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Abstract

In this paper we study the space requirement of algorithms that make
only one (or a small number of) pass(es) over the input data. We study such
algorithms under a model ofdata streamsthat we introduce here. We give
a number of upper and lower bounds for problems stemming from query-
processing, invoking in the process tools from the area ofcommunication
complexity.

1 Overview

In this paper we study the space requirement of algorithms that make only one
(or a small number of) pass(es) over the input data. We study such algorithms
under a model ofdata streamsthat we introduce here. We develop an intimate
connection between this setting and the classical theory ofcommunication com-
plexity [AMS96, NK, Yao79].

1.1 Motivation

A data stream, intuitively, is a sequence of data items that can be read once by an
algorithm, in the prescribed sequence. A number of technological factors motivate
our study of data streams.

The most economical way to store and move large volumes of data is on sec-
ondary and tertiary storage; these devices naturally produce data streams. More-
over, multiple passes are prohibitive due to the volumes of data on these media; for
example internet archives [Ale] sell (a large fraction of) the web on tape. This prob-
lem is exacerbated by the growing disparity between the costs of secondary/tertiary
storage and the cost of memory/processor speed. Thus to sustain performance for
basic systems operations, core utilities are restricted to read the input only once.
For example, storage managers (such as IBM’s ADSM [ADSM]) use one-pass dif-
ferential backup [ABFLS].

Networks are bringing to the desktop ever-increasing quantities of data in the
form of data streams. For data in networked storage, each pass over the data results
in an additional, expensive network access.

The SELECT/PROJECT model of data access common in database systems
give a “one-pass like” access to data through system calls independent of the phys-
ical storage layout. The interface between the storage manager and the application
layer in a modern database system is well-modeled as a data stream. This data
could be a filtered version of the stored data, and thus might not be contiguous in
physical storage.
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In a large multithreaded database system, the available main memory is parti-
tioned between various computational threads. Moreover, operators such as the
hash-based GROUP BY operator compute multiple aggregation results concur-
rently using only a single scan over the data. Thus, the amount of memory used
in each thread influences efficiency in two ways: (1) It limits the number of con-
current accesses to the database system. (2) It limits the number of different com-
putations that can be performed simultaneously with one scan over the data. Thus
effectively, even a 1Gb machine will have provide under 1Mb to each thread when
supporting a thousand concurrent threads, especially after the operating system and
the DBMS take their share of memory.

There is thus a need for studying algorithms that operate on data streams.

1.2 Scope of the present work

A data streamis a sequence of data itemsx1, . . . , xi , . . . , xn such that the items
are read once in increasing order of the indicesi . Our model of computation can
be described by two parameters: The numberP of passesover the data stream
and theworkspace S(in bits) required in main memory, measured as function of
the input sizen. We seek algorithms for various problems that use one or a small
number of passes and require a workspace that is smaller than the size of the input.
Our model does not require a bound on the computation time, though for all the
algorithms we present, the time required is small. In query settings, the size of the
output is typically much smaller than the size of the workspace.

For example, for graph problems (e.g., [MAGQW, MM]), we view the input
as a sequence ofm (possibly directed) edges betweenn nodes. Our goal is to find
algorithms where space requirements can be bounded as a function ofn (rather
thanm), or in establishing that the space must grow withm.

Our goal is to expose dichotomies in the space requirements along the different
axis: (i) between one-pass and multi-pass algorithms, (ii) between deterministic
and randomized algorithms, and (iii) between exact and approximation algorithms.

We first describe some classes of problems which can be described in this con-
text.

(1) Systems such as LORE[MAGQW] and WEBSQL [AMM, MM, MMM]
view a database as a graph/hypergraph. For instance, a directed edge might rep-
resent a hyperlink on the web, or a citation between scientific papers, or a pair of
cities connected by a flight; in a database of airline passengers a hyperedge may
relate a passenger, the airports he uses, and the airline he uses in a flight. Some typ-
ical queries might be: From which airport in Africa can one reach the most distinct
airports within 3 hops? (TheMAXTOTALproblem below.) Of the papers citing
the most referenced graphics paper, which has the largest bibliography? (TheMAX
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problem below.)
We propose four problems that model queries such as those described here:

Consider a directed multigraph with node setV1 ∪ V2 . . . ∪ Vk, all of whose edges
are directed from a node inVi to a node inVi+1. Let n = maxi |Vi |. The degree of
a vertex is its indegree unless specified otherwise.

The MAXproblem. Let u1 be the node of largest outdegree inV1. Let ui ∈ Vi be
a node of largest degree among those incident toui−1. Finduk.

The MAXNEIGHBORproblem. Let u1 have largest outdegree inV1. Let ui ∈ Vi

have the largest number of edges toui−1, determineuk.

The MAXTOTALproblem. Find a nodeu1 ∈ V1 which is connected to the largest
number of nodes ofVk.

The MAXPATHproblem. Find nodesu1 ∈ V1, uk ∈ Vk such that they are con-
nected by the largest possible number of paths.

(2) A second problem class is verifying consistency in databases. For instance,
check if each customer in a database has a unique address, or if each employee
has a unique manager/salary. We model these problems as consistency verification
problems of relations. Let ak-ary relationR over {0,1, · · · n} be given. Letφ =
∀u1,u2, . . .!∃(v1, v2, . . .) : f (u1, . . . , v1, . . .)for(u1,u2, . . . , v1, v2, . . .) ∈ R.

The Consistency Verification problem. Verify that R satisfiesφ.

(3) More traditional graph problems like connectivity arise [BGMZ97], while
analyzing various properties of the web. In database query optimization estimating
the size of the transitive closure is important [LN89]. This motivates our study of
study of various traditional graph properties.

(4) As pointed out in [SALP79, AMS96] estimates of the frequency moments
of a data set can be used effectively for database query optimization. This mo-
tivates our study of approximate frequency estimation problems and approximate
selection problems (e.g., find a product whose sales are within 10% of the most
popular product).

1.3 Definitions

Las-Vegas and Monte-Carlo algorithms.A randomizedalgorithm is an algorithm
that flips coins, i.e., uses random bits: no probabilistic assumption is made of the
distribution of inputs. A randomized algorithm is calledLas-Vegasif it gives the
correct answer on all input sequences; its running time or workspace could be a
random variable depending on the coin tosses. A randomized algorithm is called
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Monte-Carlo with error probabilityε if on every input sequence it gives the right
answer with probability at least 1− ε. If no ε is specified, it is assumed to be 2/3.

Our principal tool for showing lower bounds on the workspace of limited-pass
algorithms is drawn from the area ofcommunication complexity.

Communication complexity.Let X,Y, andZ be finite sets and letf : X×Y→
Z be a function. The(2-party) communication modelconsist of twoplayers, A
and B such thatA is given anx ∈ X and B is given any ∈ Y and they want to
compute f (x, y). The problem is thatA does not knowy and B does not know
x. Thus, they need to communicate, i.e., exchange bits according to an agreed-
upon protocol. The communication complexity of a function fis the minimum
over all communication protocols of the maximum over allx ∈ X and ally ∈ Y
of the number of bits that need to be exchanged to computef (x, y). The protocol
can be deterministic, Las Vegas or Monte Carlo. Finally, if the communication
is restricted to one player transmitting and the other receiving, then this is termed
one-way communication complexity.In a one-way protocol, it is critical to specify
which player is the transmitter and which the receiver. Only the receiver needs to
be able to computef .

1.4 Related previous work

Estimation of order statistics and outliers [ARS97, AS95, JC85, RML97, Olk93]
has received much attention in in the context of sorting [DNS91], selectivity esti-
mation [PIHS96], query optimization [SALP79] and in providing online user feed-
back [Hel]. The survey by Yannakakis [Yan90] is a comprehensive account of
graph-theoretic methods in database theory.

Classical work on time-space tradeoffs [Cob66, Tom80] may be interpreted as
lower bounds on workspace for problems such as verifying palindromes, perfect
squares and undirectedst connectivity. Paterson and Munro [MP80] studied the
space required in selecting thekth largest out ofn elements using at mostP passes
over the data. They showed an upper bound ofn1/P logn and an almost match-
ing lower bound ofn1/P for large enoughk. Alon, Matias and Szegedy [AMS96]
studied the space complexity of estimating thefrequency momentsof a sequence
of elements in one-pass. In this context, they show (almost) tight upper and lower
bounds for a large number of frequency moments and show how communication
complexity techniques can be used to prove lower bounds on the space require-
ments.

Our model appears at first sight to be closely related to papers on I/O com-
plexity [HK81], hierarchical memory [AACS87], paging [ST85] and competitive
analysis [KMRS88], as well as external memory algorithms [VV96]. However, our
model is considerably more stringent: whereas in these papers on memory manage-
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ment one can bring back (into fast memory) a data item that was previously evicted
(and is required again), in our model we cannot retrieve items that are discarded.

1.5 Our main results

We expose the following dichotomies in our model. (i) Some problems require
large space in one pass but small space in two. (ii) We show that there can be an
exponential gap in space bounds between Monte Carlo and Las Vegas algorithms.
(iii) We show that if we settle for an approximate solution, we can reduce the space
requirement substantially. Our tight lower bounds for the approximate solution
apply communication complexity techniques to approximation algorithms.

Theorem 1 In one pass, theMAX problem requires�(kn2) space and has an
O(kn2 logn) space solution. In P> 1 passes it requires�(kn/P) space and can
be solved in O((kn logn)/P) space.

Theorem 2 In one pass, theMAXNEIGHBOR, MAXTOTAL , and MAXPATH
problem require�(kn2) space and have O(kn2 logn) space solutions.

Notice however, that unlike theMAX problem, the other three do not seem
to admit efficient two pass solutions. Resolving this remains an open issue. We
believe that no constant number of passes will result in substantial savings.

Let R be ak = (k1+ k2)-ary relation over{1, . . .n}. Consider the formula

φ = ∀u1 . . . uk1, !∃(v1 . . . vk2) : f (u1 . . .uk1, v1 . . . vk2) for (u1, . . . v1 . . .) ∈ R

where f is a function assumed to be provided via an oracle. Also suppose that we
are presented the relationR one tuple at a time. Then, we have the following:

Theorem 3 Verifying that R satisfiesφ can be done by an O(log 1
δ

logn) space
Monte Carlo algorithm that outputs the correct answer with probability1− δ. Any
Las Vegas algorithm that verifies that R satisfiesφ requires at least�(n2) space.

Theorem 3 shows an exponential gap between Las Vegas and Monte Carlo algo-
rithms. In Section 4, we describe an algorithm and its analysis; these are easily
modified to yield Theorem 3 through acompletenessproperty described further in
Section 4. We also have the following open problem: LetR be a binary relation.
Let φ = ∀x∃u : (x,u) ∈ R. Is there any sub-linear space Monte Carlo algorithm
that verifies thatR satisfiesφ?

Theorem 4 Given a sequence of m numbers in{1, . . . ,n} with multiple occur-
rences finding the k most frequent items requires�(n/k) space. Random sampling
yields an upper bound of O(n(logm+ logn)/k).
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The proof of Theorem 4 is in Section 5.
Theapproximate median problemrequires finding a number whose rank is in

the interval [m/2− εm,m/2+ εm]. It can be solved by a one-pass Monte Carlo
algorithm with error probability 1/10 andO(logn(log 1/ε)2/ε) space [RML97].
We give a corresponding lower bound in Section 5.

Theorem 5 Any 1-pass Las Vegas algorithm for the approximate median problem
requires�(1/ε) space.

Easy one-pass reductions from the communication complexity of theDISJOINT-
NESSfunction [NK] yields:

Theorem 6 In P passes, the following graph problems on an n-node graph all
require�(n/P) space: computing the connected components, k-edge connected
components with1 < k < n, k-vertex connected components with1 < k < n,
testing graph planarity. Finding the sinks in a directed graph requires2(n/P)
space.

Incremental graph algorithms give one-pass algorithms for all the problems of The-
orem 6. Thus, there are one-pass algorithms for connected components,k-edge and
k-vertex connectivity withk ≤ 3, and planarity testing that useO(n logn) space.

Theorem 7 For any 1 > ε > 0, estimating in one pass the size of the transitive
closure to within a factor ofε requires space�(m).

We prove this theorem in Section 5. Computing the exact size of the transitive
closure requiresO(m logn) space.

The lower bounds of Theorems 1, 2, 6 and 7 hold even for Monte Carlo algo-
rithms that are correct with error probabilityε for a sufficiently smallε.

All our lower bounds are information-theoretic, placing no bounds on the com-
putational power of the algorithms. The upper bounds, on the other hand, are all
“efficient”: in all cases, the running time is about the same as the space usage.

2 Three lower bounds from communication complexity

Many of the lower bounds in our model build on three lower bounds in communi-
cation complexity. We review these lower bounds in this section.

Bit-Vector Probing. Let A have a bit-vectorx of lengthm. Let B have an index
0 < i ≤ m. B needs to knowxi , thei th input bit. The only communication
allowed is fromA to B.
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There is no better method forA to communicatexi to B than to send the
entire stringx. More precisely, any algorithm that succeeds inB guessingxi

correctly with probability better than(1+ ε)/2, requires at leastεm bits of
communication [NK].

Bit-Vector Comparison. Let A andB both have bit-vectorsx y respectively, each
of lengthm. B wishes to verify thatx = y.

Any deterministic or Las Vegas algorithm that successfully solves this prob-
lem must essentially send the entire stringx from A to B, or vice versa.
More precisely, any algorithm that outputs the correct answer with proba-
bility at leastε and never outputs the wrong answer must communicateεm
bits [NK].

Bit-Vector Disjointness. Let A andB both have bit-vectorsx y respectively, each
of lengthm. B wishes to find an indexi such thatxi = 1 andyi = 1.

There is no better protocol than to essentially send the entire stringx from
A to B, or vice versa. More precisely, any algorithm that outputs the cor-
rect answer with probability at least 1− ε (for some small enoughε) must
communicate�(m) bits [NK].

Notice that the second theorem is weaker than the first and the third in some re-
spects: it does not apply to Monte Carlo algorithms. There is a good reason: there
is a Monte Carlo algorithm that does much better, i.e. communicates onlyO(logn)
bits. On the other hand, the first theorem is weaker than the second and third in
some respects: it insists that there be no communication in one of the two direc-
tions. This too is for good reason:B could sendA the index, and thenA could
respond with the bit. For a description of these and other issues in this area, see
[NK].

3 One pass versus many passes

Our goal in this section is to outline the proof of Theorem 1 showing that some
problems require large space in one pass but small space in two. We give here a
lower bound of�(n2) on the space used by any Monte Carlo one-pass algorithm
for the 2-layerMAX problem; a somewhat more elaborate construction (omitted
here) yields a lower bound of�(kn2) for thek-layer version.

Proof of Theorem 1. We provide a reduction from the bit-vector probing prob-
lem. Denote the node-set on the left of the bipartite graph byU , and the node-set
on the right byV , where|U | = |V | = n. We further partitionU into U1,U2 where
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|U1| = n/3 = √m. Likewise we partitionV into V1,V2 where|V1| = n/3. The
bit-stringx is interpreted as specifying the edges of a bipartite graph onU1×V1 in
the natural way, i.e. the edge(u, v) corresponds to indexu

√
m+ v. On getting the

query i , we translate it to an edge(u, v),u ∈ U1, v ∈ V1 and augment the graph
with edges(u, v′) and(u′, v) for eachu′ ∈ U2 andv′ ∈ V2. The answer to the
MAX problem on this graph isv if and only if the edge(u, v) is in the bipartite
graph, i.e. thei th input bit is set.

The MAX problem is solved in 2 passes with spaceO(kn logn), even onk
layered graphs: In the first pass find the degree of each vertex. In the second pass
determine the highest degree neighbor inVi for each vertex inVi−1. Then compute
u1 and repeatedly find the highest degree neighbor of the current node untiluk is
determined. This algorithm can be modified to use only spaceO(kn logn/P) in P
passes.

Note that the lower bound proof that we provide above applies to approximate
versions of theMAX problem as well, namely, it requires�(n2) space to compute
a near max degree neighbor of a vertex with near max degree inU .

Proof of Theorem 2. The proofs for all three problems are reductions from the
bit-vector probing problem similar to the proof of Theorem 1.

To show the bound for theMAXNEIGHBORproblem we construct the same
initial graph as in the proof of Theorem 1, but double each edge fromV1 to U1. On
getting the queryi , we translate it into an edge(u, v), u ∈ U1, v ∈ V1, and add
this edge to the graph. Additionally we augment the graph with two edges(u, v′)
for eachv′ ∈ V2. Then there are three edges betweenu andv iff the i th input bit
is set; otherwise there is only one edge betweenu andv. Thus,v is returned iff the
i th input bit is set.

For theMAXTOTALproblem construct a tripartite graph with node setU ∪V ∪
W, where|U | = |V | = |W| = √m+ 1. The nodes in setU are numbered from
1 to
√

m+ 1. The same holds for setV and setW. As in the proof of Theorem 1,
the bit-stringx is translated into edges fromU to V as follows: edge(u, v) exists
in the graph iff indexu

√
m+ v of x is set. Additionally there is an edge from node√

m+ 1 in U to node
√

m+ 1 in V and from the latter node to node
√

m+ 1 in
W. On getting a queryi we translate it into an edge(u, v) with u ∈ U andv ∈ V
and augment the graph by edges(v,w) for eachw ∈ W. Thenu reaches the most
nodes inW iff the i th input bit was set; otherwise node

√
m+ 1 of U reaches the

most nodes ofW.
For theMAXPATHproblem augment the graph for theMAXTOTALproblem

with a fourth node setX and connect every node ofW with an edge to the same
nodex of X. Using the same reduction for a query as for problemMAXTOTAL
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shows thatu andx are connected by the largest number of paths iff thei th input
bit was set; otherwise node

√
m+ 1 andx are connected by the largest number of

paths.

4 Las Vegas versus Monte Carlo

In this section we present an exponential gap between Las Vegas and Monte Carlo
one-pass algorithms. Thesymmetryproperty given a sequence of ordered pairs over
{1, . . . ,n}, is that(u, v) is in the sequence if and only if there is a unique(v,u) in
it. In this section, we show aO(logn) space Monte Carlo algorithm to verify the
symmetry property. By contrast, any one pass Las Vegas algorithm requires�(m)
space, wherem is the size of the relation.

Algorithm. Choosep, a random prime smaller thann3. Let lu,v = n2((nu)+v)

if u < v and lu,v = −(n2((nu)+v)) if u > v and 0 otherwise. Compute the sum
s = ∑

(u,v)∈R lu,v modulo p. Check ifs = 0 mod p at the end. Storings mod
p requires only logp < 3 logn space. Also check that there are no more thann2

edges in all.

Theorem 8 The above algorithm will output a correct response with probability
at least1− (2 log2 n/n). Moreover, any one pass Las Vegas algorithm that outputs
the correct response with probability2/3 or more uses�(n2) space.

Proof. It is easily seen that
∑

(u,v)∈R lu,v is 0 if and only if R is symmetric. On the
other hand, it follows from the Chinese Remainder Theorem and the fact that there
are at leastn3/ logn primes smaller thann3, that the probability that a non zero sum
evaluates to 0 modulo a random prime is smaller than 2 log2 n/n. This follows,
sinces could be 0 modulop for at most 2n2 logn of them sinces< 22n2 logn.

The lower bound follows from a reduction from the bit-vector comparison
problem. complexity. Assume that one player has a graph with each edge directed
from the smaller numbered vertex to the larger numbered one. The second player
has a graph with each edge directed the other way. The union of the two inputs is
symmetric if and only if the two graphs are the same. Consider a truth table whose
rows are indexed by all the possible inputs of the first player, and the columns are
all possible inputs of the second player; each entry is the output corresponding to
the players’ inputs for that row and column. The truth table corresponding to the
symmetry relation under our class of inputs has 2(n

2) distinct rows, one correspond-
ing to each possible graph. By a technique from communication complexity [NK],
we require at leastc

(n
2

)
communication in any algorithm that purports to solve this

problem with probability(1+ c)/2. Consider the following input data stream: we
present the first player’s ordered pairs followed by the second player’s. The state of
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the data stream algorithm after the first half represents the communication between
the players.

More interesting, however, is a completeness property that arises here. Namely,
that every problem of the form in Theorem 3 can be reduced to the symmetry
problem.

Proof of Theorem 3. The reduction works as follows: we encode each tuple
(u1, . . . uk1) as an indexi using a standard G¨odel encoding,g, let this encoding
range from 1 throughm. Then we output the ordered pair(i,0) for each 1≤ i ≤ m.
Then for each tuple(u1 . . . , v1, . . .) we output(0, g(u1, . . .uk1)) if and only if
f (u1, . . . , v1 . . .). The resultant graph is symmetric if and only if the relationR
satisfiesφ.

5 Exact versus approximate computation

In this section, we show that if we settle for an approximate solution, we can reduce
the space requirement substantially. Our matching lower bounds for the approxi-
mate solution require a generalization of communication complexity techniques to
approximation algorithms.

Proof of Theorem 4. Alon et al. show that finding the mode (i.e., the most
frequently-occurring number) of a sequence ofm numbers in the range{1, . . . ,n}
requires space�(n). By a simple reduction (replace each numberi in the original
sequence by a sequence ofk numberski + 1, ki + 2, . . . ki + k) it follows that that
finding one of thek most frequent items in one pass requires space�(n/k)

The almost matching upper bound is given by the following Monte-Carlo algo-
rithm that succeeds with constant probability: before the start of the sequence sam-
ple each number in the range with probability 1/k and then only keep a counter for
the successfully sampled numbers. Output the successfully sampled number with
largest count. With constant probability one of thek-th most frequent numbers has
been sampled successfully. This needsO(n(logm+ logn)/k) space.

Proof of Theorem 5. We show that any algorithm that solves theε-approximate
median problem requires�(1/ε) space. The proof follows from a reduction from
the bit-vector probing problem. Letb1,b2 · · · bn be a bit vector followed by a query
indexi . This is translated to a sequence of numbers as follows: First output 2j +bj

for each j . Then on getting the query, outputn− i −1 copies of 0 andi +1 copies
of 2(n+ 1). It is easily verified that the least significant bit of the exact median of
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this sequence is the value ofbi . Chooseε = 1
2n . Thus, theε approximate median

is the exact median. Thus, any one pass algorithm that requires fewer than1
2ε = n

bits of memory can be used to derive a communication protocol that requires fewer
thann bits to be communicated fromA to B in solving bit vector probing. Since
every protocol that solves the bit-vector probing problem must communicaten bits,
this is a contradiction.

We next prove Theorem 6.

Proof of Theorem 6. We reduce the bit-vector disjointness problem to the graph
connectivity problem. Construct a graph whose node-set is{a,b,1,2, . . . ,n}. In-
sert an edge(a, i ) if bit i is set in A’s vector, and insert an edge(b, i ) if bit i is
set in B’s vector. Now,a andb are connected in the graph if and only if there
exists a bit that is set in bothA’s vector andB’s vector. By the lower bound for the
bit-vector disjointness problem, every protocol must exchange�(n) bits between
A and B. Thus, if there areP passes over the data, one of the passes must use at
least�(n/P) space. The reduction fork-edge ork-vertex connectivity follows by
addingk− 1 nodesc1, . . . , ck−1 and an edge from eachcj , 1≤ j ≤ k− 1 to both
a andb.

To reduce to planarity testing we add four nodesc1, c2, c3, c4 and connect them
pairwise. Additionally we add the edges(c1,a), (c2,a), (c3,a), and(c4,b). Then
the graph containsK5 as a minor if and only ifa andb are connected.

We also reduce the bit-vector disjointness problem to the problem of deciding
whether the graph contains a sink. Construct a graph whose node-set is{a,b,1,2, . . . ,n}.
Insert edges(a,b) and(b,a) to guarantee that neither of them is a sink. If biti is
set inA’s vector, insert an edge(a, i ), otherwise insert an edge(i,a). Similarly, if
bit i is set inB’s vector, insert an edge(b, i ), otherwise insert an edge(i,b). Now
nodei is a sink if and only if biti is set in bothA’s and B’s vector. It follows
that the graph contains a sink if and only if there exists a bit that is set in bothA’s
vector andB’s vector. By the lower bound for the bit-vector disjointness problem,
every protocol must exchange�(n) bits betweenA and B. Thus, if there areP
passes over the data, one of the passes must use at least�(n/P) space.

A P-pass algorithm that keeps a bit for node(i − 1)n/P, (i − 1)n/P + 1,
. . . , in/P−1 in passi indicating whether an edge leaving the node was read gives
the desired upper bound.

We also provide a lower bound here for the transitive closure problem.

Proof of Theorem 7. We reduce the bit-vector probing problem to the transitive
closure estimation problem. Letd ≥ 1 be a constant. Given a bit-vector of length
m, we construct a graphG on 2(dm+√m) vertices,Vi , 1 ≤ i ≤ 4, with |V2| =
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|V3| =
√

m and|V1| = |V4| = dm, such that edge(i, j ) with i ∈ V2 and j ∈ V3

exists iff entryi
√

m+ j is set in the vector. To test whether entryi
√

m+ j is set,
add edges from each vertex inV1 to i ∈ V2 and from j ∈ V3 to each vertex inV4.
The size of the transitive closure is larger thanm if and only if the edge(i, j ) is in
the graph. Furthermore, forε < 1− 2/(d2 + 1), anyε-approximation algorithm
for the transitive closure can answer a query correctly. Thus, anyε-approximation
algorithm must use�(m) space.

6 Further work

Our work raises a number of directions for further work; we list some here:

1. We need more general techniques for both lower and upper bounds when
multiple passes can be performed over the data. They might also imply in-
teresting new results about communication complexity. From a practical
perspective, algorithms are needed for a wider class of problems than the
selection problem that has been extensively studied [ARS97, AS95, JC85,
RML97, Olk93].

2. Can we design algorithms that minimize the number of passes performed
over the data given the amount of memory available? This would be use-
ful when, for instance, the number of active concurrent threads governs the
memory available at runtime

3. How can we arrange the data physically in a linear order with the express
goal of optimizing the memory required to process some set of queries?
Recall that the results of a query may not necessarily be physically con-
tiguous (e.g., in the database of airports, the subset from Africa may not be
together; more generally, we will have to cope with the results of some class
of SELECT and GROUPBY operations). Can we model the class of “likely”
queries and use it to drive the data layout?

4. From a theoretical perspective, we have highlighted the importance of study-
ing the communication complexity of approximation problems (as in our
bounds for the approximate solutions of selection and transitive closure);
existing work only treats computations that yield exact answers.
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