SRC Technical Note
1999-001
June 22, 1999

The Vesta Approach to
Software Configuration Management

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu

COMPAQ

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright@©Compaq Computer Corporation 1999. All rights reserved

Abstract tools are to be applied. System models are also sometimes

calledconfiguration descriptions

Vesta is a system for software configuration management.. . S .
. : .Building. Building is the process of evaluating a system
It stores collections of source files, keeps track of whic

versions of which files go together, and automates the medel S0 as fo construct a complete system according to

0- s ; . X
cess of building a complete software artifact from its co he_ ”.‘F’de' N mstructlon_s. Building may also include Other
.activities, such as running regression tests on the resulting

ponent pieces. Vesta’s novel approach gives it three im-.
. . . . artifact.
portant properties not available in other systems. First,
every build isrepeatable because its component sources Version management, source control, system modeling,
and build tools are stored immutably and immortally, ar&hd building are four parts of the larger SCM problem.
its configuration description completely describes whgonsidered broadly, SCM is often taken to include such
components and tools are used and how they are putatgas as process management, software life-cycle man-
gether. Second, every build iscremental because re- agement (e.g., bug tracking, testing), and even the specific
sults of previous builds are cached and reused. Third, &els used to develop and evolve software components.
ery build isconsistentbecause all build dependencies al/e hold the view that these aspects of SCM, although im-
automatically captured and recorded, so that a cachedpertant to the overall software development process, are
sult from a previous build is reused only when doing so $&condary to the core issues listed above. We have there-
certain to be correct. In addition, Vesta’s flexible languadere focused the Vesta project on solving those core prob-
for writing configuration descriptions makes it easy to dé&ms, constructing a solid base upon which we believe so-
scribe large software configurations in a modular fashi@itions to the other problems can be built.
and to create variant configurations by customizing build Some form of SCM is almost always a necessary part
parameters. This paper describes Vesta’s advantages ofépftware development. SCM is useful whenever multi-
traditional tools, how those benefits are achieved, and tHe source files, multiple developers, or multiple releases
system’s overall performance. and/or target platforms are involved. Moreover, the larger
the number of source files, developers, or releases, the
) larger the configuration management problem.
1 Introduction A good SCM system can greatly reduce these prob-
)) _) lems. Version management can ease the problem of man-
This paper describes Vesta, a software configuration maging multiple source files by keeping related versions of
agement (SCM) system for managing and building sofffes together. Source control can help multiple developers
ware, from small systems to very large ones (tens of Ml rk productively in parallel. Together, system modeling
!IOHS of lines of source code). Vesta addresses the folloyyq building can help manage multiple releases by accu-
ing four core SCM problems: rately selecting the right sources to use for each release
\ersion management. Version management is the proand by automatically managing derived files.
cess of assigning names (typically sequential numbers) tdfowever, several difficulties stand in the way of de-
a series of related source files and supporting retrievalségning and implementing an SCM system that addresses
those files by name. Machine generatedjerivedfiles, these problems. First, handling large-scale software is dif-
are also versioned by some SCM systems. ficult, because it usually involves large numbers of source
files and developers. Unlike other SCM systems in use to-

Source control. Source control is the process of controlday’ Vesta was specifically designed to handle very large

ling or regulating the production of new versions of Sourgaerojects—millions of lines of code and beyond. The rapid

files. Operations commonly associated with source ¢ d}'owth of today’s software makes this an even more press-

trol includecheckoutandcheckin which respectively re- '}‘z problem. Second, with larger numbers of develop-

SEIVE a NEW VErsion and supply the data for a PreVIOURE. comes the need to support parallel development across
reserved version. Source control may be_ coupled WE es that are often geographically separated, which intro-
concurrency co_ntr_ol as weII_,_so that checking out a p uces the problem of keeping replicated copies consistent.
ticular version I!mlts the ability of other users to chec inally, for building to be efficient, it must work incre-
outrelated versions. mentally, re-using the results of previous builds whenever
System modeling. A system model is both a static depossible. However, when multiple versions, multiple tar-
scription of a system’s configuration and a recipe for prget platforms, and multiple releases are involved, sound
ducing a software artifact. It names the (versions dfjcremental building is a non-trivial problem.

software components that are to be combined to producé he rest of the paper is organized as follows. We first
larger components or entire systems, names the tools ttwisider the strengths and weaknesses of several widely-
are to be used to combine them, and specifies how tised SCM systems. Section 3 then describes the Vesta

approach, focusing on the main ideas in the Vesta systBtake can also be used for tasks other than building soft-
and the benefits they provide. In Section 4, we then deare, such as running regression tests.
scribe how those ideas are realized in practice, with anHowever, there are several major problems with the
emphasis on the user’s view of the system. Finally, weake approach to software construction. In this approach,
describe the performance of our Vesta prototype in Sefependencies between derived files and the inputs used to
tion 5, and in Section 6, we offer our conclusions froproduce them must be specified explicitly by the user, and
our experiences using the system. Make relies on timestamps to decide when it is safe to re-
use a derived file in a subsequent build. A build based on

. incorrect dependency information or incorrect timestamps

2 Previous ApproaCheS can produce amconsistentesult, in which parts of the

resulting system incorrectly include stale derived files. In-

In this section, we review related work by assessing s@fsistent builds can produce programs that fail to link or
eral popular SCM systems. Some systems, like the Rer - or that exhibit bizarre, unexplainable bugs. Devel-
vision Control System (RCS) and the Concurrent Vegners often must resort to performing a scratch build to
sion System (CVS) address only version management "'(’:'Bgrect such problems.

source control, while others like Make address only sys-

tem modeling and building. We also consider Cle Inconsistent builds are not uncommon in Make. Speci-
. : Lo) ving dependencies explicitly is an inherently error-prone
CASE, which provides a more integrated solution to fk{é gdep Pty y b

sk. There are tools such amkedepentbr generating
core SCM problems. certain kinds of dependencies automatically, but again,
such tools must be run by hand, so they may not be run
2.1 RCSandCVS as often as necessary. Another problem is that some de-

endencies are inexpressible or too costly to express. For

RCS is a system for maintaining multiple versions of IrExample, dependencies on the values of environment vari-

dividual files [10, 11]. Its main strengths are that it is €aSY)|as cannot be expressed in Make, and dependencies on
gq uze, wtell—understtvt\)lod,an? _\;vgll—docu:nentgg. tlts MY Makefile itself are too costly because they would re-
ISadvantages are two. FIrst, it does not provide ransp@ly i, 5 scratch build whenever the Makefile was changed.
ent access to individual file versions. That is, an expliqlf,, o5 yse of timestamps is also problematic [3]. For ex-
checkout step is required to access an older version g rﬁple, when building a system from older sources, Make

file. Hence, to build an older version of a system, thfﬁay incorrectly conclude that the system is up-to-date be-

d_eveloper must first ex_plicitly (_:heck out the _correct V€Eause the timestamps associated with the older file ver-
sions of each source file required by the build. Seco bns are in the past; again, a scratch build is often the

sources are versioned at the granularity of individual ﬁle&eveloper's only recourse in such situations

Although RCS provides tagging facilities for grouping re- Finally, Make scales poorly. Make does its dependency

lated files, those facilities are awkward to use. nalysis from the leaves of the “build tree”, working its
Like RCS, CVS is relatively easy to use and wele Y ! 9

) vay up to the final result. Hence, the cost of an incre-
sup_ported [4]. It also suffers RCSS problem of not aﬁental build in Make is proportional to the total hum-
lowing transparent access to file versions. However, J&r of sources contributing to the build, not the number
like RCS, CVS allows related files to be grouped to- 9 '

gether intomodules CVS also includes an optimisticOf sources that have changed. Moreover, although it is

. ibl r r ftwar m hierarchicall
concurrency control methodology that allows multiple d ossible to structure a software syste erarchically by

' arranging for Make to invoke itself recursively on sub-
velopers to work on the same fitoncurrently How- : .

: o) ; .components, doing so is awkward and performs poorly,
ever, allowing concurrent modifications is not without |t§o it is not freauently done in practice
costs, since conflicting edits must be detected and re- q y P '
solved. CVS’s conflict detection is simple-minded (i.e.,
purely line based), so semantic conflicts between changes ClearCASE
in disjoint lines may go undetected. When conflicts oc-

cur, they must be resolved manually, which can be a tinfeerhaps the biggest problem with the systems discussed

consuming process. so far is that they are not integrated. Building a particular
version of a system requires two steps: checking out the
22 Make correct versions of the sources, and then building them.

As described previously, the first build of an older ver-
Make is a widely-used tool for building software [2]. Iision must be performed from scratch, since Make does
is easy to use and the syntax of its system models (im0} have any knowledge about which versions it is build-
Makefiles) is simple, if somewhat cryptic. Moreoveiing, so it cannot tell when it is safe to re-use a derived file

from a different build. The Vesta approach is based on the following founda-

ClearCASE is a commercial SCM system that intéons:
grates version management with building, and that ad-) .
dresses many of Make’s shortcomings [1]. It is based on® Immutable immortal and versionedstorage of all
many of the ideas in the earlier DOMAIN Software Engi- ~ Sources and tools. Unlike ClearCASE, Vesta uses ex-
neering Environment (DSEE) system [8, 7]. plicit version numbers rather than views.

Unlike RCS and CVS, ClearCASE provides transpar- complete source-basedonfiguration descriptions.
ent access to older file versions. However, older versions gy complete we mean that the descriptions nathe
are almost never accessed directly in practice. Instead, & glements contributing to a build, and no build de-
ClearCASEviewis used to transparently map an unver- paends on any aspect of the computing environment
sioned file name to a versioned one. The rules governing (e g., tools, libraries, header files, environment vari-
a view can be specified in a variety of ways, and they in- gpjes) outside of Vesta’s conttolBy source-based
clude provisions for always accessing the latest version of \ye mean that configuration descriptions describe
afile. how to build a system from scratch from sources

For building, ClearCASE provides its own version of (j.e., non-derived files). Hence, the descriptions do

Make calledclearmake The advantage to this approach not rely on templates, search paths, or other rules for
is that developers do not have to learn a new system mod- their meaning and function.

eling language, and their existing Makefiles continue to

work. Unlike Make, clearmake does automatic (although® Automatic dependency detection. All dependencies
somewhat incomplete) dependency detection by monitor- are detected and recorded automatically by the Vesta
ing and recording the files accessed during a build. It also builder, so no dependency errors can be introduced
manages derived files for potential later re-use. by human errct.

There are several problems with ClearCASE. The prob-_
lem with the view approach to version managementis that
the meaning of a name can change over time. In partic-
ular, the actions taken bsomeone elsean cause one’s
own build to suddenly fail. This shortcoming is an im-
pediment to effective parallel development. There are also
problems with the clearmake builder. First, because cleare Site-wide caching of all build work. Vesta features a
make is Make-based, it suffers from the same scalability shared site-wide cache of build results so developers
problems as Make. Second, because its dependency de- can benefit from each others’ builds.
tection is incomplete, clearmake can produce inconsistent
builds. Third, clearmake’s mechanism for allowing de- At this point, the reader may well be wondering what it
velopers to re-use the derived files produced by othersis-like to use Vesta in practice. How can any sources be
calledwinking in— is based on heuristics that can faigdited if all sources are stored immutably? If system mod-
to capitalize on valid re-use opportunities. Finally, ane€ls must name the version of every source file, isn't the
dotal evidence suggests that the overheads introduced®#§rhead of maintaining those references overwhelming?
clearmake are large, so some development organizatid¥gsaddress these questions and other practical aspects of

choose to use ordinary Make for improved performandésing Vesta in Section 4 below.
despite Make’s shortcomings. We first point out that these foundations provide several

valuable benefits:

Automatic derived file management. The storage and
naming of derived files is managed automatically by
the Vesta storage repository, thereby easing the bur-
den of building multiple releases or building for mul-
tiple target platforms.

Repeatable builds.The immutability and immortality of
3 The Vesta Approach sources combined with the completeness of build descrip-
tions together mean that every Vesta builddpeatable
As described earlier, Vesta’s goals are to address the cbat is, any build performed in the past can be exactly
SCM problems of version management, source contriproduced at any time in the future.
SyStem mOde“ng.’ and bu.lldmg' It provides a firm tech: LUltimately, of course, every build is dependent on the operating sys-
nical base on which solutions to the other SCM prOble% on which it is performed. Build descriptions include a user-supplied
can be built. Vesta is also explicitly designed to scale upme for the build platform, but Vesta does not check if the supplied
to large code bases, which means it must also effectivefyne is accurate.

support parallel development. Of course, it must be an Of course, it is possmle in principle to write tools that depend on
spects of the operating system that we do not encapsulate. However, we

open SY_Stem that works with standard development tocﬂ§ve not encountered any such dependencies in the standard construction
Finally, it must perform well and be easy to use. tools we have used.

Incremental builds. Although the system models de4.1 Vesta Components

scribe how to build a software system from scratch, t 1sh th . ts of the Vest "
Vesta builder uses the site-wide cache of previous bui fgure 1 shows the main components ot the Vesta system.
. The bottom half of the figure shows thepositoryand

to avoid work, so good incremental build performanceésnction cacheservers. One instance of each server is run
the norm. The time required to perform an incremen o)

build is generally proportional to the amount of work t3t each site. The repos_ltory SEIver manages the storage
be done, not to the size of the system being built. of both sources and derived files. It provides both a stan-

dard NFS interface to sources, and a remote procedure

Consistent builds. Because every build is conceptuall all (RPC) interface that is used by other Vesta tools. The
performed from scratch, and because Vesta’'s autom W ction cache server stores the results of previous builds.

dependency detection means that a cached result is LE%@ servers use a normal file system for backing storage.
only when it is correct to do so, all Veesta builds are guar-

anteed to produce consistent results. Hence, there is never (I:—:Ic?sntt

any need to do “nightly” or scratch builds to correct for an ;

errant build in which a stale derived file was used. fﬁy;ézgj \ Rslgtg
Repository

Evaluator

|

Standard !
Construction ‘ Tools

Environment / ‘

|

Parallel development. Several features of the Vesta syst | Tools
tem enable parallel development. For one, the Vesta
repository supports version branching and partial replica-

tion across geographically distributed sites. But perhaps
more importantis the fact that a user must take explicit ac- \

|

tion to build with a newer version of someone else’s code. —
L . , . . . t
Hence, it is impossible for one developer's action to break ~ Per-Site | Repository Pl
) . . Servers Server
another’s build. This feature allows developers to work Server
productively in isolation. N
Me— —
. . . Backing
The entire Vesta system was designed and implemented File
with an eye toward scalability. Our design goal was to [System]
support systems containing 20 million lines of code or
more. This emphasis is visible in several respects. To Figure 1. Vesta’s main components.

organize the construction of large-scale software, system

models can be arranged as a modular hierarchy. DurThe top half of Figure 1 shows the Vesta components
ing a build, caching is done top-down rather than bottofdn on each client host. The main client programs are
up. Hence, cache hits often occur on larger units of wolfke repository toolsand theevaluator The repository
than individual tool invocations, such as the constructié@ols provide checkout, checkin, and other source con-
of an entire library or collection of libraries. This topirol operations. The evaluator is the Vesta builder. It
down caching avoids the scalability problem of incremefgads user-writtersystem modeland a set of system-
tal builds suffered by Make. Finally, because each usesépplied models comprising tiséandard construction en-
checked out files are managed by the repository, the repggnment Not shown in the figure are standard develop-
itory can arrange to make checkout and checkin alm@ent tools such as text editors and the like, which can be
instantaneous, thereby eliminating one of the burdensused to access sources via the repository’s NFS interface

working with large source trees. in the usual way.
During a build, the evaluator will often be called on to

run an external tool like a compiler or linker. To do so,
,) the evaluator makes a remote procedure call toreool
4 A User’s View of Vesta serverprocess. As indicated by the dashed line in the fig-
ure, the runtool server may or may not be running on the
The discussion so far has been fairly abstract. In this seame client host as the evaluator. Decoupling the runtool
tion, we provide a user’s view of Vesta to make the ideasrver from the evaluator allows tools to be invoked on
more concrete. We start by describing Vesta’s compdifferent machine platforms (e.g, for cross development),
nents. We then consider Vesta’s source control tools aseven for multiple clients to use the same runtool server
their effects on the repository. Finally, we present somenning on a more powerful machine.
sample system models to give a sense for Vesta’s systerBefore it contacts the runtool server to launch a tool,
modeling language. the evaluator calls the repository to create a special direc-

tory tree in which the tool will be run. The runtool server
then launches the tool in an encapsulated environment that
causes all of the tool’s file references to go to this tree,
where they are trapped and reported back to the evaluator.
The evaluator records these references as dependencies.

During the build, the evaluator also contacts the func-
tion cache server to determine if each piece of the build it
is about to execute has been performed before (either by
the same person or someone else). If sca@he hij, the
function cache returns the correct result. If notéche
mis9, the evaluator performs the work and then calls the
cache to create a new cache entry for possible re-use in
the future.

Figure 1 omits several administrative tools. Among

/vesta/src.dec.com

common,

text

® = Immutable
O= Appendable
O= Stub

build.ves
thread.h
thread.c

these is a tool called thereederthat is used to delete Figure 2: Naming conventions assumed by the Vesta
unwanted derived files from the repository and unwantedepository tools.

cache entries from the function cache. The weeder reads
a description file that says which build versions should be
kept; it then uses a mark-and-sweep garbage collection
gorithm to identify all derived files and cache entries that
are safe to delete. The description file uses a simple but
powerful pattern language; such rules as “keep builds of
the last two versions” are easily expressed.
Parameterizing the weeder with an explicit instruction
file gives each organization the flexibility to keep the
builds it considers important. Of course, deciding what e
to weed is simply a time-space tradeoff. Even if a use-
ful build is accidentally left out of the weeder instructions
and deleted, Vesta’s repeatability guarantees that it can be
reproduced, albeit more slowly, and re-cached.

4.2 Repository Operations

The Vesta repository is a general-purpose file system with
special support for immutability. As mentioned earlier, it ®
exports both an NFS interface (with some minor restric-
tions) and an RPC interface. The repository also manages
a site-wide pool of derived files.

The repository’s main job is to provide directory trees;
the files themselves are stored in a normal Unix file sys-
tem. In particular, the repository supports three kinds of
directories: mutable immutable and appendable The
purposes of these three directory types will become ap-
parent momentarily.

It is worth noting that the repository haming conven-
tions we describe next are imposed not by the reposi-
tory server, but by the much smaller client-side repository
tools. This separation of concerns is important because

vaﬂ[ltions engendered by our current repository tools:

Related sources are grouped into arbitrary directory
trees calleghackagesVersioning is done at the pack-
age granularity. As shown in version 3 of tbem-
mon/thread package, each package version may
contain arbitrary files and nested directories.

To accommodate large-scale software, the package
namespace is hierarchical. For example, the pack-
ages of Figure 2 are arranged in a two-level hier-
archy, with package names likmmmon/thread
andvestal/repos

Version numbers appear as explicit pathname arcs.
For example, version 3 of theommon/thread
package is namecbmmon/thread/3

The root directory of each package version is im-
mutable. Hence, the contents of a package ver-
sion cannot be changed. The directories that form
the package hierarchy, such @smmonandcom-
mon/thread , are appendable. The only operation
allowed on such directories is the insertion of new
items, such as new packages or package versions.

e Branches are like sub-packages. Hence, all the op-

erations on packages apply to branches as well. In
Figure 2, the branclktommon/thread/2.fast

has three versions namédl 1, and 2, the for-
mer of which will typically be a copy ofcom-
mon/thread/2

it means that different source control paradigms (suchAs shown in Figure 3, the repository exports two
as a more concurrent paradigm like that of CVS) coulFS file systems, which are made visible to the client
be implemented simply by rewriting the repository toolshrough two mount points, typically naméeesta and

changes to the repository proper would not be requiredivesta-work

. The directory tree rooted @vesta

Figure 2 illustrates several aspects of the naming caronsists only of appendable and immutable directories,

/vesta/src.dec.com /vesta—work /vesta/src.dec.com© /vesta—work <

jones

common
@ = Immutable

O= Appendable
O= Stub thread
<= Mutable

@ = Immutable
O= Appendable
O= Stub

<= Mutable

copy
Figure 3: The checkout session of teemmon/thread
package. Figure 4: The effects oficheckout common/thread
while the one rooted dvesta-work is mutable. There Ivesta/src.dec.com® /vesta-work<p

is a mutable directory iivesta-work for each user,
and edits are performed in subtrees of those directories.
In addition to version directories and branch direc-
tories, each package also contains a directory named
checkout . This directory contains an appendable di-
rectory for each checkout session, each of which contains 5
a separate, immutable snapshot of a package version each
time the package is built. Hence, Vesta keeps a version of
each package not only across checkout sessions, but dutt
ing checkout sessions as well.

@ = Immutable
O= Appendable

O= Stub
The typical development cycle is as follows. o= thabb
e Check out the package usimgheckout
o Modify the package: Figure 5: The effects ofradvance
— Edit using your favorite text editor
— Advance the package usirgdvance Figure 4 shows the effect of running the command
— Build the package usingesta -
_ Test vcheckout common/thread In this figure and the next
— Repeat as necessary two, bold lines denote newly created elements. Assum-
))] ing that the latest version of ttoemmon/thread pack-
e Check in the package usinvgheckin age was version 3, this command would first create a spe-

The outer level consists of three steps: check out tH&! €lement called atubnamedcommon/thread/4 .
package usingcheckout modify it, and check it back The stub reserves a name ur_lder which the package will
in using vcheckin. The inner loop of the developmenP® checked back in; attempting to check out the pack-
cycle is the familiar edit-compile-test loop, but with a®9€ again will fail because a stub for version 4 al-
extra wrinkle. Recall that Vesta’s repeatability guarantE@@dy exists. Next, the new appendable directwm-
requires that all builds are performed against immutati¥Pn/thread/checkout/4 is created, and the latest
sources. Therefore, before invoking testabuilder, an Version of the package is copied into that checkout direc-

immutable copy of the user’s current sources must first Y as checkout version 0. Finally, a mutable copy of
made using a tool calledadvancé. We now describe the package is made in the user’s working directory under

these tools and their effect on the repository. Ivesta-work
Files in the working directory may then be freely

3Sincevadvanceand vestaare usually run together, we provide %adited. Before building them, the user invokeslvance
simplevmake script that runs them in sequence as a single commandd) '

vadvancecan also be used independently as a means of checkpointirfj® Shown in Figure 5Vadvanc_e3im_p|y crea_tes an im-
user's current sources. mutable snapshot of the working directory in the appro-

files

/vesta/src.dec.com® /vesta—work <

h = [date.h];
iones { ¢ = [date.c, calendar.c J;
libs = < ./Cllibc >;
ad <2) .
thre delete return ./Clprogram(“cal”, h, c, libs);
}
3 R checkout @ = Immutable
g:gtpupbendable Figure 7. A build.ves system model for building a
<= Mutable sample application.

language that is specialized for software construction is a
primitive to run external tools like compilers and linkers

) in an encapsulated environment (i.e., to invoke the runtool
Figure 6: The effects ofcheckin. server of Figure 1). The language also includesnan

port statement that encourages modular build descrip-

priate part of the package’s checkout directory. Builds at|18nS and thereby supports hierarchical system modeling.

then performed using these immutable sources. Figure 7 shows a sample model for building an appli-

Finally, once the user is satisfied with the state of tgﬁtmn. By convention, the model responsible for building

packageycheckinis used to check the package back in 0 trﬁ comp?nentsbqu perl]ckage s ”a’“’e‘_d‘f)-"fs d
the main line of the package version space. As shown iHe lles clause binds the program variablesandc

Figure 6,vcheckin replaces the previously created vett-O the .Iisted files i.n thg package.. The bogiy of thg mOdeI
sion stub by the latest sub-version of the checkout sg%?n binds the variablébs to a singleton list containing

sion, and deletes the user's working version of the paéE_e standard C library, and returns the result of invoking
age ’from/vesta—work theprogram function supplied by the standard environ-

ment. It is theprogram function that is responsible for
) compiling the necessary sources and linking the program.
4.3 System Modeling Language Before a model like the one shown in Figure 7 can be
invoked, theenvironmentn which the build is performed

We now consider typical client system descriptions. i\ b ted and bound to th il variabl q
complete discussion of Vesta’s system modeling Ianguz{ﬂHS € created an . ?gn 0 Ine special varnable name
(dot). The variable “." is special because it is passed as

is well beyond the scope of this paper, but its complete \"~"" . .
implicit argument on all function calls. Hence, assign-

syntax and semantics are defined in a separate pape?@. ¢ h 0" isible in all d dant f
Here, we will try to motivate and describe the language. nts or changes to " are visible In afl descendan urgc—
tions of the function call graph. This feature of Vesta's

main features. functi f i Kes it 0 def fomi
Across different development organizations, there is ypetion call Semantics makes It €asy to define customiza-
ions that affect all relevant parts of a build.

rather wide variation in build processes, including the si? he build . bodi v th |
and scope of the systems being built, the structure anJ e build environment embodies not only the complete

methodology of the organization, and the degree of ot of functions, tools, libraries, and header files needed
rameterization required. Vesta therefore supports var@ﬁthe build, k_)Ut z_also any req_ueste_d .bu"d cystom|zat|ons.
descriptions through a general-purpose language that Egh custqmlzatmns are typ|cglly injected "from the out-
ports abstraction. Abstraction permits the construction € ,.that IS, qdeveloper cor_13|ders them as parameters of
extensionshat adapt the language to each organizatioﬁ?art'cmar build rather than inherent details of the system
development methodology. As a proof of concept, V\%amg built. It is thus appropriate to include them in the

have built one fairly comprehensive extension called tf&%o]_lelvel (outergwostl) system model. Ilndeed,dsgch TOdﬁls
standard construction environment o little more than list parameter values and invoke the

ild procedure for a package or collection of packages.

The system modeling language itself is a full-fled
functionzl programming Ianguage with a C-like Syng%gjch a model can therefore be readily constructed from a

The functional nature of the language is important, sin éaphlca_ll “control p"’?”e'_" program in which the user spec-
each function call represents a unit of work appropria s desired customizations. The control panel then writes

for caching. The language uses strong, dynamic typi §hi9h'y stylized)control panel quél By convention,
which is to say that the run-time types of arguments f ntrol panel models are namedain.ves

all bunt—ln.operatlons are checked for cor_rectness. The4we have not implemented the control panel yet, so we presently
language is methodology neutral. The main aspect of thge these models by hand.

from /vesta/src.dec.com/common import
std_env = std_env/23/build.ves;
import
calendar =
{
. = std_env()/env_build("DU4.0");
/I build customizations would go here...
return calendar();

}

build.ves;

Figure 8: A .main.ves control panel model for estab-
lishing the build environment.

from /vesta/src.dec.com/millicent import
wallet = wallet/12/build.ves;
vendor = vendor/20/build.ves;
broker = broker/7/build.ves;
{
return wallet() ++ vendor() ++ broker();

}

Figure 9: An umbrella system model for building a col-

Figure 9 shows a system model for building what we
call anumbrella package Such packages do not contain
any sources or build anything directly. Instead, they im-
port a collection of packages, build them, and then com-
bine the results together into a single result. Umbrella
packages illustrate how to structure build descriptions in
a modular fashion. In this example, the umbrella package
serves to record the information that versions 12, 20, and 7
of the wallet, vendor, and broker components go together
to make one coherent version of the Millicent system.

The examples presented here do not really demonstrate
the full power of the Vesta system modeling language,
such as the wide variety of build customizations supported
by the standard construction environment. The system
models that make up the standard environment are rather
complicated, but we believe that investment in them by a
modeling language “wizard” is more than offset by the re-
sulting simplicity in the far more numerous user models.

5 Performance

lection of components and combining their results.
If Vesta’s performance were significantly worse than that
of alternative SCM systems, it would be of little practical
Figure 8 shows an example. The model begins witterest. We have worked hard to make the system effi-
two imports. One import is of the non-local mod&im- cient. In fact, in this section we show that Vesta’s over-
mon/std _env/23/build.ves (bound to the vari- all performance on scratch builds is as good as Make'’s,

able std _env), and the other is of the local modehnd that Vesta’'s caching makes it significantly faster than
build.ves (bound to the variablealendar). The Make on incremental builds.

model body consists of two statements. The first in-
vokes theenv _build function returned by thetd _env
model, and binds the result to the special variable “.". The
second statement then invokes and returns the result ofjthe
package’s owrbuild.ves model shown in Figure 7. .I_I/
This example shows that a model can be called like a fund= Fvel ;
tion using the standard function call syntax. [ool |
The two examples shown so far also illustrate an im-
portant point about the appearance of version nhumbers
in system models. Because sources are versioned at
granularity of packages, and because related sources
side in the same package, version numbers need be 4
plied only for cross-package imports. For example, I
Figure 7, no version numbers are required because the ref- T
erenced sources reside in the same package as the model Local
from which they are referenced. The local import in Fig-
ure 8 requires no version specification for similar reasons.
However, an explicit version number is required for the Figure 10: The experimental setup for our performance
non-local import of thestd _env package. The net re- measurements.
sult is that explicit version numbers are not required in
system models as often as might be expected. To furthefo compare Vesta with Make, we ran tests on the hard-
reduce the effort required to maintain such version speeare configuration shown in Figure 10. In both cases,
ifications, Vesta includes aupdate tool that rewrites a the builder and tools were run on a 333MHz AlphaStation
model’s non-local imports to refer to the latest versions 600 5/333 client machine. Server processes (the repos-
their respective packages. itory and function cache in the case of Vesta, and the

Vesta Make

RunTool
Server

Client
AlphaStation
500 5/333

Make | - 4 tool

AN2
Network

o
UIc

Server
AlphaStation
400 4/233

Function
Cache
Server

gépository
pServer

NFS
Server

Local
Disk

AdvFS
File System

Test Lines Files ToolRuns Pkgs Test Vesta Make One Make Al
Hello 10 1 2 1 Hello 3.3s 3.4s 3.4s
Evaluator| 53,304 103 117 11 Evaluator| 12.5s 15.1s 23.3s
Release | 119,602 255 333 16 Release | 13.1s 15.1s 32.1s
Table 1: Characteristics of three build tests. Table 3. The elapsed time in seconds required by Vesta
and Make to perform incremental builds of the three test
Test Vesta Make cases of Table 1.

Hello 3.3s 3.4s
Evaluator| 310s 318s

Release | 912s 960s values. The “Make One” column reports the time required

to run Make in the single directory containing the modi-

fied source file. This is what developers typically do when
Table 2 The elapsed time in seconds required by VestaWorking on a set of sources. However, if a source in an-
and Make to build the three test cases of Table 1 fromOther package was modified, the resulting build might be
scratch. inconsistent. To get closer to a consistent build, the Make
user would need to run Make in each of the other direc-

. tories, or packages, contributing to the build. The “Make
NFS server in the case of Make) were run on a 233Mbg) column reports the elapsed time required to run Make

AlphaStation 400 4/233 server machine. In both casg$.q|| such packages. The extra time in the case of the
the server processes used the same AdVFS file systeiuator and Release tests is the time required by Make
residing on a local disk, and the client and server mgy jetermine that all the other packages were up to date.
chines communicated via a high-speed ATM netwoRlfste that Vesta provides even stronger consistency guar-
called AN2. All machines were running version 4.0D 0ftees than the “Make All” approach, yet it is significantly

Compag’s Tru64 Unix operating system. faster, primarily due to top-down caching.
We measured builds of software systems of varying

sizes. The characteristics of these systems are shown in .

Table 1. The columns of this table indicate the total nud ~ Conclusions

ber of lines of source code, the number of C/C++ source

files to be compiled, the number of tool invocations necdgue to space limitations, this paper omits discussion of

sary, and the number of packages across which the sourgesy technical details. They are described more com-

reside. pletely in a separate report [6]. However, we feel it is
TheHello test is a simple “hello world” program con-worth at least mentioning some of the main technical

sisting of a single 10-line source file. It requires two togroblems we have solved.

invocations: one to compile the file, and one to link iRepository. The repository is a general-purpose file sys-

This test is included mainly for purposes of providingsm with support for Vesta-specific features, but making
a baseline measurement. Thealuatortest consists of 5t file system visible via an NFS interface was non-

build.ing.all of the Vesta Iibrarie; and the Vesta _evalqatg{vim_ Also, the repository includes a nice design for
application. The sources for this test are contained in §Qtia| replication of sources across geographically dis-
library packages and the evaluator package itself. Finaiiyputed sites.
the Releasdest consists of building the entire Vesta re-)
lease. In addition to building the evaluator, this includég2ching. The main challenge in caching (parts of) builds
building all the Vesta tools, servers, and documentatiorf forming cache entries whose dependencies are as fine-
Table 2 shows the elapsed time (in seconds) requiredd5§in€d as possible. For example, we do not want the
Vesta and Make to perform each of the three test bujlgmpilation of a C file to appear dependent on every
from scratch. These data show that scratch Vesta buiitRader file available in its environment, but only on those
are somewhat faster than Make builds, but not appreciapfyfu@!ly read when compiling it. This requires some non-
s0, since most of the time is spent compiling and Iinking?”v'al dynamic dependency analysis in the Vesta evalua-

To measure the time required to perform incremen

of, as well as support for dynamic, fine-grained depen-

builds, we modified one of the source files in each buiﬁne_nCies in the function cache. Also, to make _incremental
test and rebuilt. In the case of the Release test. we m&?ﬂ“ds fast, the evaluator creates some special cache en-
fied the same evaluator source file as in the Evaluator té4€S t0 get cheap high-level cache hits.

Table 3 shows the elapsed time (in seconds) to perfoBystem Modeling LanguageThe main virtue of Vesta’s
each incremental build. For Make builds, we report twaystem modeling language is that it supports flexible,

modular build descriptions that can be highly parambut in a different way of thinking about the software de-
terized. The main challenge was designing a genenadlopment process.

purpose language amenable to efficient execution that
supported a variety of methodologies and build cu
tomizations.

Overall, Vesta handles the core SCM problems of vei!]
sion control and building quite well. It provides repeat-
able, incremental, and consistent builds. It also sup2]
ports parallel development through several features, such
as branching, explicit versioning, and partial replication.
Vesta's system modeling language is general enough [g)
support different development organizations, and it en-
courages modular software descriptions. On small- tpy
medium-sized scratch and incremental builds, Vesta per-
forms better than Make, and provides much stronger cops
sistency guarantees. Finally, we have found the system
easy to use; once we switched over from building the sys-
tem with Make to building it with Vesta, we never wanted
to go back. The advantages provided by being able to ex-
actly name and reproduce any past build are difficult to
fully appreciate until they are available. [6]

However, despite these successes, there are still some
open questions. The first relates to scalability. Although
Vesta was designed to scale to very large software, we
have used it to build only medium-sized systems. An ear-
lier Vesta prototype saw use by 25 programmers develop-
ing a 1.4 million line code base for over a year [9]. We[s]
designed the current system to overcome the scaling bot-
tlenecks we observed at that time, but we have not yet
used the current system to build anything much larger than
itself. There is evidence that the system scales to a larger
number of users: the Vesta prototype is currently in daily
use by about 60 people in a Compag engineering group.
The code base they are developing is expected to exceed
700 thousand lines of code by the time it is complete. [9]

Another question relates to ease of use. Our experi-
ences have been positive, but as the developers of the sys-
tem, we are obviously biased. The engineering group that
is using Vesta has been able to adapt it to their application
and development environment by writing a small number
of “wrapper scripts” and a domain-specific control pan@io]
application. Overall, they have found Vesta to be a signif-
icant improvement over their previous version and build
management tools.

Finally, for Vesta to be adopted by any organizatioﬁl,ll
some technical and non-technical hurdles must be over-
come. Users of other SCM systems need to convert their
code bases and descriptions to Vesta, which may require
specialized tools that understand their existing develop-
ment methodology. Perhaps a more substantial problem is
the need to overcome the psychological barrier created by
Vesta's radically different approach to SCM. New users
thus require training, not just in a different set of tools,

10

References

Atria Software, Inc., 24 Prime Park Way, Natick, MA
01760.ClearCase Concepts Manydl992.

S. I. Feldman. Make — A program for maintaining com-
puter programs. Software — Practice and Experience
9(4):255-265, April 1979.

Glenn Fowler. A case for makéoftware — Practice and
Experience20(S1):S1/35-S1/46, June 1990.

Dick Grune, Brian Berliner, and Jeff Pollcvs(1) manual
page Free Software Foundation.

Allan Heydon, Jim Horning, Roy Levin, Timothy Mann,
and Yuan Yu. The Vesta-2 software description language.
SRC Technical Note 1997-005c, Digital Equipment
Corporation, Systems Research Center, June 1998.
http://gatekeeper.dec.com/pub/DEC/SRC/technical—
notes/abstracts/src—tn—1997-005c.html.

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu.
The vesta software configuration management system. In
preparation.

David B. Leblang and Robert P. Chase, Jr. Computer-aided
software engineering in a distributed workstation environ-
ment. SIGPLAN Notices19(5):104-112, May 1984.

David B. Leblang, Robert P. Chase, Jr., and Gordon D.
McLean, Jr. The DOMAIN software engineering envi-
ronment for large-scale software development efforts. In
Proceedings of the 1st International Conference on Com-
puter Workstationgpages 266—-280, San Jose, CA, Novem-
ber 1985. IEEE Computer Society, IEEE Computer Soci-
ety Press. ISBN 0-8186-0649-5, IEEE Catalog Number
85CH2228-5.

Roy Levin and Paul R. McJones. The Vesta ap-

proach to precise configuration of large software sys-

tems. SRC Research Report 105, Digital Equip-

ment Corporation, Systems Research Center, June
1993. http://gatekeeper.dec.com/pub/DEC/SRC/research—
reports/abstracts/src—rr—105.html.

W. Tichy. Design, implementation, and evaluation of a
revision control system. IRroceedings of the 6th Interna-
tional Conference on Software Engineeripgges 58—-67.
IEEE Computer Society Press, 1982.

W. Tichy. RCS — A system for version contrdboftware
— Practice and Experienc&5(7):637—654, July 1985.

