
SRC Technical Note
1998 - 017

December 11, 1998

A Note on Low Density Parity Check Codes for Erasures and

Errors

Michael Mitzenmacher

Systems Research Center
130 Lytton Avenue

Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Compaq Computer Corporation 1998. All rights reserved

A Note on Low Density Parity Check Codes for Erasures and Errors

Abstract

We analyze low density parity check codes that correct both errors and erasures using a simple de-
coding scheme. Our framework unifies previous analyses for low density parity check codes and erasure
codes. The result is a general class of codes that corrects both errors and erasures, with corresponding
simple linear time encoding and decoding algorithms and provable performance guarantees. We also de-
scribe how these codes can be applied to yield a new fast algorithm for the setting of of Gaussian noise,
and leave several open questions regarding the construction of these codes and the associated decoding
algorithms.

1 Introduction

Simple linear time erasure codes with nearly optimal correction properties were introduced and analyzed in
[2, 3]. The analysis of these codes are based on the analysis of a simple stochastic process on an irregular
random bipartite graph. In [4], a similar analysis was used to develop and prove bounds on the behavior of
irregular low density parity check codes, extending the previous work of Gallager [1] on regular low density
parity check codes.

In this work, we consider low density parity check codes that handle both errors and erasures, building
on the previous work of [2, 3, 4]. Our work generalizes and unifies the previous analyses in a natural way.
As a result of this unification, we find simple codes for both erasures and errors with associated linear time
encoding and decoding algorithms and provable performance bounds. For convenience, we call these codes
LDEE codes (for Low Density codes for Errors and Erasures).

Before beginning, we note that one one obvious way to handle erasures using low density parity check
codes is to simply replace any erased bit by a random bit. On average half of the erasures become errors.
(Alternatively, one could first set for example all bits to 0, and rerun if necessary with all bits set to 1; in
one of these two cases, at least half the erased bits are set correctly.) Of course, this approach ignores a
great deal of useful information. By making better use of this information, our simple approach allows more
erasures and errors to be simultaneously corrected.

It is also worth noting the connection between our work and the work on belief propagation (see, for
example, [1, 5, 7]). Our decoding algorithms can be seen as simplified versions of belief propagation, where
instead of probabilities being passed along edges of a graph, one of a small number of values is passed.
Although our simplified LDEE schemes cannot successfully decode as many errors (or errors and erasures)
as belief propagation, because our schemes are simpler, faster, and use less memory, they may still prove
useful in practice. Another important advantage of these simplified schemes is that we can analyze them, to
the extent that we can make provable statements about their asymptotic performance. We cannot yet make
similar statements for codes based on belief propagation.

In Section 2, we describe our codes and general methods for analyzing them. We then explain in Sec-
tion 3 how these codes can also easily be used in settings with Gaussian noise. We suggest how our codes
could be improved and leave several related open questions in Section 4. In particular, there are many
questions regarding the best design for both the decoding algorithms and the codes.

2 The Codes

In the following we refer to the nodes on the left and right sides of a bipartite graph as itsmessagenodes
andchecknodes respectively. A bipartite graph withn nodes on the left andr nodes on the right gives rise
to a linear code of dimensionk ≥ n − r , block lengthn, and rateR = k/n in the following way: the bits of

1

a codeword are indexed by the message nodes. A binary vectorx = (x1, . . . , xn) is a codeword if and only
if Hx = 0, whereH is ther × n incidence matrix of the graph whose rows are indexed by the check nodes
and whose columns are indexed by the message nodes. In other words,(x1, . . . , xn) is a codeword if and
only if for each check node the exclusive-or of its incident message nodes is zero.

An alternative approach is to allow the nodes on the right to represent bits rather than restrictions, and
then use a cascading series of bipartite graphs, as described for example in [10] or [2]. In this situation, we
know inductively the correct value of the check nodes in each layer when we correct the message nodes, and
the check nodes are the exclusive-or of their incident message nodes.

In the sequel we focus on one bipartite graph only, and assume that only the nodes on the left are in
error. The analysis that we provide in this case works for either of the two approaches given above, as we
may inductively focus on just one layer in the context of cascading series of graphs [2, 10].

We now describe a decoding algorithm for codes based on irregular graphs, in the context where both
erasures and errors are possible. In particular, we assume that with probabilityp0 a message node receives
the wrong bit, and with probabilityq0 the bit corresponding to the message node is erased. We also assume
that these parameters are known initially.

Following the notation used in [2], for an irregular bipartite graph we say that an edge has degreei on the
left (right) if its left (right) hand neighbor has degreei . Let us suppose we have an irregular bipartite graph
with some maximum left degreed` and some maximum right degreedr . We specify our irregular graph
by sequences(λ1, λ2, . . . , λd`

) and(ρ1, ρ2, . . . , ρdr), whereλi (ρi) is the fraction of edges with left (right)
degreei . Further, we defineρ(x) := ∑

i ρi xi−1. In practice, given a desired pair of degree sequences, an
appropriate graph (or equivalently a parity check matrixH) can easily be constructed randomly, as described
in [2, 4].

For most of this paper, we use example codes based on regular bipartite graphs, or graphs where all
nodes on the left have the same degree and all nodes on the right have the same degree. For example, for a
rate 1/2 code where all message nodes have degree 3 and all check nodes have degree 6, we haveλ3 = 1
andρ6 = 1.

The decoding process proceeds inrounds, where in each round first the message nodes send each inci-
dent check node a value and then the check nodes send each incident message node a value. To picture the
decoding process, consider an individual edge(m, c) between a message nodem and a check nodec, and
an associated tree describing a neighborhood ofm. This tree is rooted atm, and the tree branches out from
the check nodes ofm excludingc, as shown in Figure 1. For now let us assume that the neighborhood ofm
is accurately described by a tree for some fixed number of rounds.

We say that each message nodem receives a valuerm. This valuerm is a 0 or 1 bit, or in the case where
an erasure occurs, we use the notationrm = −1. When we say a message node receives a bit (as opposed to
a value) we exclusively mean either a 0 or a 1. A received bitrm is purported to be the correct message bit.
Thus, the valuerm is an incorrect message bit with probabilityp0, and it is−1 with probabilityq0. Each
edge(m, c) remembers a valuegm,c that is a guess of the correct bit ofm, or possibly a−1. Initially this
guess is just the valuerm. During each round a value is passed in each direction across each edge(m, c).
The valuegm,c is continually updated each round based on all information that is passed from tom from
nodes other thanc. Specifically, each round consists of an execution of the script in Figure 2, where thebi

used in the script are quantities to be determined later.

We describe the intuition behind the process described in Figure 2. A nodem that was initially an erasure
sends the 0/1 bit that corresponds to the majority vote of its other neighboring check nodes. This bit is the
current best guess that nodem has for its value. If the other check nodes are evenly divided, a−1 is sent.
A nodem that was not initially erased sends on toc the best guess for its value, based on the original bit
received and the messages most recently sent by its other neighbors. (The best guess is associated with the
valuebi , as we shall explain.) A check nodec sends on the value tom that it believesm should have based

2

c

m

check node

messsage node

check nodes

message nodes

Figure 1: Representing the code as a tree.

• For all edges(m, c) do the following in parallel:

– If this is the zero’th round, then setgm,c to rm.

– If this is a subsequent roundi + 1, thengm,c is computed as follows:

∗ if rm is −1,

· if the check nodes neighboringm excludingc sent more 0 bits
than 1 bits tom, setgm,c to 0,

· if the check nodes neighboringm excludingc sent more 1 bits
than 0 bits tom, setgm,c to 1,

· otherwise, setgm,c to −1,

∗ if rm is not−1,

· if the difference between the number of 0 bits and 1 bits check nodes the
neighboringm excludingc sent tom is at leastbi , setgm,c to 0,

· if the difference between the number of 1 bits and 0 bits check nodes the
neighboringm excludingc sent tom is at leastbi , setgm,c to 1,

· otherwise, setgm,c to rm,

– In either case,m sendsgm,c to c.

• For all edges(m, c) do the following in parallel:

– if the check nodec receives no−1 from nodes other thanm, it sends tom the
exclusive-or of the values received in this round from its adjacent nodes excludingm.

– otherwisec sendsm a−1

Figure 2: Pseudo-code for the main decoding loop.

3

on the messages ofc’s other neighbors. If one of those neighbors sends a−1, representing that it has no
reason to favor sending a 0 or 1, the check node has no reason to favor a value form as well, and hence
sends on a−1. This process generalizes the algorithm for error-correction presented in [1, 4]; in the case
of no erasures, a 0/1 bit is sent every round along every edge. This process also generalizes the sequential
algorithm for erasure correction of [2]; in the case of no errors, note that the only values passed along edges
are−1 or the true bit value. Hence a node can be considered corrected as soon as it receives a bit value.
(And in fact the algorithm of [2] takes advantage of this, sequentially filling in values for nodes as they
become available.)

Of course the parallel work can easily be simulated sequentially. Moreover, the work per round can
easily be coded so that it is linear in the number of edges.

After each round the message nodes can choose a guess for their correct value based on the edge in-
formation; if all guesses are consistent with the check nodes, then the process may stop having found a
codeword. Presumably the codeword is the correct one. To show the process stops with the correct code
word, we consider the edges, since it is clear that if each edge passes on the correct value, the process
terminates successfully.

Let pi be the probability thatm sendsc an incorrect bitgm,c in roundi . Similarly, letqi be the probability
thatm sendsc the valuegm,c = −1 in roundi . Following the approach used in [1, 2, 3, 4], we determine a
recursive equation describing the evolution of bothpi andqi over a constant number of rounds.

To analyze the algorithm, consider the process from the point of view of an edge(m, c). First we
consider what some other check nodec′ sends tom at the end of thei th round. The nodec′ sendsm a −1
if any of its other neighboring message nodes sends it a−1. As the probability each other message node
sent a−1 is qi , the probability thatc′ sendsm a−1 is 1− ρ(1 − qi). (Note here that we have not specified
the degree ofc′; instead we have used that the degree of the edge(m, c′) on the right is j with probability
ρ j , and that leads to the above expression.) Otherwise,c′ sendsm its correct bit as long as there are an
even number (including possibly 0) of other message nodes sendingc′ the wrong bit. As the probability
each bit was sent incorrectly toc′ is pi , and the probability a−1 was sent isqi , it is simple to check that
the probability thatc′ receives an even number of errors and no−1 is ρ(1−qi)+ρ(1−qi −2pi)

2 . Similarly, the

probability thatc′ receives an odd number of errors and no−1 is ρ(1−qi)−ρ(1−qi −2pi)

2 .
For notational convenience, we define

ρ+,i = ρ(1 − qi) + ρ(1 − qi − 2pi)

2
; ρ−,i = ρ(1 − qi) − ρ(1 − qi − 2pi)

2
; ρ?,i = 1 − ρ(1 − qi).

That is,ρ+,i , ρ−,i , andρ?,i are the probabilities that a nodec′ sends respectively the correct bit, the wrong
bit, and a−1 value to nodem in roundi .

Let us first consider the recursive formula forqi+1. A random edge(m, c) has left degreej with prob-
ability λj . It passes on a−1 only if m received a−1 and the number of neighboring check nodesc′ other
thanc sending the bit 0 equals the number of such neighboring check nodes sending the bit 1. Lettingh
represent the number of correct bits sent, we find

qi+1 = q0

d∑̀
j =1

λj

b(j −1)/2c∑
h=0

(
j − 1

h; h; j − 1 − 2h

)
ρ

j −1−2h
?,i ρh

+,i ρh
−,i (1)

Now let us consider the recursive formula forpi+1. For convenience, let us consider the case where a
nodem that received a bitrm initially and obtainsk bits (that is, not−1’s!) from neighbors other thanc in
roundi . In this case, we suppose that nodem passes onrm unless at leastbi,k of thek bits received are not
rm. Note thatbi,k depends not on the degree of the node, but on the number of actual bits the nodem receives
from neighbors other thanc. To analyzepi+1 again consider a random edge(m, c). The probabilitypi+1

4

can be expressed as the sum of disjoint cases: ifm initially received the wrong bit, it might not be corrected;
if m initially received the correct bit, it might passed the wrong value; and ifm was initially erased, it might
pass on the wrong value. The recursive description forpi is thus

pi+1 = p0 +
d∑̀

j =1

λj

j −1∑
k=0

(
j − 1

k

)
ρ

j −1−k
?,i


 k∑

h=bi,k

(
k

h

)(
(1 − p0 − q0)ρ

k−h
+,i ρh

−,i − p0ρ
h
+,i ρk−h

−,i

)
(2)

+
k∑

h=d(k+1)/2e

(
k

h

)
q0ρ

k−h
+,i ρh

−,i

]
.

The value ofbi,k that minimizes the value ofpi+1 is given by the smallest integer that satisfies:

1 − p0 − q0

p0
≤

(
ρ+,i

ρ−,i

)2bi,k−k

. (3)

This equation is derived by settingbi,k to the smallest value that makes the probability of changing a
correct message to an incorrect message smaller than the probability of changing an incorrect message to a
correct message. Equation (3) has an interesting interpretation. (Here we follow [4].) Note 2bi,k − k is a
constant fixed by the above equation. The numberbi = 2bi,k − k = bi,k − (k − bi,k) can be interpreted as
the difference between the number of check nodes that agree in the majority and the number that agree in
the minority whenk of the j − 1 check nodes send actual bit values. We call this difference thediscrepancy
of a node. Equation (3) tells us that we need only check that the discrepancy is above a certain threshold
(independent ofk) to decide which value to send for a message node that received a bit. Hence we described
the algorithm originally in this manner.

With the above equations, we can check for a given degree sequence (λ andρ) and given error probabil-
ities (p0 andq0) whether bothpi andqi converge to 0. Note, however, that even ifpi andqi converge to 0,
this does not directly imply that the process correctly finds a codeword, even just with high probability. This
is because our assumption that the neighborhood of(m, c) is accurately represented by a tree for arbitrarily
many rounds is not true. In fact, even for a randomly chosen graph with the right degree sequence, for any
constant number of rounds it is true only with high probability.

This problem can be overcome in standard ways. In the case of regular graphs (where all edges have
the same left degree and the same right degree), Gallager developed an explicit construction of graphs with
no small cycles that leads to high probability bounds. Alternatively, random constructions yield few small
cycles. Using this fact, one can show that (up to lower order terms) the equations above approximately hold
for any constant number of rounds, for a large enough message sizen. (The analysis is entirely the same as in
[3, 4].) A constant number of rounds suffices to correct almost all errors and erasures. Fixing the remaining
errors and erasures can be easily handled using a small additional graph structure and an additional code
(such as the regular, constructive versions of these codes, or the codes of Spielman[10]). These concerns are
primarily theoretical; in practice, random constructions generally work well without any additional graph
structure, and the process terminates having successfully found a codeword. Using the theory, however,
allows us to state the following theorem:

Theorem 1 Consider parameters p0,q0, (λ1, λ2, . . . , λd`
) and(ρ1, ρ2, . . . , ρdr), with all λi , ρi ≥ 2. If there

exist thresholds bi,k such that the recurrences (1) and (2) define a sequence(pi , qi) with lim i→∞(pi , qi) →
(0, 0), then for anyε > 0 and sufficiently large block size n there is a code of rate R− ε that simultaneously
corrects errors made independently with probability p0 and erasures made independently with probability
q0 with high probability (polynomially small in n).

5

Proof: One constructs a random graph with the given edge degree sequences to yield the code. The proof
follows from the same arguments as [3, 4]. A martingale argument (on the edges) shows that for sufficiently
largen, most of the graph behaves like a tree for sufficiently many rounds. Furthermore, for each tree shape,
the number of edges that lie atop a tree of that shape is close to its expected value with high probability. A
second martingale argument on the received valuesrm then shows that the number of edges that pass on the
correct value is close to its expectation with high probability. Putting this together shows that our recursion
provides nearly correct results for sufficiently largen for a suitably large constant number of rounds. A
simple clean-up stage to correct remaining errors reduces the rate fromR to R − ε.

Whenpi andqi do not both converge to 0, we have found their values converge to afixed point. That is,
we reach a point(pi , qi) such that(pi+1, qi+1) = (pi , qi). This fixed point corresponds to the asymptotic
fraction of edges passing errors and−1 values even if one runs the process for arbitrarily many rounds.

In practice, the equations can be used to estimate actual code performance. Although the equations de-
scribe the asymptotic performance as the number of nodesn grows to infinity, generally the model provides
reasonably accurate estimates of performance even for relatively smalln (in the thousands).

3 On Gaussian Noise

Low density parity check codes for correcting errors can easily be applied to the model where noise is
Gaussian by converting the received signal to a bit value; errors occur for bits where the noise is large. Of
course this approach removes significant information from the received transmission, so one can not hope
to handle as many errors as, for example, belief propagation. In return one gains simplicity and speed.

Using LDEE codes keeps the advantages of simplicity and speed while substantially improving perfor-
mance by using the−1 value. With LDEE codes, the Gaussian signal is initially converted to a 0,1, or−1
value. The choice of how to map signals to values affects the probability that that each bit is an error or is
treated as an erasure. A suitable mapping choice can be determined given the strength of the Gaussian noise
and the code.

For example, consider the case of the regular code with message nodes having degree 3 and check nodes
having degree 6 (a rate 1/2 code), using the decoding algorithm of Section 2. We graph the asymptotic
maximum fraction of erasures possible for a given fraction of errors in Figure 3, which we call thetolerance
curve. (The curve is approximate; it was obtained by using the Equations (1) and (2) to find the maximum
q0 for p0 = 0, 0.002, 0.004,) Figure 3 also shows a curve demonstrating the tradeoff between error
and erasure generation under Gaussian noise, which we call thetradeoff curve. This curve is for the case
where the received signal should have either mean 1 or−1 depending on the bit value, and the standard
deviation of the signal isσ = 0.70. The curve is generated as follows: for a given noise, consider the effect
when all received values in the range [−z, z] are treated as erasures. Then the probability of an erasure is
8

(−1+z
σ

) − 8
(−1−z

σ

)
, and the probability of an error is8

(−1−z
σ

)
. Considering how these points vary as a

function ofz yields the appropriate curve.
If the tolerance curve lies below the tradeoff curve everywhere, then regardless of how one maps the

received signal to errors and erasures, the decoding algorithm fails (with high probability). Where the
tradeoff curve falls below the tolerance curve yields points where the mapping allows decoding. Hence
from Figure 3 we can tell that at the given noise level simply translating the signal directly to either a 0 or
1 bit would be ineffective; however, by treating all signals in the range [−0.5, 0.5] as erasures, decoding is
possible (asymptotically, for large enough messages).

We tested our argument above with simulation. We treated all signals in the range [−0.5, 0.5] as era-
sures, but used a standard deviation ofσ = 0.65, allowing ourselves some room. (Recall that our theoretical
results imply that that when the tradeoff curve falls below the tolerance curve, decoding occurs with high

6

Tradeoff and Tolerance

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6

Fraction of Erasures

F
ra

ct
io

n
of

 E
rr

or
s

Tradeoff Curve

Tolerance Curve

Figure 3: Tradeoff curve forσ = 0.70 and tolerance curve for a 3-6 regular bipartite graph.

probability for sufficiently large graphs; for moderate sized graphs, the noise should be slightly lower than
the asymptotic theory suggests.) On a single randomly chosen bipartite graph with 16,000 nodes of degree
3 on the left and 8,000 nodes of degree 6 on the right (modified to remove small cycles of length 2 and 4),
the decoding algorithm worked successfully on all 1,000 trial runs. More experimentation would be worth-
while; however, this result demonstrates that our analysis is accurate enough to be useful on reasonable sized
systems.

More generally, this approach allows an approximate determination the maximum acceptable signal
noise for a code specified by its degree sequences using a simple binary search approach. We can test
a given noise value (given say byσ) by plotting the appropriate tradeoff curve and comparing it to the
tolerance curve of the given code. If the tradeoff curve lies somewhere below the tolerance curve, a higher
noise level can be tested; otherwise, a lower noise level can be tested. Noise distributions other than the
Gaussian can be handled in an entirely similar fashion.

4 Improvements

4.1 Improving the Decoding

In the decoding algorithm of Section 2, we allow three possible values to be passed along the edges. The
value−1 specifically denotes a complete lack of preference among the two possible choices for a bit. It
seems highly unlikely that this is the best use for this symbol.

That passing more detailed information each round can lead to better decoding is intuitively obvious.
The limiting case, where nodes pass estimates of their probability of being a 0 (or 1) according to a Bayesian
calculation along the edges, is just belief propagation. Belief propagation has proven highly effective,
although it is generally slower than the simpler approach taken here, and there are no provable performance
guarantees.

It is not clear, however, how to best make use of the ability to pass three possible values (or, for that
matter, how to best make use of the ability to pass a small finite number of values). One possibility we
explore here is to use each value to denote a range of probabilities. More explicitly, during each round the
value 0, 1, or −1 will be sent by a message node. Sending a−1 will denote that the conditional probability
of being either a 0 or a 1 is betweenαi and 1− αi , for someαi < 0.5 chosen explicitly in advance. Sending

7

a 0 along an edge denotes that the conditional probability of being a 0 is at least 1− αi , and similarly for a
1. Check nodes will behave as in the algorithm of Section 2, providing the exclusive-or of other neighboring
values when none of these values are−1. (Note that, whenαi = 0.5, we obtain the original algorithm
presented in Section 2.)

We offer some intuition as to why varying the parameterα might be helpful. Suppose we run the original
algorithm (α = 0.5) until it reaches a fixed point. By then decreasing the parameterα, we reduce the number
of errors, making each sent bit more valuable, at the expense of introducing more−1 values. It is possible
this tradeoff might be beneficial; if so, then by continuing with the original algorithm, we may find that we
have passed the fixed point, allowing the decoding to complete.

For this variation, there are three threshold values to compute. The first,b1
i,k, represents the number of

neighbors that must agree on a bit for a message nodem with rm = −1 to send that bit in roundi + 1. The
correct choice for the thresholdb1

i,k is the smallest integer that satisfies

1 − αi

αi
≤

(
ρ+,i

ρ−,i

)2b1
i,k−k+1

. (4)

This choice guarantees that a bit is sent only if the conditional probability that it is correct is at least 1− α.
The thresholdb2

i,k represents the number of neighbors that must agree with a message nodem with value
rm 6= −1 to send onrm; similarly, b3

i,k represents the number of neighbors that must disagree with a message
nodem with valuerm 6= −1 to send on the other possible bit value. The thresholds are the smallest integers
satisfying:

(1 − αi)p0

αi (1 − p0 − q0)
≤

(
ρ+,i

ρ−,i

)2b2
i,k−k+1

; (5)

(1 − αi)(1 − p0 − q0)

αi p0
≤

(
ρ+,i

ρ−,i

)2b3
i,k−k+1

(6)

Note that if neither threshold is met, the message nodem passes on the value−1.
In the following recursive equations forpi+1 andqi+1, we usek to denote a number of message nodes

not passing−1, andh to denote a number of message nodes passing the correct bit.

qi+1 =
d∑̀

j =1

λj

j −1∑
k=0

(
j − 1

k

)
ρ

j −1−k
?,i





q0

b1
i,k−1∑

h=k−b1
i,k+1

(
k

h

)
ρh

+,i ρ
k−h
−,i


 + (7)


p0

b3
i,k−1∑

h=k−b2
i,k+1

(
k

h

)
ρh

+,i ρ
k−h
−,i


 +


(1 − p0 − q0)

b2
i,k−1∑

h=k−b3
i,k+1

(
k

h

)
ρh

+,i ρ
k−h
−,i







pi+1 =
d∑̀

j =1

λj

j −1∑
k=0

(
j − 1

k

)
ρ

j −1−k
?,i





q0

k−b1
i,k∑

h=0

(
k

h

)
ρh

+,i ρ
k−h
−,i


 + (8)


p0

k−b2
i,k∑

h=0

(
k

h

)
ρh

+,i ρ
k−h
−,i


 +

8


(1 − p0 − q0)

k−b3
i,k∑

h=0

(
k

h

)
ρh

+,i ρ
k−h
−,i







We have experimented with this framework on regular codes, where the left degrees are all the same and
the right degrees are all the same. We began by usingα = 0.5; that is, we ran the original algorithm. After
reaching a fixed point, we tried different values ofαi . In some cases, we successfully moved off the fixed
point and found a trajectory that led thepi andqi values to both converge to 0. However, the improvement
in the number of errors and erasures that can be corrected over the original algorithm of using this ad
hoc technique as yet appear inconsequential. Determining whether this approach can lead to significant
improvements and determining a methodology for appropriately setting theαi values remain challenging
open questions. Similarly, there may be better ways of using the three values 0, 1, and−1 being sent along
the edges, and better schemes that use a larger number of possible values. Answering these questions might
well provide us with a greater understanding of the limiting case of belief propagation.

4.2 Finding Good Irregular Codes

The analysis of Section 2 allows one to estimate code performance in advance, given a pair of degree
sequences. For the special cases of no errors or no erasures, the pair of equations (1) and (2) reduce to
a single equation. As shown in [2, 4], these equations can be used to develop a tool for determining the
good degree sequences for irregular codes. This tool is based on the following idea: suppose we consider
the case where there are only errors. We consider the problem of finding a feasible left degree sequence
(λ1, λ2, . . . , λd`

), given a right degree sequence(ρ1, ρ2, . . . , ρdr) and a target error probabilityp0. (A
similar approach can be sued to find a feasible right degree sequence from a left degree sequence.) A
sufficient condition for success (at least asymptotically) is to find a sequenceλi for which pi+1 < pi . Given
theρi , Equation (2) reduces to the statementpi+1 = f (pi), where f is a function linear in theλi . Hence
we can write a linear program with theλi as variables, attempting to find a feasible solution forf (x) < x
at many sample valuesx spread on the interval [0, p0]. The solution to this linear program should give us a
suitable left hand sequence that comes very close to achieving the target error probabilityp0.

It would of course be useful to have a similar tool to find good irregular degree sequences for LDEE
codes. As of yet, we have not been able to design such a tool. We offer a somewhat technical explanation
regarding why the previous technique does not appear to generalize. The equations (7) and (8) do similarly
reduce to equations of the formpi+1 = f (pi , qi) andqi+1 = f (pi , qi) that are linear in theλi . It is not clear,
however, what is the appropriate condition to place on these equations. For example, clearly we do not want
to setpi+1 < f (pi , qi), as in cases where one begins with a small number of errors and large number of
erasures, the number of errors will initially increase substantially, as the erased nodes attempt to make their
best decision. Even for more apparently reasonable conditions, such aspi+1 +qi+1 < f (pi , qi)+ g(pi , qi),
it is not clear for what range the condition has to hold. The interval [0, p0] × [0, q0] appears necessary, but
not sufficient, since again it is possible forp1 > p0, in which case we are at a point outside this region.

Although these difficulties do not appear to be substantial, we have not yet found a means of overcoming
them. Thus developing an approach finding good irregular LDEE codes remains an open question.

5 Summary

We have demonstrated that previous work on low density parity check codes for error correction and similar
codes for erasure correction can be unified under a common pair of equations that describe codes for both
errors and erasures. Our approach leads to codes with provable performance results, and the decoding

9

algorithm is simpler than belief propagation; however, as a result, the performance of these codes is not as
good as that of belief propagation. Several open questions remain, including how to best design such codes
and how to best design simple, effective message-passing decoding algorithms.

References

[1] R. G. Gallager,Low-Density Parity-Check Codes, MIT Press, 1963.

[2] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, “Practical Loss-
Resilient Codes”,Proc.29th Symp. on Theory of Computing, 1997, pp. 150–159.

[3] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of Random Processes via And-Or
Trees”,Proc.9th Symp. on Discrete Algorithms, pp. 364-373, 1998.

[4] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Analysis of Low Density Codes
and Improved Designs Using Irregular Graphs”,Proc.30th ACM Symp. on Theory of Computing, pp.
249-258, 1998.

[5] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Improved Low-Density Parity-
Check Codes Using Irregular Graphs and Belief Propagation,” appeared in ISIT 1998.

[6] D. J. C. MacKay, R, J. McEliece, and J.-F. Cheng, “Turbo Coding as an Instance of Pearl’s ’Belief
Propagation’ Algorithm”, to appear inIEEE Journal on Selected Areas in Communication.

[7] D. J. C. MacKay and R. M. Neal, “Good Error Correcting Codes Based on Very Sparse Matrices”,
available fromhttp://wol.ra.phy.cam.ac.uk/mackay.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon Limit Performance of Low Density Parity Check
Codes”, to appear inElectronic Letters.

[9] M. Sipser, D. A. Spielman, “Expander Codes”,IEEE Transactions on Information Theory, 42(6),
November 1996, pp. 1710-1722.

[10] D. A. Spielman, “Linear Time Encodable and Decodable Error-Correcting Codes”,IEEE Transactions
on Information Theory, 42(6), November 1996, pp. 1723-1731.

10

