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Abstract

We describe the design and implementation of a reconfigurable high-
speed interface for IEEE 1394 Firewire and measurements obtained with this
system. For the physical and link layers we use a commercial chip-set. Field-
Programmable Gate Arrays on the PCI Pamette and a secondary FireLink
board are used to implement a simple transaction layer interfacing the link
layers to the host CPU.

1 Introduction

Firewire, IEEE standard 1394, is a serial interconnect developed by Apple and
Texas Instruments for the consumer market. The standard regulates the physical
and link layers. In addition, the standard proposes a generic transaction layer.
Primary target applications are high volume Audio, Video and computer peripheral
connections.

Firewire highlights are: 100 Mbits/s to 3.2 Gbits/s of physical transport1, user
friendly hot plugging, low cost and a non-proprietary specification. Figure 1 puts
Firewire into perspective to other interconnect technologies.

Today, the bandwidth of Firewire is five times smaller than current PCI bus
bandwidth. Comparing the projections of the various interconnect technologies,
Firewire has the potential to achieve about half the bandwidth of the High-Performance
Parallel Interface (HIPPI).

Firewire is of special interest because it represents the first serious attempt to
provide a standardized high bandwidth interconnect for both computers and con-
sumer electronics. Consumer devices such as all digital video cameras are already
available and Microsoft Corp. is promoting the use of Firewire in future PCs.

2 FireLink and the PCI Pamette

PCI Pamette is an FPGA board developed at DIGITAL Systems Research Center
as a follow on project to PAM [1] - Programmable Active Memories - one of the
first successful custom computing machines.

The PCI Pamette contains a powerful PCI interface, four Field Programmable
Gate Arrays (Xilinx XC4000 series), and IEEE P1386 Common Mezzanine Card
connectors to the real world.

Past projects with the PCI Pamette include :

• PCI bus exercising and analysis[7].

1at the time of this project, 200 Mbits/s chipsets are available from Texas Instruments.
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Figure 1: In this figure, various network technologies are compared to Firewire.
Currently available bandwidths and future bandwidths are compared. The tech-
nologies are: Ethernet, Firewire, PCI bus, HIPPI the High Performance Parallel
Interface, and the Pentium II main memory bus.

• Scientific image acquisition and telescope control for solar astronomy [8] [9]
[10].

• Rapid prototyping of a wireless LAN host adapter[11].

• Lightning: A distributed graphics frame-buffer[6].

To provide a direct Firewire interface to PCI Pamette, Didier Roncin devel-
oped a custom PCI Pamette daughter board called FireLink. FireLink consists of
two fully independent Firewire Channels and 1 Xilinx XC4010E for control. Fire-
Link can therefore also be used as a bridge between two Firewire networks. Both
channels are three port however due to physical space constraints one channel only
provides connectors for two of its ports. The XC4010E on the FireLink board is
programmed from PCI Pamette using a jtag interface. This same interface can be
used to examine the internal state of the running FPGA. Strict compliance with
the Firewire standard and flexible FPGA technology make this board a powerful
platform for exploring Firewire.
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2.1 FPGA design with PamDC

PamDC was developed as part of the PAM project[1] described above. The design
is described structurally in C++. Running the resulting program creates a Xilinx
netlist file which is passed on to place-and-route tools.

The advantage of PamDC is that the designer has full control over placement.
Technology mapping can be done automatically or by the designer. This is espe-
cially important in order to make efficient use of the fast carry chain, available in
Xilinx XC4000 FPGAs. PamDC gives the designer total control over the design,
which with some effort can result in maximal performance and minimal area.

The drawbacks of PamDC are the relatively high effort needed to create struc-
tural designs on a very low level.

2.2 Reconfigurable Hardware based Development
Methodology

Reconfigurable hardware allows us to use an incremental design approach. We use
instrumentation to aid in debugging and optimization of the design. At runtime,
SRAM memory on the PCI Pamette board is used to log data from the FPGAs.
This data can afterwards be evaluated. Results of cycle-by-cycle simulation are
used to validate the real-time data obtained by instrumentation. This methodology
was successfully employed in debugging five FPGAs across three circuit-boards.

Our methodology also enables us to explore various design alternatives and
obtain measurements about the environment of our design (e.g. details about the
link and physical layer chip-set.)

3 Inter-chip Communication

3.1 Communication with the Link Layer Chips

Firewire transactions are initiated by writing to specific registers on the link layer
chips, i.e. sending a message requires writing the control data from the message
header into control registers, writing the first data word into a start register and
writing all following data words into a second write register until fin ally the last
data word of the message is written into a third ‘end-of-block’ register.

After the last word is written to the link layer, the data is transferred to the
physical layer. After all the data is transferred to the physical layer, the link layer
chip is ready to receive new data.

The latency for reads and writes of registers in the link layer is defined in the
documentation to take “up to 9 clock cycles”. This variable latency of reads and
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Figure 2: The figure shows the distribution for the latency of accessing the link
layer chips in link layer clock cycles. Out of 1133 consecutive requests to the link
layer, 1105 responses came on the following clock cycle.

writes of the link layer requires adequate buffering and synchronization between
the PCI Pamette and the link layers. A block diagram of our buffer design on the
FPGAs is shown in Figure 3.

In order to gain better understanding of the meaning of “up to 9 clock cycles”,
we used our instrumentation and logging framework to get data about the actual
distribution of read and write latencies. Figure 2 shows the distribution of link
layer access latencies.

3.2 PCI and PCI Pamette Fundamentals

PCI is a high performance, 32-bit or 64-bit bus with multiplexed address and data
lines. The bus is intended for use as an interconnect mechanism between highly
integrated peripheral controller components, peripheral add-in boards, and proces-
sor/memory systems.

The fundamental transaction in PCI is an address followed by a burst of data.
Starting with version 2.1 of the PCI Specification[12] there is some scope for split-
ting transactions into address and data phases, but this feature is primarily intended
for use in the construction of deeply hierarchical bridged bus systems.

In most uses the read operation suffers a performance penalty in comparison
to the write operation because the read target must decode the transaction address
and, on the basis of this address, drive the appropriate data onto the bus. This
address dependency introduces latency between the address and data phases on
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Figure 3: The figure shows five Xilinx XC4010E FPGAs. LCA0-3 are the four
user programmable FPGAs on the PCI Pamette. The FireLink board has only one
FPGA that communicates with both Firewire Channels. The buffers in LCA0 are
FIFO buffers, while in LCA1, local SRAM is used to buffer data for DMA to host
memory.

read transactions. Write operations in contrast suffer no such penalty because the
initiator of the write can prepare the address and data ahead of the transaction and
pipeline information onto the bus.

For these reasons we try wherever possible to use PCI write transactions for
performance critical data transfers. Data that the host CPU wishes to send to a
remote system is sent to the PCI Pamette using programmed I/O write operations.
In this case we take advantage of the CPU write buffers by writing to sequential
addresses in the memory space to which the PCI Pamette has been mapped and
relying on the write buffers to aggregate these transfers into longer bursts. Data ar-
riving from a remote system on the other hand is moved into the host memory sys-
tem using direct memory access (DMA) in which the PCI Pamette autonomously
requests the PCI bus and initiates writes to main memory buffer addresses that have
been provided in advance by the CPU. Rendezvous with the CPU for received data
is currently accomplished by polling of main memory by the CPU.

Data flows in two directions across the PCI bus. The reason for using CPU
writes in one direction and DMA in the other is that CPU writes to PCI are the most
efficient way to transfer data from CPU to PCI and DMA initiated by a peripheral
card (i.e. PCI Pamette) is the most efficient way to move data from PCI to main
memory of the host.
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Send (sendBlock, length, destination, A);

if (ReadAck(A) != SUCCESS) { ERROR }

if (Recv(B, recvBlock, length) != SUCCESS) { ERROR }

Figure 4: The figure shows a typical sequence of function calls for sending a block
of data on channel A and receiving a block of data on channel B.

3.3 Communication between PCI and the Link Layers

We use PCI Pamette in a high-performance mode where main memory can be
mapped onto resources on the FPGA board.

In order to achieve maximal performance, we transfer data to FireLink with
write bursts from the CPU, and move the arriving data from FireLink into the host’s
main memory with DMA bursts initiated by the PCI Pamette.

CPU write bursts on the PCI bus are achieved by mapping our entire region of
main memory onto one register on the link layer chip. Consecutive writes to this
region create PCI bursts that allow us to write to the link layer chips at maximal
speed (see section on Peak Bandwidths and Latencies).

In our case, DMA cycles are initiated by the PCI Pamette transferring a block
of data from LCA1 to main memory. For efficiency reasons, we chose a block-size
equal to the host cache-line size.

4 The FireLink Software Library

In order to control the Firewire network through the PCI Pamette, we created a
software library that communicates with Firewire through the PCI Pamette runtime
environment. The software interface to FireLink is also designed with performance
as the main target. We chose the C programming language and macros for imple-
menting the software interface to the FireLink hardware. The size of the library is
around 1000 lines of code.

The two data abstractions are:

• Quad-Packet [32 bits]

• Burst-Blocks, consisting of multiple Quad-Packets
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Figure 4 shows a sequence ofsendandreceivefunction calls for Burst-Blocks.
What actually happens is that the CPU sends the header for a Burst-Block and
afterwards the data, to the asynchronous send FIFO in the link layer of channel A.
Next, the link layer sends the data to the physical layer. The physical layer signals
the link layer when the acknowledge from the other side arrives.ReadAckwaits
for this signal to arrive in main memory.

Our design support two ways to receive data. In normal operation mode, DMA
is enabled. The FPGA on the FireLink board automatically reads the arriving data
and transfers it to LCA1 where the data is stored in local SRAM memory until the
PCI arbiter grants a DMA cycle to the PCI Pamette.

In development and debugging mode DMA is disabled. The CPU has to initiate
a PCI read in order for the data to be read out of the link layer and get transferred
to LCA0. Although it is much slower to read out received data on a block by block
basis, this mode has proven to be effective for debugging and testing purposes.

5 Peak Bandwidths and Latencies

We measure peak bandwidths and latencies achievable with the software library
described above.

Figure 5 shows the resulting latencies for the three operations:

1. Send: write-bursts from CPU to Firewire Link Layer

2. ReadAck: wait for physical acknowledge

3. Recv: DMA from Link Layer to main memory of the CPU

Send, the time to write a burst-block of a specific size into the transmit FIFO,
has a maximal bandwidth of 70 Mbits/s for block sizes of 240 quad-packets. This
is achieved by mapping a region in main memory onto the transmit FIFO in the
link layers, and forcing the CPU to issue write bursts on the PCI bus.

ReadAck, the time for the link layer to send all the data from the transmit FIFOs
to the destination and receive an acknowledgment from the other side, translates
into a bandwidth of 140 Mbits/s. According to the documentation from Texas
Instruments, the physical layer transmits data at 200 Mbits/s. Therefore about 60
Mbits/s are lost waiting for a physical acknowledge.

Recv, the time to move the data from the receive FIFO at the link layer chips
to main memory, results in a bandwidth of 110 Mbits/s. This is achieved by DMA
bursts from the PCI Pamette board to main memory.

The assembly instructionrpcc was used to instrument the code. This allowed
us to measure latencies with the granularity of processor clock cycles. All data
reflects latencies for the runtime library calls and macros.
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Figure 5: The figure shows the latencies for each of the three basic operations,
which are provided by the software library. The different columns stand for differ-
ent burst-block sizes.

6 Future Work

We used the experience gained in the project presented above to design PAM-
Blox [5], an object-oriented library and design methodology on top of PamDC.
The major goal of PAM-Blox is to create additional layers of abstraction on top
of PamDC – simplifying FPGA design while keeping the performance over area
advantage of low level FPGA design.

Possible extension to the FireLink project include exploring the scalability of
FireLink to handle large systems. A software interface to Memory Channel tech-
nology would integrate all the Memory Channel applications with Firewire.

A more esoteric project would be to think of the FireLink hardware as a cost-
efficient distributed system of programmable active memories (PAMs). The objec-
tive could be to speed up computation intensive parallel applications by accelerat-
ing each node with custom FPGA designs.
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