes
some sum of the form

F (u) :=
∑

i

wi rG(u, vi),

where rG is some real-valued function that measures how well correlated the
two points u and vi in S3 are, modulo the subgroup G. Exploiting the group
structure on S3, we surely want the value of rG(x, y) to depend only upon the
“difference” between x and y, which is either x−1y or yx−1, depending upon
whether we are using left or right cosets. Thus, our hoped-for sum takes the
form, say,

F (u) :=
∑

i

wi rG(u
−1vi),

where rG : S3 → [0 . . 1] is some function that

• has a local maximum of 1 at each element of G, and

• takes the value 0 at all points that lie midway between two (or more)
elements of G.

When G is a cyclic subgroup of order k, Li Zhang and I think that we see
how to construct a reasonable function rG; indeed, our function seems closely
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related to cos(kθ). On the other hand, it may be numerically a bit tricky to
compute the vector that maximizes the resulting sum, since our function rG

is algebraic of degree k. But no more details about that here.
When the group G is not cyclic, things are much worse; indeed, I am

afraid that this entire approach seems doomed. Consider, for example, the
group

Q := {1,−1, i,−i, j,−j, k,−k}

of quaternions units, which has order 8. If we grow these eight points on S3

into Voronoi cells, the resulting cells are elliptic analogs of cubes, and they
fit together like the eight cubical faces of a tesseract. A cube in Euclidean
3-space has dihedral angles of 90 degrees, of course. These elliptic cubes are
so large that their dihedral angles are 120 degrees — which means that three
of them fit together as we go around an edge.

But that means real trouble: Each of the three planar faces incident to
such an edge is a boundary between two Voronoi cells; so, in the methodology
above, the function rQ should be identically zero along that planar face. But
surely we want the function rQ to be real analytic. If it is real analytic and
zero along that face, it must be zero on the entire plane through that face —
which means that it must be zero at the center of the third Voronoi cell. But
we want rQ to be 1 at the center of each Voronoi cell — a dilemma! Perhaps
we have to resort to defining rQ piecewise? That seems unsatisfactory; but
further analysis must be relegated to future work.

7


