SRC Technical Note
2001-003
November 19, 2001

Thread-Modular Verification For

Shared-Memory Programs

Cormac Flanagan Stephen N. Freund Shaz Qadeer

COMPAQ

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.compaq.com/SRC/

Copyright ©Compaq Computer Corporation 2001. All rights reserved

Abstract

Ensuring the reliability of multithreaded software systems is difficult due to the interaction
between threads. This paper describes the design and implementation of a static checker for
such systems. To avoid considering all possible thread interleavings, the checker uses assume-
guarantee reasoning, and relies on the programmer to specify an environment assumption that
constrains the interaction between threads. Using this environment assumption, the checker
reduces the verification of the original multithreaded program to the verification of several se-
quential programs, one for each thread. These sequential programs are subsequently analyzed
using extended static checking techniques (based on verification conditions and automatic the-
orem proving). Experience indicates that the checker is capable of handling a range of synchro-
nization disciplines. In addition, the required environment assumptions are simple and intuitive
for common synchronization idioms.

1 Introduction

Ensuring the reliability of critical software systems is an important but extremely difficult task. A
number of useful tools and techniques have been developed for reasoning about sequential systems.
Unfortunately, these sequential analysis tools are not applicable to many critical software systems
because such systems are often multithreaded. The presence of multiple threads significantly com-
plicates the analysis because of the potential for interference between threads; each atomic step of
a thread can influence the subsequent behavior of other threads.

For multithreaded programs, more complex analysis techniques are necessary. The classical
assertional approach [Ash75, OG76, Lam77, Lam88] requires control predicates at each program
point to specify the reachable program states, but the annotation burden for using this approach
is high. Some promising tools [CDH"00, Yah01] use model checking and abstract interpretation to
infer the reachable state set automatically, but the need to consider all possible thread interleavings
may hinder scaling these tools to large programs.

A more modular and scalable approach is assume-guarantee reasoning, in which each compo-
nent is verified separately using a specification of the other components [MC81, Jon83a]. Several
researchers have presented assume-guarantee proof rules (see Section 2), and some verification tools
that support assume-guarantee reasoning on hardware have recently appeared [McM97, AHMT98].
However, tools for assume-guarantee reasoning on realistic software systems do not exist.

In this paper, we describe the design and implementation of a static checker for multithreaded
programs, based on an assume-guarantee decomposition. This checker is targeted to the verification
of actual implementations of software systems, as opposed to logical models or abstractions of
these systems. The checker relies on the programmer to specify, for each thread, an environment
assumption that models the interference caused by other threads. This environment assumption is
an action, or two-store relation, that constrains the updates to the shared store by interleaved atomic
steps of other threads. The atomic steps of each thread are also required to satisfy a corresponding
guarantee condition that implies the assumption of every other thread.

Using these assumptions and guarantees, our checker translates each thread into a sequential
program that models the behavior of that thread precisely and uses the environment assumption
to model the behavior of other threads. Thus, our assume-guarantee decomposition reduces the
verification of a program with n threads to the verification of n sequential programs. This thread-
modular decomposition allows our tool to leverage extended static checking techniques [DLNS98]
(based on verification conditions and automatic theorem proving) to check the resulting sequential
programs.

We have implemented our checker for multithreaded programs written in the Java programming
language [AG96], and we have successfully applied this checker to a number of programs. These
programs use a variety of synchronization mechanisms, ranging from simple mutual exclusion locks
to more complex idioms found in systems code, including a subtle synchronization idiom used in the
distributed file system Frangipani [TML97].

Experience with this implementation indicates that our analysis has the following useful features:

1. It naturally scales to programs with many threads since each thread is analyzed separately.

2. For programs using common synchronization idioms, such as mutexes or reader-writer locks,
the necessary annotations are simple and intuitive.

3. Control predicates can be expressed in our analysis by explicating the program counter of each
thread as an auxiliary variable. Therefore, theoretically our method is as expressive as the
Owicki-Gries method. However, for many common cases, such as those appearing in Section 6,
our method requires significantly fewer annotations.

The remainder of the paper proceeds as follows. The following section describes related work on
assume-guarantee reasoning and other tools for detecting synchronization errors. Section 3 intro-
duces Plato, an idealized language for parallel programs that we use as the basis for our development.
Section 4 provides a formal definition of thread-modular verification. Section 5 applies thread-
modular reasoning to the problem of invariant verification. Section 6 describes our implementation
and its application to a number of example programs. We conclude in Section 7.

2 Background

One of the earliest assume-guarantee proof rules was developed by Misra and Chandy [MC81] for
message-passing systems, and later refined by others (see, for example, [Jon89, MM93]). However,
their message-passing formulation is not directly applicable to shared-memory software.

Jones [Jon83a, Jon83b] gave a proof rule for multithreaded shared-memory programs and used
it to manually refine an assume-guarantee specification down to a program. We extend his work
to allow the proof obligations for each thread to be checked mechanically by an automatic theorem
prover. Stark [Sta85] also presented a rule for shared-memory programs to deduce that a conjunction
of assume-guarantee specifications hold on a system provided each specification holds individually,
but his work did not allow the decomposition of the implementation.

Abadi and Lamport [AL95] view the composition of components as a conjunction of temporal
logic formulas [Lam94] describing them, and they present a rule to decompose such systems. Since
threads modifying shared variables cannot be viewed as components in their framework, their work
is not directly applicable to our problem. Collette and Knapp [CK95] extended the rule of Abadi
and Lamport to the more operational setting of Unity [CM88] specifications.

Alur and Henzinger [AH96] and McMillan [McM97] present assume-guarantee proof rules for
hardware components. A number of other compositional proof rules not based on assume-guarantee
reasoning have also been proposed, such as [BKP84, CM88, MP95].

Yahav [YahOl] describes a method to model check multithreaded programs using a 3-valued
logic [SRW99, LAS00] to abstract the store. This technique can verify interesting properties of
small programs. Pasireanu et al. [PDH99] also describe a model checking tool for compositional
checking of finite-state message-passing systems. Abraham-Mumm and deBoer [AMdBO0O] sketch
a logic for verifying multi-threaded Java programs indirectly via a translation to communicating
sequential programs.

A number of tools have been developed for identifying specific synchronization errors in mul-
tithreaded programs. These approaches are less general than thread-modular verification and use
specific analysis techniques to locate specific errors, such as data races and deadlocks. For exam-
ple, RCC/Java [FF00] is an annotation-based checker for Java that uses a type system to identify
data races [FA99]. While this tool is successful at finding errors in large programs, the inability
to specify subtle synchronization patterns results in many false alarms [FF01]. ESC/Java [LSS99],
Warlock [Ste93], and the dynamic testing tool Eraser [SBN197] are other tools in this category, and
are discussed in an earlier paper [FF00].

3 The Parallel Language Plato

We present thread-modular verification in terms of the idealized language Plato (parallel language of
atomic operations). A Plato program P is a parallel composition S; | --- | S, of several statements,
or threads. The program executes by interleaving atomic steps of its various threads. The threads
interact through a shared store o, which maps program variables to values. The sets of variables
and values are left intentionally unspecified, as they are mostly orthogonal to our development.

Statements in the Plato language include the empty statement skip, sequential composition
S1; S2, the nondeterministic choice construct S;0S55, which executes either S; or Sz, and the iteration
statement S™*, which executes S some arbitrary number of times.

Plato syntax
I

1
Program == Si| -+ | Sn

S € Stmt == skip no operation P €
| X |Y atomic operation o € Store = Var — Value
| sos nondeterministic choice X,Y € Action C Store x Store
| S8 composition
| S* nondeterministic iteration

Perhaps the most notable aspect of Plato is that it does not contain constructs for conventional
primitive operations such as assignment and lock acquire and release operations. Instead, such
primitive operations are combined into a general mechanism called an atomic operation X | Y,
where X and Y are actions, or two-store predicates. The action X is a constraint on the transition
from the pre-store o to the post-store ¢/, and Y is an assertion about this transition.

To execute the atomic operation X | Y, an arbitrary post-store ¢’ is chosen that satisfies the
constraint X (o, 0’). There are two possible outcomes:

1. If the assertion Y (o, ¢”) holds, then the atomic operation terminates normally, and the execu-
tion of the program continues with the new store o’.

2. If the assertion Y (o, ¢’) does not hold, then the execution goes wrong.

If no post-store ¢’ satisfies the constraint X (o, c’), then the thread is blocked, and the execution
can proceed only on the other threads.

In an atomic operation, we write each action as a formula in which primed variables refer to their
value in the post-store o/, and unprimed variables refer to their value in the pre-store . In addition,
for any action X and set of variables V' C Var, we use the notation (X)y to mean the action that
satisfies X and only allows changes to variables in V' between the pre-store and the post-store. ~We
abbreviate the common case (X)y to (X) and also abbreviate (X),} to (X)a.

Atomic operations can express many conventional primitives, such as assignment, assert, and
assume statements (see below). Atomic operations can also express other primitives, in particular

lock acquire and release operations. We assume that each lock is represented by a variable and that
each thread has a unique nonzero thread identifier. If a thread holds a lock, then the lock variable
contains the corresponding thread identifier; if the lock is not held, then the variable contains zero.
Under this representation, acquire and release operations for lock mx and thread i are shown below.
Finally, Plato can also express traditional control constructs, such as if and while statements.

Expressing conventional constructs in Plato
I

def

x = e (x' = e)x | true acq(mx)
assert ¢ ¥ (true) | e rel (mx)
assume ¢ = (e) | true if (e) { S}

while (e) { S}

mx = 0 Amx’ = i)px | true
i)

assume e; S)O(assume —e)

mx = O)pmx | (mx =

=9
<)
e,
~ o~~~

assume e; S)*; (assume —e)

3.1 Formal Semantics

The execution of a program is defined as an interleaving of the executions of its individual, sequential
threads. A sequential state ® is either a pair of a store and a statement, or the special state wrong
(indicating that the execution went wrong by failing an assertion). The semantics of individual
threads is defined via the transition relation ® —, ®, defined in the figure below.

A parallel state © is either a pair of a store and a program (representing the threads being
executed), or the special state wrong. The transition relation © —, © on parallel states executes
a single sequential step of an arbitrarily chosen thread. If that sequential step terminates normally,
then execution continues with the resulting post-state. If the sequential step goes wrong, then so

does the entire execution.

Formal semantics of Plato

® € SeqState == (0,S) | wrong

[ACTION OK]
X(o,0') Y(o,0")

[ACTION WRONG]
X(o,0")

© € ParState =

_‘Y(U7 O'/)

(o, P) | wrong

[CHOICE]
ie{1,2}

(0,X 1Y) —s (o', skip)

[LOOP DONE] [LOOP UNROLL)]

(0,5%) —s (0,skip) (0,5%) =5 (0,5;5")

[SEQ STEP]
(07 Sl) s (Ul7 Si)

[SEQ SKIP]

(6,X | Y) -5 wrong

(Uv SIDSQ) s (Uv SZ)

[assOC]

(0,(51;52); S3) =5 (0, 51;(52;53))

[SEQ WRONG]
(0,51) —s wrong

(0,51;52) —s (U/, ST S2)

(o,skip; S) —s (0, 5)

(0,51;52) —s wrong

(0,5;) —s wrong

[Si| -+ | Su) —p, wrong

[PARALLEL] [PARALLEL WRONG]
(07 Sl) s (0/751{)
(0,51] - [Si] -~ | Sn) (0, 51 |
—p (0S| - [S| [Sa)

4 Thread-Modular Verification

We reason about a parallel program P = Sy | --- | S, by reasoning about each thread in P separately.
For each thread i, we specify two actions — an environment assumption A; and a guarantee G;. The
assumption of a thread is a specification of what transitions may be performed by other threads in
the program. The guarantee of a thread is required to hold on every action performed by the thread
itself. To ensure the correctness of the assumptions, we require that the guarantee of each thread
be stronger than the assumption of every other thread. In addition, to accommodate effect-free
transitions, we require each assumption and guarantee to be reflexive. The precise statement of
these requirements is as follows:

1. A; and G; are reflexive for all 7 € 1..n.
2. G; C A for all i,j € 1..n such that i # j.

If these requirements are satisfied, then (A1, G1), ..., (A,, Gy) is an assume-guarantee decomposition
for P.

We next define the translation [S]4 of a statement S with respect to an assumption A and a
guarantee GG. This translation verifies that each atomic operation of S satisfies the guarantee G. In
addition, the translation inserts the iterated environment assumption A* as appropriate to model
atomic steps of other threads.

[e]s : Stmt x Action x Action — Stmt

[skip]d = A

[X[Y]4 = 4%X | (Y AG)A

[S1052]¢ A% ([5118818218)

[S1;8]4 = [Si]4;[S2]4
[S]a = A5 (([S14; A*)5 A7)

*

We use this translation and the assume-guarantee decomposition to abstract each thread i of the
parallel program P into the sequential program [[Si]]éj, called the i-abstraction of P. For any thread
1, if A; models the environment of thread 7 and the sequential i-abstraction of P does not go wrong,
then we conclude that the corresponding thread S; in P does not go wrong and also satisfies the
guarantee G;. Thus, if none of the i-abstractions go wrong, then none of the threads in P go wrong.
This property is formalized by the following theorem; its correctness proof avoids circular reasoning
by using induction over time. (An extended report containing the proof of theorems in this paper
is in available at http://www.research.compaq.com/SRC/personal/freund/tmv-draft.ps.)

Theorem 1 (Thread-Modular Verification) Let P = Sy | --- | Sy, be a parallel program with
assume-guarantee decomposition (A1, G1),...,{An,Gy). Forallo € Store, ifVi € 1..n. (o, [[Sz]]é) T
wrong, then (o, P) /-, wrong.

This theorem allows us to decompose the analysis of a parallel program Sy | - -+ | .S, into analyses
of individual threads by providing an assume-guarantee decomposition (41, G1),...,(A,,Gy). In
practice, we only require the programmer to specify reflexive assumptions A1, ..., A,, and we derive

the corresponding reflexive guarantees by

G = (Vjelmj#i=A)).

For all examples we have considered, the natural assumptions are transitive in addition to being
reflexive. This allows us to optimize the iterations A} in each i-abstraction to simply the action A;.
In addition, the n environment assumptions Aq, ..., A, for a program with n threads can typically
be conveniently expressed as a single action parameterized by thread identifier, as shown below.

4.1 Example

To illustrate Theorem 1, consider the following program SimpleLock. The program manipulates two
shared variables, an integer x and a lock mx. To synchronize accesses to x, each thread acquires the
lock mx before manipulating x. The correctness condition we would like to verify is that Thread;
never goes wrong by failing the assertion x > 1.

SimpleLock program, desugared Thread;, and [[Threadl]]é1
I

Thread; : Threads: Desugared Thread; : [[Threadl]]gi

acq(mx); acq(mx); (mx = 0 Amx’ = 1)mx; Ar;(mx = 0Amx’ =)nx | G1;

X :=x *x; X :=0; (x' =% * %X)x; A (x =x * x)x | Gi;

X :=x +2; rel(mx); (x' =x + 2)x; A (x' =x + 2)x | Gi;

assert x > 1; (true) | (x > 1); A (true) | (x > 1AG1);

rel (mx); (mx’ = Oz | (mx =1); | A1;{(mx’ = Omx | (mx = 1 AGy);
Ax

The synchronization discipline in this program is that if a thread holds the lock mx, then the
other thread cannot modify either the variable x or the lock variable mx. This discipline is formalized
by the following environment assumption for thread identifier ¢ € 1..2:

A = (mx=i=mx'=iAx =x)

The corresponding guarantees are G; = Ay and Gy = A;. Since A; is reflexive and transitive, we
can optimize both A} and Aj; A} to A; in the 1-abstraction of SimpleLock, shown above.

Verifying the two i-abstractions of SimpleLock is straightforward, using existing analysis tech-
niques for sequential programs. In particular, our checker uses extended static checking to verify
that the two sequential i-abstractions of SimpleLock do not go wrong. Thus, the hypotheses of
Theorem 1 are satisfied, and we conclude that the parallel program SimpleLock does not fail its
assertion.

5 Invariant Verification

In the previous section, we showed that the SimpleLock program does not fail its assertion. In many
cases, we would also like to show that a program preserves certain data invariants. This section
extends thread-modular verification to check data invariants on a parallel program P = Sy | ... | S,,.
We use Init C Store to describe the possible initial states of P, and we say that a set of states I is
an invariant of P with respect to Init if for each o € Init, if (o, P) — (o', P'), then o’ € I.

To show that I is an invariant of P, it suffices to show that I holds initially (i.e., Init C I),
and that I is preserved by each transition of P. We prove the latter property using thread-modular
verification, where the guarantee G; of each thread satisfies the property

G; = (Iﬁ]l).

In this formula, the predicate I denotes the action where I holds in the pre-state, and the post-state
is unconstrained; similarly, I’ denotes the action where the pre-state is unconstrained, and I holds
in the post-state. Thus, I = I’ is the action stating that I is preserved.

The following theorem formalizes the application of thread-modular reasoning to invariant veri-
fication.

Theorem 2 (Invariant Verification) Let P = S1 | --- | S, be a parallel program with assume-
guarantee decomposition (A1,G1),...,{A,, Gy), and let Init and I be sets of stores. Suppose:

1. It C 1T

2.VielnGi=I=1T)

3. Vi€ 1l.n. VYo € Init. (o, [[Sz]]é) 4% wrong
Then I is an invariant of P with respect to Init.

In practice, we apply this theorem by requiring the programmer to supply the invariant I and the
parameterized environment assumption A;. We derive the corresponding parameterized guarantee:

G = (Vjelmj#i=A)NI=1T)

The guarantee states that each atomic step of a thread satisfies the assumptions of the other threads
and also preserves the invariant. Since each step preserves the invariant, we can strengthen the
environment assumption to:

B, = Ai/\(I:>I,)

The resulting assume-guarantee decomposition (B1, G1), . .., (Bn, Gn) is then used in the application
of Theorem 2. The first condition of that theorem, that Init C I, can be checked using a theorem
prover [Nel81]. The second condition, that Vi € 1.n. G; = (I = I'), follows directly from the
definition of G;. The final condition (similar to the condition of Theorem 1), that each sequential
i-abstraction [[Sz]]g does not go wrong from any initial store in Init, can be verified using extended
static checking. The following section describes our implementation of a checker for parallel programs
that supports thread modular and invariant verification.

6 Implementation and Applications

We have implemented an automatic checker for parallel, shared-memory programs. This checker
takes as input a Java program, together with annotations describing appropriate environment as-
sumptions, invariants, and asserted correctness properties. The input program is first translated
into an intermediate representation language similar to Plato, and then the techniques of this paper
are applied to generate an i-abstraction, which is parameterized by the thread identifier . The
checker optimizes this i-abstraction using a number of techniques. In particular, the checker uses an
automatic theorem prover to verify that the environment assumption A; is reflexive and transitive
and then optimizes each iterated environment assumption A} to A;.

Once optimized, the i-abstraction is then converted into a verification condition [Dij75, FSO01].
When generating this verification condition, procedure calls are handled by inlining, and loops
are translated either using a programmer-supplied loop invariant, or in an unsound, but useful,
manner by unrolling loops some finite number of times [LSS99]. The automatic theorem prover
Simplify [Nel81], is invoked to check the validity of this verification condition.

If the verification condition is valid, then the parameterized i-abstraction does not go wrong,
and hence the original Java program preserves the stated invariants and assertions. Alternatively,
if the verification condition is invalid, then the theorem prover generates a counterexample, which
is then post-processed into an appropriate error message in terms of the original Java program.
Typically, the error message either identifies an atomic step that may violate one of the stated
invariants or environment assumptions, or identifies an assertion that may go wrong. This assertion
may either be explicit, as in the example programs, or may be an implicit assertion, for example,
that a dereferenced pointer is never null.

The implementation of our checker leverages extensively off the Extended Static Checker for
Java, which is a powerful checking tool for sequential Java programs. For more information regarding
ESC/Java, we refer the interested reader to related documents [DLNS98, LSS99, Ext01].

In the next three subsections, we describe the application of our checker to parallel programs using
various kinds of synchronization. Due to space restrictions, these examples are necessarily small, but
our checker has also been applied to significantly larger programs. In each of the presented examples,
we state the necessary annotations: the assumptions A; for each thread i and the invariant I to be
proved. Given these annotations, our checker can automatically verify each of the example programs.
For consistency with our earlier development, these programs are presented using Plato syntax.

6.1 Dekker’s Mutual Exclusion Algorithm

Our first example is Dekker’s algorithm, a classic algorithm for mutual exclusion that uses subtle
synchronization.

Dekker’s mutual exclusion algorithm
I 1

Variables: Thread; : Threads:

boolean aj; while (true) { while (true) {

boolean as; a; := true; as := true;

boolean csi; cs) := —ag; csS2 := —ajp;

boolean cso; if (es1) { if (cs2) {

// critical section // critical section

Initially: csy := false; csy := false;

—cs; A —csa } }

a; := false; aps := false;
} }

The algorithm uses two boolean variables a; and as. We introduce two variables cs; and css,
where cs; is true if thread i is in its critical section. Each Thread; expects that the other thread
will not modify a; and cs;. We formalize this expectation as the assumption:

A; = (a;=ajAcs; =cs))

We would like to verify that the algorithm achieves mutual exclusion, which is expressed as the
invariant —(cs; A csg). Unfortunately, this invariant cannot be verified directly. The final step is to
strengthen the invariant to

I = =(csiAcs2)A(csy = ap)A(csg = ag).

Using the assumptions A; and A, and the strengthened invariant I, our checker verifies that Dekker’s
algorithm achieves mutual exclusion.

In this example, the environment assumptions are quite simple. The subtlety of the algorithm is
reflected in the invariant which had to be strengthened by two conjuncts. In general, the complexity
of the assertions needed by our checker reflects the complexity of the synchronization patterns used
in program being checked.

6.2 Reader-Writer Locks

The next example applies thread-modular reasoning to a reader-writer lock, which can be held in
two different modes, read mode and write mode. Read mode is non-exclusive, and multiple threads
may hold the lock in that mode. On the other hand, holding the lock in write mode means that no
other threads hold the lock in either mode. Acquire operations block when these guarantees cannot
be satisfied.

We implement a reader-writer lock using two variables: an integer w, which identifies the thread
holding the lock in write mode (or 0 if no such thread exists), and an integer set r, which contains
the identifiers of all threads holding the lock in read mode. The following atomic operations express
acquire and release in read and write mode for thread i:

acqurite(w,r) = (w=0AT =0 AW =i)
acq-read(w,r) def w=0AT =1rU {i})
rel write(w,r) def (w = 0)y | (w=1)

rel read(w,r) = (' =r\{i}):](i€T)

For a thread to acquire the lock in write mode, there must be no writer and no readers. Similarly,
to acquire the lock in read mode, there must be no writer, but there may be other readers, and the
result of the acquire operation is to put the thread identifier into the set r. The release operations
are straightforward. All of these lock operations respect the following data invariant RWI and the
environment assumption RWA;:

RWI = (r=0Vw=0)
RWA;, = (w=1i

We illustrate the analysis of reader-writer locks by verifying the following program, in which the
variable x is guarded by the reader-writer lock. Thread, asserts that the value of x is stable while
the lock is held in read mode, even though Thread; mutates x while the lock is held in write mode.

Reader-writer lock example
I 1

Variables: Thread; : Threads :
int w, x, y; acqwrite(w, r); acq.-read(w, r);
int_set r; x := 3; y = X;
rel_write(w, 1); assert y = x;
Initially: rel_read(w, 1);

w=0AT=0;

The appropriate environment assumption for this program

A; = RWAi/\(iEIZ>X=x/)/\(i=2:>y=y/)

states that (1) each thread ¢ can assume the reader-writer assumption RWA;, (2) if thread ¢ holds the
lock in read mode, then x cannot be changed by another thread, and (3) the variable y is modified
only by Threads. This environment assumption, together with the data invariant RWI, is sufficient
to verify this program using our checker.

Although the reader-writer lock is more complex than the mutual-exclusion lock described earlier,
the additional complexity of the reader-writer lock is localized to the annotations RWA; and RWI
that specify the lock implementation. Given these annotations, it is encouraging to note that the
additional annotations required to verify reader-writer lock clients are still straightforward.

6.3 Time-Varying Mutex Synchronization

We now present a more complex example to show the power of our checker. The example is derived
from a synchronization idiom found in the Frangipani file system [TML97].

For each file, Frangipani keeps a data structure called an inode that contains pointers to disk
blocks that hold the file data. Each block has a busy bit indicating whether the block has been
allocated to an inode. Since the file system is multithreaded, these data structures are guarded by
mutexes. In particular, distinct mutexes protect each inode and each busy bit. However, the mutex
protecting a disk block depends on the block’s allocation status. If a block is unallocated (its busy
bit is false), the mutex for its busy bit protects it. If the block is allocated (its busy bit is true),
the mutex for the owning inode protects it. The following figure shows a highly simplified version
of this situation.

Time-varying mutex program
I

Variables: Thread; : Threads :
int block; acq(m_inode) ; acq(m_busy) ;
boolean busy; if (—inode) { if (—busy) {
boolean inode; acq(m_busy) ; block := 0;
int m_inode; busy := true; assert block = 0;
int m_busy; rel(m_busy); }
inode := true; rel(m_busy);
Initially: }
inode = busy block := 1;

assert block = 1;

rel(m_inode);
L

The program contains a single disk block, represented by the integer variable block, and uses a
single bit busy to store the block’s allocation status. There is a single inode whose contents have
been abstracted to a bit indicating whether the inode has allocated the block. The two mutexes
m_inode and m_busy protect the variables inode and busy, respectively.

The program contains two threads. Thread; acquires the mutex m_inode, allocates the block if
it is not allocated already, and sets block to 1. Since Thread; is holding the lock on the inode that
has allocated the block, the thread has exclusive access to the block contents. Thus, the subsequent
assertion that the block value remains 1 should never fail.

Thread, acquires the mutex m_busy. If busy is false, the thread sets block to 0 and asserts that
the value of block is 0. Since Threads holds the lock on busy when the block is unallocated, the
thread should have exclusive access to block, and the assertion should never fail.

We now describe annotations necessary to prove that the assertions always hold. First, the lock

10

m_inode protects inode, and the lock m_busy protects busy:

Ji = (m_inode =i = (m_inode’ =i A inode’ = inode)) A
(m_busy = i = (m-busy’ =i A busy’ = busy))

In addition, if busy is true, then block is protected by m_inode; otherwise, block is protected by
m_busy:
K; = (busyAm_inode =i = block =block’) A
(—busy A m_busy = i = block = block’)

Finally, the busy bit must be set when the inode has allocated the block. Moreover, the busy bit
can be reset only by the thread that holds the lock on the inode. We formalize these requirements
as the invariant I and the assumption L; respectively.

I
L;

0 A inode) = busy
i A busy) = busy’

(m-inode
(m-inode

With these definitions, the complete environment assumption for each thread i is:
A, = LANKANL;

Given A; and I, our checker is able to verify that the assertions in this program never fail.

This example illustrates the expressiveness of our checker. By comparison, previous tools for
detecting synchronization errors [Ste93, SBNT97, FF00] have been mostly limited to finding races
in programs that only use simple mutexes (and, in some cases, reader-writer locks). However,
operating systems and other large-scale systems tend to use a variety of additional synchronization
mechanisms, some of which we have described in the last few sections. Other synchronization idioms
include binary and counting semaphores, producer-consumer synchronization, fork-join parallelism,
and wait-free non-blocking algorithms. Our experience to date indicates that our checker has the
potential to handle many of these synchronization disciplines.

7 Conclusions

The ability to reason about the correctness of large, multithreaded programs is essential to ensure
the reliability of such systems. One natural strategy for decomposing such verification problems is
procedure-modular verification, which has enjoyed widespread use in a variety of program analysis
techniques for many years. Instead of reasoning about a call-site by inlining the corresponding pro-
cedure body, procedure-modular verification uses some specification of that procedure, for example,
a type signature or a precondition/postcondition pair.

A second, complementary decomposition strategy is assume-guarantee decomposition [Jon83a],
which avoids the need to consider all possible interleavings of the various threads explicitly. Instead,
each thread is analyzed separately, with an environment assumption providing a specification of the
behavior of the other program threads.

This paper presents an automatic checker for multithreaded programs, based on an assume-
guarantee decomposition. The checker relies on the programmer to provide annotations describing
the environment assumption of each thread. A potential concern with any annotation-based analysis
technique is the overhead of providing such annotations. Our experience applying our checker to
a number of example programs indicates that this annotation overhead is moderate. In particular,
for many common synchronization idioms, the necessary environment assumptions are simple and

11

intuitive. The environment assumption may also function as useful documentation for multithreaded
programs, providing benefits similar to (formal or informal) procedure specifications.

We believe that verification of large, multithreaded programs requires the combination of both
thread-modular and procedure-modular reasoning. However, specifying a procedure in a multi-
threaded program is not straightforward. In particular, because other threads can observe interme-
diate states of the procedure’s computation, a procedure cannot be considered to execute atomically
and cannot be specified as a simple precondition/postcondition pair. Combining thread-modular
and procedure-modular reasoning appropriately is an important area for future work. We hope that
this paper provides a suitable foundation for further development in this area.

References

[AG96]

[AH6]

[AHM* 98]

[ALO5]

[AMdBOO]

[AshT75]

[BKP84]

[CDH00]

[CK95]

[CMsS]

Ken Arnold and James Gosling. The Java Programming Language. Addison-Wesley,
1996.

R. Alur and T.A. Henzinger. Reactive modules. In Proceedings of the 11th Annual Sym-
posium on Logic in Computer Science, pages 207-218. IEEE Computer Society Press,
1996.

R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran.
MocHA: Modularity in model checking. In A. Hu and M. Vardi, editors, CAV 98:
Computer Aided Verification, Lecture Notes in Computer Science 1427, pages 521-525.
Springer-Verlag, 1998.

M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems, 17(3):507-534, 1995.

E. Abrdham Mumm and F. S. de Boer. Proof-outlines for threads in java. In CONCUR
2000: Theories of Concurrency, Lecture Notes in Computer Science 1877. Springer-
Verlag, 2000.

E.A. Ashcroft. Proving assertions about parallel programs. Journal of Computer and
System Sciences, 10:110-135, January 1975.

H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose temporal-logic specifi-
cations. In Proceedings of the 16th Annual Symposium on Theory of Computing, pages
51-63. ACM Press, 1984.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from
java source code. In International Conference on Software Engineering, pages 439448,
2000.

P. Collette and E. Knapp. Logical foundations for compositional verification and de-
velopment of concurrent programs in Unity. In Algebraic Methodology and Software
Technology, Lecture Notes in Computer Science 936, pages 353-367. Springer-Verlag,
1995.

K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley
Publishing Company, 1988.

12

[Dij75]

[DLNS98]

[Ext01]

[FA9Y]

[FF00)

[FFO1]

[FS01]

[Jon83a]

[Jon83b)

[Jon89]

[Lam77]

[Lamsg]

[Lam94]

[LASO0]

[LSS99]

E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of programs.
Communications of the ACM, 18(8):453-457, 1975.

D. L. Detlefs, K. R. M. Leino, C. G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, December 1998.

Extended Static Checking web page, Compaq Systems Research Center.
http://www.research.compaq.com/SRC/esc/, July 2001.

C. Flanagan and M. Abadi. Types for safe locking. In Proceedings of European Sympo-
stum on Programming, pages 91-108, March 1999.

Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 219-232, 2000.

C. Flanagan and Stephen N. Freund. Detecting race conditions in large programs. In
Workshop on Program Analysis for Software Tools and Engineering, pages 90-96, June
2001.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Generating com-
pact verification conditions. In Conference Record of the 28th Annual ACM Symposium
on Principles of Programming Languages, pages 193-205. ACM, January 2001.

C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems, 5(4):596-619, 1983.

C.B. Jones. Specification and design of (parallel) programs. In R. Mason, editor, Infor-
mation Processing, pages 321-332. Elsevier Science Publishers B. V. (North-Holland),
1983.

B. Jonsson. On decomposing and refining specifications of distributed systems. In
J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness, Lecture Notes in Computer
Science 430, pages 361-385. Springer-Verlag, 1989.

L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, SE-3(2):125-143, 1977.

L. Lamport. Control predicates are better than dummy variables. ACM Transactions
on Programming Languages and Systems, 10(2):267-281, April 1988.

L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Proceedings of the Static Analysis Symposium, pages 280-301, 2000.

K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via guarded com-
mands. In Bart Jacobs, Gary T. Leavens, Peter Miiller, and Arnd Poetzsch-Heffter,
editors, Formal Techniques for Java Programs, Technical Report 251. Fernuniversitét
Hagen, May 1999.

13

[MC81]

[McM97]

[MM93]
[MP95]
[Nel81]
[0G76]

[PDHY9]

[SBN+97]

[SRW99]

[Sta85]

[Ste93]

[TML97]

[YahO1]

J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, SE-T(4):417-426, 1981.

K.L. McMillan. A compositional rule for hardware design refinement. In O. Grumberg,
editor, CAV 97: Computer Aided Verification, Lecture Notes in Computer Science 1254,
pages 24—35. Springer-Verlag, 1997.

A. Mokkedem and D. Mery. On using a composition principle to design parallel programs.
In Algebraic Methodology and Software Technology, pages 315—-324, 1993.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, 1995.

C. G. Nelson. Techniques for program verification. Technical Report CSL-81-10, Xerox
Palo Alto Research Center, 1981.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

C.S. Pasireanu, M.B. Dwyer, and M. Huth. Assume-guarantee model checking of soft-
ware: A comparative case study. In Theoretical and Practical Aspects of SPIN Model
Checking, Lecture Notes in Computer Science 1680, 1999.

S. Savage, M. Burrows, C.G. Nelson, P. Sobalvarro, and T.A. Anderson. Eraser: A dy-
namic data race detector for multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391-411, 1997.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In
Conference Record of the Twenty-Sizth ACM Symposium on Principles of Programming
Languages, pages 105-118, 1999.

E.W. Stark. A proof technique for rely/guarantee properties. In Proceedings of the 5th
Conference on Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Computer Science 206, pages 369-391. Springer-Verlag, 1985.

N. Sterling. WARLOCK — a static data race analysis tool. In USENIX Technical
Conference Proceedings, pages 97-106, Winter 1993.

C.A. Thekkath, T. Mann, and E.K. Lee. Frangipani: A scalable distributed file system.
In Proceedings of the 16th ACM Symposium on Operating Systems Principles, pages
224-237, October 1997.

E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic.
In Proceedings of the 28th Symposium on Principles of Programming Languages, pages
27-40, January 2001.

A Proofs

This appendix contains the proofs of the Thread-Modular and Invariant Verification Theorems. We
begin with a lemma relating transitions of a thread S and its translation [S]4 for actions A and G.
The lemma states that a transition of S may be simulated by 0 or more steps of [[S]]é7 provided the
transition satisfies G. If it does not satisfy G, then [[S]]é goes wrong.

14

Lemma 1 (Translation Simulation) Let A, G € Action where G is reflexive.
1.1 If (01,51) —s (02,52) and G(o1,02), then (o1, [S1]4) =% (02, [S2]8).
1.2 If (01,51) —s wrong, then (01,[S1]4) —* wrong.

1.3 If (01,51) —s (02,52) and —=G(01,02), then (o1, [S1]4) —% wrong.

Proof of 1.1 The proof is by structural induction on the derivation of (o1,S51) —s (02, 52). We
show three representative cases:

Case 1 [ACTION OK]: In this case, S1 =X | Y, X(01,02), Y(01,02), and So = skip. Therefore,

(01, [1]4) = (o1, A% X | (Y A G); A%)
—* (o1,skip; X | (Y A G); A*) by [LooP DONE] and [SEQ STEP]
—s (01, X | (Y AG); A%) by [SEQ SKIP]
—s (02, A%) by [ACTION OK], [SEQ STEP]|, and [SEQ SKIP]
— (02, [skip]4)

Case 2 [CHOICE]: In this case, 01 = 0q, S1 = 71075, and Sy = T; where i € {1, 2}. Therefore,

(01, [9116) =

—

o1, A% ([T &PIT215))

o1, [T1]A0[T:]4) by [LOOP DONE], [SEQ STEP], and [SEQ SKIP]
o2, [Ti]4) by [CHOICE]

o2, [S2]&)

S

—

—~ T~

Case 3 [SEQ STEP]: In this case, S1 = T1; 75, (01,T1) —5 (02,U1), and Sz = Uy; To. By induction,
(o1, [T1]4) =% (02, [U1]8). Therefore,

(01,[$11G) = (o1, [T1]&; [T2]8)
* (09, [U1]4; [T2]4) by [seq stEP]*
= (02,[52]6)

—

where [SEQ STEP]* denotes possibly many applications of the rule [SEQ STEP].

Case 4 [AssocC]: In this case, 01 = 02, S1 = (T1;T2); T3, and Sz = Ti; (Te; T5). Therefore,

(01, [5118) = (o0, (IT1]&; [T218); [T5]8)
—s (01, [T1]8; ([T2]8; [T5]8)) by [assoc]
= (02,[5:2]2)

The remaining cases are similar. O

Proof of 1.2 The proof is by structural induction on the derivation of (o1,51) —s wrong.
There are two cases:

15

Case 1 [ACTION WRONG]: In this case, S = X | Y, X(01,02), and =Y (01, 02). This implies that
(01,X | (Y AG)) —5 wrong by rule [ACTION WRONG]. Therefore,
(01,[S11G) = (01, 45X | (Y AG); A7)
—* (01,skip; X | (Y AG); A*) by [LooP DONE] and [SEQ STEP]
—s (01, X | (Y ANG); A%) by [SEQ SKIP]

—s wWrong by [SEQ WRONG]

Case 2 [SEQ WRONG]: In this case, S1 = T1; Ts and (01, T1) —s wrong. By induction, (o7, [[Tl]]é) —
wrong. Therefore,

(01, [$1]6) = (o1, A% ([11]G: [T205))
—%* (o1, skip; [[Tl]]é; [[Tg]]é) by [LOOP DONE| and [SEQ STEP]
—s (01, [T1]&; [T2]2) by [sBQ SKIP]
—% wrong by [sEQ STEP]* and [SEQ WRONG]

a

Proof of 1.3 The proof is by structural induction on the derivation of (01,S51) —4 (02,S52).
There are three cases:

Case 1 [ACTION OK]: In this case, S1 = X | Y, X(01,02), Y(01,02), and =G(01,02). This
implies that (o1, X | (Y A G)) —5 wrong by rule [ACTION WRONG]. Therefore,
(0’17 [[Sl]]é) = (0'1, A% X | (Y N G),A*)
—%* (o1,skip; X | (Y A G); A*) by [LooP DONE] and [SEQ STEP]
—s (01, X | Y AG); A%) by [SEQ SKIP]

—s Wrong by [SEQ WRONG]

Case 2 [SEQ STEP]: In this case, S1 = T1;T% and (01,T1) —5 (02,U1), and Sy = Uy;Ta. By
induction, (o1, [T1]4) —* wrong. Therefore,

(01, [1]8) = (o1, [TAIT2]E"

—% wrong by [SEQ WRONG]*

where [SEQ WRONG]* refers to a derived rule in which the first statement of a sequential composition
goes wrong after possibly many steps.

Case 3 [SEQ SKIP], [ASSOC], [CHOICE|, [LOOP DONE|, [LOOP UNROLL]: None of these transitions
update the store. Hence, 0o = ;. From the hypotheses of the lemma, G is reflexive, which
contradicts the hypothesis =G(o1, 02).

a

We next show that the translation begins with a yield point at which the abstraction of the other
threads may make an arbitrary number of steps.

16

Lemma 2 Let A,G € Action where G is reflezive. Given any store o and statement S, (o, [S]&) —*
(0, 4; [S12).

Proof Proof is by structual induction on S. Two representative cases are shown:

Case 1 S = 5108, In this case, [S]4 = A*; ([S1]&0[S2]4). Therefore,

(0,[S18) —s (0, (A; A*); ([S1]A0[S2]4)) by [Loor unroLL]
—s (0, 4; (A% ([$1]4D[S2]8))) by [assoc]
= (0, 4;[S]4)

Case 2 S = S1;S2: By induction, (o,[S1]4) =% (0, 4;[S1]4) . Therefore,

(0,[816) = (0,[511&:15:15)
=7 (0, (A [5112); [S2]8) by [sea sTee]*
—s (0,4 ([[Sl]]é; [[Sz]]é)) by [AssoC]
= (0, 4; [[S]]é)

a

Before stating the next lemma, we define the following translation on parallel states. This
function simplifies the notation for constructing an i-abstraction from a parallel program in a given
state.

[e]; : ParState — SeqState
(@80 [Sa)li = (o, [S5)

[wrong];, = wrong

The assume-guarantee decomposition to use in the translation is implicit from the context. We may
now show that any step taken by a parallel thread either can be simulated by every i-abstraction of
the program or causes at least one i-abstraction to go wrong.

Lemma 3 Let P = S1 | -+ | S, be a parallel program with assume-guarantee decomposition
(A1,G1), ..., (An,Gy). Let ©1 = (01, P) for some store o1 € Store. If ©1 —, O, then either:

1. Vj € 1.n. [01]; —* [©2],

2. 3j € 1.n. [©4]; —% wrong

Proof The proof is by case analysis on the rule used to derive ©; —, ©2:

Case 1 [PARALLEL]: In this case, let
Oy = (02,51 | -+ [Ti| -+ | Sh)

where (01, 5;) —5 (02,T;). There are two cases:

17

Case 1.1 G;(01,02): By Lemma 1.1, [01]; — [O2];. Also for j # 4, the definition of [©4];
yields

[01]; —3% (01, Aj; [[Sj]]éj) by Lemma 2

J
—g (0’2, [[Sj]]éj) because Gj(01,02) and G; C A;

Thus, Vj € 1.n. [0:1]; — [©2];.
Case 1.2 —G,(01,02): Lemma 1.3 indicates that [©]; = (o1, [[Sz]]é) —% wrong.

Case 2 [PARALLEL WRONG]: (01,5;) — wrong for some i. By Lemma 1.2, [01]; = (o1, [[Sl]]é) —*
wrong.

a

We now extend the previous lemma to parallel execution sequences of any length.

Lemma 4 Let P = S1 | -+ | S, be a parallel program with assume-guarantee decomposition
(A1,G1), ..., (An,Gr). Let ©1 = (01, P) for some store o1 € Store. If ©1 — Oa, then either:

1. ¥j € l.n. [01]; =7 [©2];
2. 3j € 1.n. [©4]; —% wrong
Proof Proof is by induction on k, the length of the derivation of ©1 —7 Oa:
Case 1 k= 0: In this case, ©2 = ©1 and Vj € 1..n. [O1]; —% [O2]; is trivially satisfied.

Case 2 k > 0: In this case, ©; —>’;_1 O3 —, O2 where, by induction, one of the following two
cases holds:

Case 2.1 Vj € 1.n. [©1]; —% [©3];: Lemma 3 applied to O3 —, O, indicates that one of the
following holds:

1. Vj € 1.n. [O©3]; —% [©2];: Consider any j € 1..n. In this case, we have [©1]; —} [O2];.

2. 3j € 1.n. [©3]; —* wrong: We know that [©1]; —% [O3]; —% wrong. Thus, part 2 of the
lemma is proven.

Case 2.2 Jj € 1..n. [©:]; —% wrong: This implies the second condition in the statement of the
lemma is satisfied.

The Thread-Modular Verification Theorem from Section 4 follows directly from this lemma.
Theorem 1 (Thread-Modular Verification) Let P =Sy | --- | S, be a parallel program with
assume-guarantee decomposition (A1, G1), ..., (A, Gy). Forallo € Store, if Vi € 1..n. (o, [[Sz]]é) i
wrong, then (o, P) /+; wrong.

Proof This theorem is a direct consequence of Lemma 4. O

The machinery developed to prove the previous theorem may also be used to prove the Invariant
Verification Theorem, restated below.

18

Theorem 2 (Invariant Verification) Let P =5, | --- | S, be a parallel program with assume-
guarantee decomposition (A1,G1),...,{An,Gy), and let Init and I be sets of stores. Suppose:

1. Init C I
2.VielnG=I=1T)
3. Vi€ l.n. VYo € Init. (o, [[Sz]]é) 4% wrong

Then I is an invariant of P with respect to Init.

Proof To show that [is an invariant of P with respect to Init, we show that for all o1 € Init,

if (01, P) —* (02, P), then oo € I. The proof is by induction on the length k of the derivation of
(0’17 P) —>; (0'27 PQ).

Case 1 k= 0: In this case, 0o = 01 € Init, and o5 € I by condition 1.

Case 2k > 0: In this case, (o1, P) —>’I§_1 (03, P3) —p (02, P2), where the inductive hypothesis
ensures that o3 € I. Let

Py = Ti| - |Ti| - | T,
Pyo= T |- |U| - | T,

where (03, T;) —5 (02,U;). By Lemma 4 and condition 3, it must be the case that
[[(Ulap)]]i _>: [[(U3,P3)]]i
= (o3, [[Tz]]é)
/4% wrong

Given this fact and the transition (o3,7;) —5 (02,U;), Lemma 1.3 shows that G(os,02). This,
combined with o3 € I and condition 2, implies that I(o3).

19

