
SRC Technical Note
1998 - 010
May 8, 1998

Scheduling Multicasts on Unit-Capacity Trees

and Meshes

Monika Rauch Henzinger and Stefano Leonardi

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©Digital Equipment Corporation 1998. All rights reserved

Stefano Leonardi is at the Max-Planck Institute f¨ur Informatik, Saarbr¨ucken,
Germany and at the Dipartimento di Informatica Sistemistica, Universit`a di Roma
“La Sapienza”, via Salaria 113, 00198-Roma, Italia. His electronic mail addresses
is: leon@dis.uniroma1.it

1

Abstract

This paper studies the multicast routing and admission control problem
on unit-capacity tree and mesh topologies in the throughput-model. The
problem is a generalization of the edge-disjoint paths problem and isNP-
hardboth on trees and meshes.

We study both the offline and the online version of the problem: In the
offline setting, we give the first constant-factor approximation algorithm for
trees, and anO((log logn)2)-factor approximation algorithm for meshes.

In the online setting, we give the first polylogarithmic competitive online
algorithm for tree and mesh topologies. No polylogarithmic-competitive al-
gorithm is possible on general network topologies [8] and there exists a poly-
logarithmic lower bound on the competitive ratio of any online algorithm on
tree topologies [3]. We prove the same lower bound for meshes.

1 Introduction

Multicast routing and admission control are the basic operations required by future
high-speed communication networks that use bandwidth-reservation for quality-
of-service guarantees. A number of applications from collective communication to
data distribution will be based on efficient multicast communication.

Formally, themulticast routing and admission control problemwithM multi-
casts consists of ann-node graphG and a sequence or set of requests(t, si), where
the request node tand thesource node si are nodes inG and i ∈ {1,2, . . . ,M}.
Multicast i consists of all requests with sourcesi . For each request the algorithm
has to decide whether to accept or reject it. If request(t, si) is accepted, the algo-
rithm has to connect nodet to themulticast treeconnecting the already accepted
requests of multicasti with sourcesi . In theunit-capacitysetting, each link can be
assigned to only one multicast tree: the trees spanning different multicasts must be
edge-disjoint. The objective function is to maximize the total number of accepted
requests. In theonlineversion the requests form a sequence and when processing
a request, the algorithm must decide without knowledge of future requests. In the
offlineversion the requests form a set, which is given before the algorithm decides
which requests to accept.

Online multicast routing was recently studied under thesmall bandwidth as-
sumptionthat the link bandwidth required by every connection is at most a frac-
tion logarithmic in the size of the network. Awerbuch and Singh [7] gave an
O(logn(logn + log logM) logM)-competitive algorithm for the case in which
all the requests to a given multicast arrive before the next multicast is created.
Goel, Henzinger, and Plotkin [12] extended the study to the case in which requests
to different multicasts can be interleaved.

2

With the sizes of networks growing faster than the link capacity, the small
bandwidth request assumption is not necessarily a realistic assumption. There are
many applications, for instance a multimedia server managed by a supercomputer,
in which large amount of data must be transferred in a local network where a single
communication path consumes a large fraction of the available bandwidth on a link
[6]. Thus, the situation where the bandwidth required by a connection is a large
fraction of the link capacity needs to be studied as well for the multicast routing
problem. In this paper we take a first step into this direction by assuming that every
connection uses the total bandwidth on a link. We call this theunit-capacitycase.

This paper studies both the offline and the online version of the multicast rout-
ing and admission control problem in unit-capacity graphs. The offline problem
models the case of arrival of a batch of connection requests to several multicasts. It
is also motivated by all those situations where the answer to the user can be delayed
for a limited time while other requests are collected.

We present algorithms for tree and mesh topologies, which are at the basis
of many communication networks. Trees are important practical network topolo-
gies [5, 6, 21, 17], they are at the basis of topologies for communication networks
such as trees of rings, often considered as interconnection of SONET rings optical
networks [21, 17], or topologies for connecting high performance multicomputers
systems as trees of meshes [6] and fat trees. The multicast routing problem on
trees, when all the multicast groups use the same spanning tree, is then a basic
problem to solve in this context. There has also been an extensive study of the uni-
cast problem on these network topologies motivated by virtual circuit assignment
and optical communication. Meshes topologies are often the basis of the inter-
connecting topology of high performance multiprocessor systems. They are also
relevant as a first approximation of nearly-planar communication networks [14].
The offline problem on meshes arises also in FPGA-routing, where various sub-
sets of components have to be connected by trees such that the trees of different
subsets do not overlap and the underlying routing fabric is a mesh. The unicast
problem for meshes was recently studied in both the offline and the online version
(see e.g. [6, 14, 19, 16]).

Note that the multicast routing problem in unit-capacity graphs reduces to the
edge-disjoint paths problemif only one request is presented for each multicast, also
called theunicastsetting. Multicast routing is also an interesting extension of the
maximum coverage problem [13].

Previous work on unit-capacity networks.All previous work on unit-capacity
networks studied unicast routing. Unlike multicast routing, the offline unicast prob-
lem is still polynomial on trees [11], but it isNP-hardon meshes. Kleinberg and
Tardos [14] proposed the first constant approximation algorithm for edge-disjoint
paths on meshes and on a class of planar graphs called “densely embedded, nearly-

3

Eulerian graphs”. They formulated theescape problemas an interesting subprob-
lem and gave a constant-factor approximation for the escape problem in the unicast
setting. A straightforward extension of their approach leads to aO(logn)-factor
approximation for the escape problem for multicasts. We use instead a recursive
approach that achieves aO((log logn)2)-factor approximation.

For the online problem no algorithm, not even a randomized one, has a poly-
logarithmic competitive ratio for any network topology [8]. This holds even in
the unicast setting. Therefore in the unicast setting restricted graph topologies like
trees, meshes, and “densely embedded, nearly-Eulerian graphs” [5, 6, 14, 16] were
studied before and algorithms with logarithmic competitive ratio were proposed
for all these network topologies.

Our offline results. The problem on trees contains the MAX-3SAT problem
and is thus MAX-SNP hard [1]. We present a polynomial time approximation al-
gorithm for unit-capacity trees that achieves an approximation ratio of 18. The
algorithm presents an interesting version of a greedy strategy. Each step schedules
the “densest residual subtree” for a multicast and discards the overlapping subtrees
of different multicasts already selected. The “densest residual subtree” of a multi-
cast is the subtree maximizing the ratio between a value related to the net increase
of the objective function after the selection, and a weight associated with the sub-
tree itself. The algorithm can be easily implemented using a dynamic programming
approach. To the best of our knowledge no approximation algorithm was known
for this problem before.

We also present the first approximation algorithm on unit-capacity meshes. Our
polynomial time algorithm obtains an approximation ratio ofO((log logn)2). It
formulates the multicast routing problem as a fractional packing problem [10, 18,
23] which is solved using duality-based algorithms. The fractional solution is then
rounded probabilistically, leading to a potentially infeasible set of multicast trees,
which are used to guide the construction of an integral solution.

Our online results. An online algorithmA for the multicast routing problem
hascompetitive ratio cif on any input sequence the ratio of the number of requests
accepted by the optimum offline algorithm to the expected number of requests
accepted byA is at mostc.

This paper shows how to achieve polylogarithmic-competitive algorithms for
restricted topologies in the multicast setting: For trees we present anO(logn(logn+
log logM) logM)-competitive multicast algorithm and for meshes we give an
O(log2 n(logn + log logM) logM)-competitive multicast algorithm. We also
show a randomized lower bound of�((logn logM)/d) for a connected graph
with minimum degreed. This gives a lower bound of�(logn logM) for meshes.
The same lower bound for trees follows from [3]. No competitive multicast al-
gorithms were known for these topologies before. There are various difficulties

4

that multicast algorithms face over unicast algorithms. One of them is that latter
multicasts might be more profitable than earlier ones. Thus, our algorithms accept
each multicast that pass an initial screening for “routability” with roughly equal
probability.

Section 2 of this paper presents the constant approximation algorithm on trees,
Section 3 contains the online algorithm for trees, Section 4 gives the offline algo-
rithm on meshes, Section 5 presents the online algorithm on meshes.

2 The offline algorithm for trees

We present a constant-factor approximation algorithm on trees. To denote thei -th
multicast whose request node set isV we use the pair(i,V). A submulticast(i,V ′)
of (i,V) is a multicast with sourcesi and request node setV ′ ⊆ V . Our approach
is to use a greedy algorithm that maintains an initially empty setSof (potentially)
accepted submulticasts and assigns aweightand aresidual profitto each submulti-
cast. The algorithm repeatedly adds toS the submulticast that maximizes the ratio
of its residual profit to its weight. Since the algorithm is offline, it can first accept
a submulticast and then later add or subtract from it. We indicate this by saying
that (i,V) is added to or removed fromthe current setS of submulticasts. Two
submulticasts(i,V) and(i ′,V ′) overlapif they share an edge. We only add(i,V)
to S if its profit is significantly larger than the profit lost by submulticasts which
overlap with(i,V).

We root the treeT at an arbitrary leaf. This defines an ancestor-descendant
relation on the nodes of the tree. LetT(i,V) be the tree connecting the nodes of
V to the source ofi . The highest node ofT(i,V) is called the rootroot(i,V) of
(i,V). Note that the root does not have to belong toV . We sayr is a subroot
of (i,V) if r is the root of one of the submulticasts of(i,V). For each subroot
r we say(i,V) is themaximum submulticast max(i, r) of (i,V) if (i,V) is the
submulticast of(i,V) with root r that has the maximum number of requests.

Next we define a weight for each multicast such that multicasts “higher” in
the tree have higher weight and hence are added toS “later”, except if they are
very profitable. Given a submulticast(i,V) with root r and a multicast(i ′,V ′)
with i ′ 6= i , let R(i ′, i, r) be the set of subrootsr ′ of (i ′,V ′) such thatr ′ is a true
descendant ofr andmax(i ′, r ′) overlaps withmax(i, r). For each multicast(i,V)
and each possible root positionr , we define theweightw(i, r) to be

w(i, r) = 1+
∑
i ′ 6=i

max
r ′∈R(i ′,i,r)

w(i ′, r ′).

For all multicasts(i,V) and(i ′,V ′) with i 6= i ′ and all subrootsr , max(i, r)

5

andR(i ′, i, r) can be computed in polynomial time. Thus,w(i, r) can be computed
in polynomial time by a bottom-up traversal of the tree.

Theprofit p(i,V) of a submulticast(i,V) is the number of requests in(i,V).
For i 6= i ′ theoverlapping profit p(i,V, i ′,V ′) of submulticast(i,V) and(i ′,V ′)
is defined to be the profit of the maximum submulticast of(i ′,V ′) whose requests
cannot be accepted if(i,V) is accepted, i.e., the number of requests of(i ′,V ′)
that cannot be accepted in(i,V) is accepted. Fori = i ′ the overlapping profit
p(i,V, i ′,V ′) of submulticast(i,V) and (i ′,V ′) is defined to be the profit of
(i ′,V ′ ∩ V). Note that in generalp(i,V, i ′,V ′) 6= p(i ′,V ′, i,V).

Let O(i,V) be the set of submulticasts overlapping with(i,V). For a submul-
ticast(i,V) theresidual profit

pres(i,V) = p(i,V)− α
∑

(i ′,V ′)∈S∩O(i,V)

p(i,V, i ′,V ′),

whereα > 1 is a constant to be chosen later. Let theratio r (i,V) of a submulti-
cast be defined to bepres(i,V)/w(i, r), wherer = root(i,V). Now the greedy
algorithm works as follows:

(1) S= ∅
(2) for each submulticast(i,V): the residual profitpres(i,V) = p(i,V)
(3) while there exists a submulticast not inSwith positive residual profit:
(4) Let (i,V) be a submulticast with maximumr (i,V) of all submulticasts not inS.
(5) Let Sdel = {(i ′,V ′′), (i ′,V ′′) is the maximum submulticast of(i ′,V ′) ∈ S

whose requests cannot be accepted together with(i,V)}
(6) S= S∪ (i,V) \ Sdel

(7) Update the residual profit for each submulticast.

Let the profit p(S) of set S of submulticasts be
∑

(i,V)∈S p(i,V). If (i,V) is
added toS, then ∑

(i ′,V ′)∈S∩O(i,V)

p(i,V, i ′,V ′) = p(Sdel).

Thus, the residual profit of a submulticast compares its profit with the profit lost
from S if the submulticast is added toS. We first show that the algorithm termi-
nates.

Lemma 1 The algorithm terminates after at most nM iterations.

Proof. Whenever a multicast(i,V) is added toSand a setSdel of submulticasts is
deleted,pres(i) > 0. It follows that p(i,V) > αp(Sdel). Thus,p(S) increases in
each iteration by at least 1. The maximum value it can assume isnM.

6

We prove in the next subsection that this algorithm gives a constant factor ap-
proximation of the optimum solution. In the following subsection we show how to
implement each iteration in polynomial time.

2.1 Proof of the constant approximation ratio

To prove that this algorithm gives a constant factor approximation we distinguish
three types of overlaps: IfT(i,V) contains an edge incident to theroot(i ′,V ′) then
(i,V) is ancestor-touching (a-touching)(i ′,V ′). Note that eitherroot(i ′,V ′) =
root(i,V) or root(i,V) is an ancestor ofroot(i ′,V ′). If root(i,V) is a true de-
scendant ofroot(i ′,V ′) andT(i,V) ⊆ T(i ′,V ′) then(i,V) is internal to (i ′,V ′).
Otherwise, i.e., if(i,V) and (i ′,V ′) overlap,root(i,V) is a true descendant of
root(i ′,V ′), butT(i,V) 6⊆ T(i ′,V ′) then(i,V) isdescendant-touching (d-touching)
(i ′,V ′).

The weight of a multicast was defined such that the following lemma holds.

Lemma 2 Let S be a set of nonoverlapping submulticasts that are all internal or
d-touching to a submulticast(i,V) such that S contains at most one submulticast
for each multicast i′. Then

∑
(i ′,V ′)∈Sw(i

′, root(i ′,V ′)) ≤ w(i, root(i,V)).

Proof. Let r = root(i,V) and let(i ′,V ′) ∈ S be a submulticast with rootr ′.
Note thatr ′ is a true descendant ofr . Furthermore(i ′,V ′) and (i,V) overlap,
thus max(i, r) and max(i ′, r ′) overlap. Hence,r ′ ∈ R(i ′, i, r) andw(i ′, r ′) ≤
maxr ′′∈R(i ′,i,r) w(i ′, r ′′).

Thus, ∑
(i ′,V ′)∈S

w(i ′, root(i ′,V ′)) ≤
∑

(i ′,V ′)∈S

max
r ′′∈R(i ′,i,r)

w(i ′, r ′′)

≤
∑
i ′ 6=i

max
r ′′∈R(i ′,i,r)

w(i ′, r ′′)

< w(i, root(i,V))

The following lemma is used repeatedly.

Lemma 3 Let S be a set of non-overlapping submulticasts.
Then for each submulticast(i,V),

∑
(i ′,V ′)∈S a−touches(i,V) p(i ′,V ′, i,V) ≤

2p(i,V).

Proof. Let S′ be the set of submulticasts ofS that a-touch(i,V). Let r be the root
and lets be the source of(i,V). Furthermore lete be the edge on the path from

7

s to r that is incident tor . Let (i ∗,V∗) be the submulticast inS′ whose multicast
tree containse if such a submulticast exists.

For each submulticast(i ′,V ′) 6= (i ∗,V∗) in S′ let children(i ′,V ′) be the
childrenv of r such that(v, r) belongs toT(i ′,V ′). Then the overlapping profit
p(i ′,V ′, i,V) is at most the profit of(i,V) in the subtrees ofchildren(i ′,V ′).
Since the submulticasts inS′ are non-overlapping, the setchildren(i ′,V ′) and
children(i ′′,V ′′) are disjoint for any pair(i ′,V ′), (i ′′,V ′′) ∈ S′. Thus,∑

(i ′,V ′)∈S′,(i ′,V ′) 6=(i ∗,V∗)
p(i ′,V ′, i,V) ≤ p(i,V).

Sincep(i ∗,V∗, i,V) ≤ p(i,V), the lemma follows.

Next we show that the above algorithm gives a constant approximation of the
optimum result: LetSopt be the set of submulticasts chosen by the optimum al-
gorithm and letSf be the final value ofS. Note that every submulticast inSopt

overlaps with a submulticast inSf . We partitionSopt as follows: LetS2 be the set
of submulticasts inSopt that are d-touching or internal to a submulticast ofSf . Let
S1 be the set of submulticasts inSopt that are a-touching to a submulticast ofSf ,
but are not internal or d-touching to any submulticast ofSf .

Lemma 4 p(S1) ≤ 2αp(Sf)

Proof. Let (i ′,V ′) ∈ S1. Let S′f be the set of submulticasts ofSf that are a-touched
by (i ′,V ′). Note thatS′f = O(i ′,V ′) ∩ Sf and that the residual profit of(i ′,V ′) is
not positive at termination. Thus,

p(i ′,V ′) ≤ α
∑

(i,V)∈Sf ∩O(i ′,V ′)
p(i ′,V ′, i,V).

Thus, by Lemma 3,

p(S1) =
∑

(i ′,V ′)∈S1

p(i ′,V ′) ≤ α
∑

(i ′V ′)∈S1

∑
(i,V)∈Sf ∩O(i ′,V ′)

p(i ′,V ′, i,V)

= α
∑

(i,V)∈Sf

∑
(i ′,V ′)∈S1 a−touches(i,V)

p(i ′,V ′, i,V) ≤ α
∑

(i,V)∈Sf

2p(i,V) ≤ 2αp(Sf)

Next we handle submulticasts inS2.

Lemma 5 p(S2) ≤ (10+ 2α)p(Sf) for α ≥ 2.

8

Proof. The lemma follows from the following claim which we show by induction
on the number of iterationsj : let Sj be the setS after iteration j . Let Dj be
the subset of Sopt consisting of all submulticasts that d-touch or are internal to a
submulticast in∪k≤ j Sk. Then∑
(i ′,V ′)∈Dj

p(i ′,V ′) ≤ 10
∑

(i,V)∈Sj

p(i,V)+α
∑

(i,V)∈Sj

∑
(i ′,V ′)∈Dj :(i ′,V ′) a−touches(i,V)

p(i ′,V ′, i,V).

The claim holds before iteration 1 sinceS0 and D0 are empty. Assume the
claim holds before iterationj . Let (i,V) be added toS in iteration j and letSdel

be deleted. Let1 = Dj \ Dj−1. Then the left side of the inequality increases by∑
(i ′,V ′)∈1 p(i ′,V ′). We need to show that the right side increases by at least so

much.
Each(i ′′,V ′′) ∈ Sj−1 is partitioned into two submulticasts(i ′′,V ′′1) and(i ′′,V ′′2)

with (i ′′,V ′′1) ∈ Sj and(i ′′,V ′′2) ∈ Sdel. Note thatp(i ′,V ′, i ′′,V ′′) ≤ p(i ′,V ′, i ′′,V ′′1)+
p(i ′,V ′, i ′′,V ′′2). By Lemma 3∑

(i ′′,V ′′2)∈Sdel

∑
(i ′,V ′)∈Di−1:(i ′,V ′) a−touches(i ′′,V ′′2)

p(i ′,V ′, i ′′,V ′′2) ≤ 2p(Sdel)

Thus, ∑
(i ′′,V ′′)∈Sj−1

∑
(i ′,V ′)∈Di−1:(i ′,V ′) a−touches(i ′′,V ′′)

p(i ′,V ′, i ′′,V ′′) ≤
∑

(i ′′,V ′′1)∈Sj

∑
(i ′,V ′)∈Di−1:(i ′,V ′) a−touches(i ′′,V ′′1)

p(i ′,V ′, i ′′,V ′′1)+ 2p(Sdel).

Thus, the total decrease of the right side by removingSdel from S is at most
(10+ 2α)p(Sdel). It follows that the right side increases by at least

10p(i,V)+α
∑

(i ′′,V ′′)∈Sj

∑
(i ′,V ′)∈1:(i ′,V ′) a−touches(i ′′,V ′′)

p(i ′,V ′, i ′′,V ′′)−(10+2α)p(Sdel).

We know thatp(i,V) ≥ αp(Sdel), which implies that 7p(i,V) ≥ (10+2α)p(Sdel)

for α ≥ 2.
We show below that∑

(i ′,V ′)∈1
p(i ′,V ′) ≤ 3p(i,V)+α

∑
(i ′′,V ′′)∈Sj

∑
(i ′,V ′)∈1:(i ′,V ′) a−touches(i ′′,V ′′)

p(i ′,V ′, i ′′,V ′′). (∗)

Thus, the inductive claim continues to hold.
To show(∗) we consider two cases. LetA= 1 ∩ Sdel. Let B be the rest of1.

9

Bounding A:As shown above,αp(Sdel) ≤ p(i,V). Thus,p(A) ≤ p(i,V)/α ≤
p(i,V).

Bounding B:Consider a multicasts(i ′,V ′) in B. When(i,V) is added,(i ′,V ′)
does not belong toSj−1 and it is not selected by the algorithm. Thus, the ratio
r (i ′,V ′) is at most the ratior (i,V). Note that each multicast has at most one
submulticast inB. Thus, using Lemma 2 it follows that∑

(i ′,V ′)∈B

pres(i
′,V ′) =

∑
(i ′,V ′)∈B

r (i ′,V ′)w(i ′, root(i ′,V ′)) ≤

r (i,V)
∑

(i ′,V ′)∈B

w(i ′, root(i ′,V ′)) ≤ r (i,V)w(i, root(i,V)) = pres(i,V).

Thus,∑
(i ′,V ′)∈B

(
p(i ′,V ′)− α

∑
(i ′′,V ′′)∈Sj−1∩O(i ′,V ′)

p(i ′,V ′, i ′′,V ′′)
) ≤ p(i,V)− αp(Sdel).

By definition no submulticast(i ′,V ′) in B d-touches or is internal to a submul-
ticast inSj−1. Thus, all submulticasts inSj−1∩O(i ′,V ′) are a-touched by(i ′,V ′).
Using Lemma 3 for the second inequality in the same way as above shows that

p(B) ≤ p(i,V)− αp(Sdel)+ α
∑

(i ′′,V ′′)∈Sj−1

∑
(i ′,V ′)∈B:(i ′,V ′) a−touches(i ′′,V ′′)

p(i ′,V ′, i ′′,V ′′)

≤ p(i,V)+ αp(Sdel)+ α
∑

(i ′′,V ′′1)∈Sj

∑
(i ′,V ′)∈B:(i ′,V ′) a−touches(i ′′,V ′′1)

p(i ′,V ′, i ′′,V ′′1)

≤ 2p(i,V)+ α
∑

(i ′′,V ′′1)∈Sj

∑
(i ′,V ′)∈B:(i ′,V ′) a−touches(i ′′,V ′′1)

p(i ′,V ′, i ′′,V ′′1).

Sincep(1) = p(A) + p(B), this shows(∗).
It follows that

p(Sopt) = p(S1)+ p(S2) ≤ (4α + 10)p(S),

for α ≥ 2. Choosingα = 2 gives an approximation factor of 18.

2.2 The polynomial time implementation of the algorithm

We are left with showing how to implement each iteration in polynomial time.
Given a setS, the algorithm must compute at each step a submulticast of maximum
ratior (i,V). Note that it suffices to compute for each multicasti and each possible
root positionr ∗ the submulticastbest(i, r ∗) with maximum residual profit. The

10

desired submulticast is the one that maximizes over all multicastsi and all possible
root positionsr ∗ of i the ratio

pres(best(i, r ∗))
w(i, r ∗).

Let Tv be the subtree ofT rooted at nodev.
We describe a polynomial time procedure based on dynamic programming that

finds for each multicasti and for each possible root positionr ∗ a submulticast
best(i, r ∗) with maximum residual profit. To be precise it suffices to consider all
submulticasts ofmax(i, r ∗).

Let (i,V) be the submulticast ofi that currently belongs toS (V = ∅ if no
such submulticast exists.) To findbest(i, r ∗) root the treeT at the sources of
max(i, r ∗). (This rooting is completely independent of the rooting in the previous
section.) We first compute a costcost(e) for each edge in the tree. Then we
construct a binary treeT ′ from the original tree for use in a dynamic program.
Next, we use the edge costs to compute two cost functionscost0v andcost1v for
each vertexv ∈ T ′ using bottom-up dynamic programming. Finally,cost1s can be
used to determinebest(i, r ∗).

Computing the edge costs:Use a depth-first traversal of the tree starting ats.
When traversing edgee, a cost is assigned toe. The cost of edgee will be the
profit that is lost byS when this edge is assigned to multicasti and thus is no
longer available for submulticasts inS, ignoring the profit thatS already lost on
the edges along the path frome to s.

Formally, we have the following definition: Ifebelongs to(i,V) ∈ S, oredoes
not belong to any submulticast inS, or e does not belong to the multicast tree of
max(i, r ∗), cost(e) is 0. Otherwise,e belongs to the multicast tree ofmax(i, r ∗)
and to a submulticast(i ′,V ′) of S with i ′ 6= i . Let e = (u, v) and letu be the
parent ofv. Let p(i ′,V ′, s, x) be the number of requests of(i ′,V ′) that use an
edge on the path froms to x. Thencost(e) = p(i ′,V ′, s, v)− p(i ′,V ′, s,u).

Obviously all edge costs can be computed in polynomial time.
To illustrate the edge costs, assume for a moment thatS contains only 1 sub-

multicast(i ′,V ′). Let s′ be the source ofi ′. Then the only edge costs that have
non-zero value are the ones on the path froms′ to s or incident to a node on the path
from s′ to s. Call these edge costs theedge costs for(i ′,V ′). If Sconsists of more
than one submulticast(i j ,Vj), then the edge costs are simply assigned considering
separately each(i j ,Vj). Thus, a multicasti ′ 6= i of Swith an edge of positive cost
incident tov has its source in the subtree rooted atv.

Constructing the binary tree T′: For the bottom-up dynamic programming ap-
proach we need to transform the tree into a binary treeT ′ by introducing additional

11

nodes and edges. The cost of each additional edge is 0. Letv be a node in the orig-
inal tree withd ≥ 1 children. We call an edge incident tov unusedif it does not
belong to a submulticast ofS or hascost(e) = 0. All the other edges incident
to v have positive cost and belong to a submulticast ofS. Recall that a multicast
i ′ 6= i of S with an edge of positive cost incident tov has its source in the subtree
rooted atv. Let q be the number of different multicasts with a edge of positive cost
incident to vertexv.

We replacev by a binary tree withq+ 1 leaves, if there are unused edges inci-
dent tov, and withq leaves otherwise. The firstq are calledspecialand correspond
to a submulticast inS incident tov with at least an edge of positive cost; the last
leaf L, if applicable, corresponds to all unused edges incident tov. Leaf L is the
root of a binary tree withl leaves, wherel is the number of unused edges incident
to v. Each unused edge incident tov in T is incident to one of these leaves such
that each leaf is incident to one of the unused edges.

Let v(i ′) be the special node corresponding to submulticast(i ′,V ′) ∈ S and
assumet edges of(i ′,V ′) are incident tov. Thenv(i ′) has two children, one
corresponding to the edgeeconnectingv to the source ofi ′ and the other being the
root of a binary tree witht − 1 leaves. Thesubtree forv(i ′) in T ′ consists ofv(i ′),
its children and the binary tree oft − 1 leaves. Edgee is connected to “its”’ leaf
and each other edge of(i ′,V ′) incident tov is incident to one of the other leaves
such that each leaf is incident to one of these edges. Note that these nodes have
one child each inT ′, i.e., are not leaves inT ′.

The root of the binary tree forv is labeledv. A leaf of the binary tree corre-
sponding to a leafv of T is also labeledv.

All submulticasts are extended in a natural way toT ′.
Computing the cost functions cost0 and cost1: We want to compute a submul-

ticast ofmax(i, r ∗) with maximum residual profit. Thus, we find for each possible
profit b, b = 1,2, . . . ,n, the submulticast(i,V∗) that getsb profit andmaximizes
b−αcost(b), wherecost(b) is the minimum profit thatS “looses” if (i,V∗) is ac-
cepted. This is equivalent to finding the submulticast with profitb that minimizes
cost(b). The basic idea is to use bottom-up dynamic programming to compute for
each nodev′ in T ′ the submulticast that minimizescostv′ (b), wherecost(b)v′ is
the minimum cost thatS “looses” in the subtree rooted atv′ if the submulticast is
accepted.

However, there is a complication at special nodes that requires the use of two
cost functions,cost0v′ andcost1v′ : Letw be a node ofT with 2 childreny andz, both
belonging to submulticast(i ′,V ′) ∈ S. Let y lie on the path fromv to the source
of i ′. Let v′ be the special nodev(i ′) in the subtree ofw in T ′ and letl ′ andr ′ be
its children such thatT ′l ′ contains the node labeledy. Assume profit 0< j < b is
achieved inTy and profitb− j is achieved inTz. Then we do not want to add both

12

cost(w, y) andcost(w, z) to costv′ , sincecost(w, y) considers already the cost of
“loosing” all the requests of(i ′,V ′) whose path usesw. Instead we want to only
addcost(w, y) andnot cost(w, z) to costv′ . Thus, to “tell” the recursion onr ′

that it should not add in any more “lost profit” of(i ′,V ′) we use the cost function
cost0r ′ . If the recursion onr ′ is allowed to add in more “lost profit” of(i ′,V ′) (since
e.g. no profit was achieved inTy), we usecost1r ′ . Note that this complication arises
only at special nodes.

We need to usecost0 in T ′r ′ until we reach the leafx′ of the subtree ofv(i ′) in
T ′ whose edgee to its child corresponds to(w, z). When computingcost0x′ we do
not add in the costcost(w, z) of e and then usecost1 to recurse on the children of
x′. Thus,cost0x′ is only needed at nodes belonging to the subtree ofv(i ′) in T ′ for
some submulticast(i ′,V ′) ∈ S.

We next give the formal definitions. When we want to avoid that the dynamic
program chooses a specificcosttv′(b), t = 0,1, combination, we set its value to∞.

(1) For allv′ ∈ T ′ and fort = 0,1: costtv′(0) = 0.
(2) For allv′ ∈ T ′ such that there are less thanb requests ofmax(i, r ∗) in the

subtree ofv in T ′ and fort = 0,1: costtv′(b) = ∞.
(3) For anyb > 0, for t = 0,1, and for allv′ ∈ T ′ with one child, call the

missing childr ′. We assume thatcosttr ′ (b) = ∞.
(4) For all non-specialv′ ∈ T ′, let c be the number of requests of max(i, r ∗) at

v′. Then,

cost1v′(b) = min{min{ j=1,..,b−c−1}cost(v′, l ′)+ cost1l ′ (j)+ cost(v′, r ′)
+cost1r ′ (b− c− j),

cost(v′, l ′)+ cost1l ′ (b− c), cost(v′, r ′)+ cost1r ′ (b− c)}
For all specialv′ = v(i ′) ∈ T ′, let l ′ be the child ofv that leads to the source

of multicasti ′. Then

cost1v′ (b) = min{min{ j=1,..,b−1}cost(v′, l ′)+ cost1l ′ (j)+ cost0r ′ (b− j),

cost(v′, l ′)+ cost1l ′ (b), cost(v′, r ′)+ cost1r ′ (b)}
(5) For allv′ ∈ T ′ whose children are not labeled by a vertex ofT , let c be the

number of requests of max(i, r ∗) at v′. Then

cost0v′(b) = min{ j=0,..,b−c}(cost0l ′ (j)+ cost0r ′ (b− c− j))

For all v′ ∈ T ′ whose children are labeled by a vertex ofT

cost0v′(b) = min{ j=0,..,b}(cost1l ′ (j)+ cost1r ′ (b− j))

In (5) we arenot adding incost(v′, l ′) andcost(v′, r ′).

13

Computingcosttv′(b) for a givenv′ andb by bottom-up dynamic programming
takes timeO(n). Since there aren different values forb and O(n) nodes in the
tree, we spend timeO(n3) for multicasti and possible root positionr ∗ to compute
all cost0 andcost1 values.

Lemma 6 Let s′ be the node of T′ labeled with the source s of i . The largest
residual profit of any submulticast of max(i, r ∗) is maxb(b− αcost1s′(b)).

Proof. Let T ′v′ be the subtree ofT ′ rooted atv′. We prove the following claims by
bottom-up induction:

(1) For each vertexv′ ∈ T ′ cost1v′ (b) equals

• the minimum number of requests inT ′v′ of submulticasts inS that cannot be
accepted if a submulticast ofmax(i, r ∗) acceptsb submulticasts inT ′v′ ,

• and∞ otherwise.

(2) For each vertexv′ ∈ T ′ that belongs to the subtree ofv(i ′) for some
(i ′,V ′) ∈ S, cost0v′ (b) equals

• the minimum number of requests inT ′v′ of submulticasts inS\ (i ′,V ′) that
cannot be accepted if a submulticast ofmax(i, r ∗) acceptsb submulticasts
in T ′v′ ,

• and∞ otherwise.

The second part of each claim follows by the definition ofcost1v′ andcost0v′ , we
only need to show the first part.

(1) For the basis of the induction, ifv′ is a leaf ofT ′ it is labeled with a leaf
v of T . We can assume thatb requests ofmax(i, r ∗) are atv′. Note that any sub-
multicast(i ′,V ′) of Swith a request atv′ also must have its source atv′. Thus, the
request of(i ′,V ′) can be accepted, even ifb requests ofmax(i, r ∗) are accepted.
Hence,cost1v′(b) = 0, and the claim holds.

If v′ is an internal vertex ofT ′, we distinguish two cases, depending on whether
v′ is a special node or not. Letl ′ andr ′ be the two children ofv′.

Case 1:v′ of T′ is not a special node.If v′ is not a special node ofT ′, then
cost1v′ (b) is defined by the first part of rule (4).

If only one edge(v′, l ′) is incident tov′ thencost1v′(b) = cost(v′, l ′)+cost1l ′ (b−
c) and the claim holds by induction on vertexl ′. Otherwise,cost1v′ (b) is defined as
the minimum over all the possible partitions ofb− c between the two subtreesT ′l ′
andT ′r ′ . Since inductivelycost1l ′ andcost1r ′ are equal to the minimum profit thatS
looses inT ′l ′ andT ′r ′ , the claim holds also forcost1

v′ .

14

Case 2:v′ of T′ is a special node.If v′ = v(i ′) is a special node ofT ′, then
cost1v′ (b) is defined by the second part of rule (4). Let(i ′,V ′) ∈ S.

The minimum number of lost requests is the minimum over all the possible
partitions ofb between the subtreeT ′l ′ that contains the edge leading to the source
of i ′ and the subtreeT ′r ′ containing the other edges ofT(i ′,V ′). Letw be the node
in T to whose binary tree nT ′ v′ belongs and lety be the child ofw such thatTy

contains the source ofi ′. Note that inT ′ the edgee from l to its only child inT ′

has costcost(w, y).
If the submulticast ofmax(i, r ∗) accepts requests inT ′l ′ then the submulticast

containse. By the definition ofcost(w, y), e’s costcost(w, y) contains already
all the profit of(i ′,V ′) lost in T ′r ′ . Thus, no further lost profit inT ′r ′ should not be
added tocost1v′ . By the inductive claim,cost0r ′ computes the minimum profit lost
by S in T ′r ′ , notconsidering the profit lost by the submulticast to which edge(v′, r ′)
belongs, i.e., the profit of(i ′,V ′).

Sincecost1v′ (b) is again defined as the minimum over all the possible partitions
of b− c between the two subtrees, usingcost0l ′ for T ′l ′ andcost0r ′ for T ′r ′ . Thus, the
claim follows as in case 1.

If, however, the submulticast ofmax(i, r ∗) does not accept requests inT ′l ′ , then
the lost profit equalscost(v′, r ′)+ cost1r ′ (b− c) and the claim holds by induction
on r ′.

(2) The edges inT ′ with non-zero cost are edges that connect nodes labeled
by a vertex ofT to their parents. Lete = (x′, y′) be such an edge belonging to
submulticast(i ′,V ′) ∈ S. Note that the higher endpointx′ of e belongs to the
subtree ofv(i ′) in T ′ and that all children ofx’, including y′, are labeled with a
node inT . Then the cost of no further edge inT ′y′ is related to the profit of(i ′,V ′),
i.e., if (i ′,V ′) were the only submulticast inS, all edges inT ′y′ would have zero
cost.

To prove the claim forcost0v′ (b) we distinguish again two cases.
Case 1:v′’s children are labeled by vertices of T .Note thatv′ is not labeled

and thus, there is no request ofmax(i, r ∗) atv′. By the above observation, no edges
in the subtree ofv′’s children have costs related to the profit of(i ′,V ′). Using
induction onl ′ and r ′, the minimum number of requests inT ′v′ of submulticasts
in S \ (i ′,V ′) that cannot be accepted if a submulticast ofmax(i, r ∗) acceptsb
submulticasts inT ′v′ is given by the minimum over all 0≤ j ≤ b of cost1l ′ (j) +
cost1r ′ (b− j). Thus, the claim holds.

Case 2: v′’s children are not labeled by vertices of T .Let (i ′,V ′) be the
submulticast such thatv′ belongs to the subtree ofv(i ′). Note that the edges from
v′ to its children have cost 0 and thatv′ is an internal node of the subtree ofv(i ′).
Thus, the childrenl ′ andr ′ of v′ also belong to the subtree ofv(i ′). Inductively their

15

cost0 equals the minimum number of requests inT ′l , resp.T ′r ′ , of submulticasts
in S \ (i ′,V ′) that cannot be accepted if a submulticast ofmax(i, r ∗) acceptsb
submulticasts inT ′l , resp.T ′r ′ . Hence the minimum forT ′v′ is given by the minimum
over all 0≤ j ≤ b− c of cost0l ′ (j)+ cost0r ′ (b− c− j). Thus, the claim holds.

Determining best(i, r ∗): By Lemma 6 the largest residual profit of a submul-
ticast of max(i, r ∗) is found by determining the valuebbest that maximizes the
function b − αcost1s (b). The submulticastbest(i, r ∗) is found by reconstructing
which edges were used for the computation ofcost1s (bbest).

3 The online algorithm for trees

We describe an online algorithm ST for unit-capacity trees. For sake of simplicity
we assume that the sources as well as the members of the multicasts are leaves
of the tree. The general case can be easily reduced to this setting. The algorithm
consists of two stages. The first stage is a randomized procedure that selects a
subset of requests that will form the set of “candidate” requestsC for the second
stage. The second stage decides for each request inC whether to accept or reject
it. The requests accepted by the second stage are the requests accepted by ST.

The first stage of the algorithm.
The first stage runs the multicast algorithm, calledMC, of [12] on a tree with
capacityu, whereu = logµ andµ = 4m6M. Then stage 1 adds the accepted
requests toC.

On a graph where each link has capacityu, MC achieves a competitive ration
of O((logn+ log logM)(logn+M) logn). However, when applied to trees and
compared to an offline algorithm with link capacity 1,MC’s competitive ratio
is O(logn + logM): A first O(logn) factor is saved since in a tree both the
online algorithm and the offline algorithm connect the requests accepted by both
algorithms to the root through the same multicast tree. (In particular, in this setting
the claim of Lemma 5.1 of [12] can be proved without theO(logn) factor). An
additionalO(logµ) factor is saved since the online algorithm hasO(logµ) more
capacity on the edges. This is proved in the same way as for unicast (see [16] and
[15]). (In particular in [12] a factor ofO(logn + log logM) is saved in Claim
5.7). Thus,MC, when applied to a tree network withO(logµ) more capacity on
the edges isO(logn+ logM)-competitive.

The second stage of the algorithm.
In the second stage all the vertices of the tree are partitioned intoO(logn) different
classes, by recursively finding a balanced tree separator. Abalanced tree separator
[22] is a vertex whose removal splits the tree into pieces of at most2

3n vertices.

16

The tree separator ofT is assignedlevel 0. Removing the level-0 node splitsT into
subtreesof level-1. In general, the tree separators of the level-j trees are assigned
level j and removing them creates subtrees oflevel j + 1. After a logarithmic
number of recursions the trees obtained are single vertices and the procedure stops.
A similar technique is also used in [5] for the online call-control problem on trees.

Each of the requests inC is assigned to one ofO(logn) classes as follows. A
request from vertexv to multicast sources is assigned toclass j if the vertex of
lowest level on the path fromv to s has levelj .

One of theO(logn) levels is chosen at random by the algorithm before to
process the sequence of requests. We denote withi the level selected.

Stage 2 decides to accept or reject a request inC using the following algorithm:

1. If the request is not of leveli then reject it and stop.

2. If the request is the first one of multicasti seen at this step, then:

• Flip a coin with success probability1u .

• If success then pass to step 3 the current and all the future requests toi
seen at this step; otherwise reject all the future requests toi seen at this
step and stop.

3. Accept a request from vertexv to sources if no edge on the path fromv to s
is assigned to other multicasts; otherwise reject.

The following lemma bounds the expected number of requests accepted byST.

Lemma 7 The algorithm ST expects to accept an 1
O(logn logµ) fraction of the re-

quests accepted by MC.

Proof. The expected number of requests passed from step 1 to step 2 of stage 2 is
a 1

O(logn) fraction of the requests accepted byMC, since the level of each request

is chosen uniformly at random with probability 1
O(logn) . The expected number of

requests passed from step 2 to step 3 is a fraction1
u of all the requests received

from step 1. This follows since all the requests for a multicast are passed to step 3
with probability 1

u .
We are left to prove that each request received at step 3 is accepted with con-

stant probability. Consider a pair of requests for different multicasts. If they in-
tersect, the intersection is on an edge adjacent to a leveli vertex. Each request is
connected to the source through at most two edges adjacent to a leveli vertex. The
probability that a request is accepted is then given by the probability that these 2
edges are not assigned to other multicasts.

17

Any edge of the tree is part of at mostu multicasts given the maximum capacity
of the edges of the tree for the online algorithm in theMC solution. The edge is
assigned to each of these multicasts with probability1

u , if the algorithm decides to
accept requests from this multicast. When a request arrives at step 3, the probability
that an edge adjacent to the leveli vertex on the path to the source has not been
assigned to a different multicast is then lower bounded by(1− 1

u)
u ≥ 1/e. The

probability that both edges adjacent to a leveli vertex have not been assigned is
then lower bounded by 1/2e, thus proving the claim.

This leads to the following theorem:

Theorem 8 There exists an O((logn+M)(logn+ log logM) logn)-competitive
algorithm for multicast routing on unit-capacity trees.

A randomized lower bound of�(logn logM) follows from [3] since the mul-
ticast routing problem on trees of unit capacity contains the online set cover prob-
lem.

4 The offline algorithm for a mesh

We present anO((log logn)2)-factor approximation algorithm on meshes. The
algorithm partitions the mesh into squares of logarithmic size and divides every
square into an external and an internal region. The external region of a square
is reserved to route requests into, out of, and through the square. It is called the
crossbar structureof the mesh. To avoid edge-overlapping we discard all requests
whose request node or source belongs to an external region. From the remaining
requests the algorithm considers with equal probability either onlyshort requests
directed from a request vertex to a source in the same square, or onlylong requests
directed from a request vertex to a source in a different square. A randomized
rounding technique based on a novel formulation of the multicast routing problem
as an integer linear program is then used in conjunction with the use of a simulated
network with edges of higher capacity.

Let G denote then × m two dimensional mesh such thatm = 2(n). Wlog
m ≥ n. We assumen sufficiently large such thatblog log lognc ≥ 3. Define
B = 4blognc, f (k) = k div 9B, and f1(k) = k mod 9B. Given two integer values
a andb an(a,b, B)-partitioning of the meshG is a partitioning intof (n)× f (m)
submeshes ofO(B) size induced by segmenting the horizontal and the vertical
side of the mesh. The horizontal side is partitioned into a segment from column
1 to columna, followed by f (m) − f1(m) contiguous segments of size 9B, by
f1(m) − 1 segments of size 9B + 1 and by a last segment of size 9B + 1− a.

18

The vertical side of the mesh is partitioned in a similar way withb used in place
of a andn instead ofm. By abuse of notation every resulting submesh is called a
square, even though the size of the two sides of a square may differ. Note that each
node belongs to exactly one square while an edge can be incident to nodes of two
different squares. We denote the square containing a nodet by St .

Theborder of Gis formed by all nodes of degree less than 4. The1st ring in a
squareSconsists of all nodes ofS that are incident to a node outside ofSor belong
to the border ofG. Recursively, thei -th ring of Swith i > 1 consists of all nodes
of S that are incident to a node of ringi -1 of S. The innermost ring of a square
is either a single vertex or a line of nodes. A ring that is not the innermost ring
either forms a rectangle (if its square does not contain nodes of the border ofG)
or forms a rectangle with one or two borders ofG. In any squareSwe define two
regions R1

S and R2
S. RegionR1

S consists of rings from 1 toB, regionR2
S contains

all remaining rings ofS. Ring B+ 1 is theborderof R2
S.

LetA be the sequence of requests. The algorithm chooses two integer values
a and b uniformly at random in the interval 2B + 1,,7B and constructs an
(a,b, B)-partitioning. Then it discards all requests(t, s) such that eithert or s
does not belong to theR2 region of its square. The set of remaining requests
is denoted byC. The following lemma implies that for any input sequenceA,
E[|O PT(C)|] ≥ |O PT(A)|/25 since for every request(t, s) the probability that
t ands both belong toR2 is at least 1/25.

Lemma 9 Given two nodes t and s they both belong to region R2 of their squares
with probability at least1/25.

Proof. We prove separately that thex and they coordinates oft ands are within
regionR2 with constant probability. Consider intervalI = [2B + 1, ...,7B] from
which a is chosen uniformly at random. Since regionR1 has width 2B, xt falls
within region R2 if a is chosen out of a subsetIs of I of size at least 3B. Analo-
gously,xs falls within regionR2 if a is chosen out of a subsetI t of I of size at least
3B. SinceI has size 5B, for at leastB out of 5B possible values ofa, i.e. with
probability at least 1/5, bothxt andxs fall with region R2. By symmetry,yt andys

fall within region R2 with probability at least 1/5. It follows that with probability
at least 1/25 every request has both endpoints in regionR2.

By the choice ofa andb, at least 2B rings are contained in a square. Thus,
regionR1

S is always complete, while regionR2
S is formed by at leastB rings.

The set of requestsC is partitioned into the set of long requestsL = {(t, s) ∈
C : St 6= Ss} and the set of short requestsS = {(t, s) ∈ C : St = Ss}. For i ∈M,
denote byLi = {t : (t, si) ∈ L} the set of request nodes of multicasti .

19

The algorithm decides with equal probability to accept either only long requests
or only short requests. We describe next the algorithm specialized for long requests
then the algorithm specialized for short requests.

4.1 Long requests

Our approach is to transform the problem into a problem on a networkG′, then
formalize the problem onG′ as IP, relax it to an LP, solve the LP, and round the
LP solution probabilistically. Finally we use the rounded solution to construct a
solution inG.

Mesh G is transformed into a networkG′ = (V ′, E′) as follows. For every
squareS of G, network G′ contains vertexxS. The verticesxS and xS′ of two
adjacent squaresSandS′ are connected by an edge of capacityblognc. For every
squareS of G, every vertexu of region R2

S has a corresponding vertexu′ in G′.
For any pair of adjacent verticesu, v in R2

S, verticesu′, v′ in G′ are linked with an
edge of unit capacity. Every vertex of the border ofR2

S is connected toxS by an
edge of unit capacity. For every multicasti and for every request vertexu ∈ Li , a
vertexu′i is connected to vertexu′ with a unit-capacity edge. The input sequence
for the multicast routing problem onG′ is created by transforming every request
(t, s) ∈ Li into a request(t ′i , s

′
i) in G′.

The next step is to formulate the multicast routing problem inG′ as a packing
problem: For every multicasti consider the setTi consisting of all trees containing
si and a non-empty subset of the request nodest ′i . Since we introduced the nodes
t ′i , Ti ∩ Tj = ∅ for i 6= j . Let T = ∪i∈MTi . Denote byV(T) the set of vertices
of treeT and byE(T) the set of edges. Let the benefit of treeT ∈ Ti beb(T) =
|{t ′i ∈ V(T) : t ∈ Li }|.

We associate a variablexT ∈ {0,1} with every treeT ∈ T . Edges ofE′ are
subject to constraints: ∑

T∈T :e∈E(T)

xT ≤ c(e), ∀e∈ E′; (1)

∑
T∈Ti :e∈E(T)

xT ≤ 1, ∀e∈ E′,∀i ∈M. (2)

The multicast routing problem consists in maximizing the following objective
function:

S=
∑
T∈T

b(T)xT .

The fractional packing problem is obtained replacing the integrality constraints
on variablesxT with constraintsxT ≥ 0. We also drop edge constraints (2) to ob-
tain a linear program where every edge is involved in a single constraint and solve

20

it using the polynomial timeε-approximation algorithm of Garg and K¨onemann
[10] based on duality. The algorithm assigns a dual variabley(e) to every edge
e ∈ G′. The central step of the algorithm requires to find the variablexT with
maximum ratioopt = b(T)/

∑
e∈T y(e). This problem isNP-hard, since it cor-

responds to finding the densest tree in the networkG′ where edges are weighted
with the values of the dual variables. However it is easily checked that if we find a
variablexT̃ with b(T̃)/

∑
e∈T̃ y(e) ≥ opt/α then the algorithm of [10] also gives

a 1+ ε-factor approximation of the fractional multicast problem onG′.
As was previously observed by [2] ak-MST algorithm can be used to solve

the densest tree problem. The 3-approximatek-MST algorithm of Garg [9] can be
adapted to work in the case thek vertices are restricted to be request vertices of
the same multicast. Thus, for every multicasti and everyk = 1, ..., |Li |, the 3-
approximatek-MST algorithm is applied. It finds the treeTi (k) spanningk request
vertices ofLi such that

∑
e∈Ti (k) y(e) ≤ 3optk,i , whereoptk,i = min{∑e∈T y(e),b(T) =

k, T ∈ Ti }. Then the tree of maximum ratiok/
∑

e∈Ti (k) y(e) over all k and all i
is selected. Since this ratio has value at leastopt/3, this results in an 1+ ε-factor
approximation algorithm for the fractional multicast problem.

Denote byx∗T the solution of the fractional multicast routing problem1.
Let s = 1/((c log logn)2), wherec ≥ e is an appropriate constant to be fixed

later. The algorithm rounds variablexT to xT = 1 with probabilitysx∗T , and to
xT = 0 with probability 1− sx∗T . Let Gi be the graph with edgesE(Gi) =
∪T∈Ti :xT=1E(T). For any multicasti the algorithm selects an arbitrary spanning
treeTi of graphGi .

The treesTi do not form the integral solution since there might be violated edge
capacities for the unit-capacity edges. However, as described below, the requests
accepted by the final solution form a subset of the requests accepted by the treesTi

and the size of the subset is a constant fraction of the requests accepted by the trees
of Ti . To prove the approximation bound we show in the appendix that the value
Sof the optimal solution of the fractional packing formulation is within a constant
factor of the optimal integral solution on the set of requestsL (Lemma 17), and that
the expected number of request nodes contained in the treesTi is within a factor
of O((log logn)2) of the valueS (Lemma 18).

Let L1
i = Li ∩ V(Ti) be the set of request vertices to multicasti that are

spanned by treeTi if no edge(xS, xS′) of G′ is violated,L1
i = ∅ otherwise, and let

L1 =∑i∈ML1
i . We prove that with at least constant probability no edge(xS, xS′)

of G′ is violated , i.e.,L1 6= ∅ (Lemma 19). IfL1 = ∅, the algorithm terminates
without accepting any multicast. Otherwise, each request ofLi accepted by the

1Let for somei , {T (1), . . . , T (j)} be the set of all the trees ofTi with xT (l) = 1, for all 1≤ l ≤ j .
ThenT (1) ∪ . . . ∪ T (j) forms the multicast tree for multicasti .

21

final solution is routed along a path containing the same edges(xS, xS′) as its path
to the source inTi . The remaining problem is to route request nodes and sources
to the border of their square. This problem was called theescape problem. The
solution proposed by Kleinberg and Tardos for unicast routing [14] uses the fact
that the benefit collected in a square is of the same order as the maximum flow
that can be routed through the border of the square. This is not true for multicast
routing: the maximum benefit that can be collected in a square isO(log2 n), while
the maximum flow that can be routed through the border of the square isO(logn).
Thus, using the same maximum flow approach as in [14], which means routing
request nodes individually out of the square, leads to anO(logn)-factor approxi-
mation. We give instead a recursive approach that achieves aO((log logn)2)-factor
approximation.

Our basic idea is to recursively partition every regionR2
S into subsquaresof size

O(log logn), and each subsquareQ into a subregionsR1
Q and R2

Q. Requests are

routed to the border ofR2
Q on the same path as in the treesTi and from there they

use rings of theR1 regions of subsquares to reach the border ofR2
S. The sequence

of subsquares used for a request is the same as on the path inTi . Therefore we
enforce that the treesTi are edge-disjoint within theR2

Q regions and that there are
at mostO(log logn) trees connecting between any two neighboring subsquares.

We next give the details: Agate vertexfor multicasti in squareS is a vertex
q on the border ofR2

S such that(q, xS) belongs toTi . Let g(p) be the gate vertex
closest to nodep ∈ Li on the path fromp to si in Ti closest top. Let g(si) be a
gate vertex closest tosi on a path fromsi to a node outsideSsi in Ti . Theescape
problemis the problem to connect each request nodep to g(p) and to connect each
source tos to at least oneg(si). Let S be a square whose regionR2

S consists of a
k1 × k2 mesh. Letk = min(k1, k2) and let BS = 4blogkc. Note thatk ≥ B.
The algorithm uniformly chooses two integer valuesaS andbS from the interval
2BS+1, . . . ,7BS for each squareSand creates an(aS,bS, BS)-partitioning for the
regionR2

S. Each submeshQ created by this partitioning is called asubsquare. If Q
does not contain nodes of the border ofR2

S, region R1
Q of subsquareQ consists of

rings 1 toBS, region R2
Q consists of the remaining part ofQ. If Q contains nodes

of the border ofR2
S, we need a different definition: LetQ be ak3 × k4 mesh with

k3, k4 ≤ 9BS. AssumeQ is extended into a 9BS× 9BS meshQ′ by nodes outside
of R2

S. RegionsR1
Q′ and R2

Q′ are defined as above. RegionR1
Q is thenR1

Q′ ∩ R2
S

and regionR2
Q is R2

Q′ ∩ R2
S. By the choice ofaS andbS and the definition ofR2

Q

there are gate vertices inS that belong toR2
Q if subsquareQ lies on the border of

R2
S.

(1) The algorithm rejects all requests whose source or request node belongs
to the regionR1

Q of their subsquareQ. The remaining set of requests is called

22

L2. A subsquare is calledinvalid if one of the edges ofG′ incident to a node in
the subsquare belongs to more than one treeTi . Since every edge is assigned to
a tree with probabilityO(1/((log logn)2), a subsquare in not invalid with at least
constant probability (Lemma 23). (2) Every request node belonging to an invalid
subsquare is discarded and every multicast whose source belongs to an invalid
subsquare is discarded. The set of remaining requests is calledL3. A squareS is
called invalid if there exists a pair of neighboring subsquaresQ andQ′ of S such
that more thanBS/4 treesTi contain an edge incident toQ andQ′. Every square
is proved to be not invalid with at least constant probability (Lemma 24). (3) Every
request node belonging to an invalid square is discarded and every multicast whose
source belongs to an invalid subsquare is discarded. The set of remaining requests
is calledL4. (4) All request nodesp in L4 such thatg(p) belongs toR1

Q for some
subsquareQ are discarded and multicasti is discarded if all gate vertices of square
S containing sourcesi belong toR1

S. The set of remaining requests is calledL5.
(5) Finally all requestsp of L5 such thatg(p) belongs to an invalid subsquare
are discarded, and multicasti is discarded if in a squareS containing sourcesi

all gate vertices inS connected tosi in Ti belong to invalid subsquares. The set
of remaining requests, calledL6, is accepted. SetL6 is expected to be at least a
constant fraction of setL4 (Lemma 25 and 26).

4.1.1 Routing Algorithm

We next show how to route the accepted requests, i.e., how to construct the multi-
cast treeTi for multicasti . The basic idea is to route using the same squares and
subsquares as the treeTi but to route “through” a squareS in R1

S and “through” a
subsquareQ in R1

Q.

Let T
f
i be the subtree ofTi spanningsi and the vertices inTi ∩L6, the request

vertices accepted for multicasti . We first explain how to connect gate vertices. For

every vertexxS of T
f
i the algorithm assigns a ringrS,i of region R1

S to multicast

i . For every edge(xS, xS′) of T
f
i let r be the ring of{rS,i , rS′,i } with larger index.

The algorithm assigns to multicasti the straightline extension ofr from one corner

of r to the other ring, thereby connectingrS,i andrS′,i . For a vertexxS of T
f
i and

every gate vertexq of multicasti belonging to the horizontal (vertical) side of the
border ofR2

S and to a valid subsquare ofS, the algorithm assigns to multicasti the
vertical (horizontal) straightline path fromq to rS,i . Note that all gate vertices of
multicasti in Sare connected to the same ringrS,i .

Next we describe how to connect a request nodep of multicast i in S to its
gate vertexq = g(p). Let Q be the subsquare ofp andQ′ be the subsquare ofq.
Recall thatg(p) lies in regionR2

Q. Let P be the path betweenp andq in Ti and

23

let ep be the edge onP closest top and incident to exactly one node ofR2
Q. Let eq

be defined symmetrically.

For every subsquareQ such that (i)T
f
i contains a vertex ofR2

Q and (ii)si or a

request node ofTi belongs toS we assign a ringr Q,i of R1
Q to multicasti , where

S is the square containingQ.

If Q = Q′ and p is connected toq in T
f
i by a path inR2

Q then p is connected

to q in the same way inTi . If Q = Q′ and p is connected toq in T
f
i by a path

P with edges outsideR2
Q, we connect bothp andq to r Q,i in Ti . Request vertex

p is connected tor Q,i in Ti by the part ofP from p to ep and then the straightline
extension fromep to r Q,i . Gate nodeq is connected tor Q,i in Ti in an analogue
way.

If Q 6= Q′, thenp is connected toq by the same path as above tor Q,i , then the
pathP′ described below tor Q′,i , and finally the same path as above fromr Q′,i to q.
To construct pathP′ the above algorithm to construct a path between gate vertices
is applied: for each neighboring pair(Q1,Q2) of subsquares onP a horizontal
or vertical connection between ringsr Q1,i andr Q2,i is assigned to the multicast.
PathP′ is a simple path betweenr Q,i andr Q′,i created from the assigned rings and
connections.

Next we describe how to connect the source ofi to one of the gate verticesq
of i in S. This suffices since all gate vertices ofi in S are connected to the same
ring rS,i . Recall that one of the gate vertices, sayq, belongs toR2

S. The algorithm
connectss to q in the same way as it connected a request nodep to q.

4.1.2 Proof of Correctness

We show that the resulting multicast treesTi are edge-disjoint. The multicast tree
for multicasti is contained in the ringsrS,i of squares and ringsr Q,i of subsquares
assigned toi , the assigned horizontal or vertical connections between assigned

rings and from gate vertices or edgesep to rings, and paths ofT
f
i in regionsR2

Q of
subsquares.

We distinguish the following seven types of paths used by the multi casts and
show below that (1) for each squareS the algorithm can assign a unique ringrS,i if

xS ∈ T
f
i (Claim 10); (2) for each subsquareQ the algorithm can assign a unique

ring r Q,i if T
f
i contains a vertex ofR2

Q andsi or a request node ofTi belongs to the

square ofQ (Claim 11); (3) for every edge(xS, xS′) in T
f
i the algorithm can assign

a unique horizontal or vertical connection betweenrS,i andrS′,i (Claim 12); (4)
for each gate vertexq of multicasti in squareS the algorithm can assign a unique
horizontal or vertical connection betweenq andrS,i if q belongs to a valid sub-

24

square (Claim 13); (5) for every neighboring pair(Q1,Q2) of subsquares and for
each multicasti the algorithm can assign a unique horizontal or vertical connection
betweenr Q1,i andr Q2,i if they both exist, (Claim 14); (6) ifp is either a request

vertex inT
f
i or a gate vertex such that a request node ofT

f
i in Sp connects through

p to si , then the algorithm can assign a unique horizontal or vertical connection
betweenep to r Q,i , whereQ is the subsquare containingp (Claim 15); (7) if p

is either a request vertex inT
f
i or a gate vertex such that a request node ofT

f
i in

Sp connects throughp to si , then the algorithm can uniquely assign the path inTi

from p to ep or to g(p) if this path is contained inR2
Q, whereQ is the subsquare

containingp (Claim 16). Since the set of edges that can be used for type-(j) paths
is disjoint from the set of edges that can be used for type-(j ′) paths with j 6= j ′,
proving the claims shows the correctness of the algorithm.

Claim 10 The number of treesT
f
i including vertex xS for a square S is at most

the number of rings B of region R1S.

Proof. The number of treesT
f
i including an edgee = (xS, xS′) does not exceed

c(e). Every tree containingxS but not a terminal inR2
S takes 2 units of capacity

on edges(xS, xS′). Every tree containing a terminal inR2
S takes at least one unit of

capacity on edges(xS, xS′). Since the overall capacity of edges(xS, xS′) is at most

4blognc = B, a ring ofR1
S can be assigned to every treeT

f
i containingxS.

Claim 11 There are at most BS treesT
f
i such that (i)T

f
i contains a vertex of

region R2
Q of a subsquare Q and (ii) si or a request node ofT

f
i belongs to S,

where S is the square containing Q.

Proof. Assume by contradiction that a subsquareQ does not fulfill the claim. The

treesT
f
i that contain a vertex of regionR2

Q each use at least one edge with exactly
one endpoint inQ. Thus there exists a neighboring subsquareQ′ of Q in S such

that more thanBS/4 treesT
f
i contain an edge incident toQ and Q′. It follows

thatS is invalid and the algorithm discards all request nodes inSand all multicasts

whose source is inS. Thus, none of the treesT
f
i contains a request node or source

in S. Contradiction.

Claim 12 Let S and S′ be a pair of adjacent squares. For each multicast i with

edge(xS, xS′) ∈ T
f
i the algorithm can assign a unique horizontal or vertical

straightline connection between rS,i and rS′,i .

25

Proof. Since each ring is assigned to at most one multicast, there are at most two
multicasts that potentially want to use a straightline extension, namely one from
ring r in Sand one from ringr in S′. Since there are two “corners” of ringr , there
are two straightline extensions from ringr betweenSandS′ and hence each of the
two multicasts can be assigned a unique one.

Claim 13 For each gate vertex q of multicast i in a valid subsquare Q the algo-
rithm can assign a unique horizontal or vertical connection between q and rS,i ,
where S is the square containing Q.

Proof. Since the subsquareQ of q is valid, the edge(q, xS) belongs to at most one
multicast and the horizontal or vertical connection betweenq and any ring ofR1

S
can be uniquely assigned to this multicast.

Claim 14 For every neighboring pair(Q1,Q2) of subsquares and for each multi-
cast i the algorithm can assign a unique horizontal or vertical connection between
r Q1,i and rQ2,i .

Proof. The same proof as for Claim 12 applies.

For the following two claims, leti be a multicast, and letp either be a request

node inT
f
i or a gate node such that a request nodep′ of T

f
i in Sp connects through

p to si . Let Q be the subsquare ofp. If p is a request node, letep be the edge

closest top and incident toQ on the path fromp to si in T
f
i . If p is a gate node,

let ep be the edge closest top and incident toQ on the path fromp to p′.

Claim 15 The algorithm can assign a unique horizontal or vertical connection
between ep to rQ,i .

Proof. If p is a request node, thenQ is valid since otherwisep would not belong to

T
f
i . If p is a gate node, thenQ is valid since otherwise the request node connecting

throughp would have been discarded.
It follows that each edge inQ belongs at most one treeTi , and the algorithm

assigns the straightline extension fromep to r Q,i only to this multicast.

Claim 16 If the path inTi from p to ep or to g(p) is contained in R2Q, it is edge-
disjoint from any other multicast tree.

Proof. The same argument as in Claim 15 shows that each edge inQ belongs at
most one treeTi . Thus the edges on the path inTi from p to ep or tog(p) are used
only for one multicast.

26

4.1.3 Proof of the approximation ratio

We prove that the algorithm gives anO((log logn)2) approximation using the
following steps: Recall thatS is an upper bound of the optimal fractional solu-
tion. Lemma 17 shows that the valueS is within a constant factor of the opti-
mal integral solution on set of requestsL. Lemma 18 shows that the expected
profit of the treesTi is at leastsS/e2. Lemma 19 shows that the capacity of no
edge(xS, xS′) is violated with at least constant probability. Lemma 21 shows that
E[|L1|] ≥ sS/e2. Lemma 22 shows thatE[|L2|] ≥ |L1|/25, Lemma 23 shows
that E[|L3|] ≥ |L2|/2, Lemma 24 shows thatE[|L4|] ≥ |L3|/4, Lemma 25 shows
that E[|L5|] ≥ |L4|/25, and finally Lemma 26 shows thatE[|L6|] ≥ |L5|/4.

Lemma 17 Let O PT be the optimal integral solution on set of requestsL. Then
O PT ≤ 37S.

Proof. Edgee = (xS, xS′) has capacityc(e) = blognc in the fractional packing
formulation on networkG′. The border between squareSandS′ has size 9B+1≤
37blognc. The optimal integral solution for the multicast routing problem on set
of requestsL can be transformed into a feasible solution for the fractional packing
problem assigning capacity 1/37. The claim of the lemma follows.

Lemma 18 Let b=∑Ti
b(Ti). Then E[b] ≥ sS/e2.

Proof. Note thatE[b] equals the expected number of request nodes contained in
the treesTi .

Let t be a request node ofLi and letxt ′i =
∑

T∈Ti :t ′i ∈V(T) x∗T . We show below
that

Pr [t ′i ∈ V(Ti)] ≥
sxt ′i
e2
.

Summing over all request nodest ′i it follows that

E[b] ≥
∑

i

∑
t

sxt ′i
e2
=
∑

i

∑
T∈Ti

b(T)sx∗T/e
2 = sS/e2.

We are left with showing the bound onPr [t ′i ∈ V(Ti)]. Let {Ti : xTi > 0, i =
1, .., r } be the set of trees in the fractional solution spanning vertext ′i . If r = 1,
the claim is true, sincePr [t ′i ∈ V(Ti)] = sxti . Considerr ≥ 2. The probability
that vertext ′i is in graphGi is lower bounded by

∑
j=1,...,r Pr [xTj = 1 andxTi =

0,∀i 6= j] = ∑j=1,...,r sx∗Tj

∏
i 6= j (1− sx∗Ti

). This expression is minimized when

all the probabilities have equal valuex∗Tj
= xt ′i

r . We then havePr [t ′i ∈ V(Ti)] ≥
r (

sxt ′i
r)(1−

sxt ′i
r)

(r−1) ≥ sxt ′i exp− (sxt ′i
r

r−1) ≥ sxt ′i e
−2, sincesxt ′i ≤ 1.

27

Lemma 19 For every edge e= (xS, xS′) of G′ with capacity c(e) = blognc,
Pr [|{Ti : e∈ E(Ti)}| > c(e)] ≤ n− log log logn.

Proof. Let X(e) = |{T : e ∈ E(T), xT = 1}|. SinceX(e) ≥ |{Ti : e ∈ E(Ti)}| it
suffices to show the bound forPr [X(e) > c(e)].

We prove the claim using the following version of Chernoff bounds [20]:

Proposition 20 Let X1, X2, ..., Xn be independent Poisson trials such that , for
1 ≤ i ≤ n, Pr[Xi = 1] = pi , where0 < pi < 1. Then,for X= ∑n

i−1 Xi ,
µ = E[X] =∑n

i=1 pi , and anyδ > 0,

Pr [X > (1+ δ)µ] <
[eδ

(1+ δ)(1+δ)
]µ
.

We need to boundPr [X > (1+ δ)µ] = Pr [X(e) > c(e)], for which we set
δ = c(e)

µ
− 1. For the expected valueµ we haveµ = ∑

T∈T :e∈E(T) x∗T ≤ sc(e).
Applying Chernoff bounds we obtain:

Pr [X(e) > c(e)] <
[e(

c(e)
µ
−1)(c(e)

µ

) c(e)
µ

]µ ≤ 1(c
e(log logn)2

)blognc ≤ n− log log logn

Lemma 21 E[|L1|] ≥ sS/2e2

Proof. By Lemma 19, the capacity of an edge is violated with probability at most
n−3, since log log logn ≥ 3. No edge(xS, xS′) of networkG′ is then violated with
probability at least 1/n. The claim follows.

Lemma 22 E[|L2|] ≥ |L1|/25,

Proof. Follows from Lemma 9.

Lemma 23 There is a suitable choice of c such that for every subsquare Q, Pr[∃e ∈
V(R2

Q) : |{Ti : e ∈ E(Ti)}| > 1] ≤ 1/2.

Proof. RegionR2
Q containsO((log logn)2) edges. Consider edgee of subsquare

Q and consider the solution of the fractional packing problem. Every edgeeof R2
Q

is assigned to treeT with probabilitysx∗T . Since the fractional solution is feasible,∑
T∈T x∗T ≤ 1. The “expected capacity” of edgee assigned to a treeTi is then

28

bounded bys. Using the Markov inequality we have that the probability that the
capacity of an edgee is exceeded is bounded bys. With a suitable choice ofc, the
probability that the capacity of at least one edge ofR2

Q is violated is bounded by
sO((log logn)2) ≤ 1/2.

Lemma 24 E[|L4|] ≥ |L3|/4,

Proof. We show that the probability that a square is invalid is at most 1/2. Let Q
andQ′ be neighboring subsquares. LetTQQ′ be the set of trees containing an edge
betweenQ andQ′ and havingx∗T > 0. Letµ =∑T∈TQQ′ x

∗
T ≤ (9BS+1)s and let

X be the number of treesT in TQQ′ with xT = 1. X is clearly an upper bound to
the number of distinct trees crossing the border between two subsquares. Choosing
a suitable large constantc, we prove in a way similar to Lemma 19 thatPr [X >

BS/4] ≤ ((logn)− log log logn). Since there areO(logn)2 adjacent subsquares in a
squareS, and log log logn ≥ 3, with probability at least 1−�(1/ logn) no border
between two adjacent subsquares is crossed by more thanBS/4 distinct trees. A
requestt of multicast i of L3 is in L4 if squareSt and squareSsi are valid. The
theorem then follows.

Lemma 25 E[|L5|] ≥ |L4|/25,

Proof. Let (s, t) be a request ofL4 and letq be a gate vertex inSs. Request
(s, t) belongs toL5 if q ∈ R2

Ss
andg(p) ∈ R2

St
. By Lemma 9 this happens with

probability at least 1/25.

Lemma 26 E[|L6|] ≥ |L5|/4,

Proof. As shown by Lemma 23 a subsquare is invalid with probability at most 1/2.
A requestt of multicasti of L5 is inL6 if the subsquareSg(t) and subsquareSg(si)

are valid.

We then conclude with the following:

Lemma 27 There exists an O((log logn)2) approximation algorithm for long re-
quests for the multicast routing problem on meshes.

4.2 Short requests

We complete the approximation algorithm for meshes describing the algorithm for
short requests.

We separately consider every squareS of G and set of requestsSS = {(t, s) :
Ss = S}. We apply recursively the algorithm for requestsSS in a squareS. Square

29

S is partitioned in subsquares of sizeO(log logn). Denote byQ the generic sub-
square. Those requests ofSS that are considered long requests within squareSare
dealt by the algorithm of the previous section. Those requests ofSS that are con-
sidered short requests within a subsquareQ are dealt with exhaustive search of the
best solution for the multicast routing problem in submeshQ of sizeO(log logn),
which takes time polynomial inn.

We then conclude with the following lemma for short requests.

Lemma 28 There exists an O((log log logn)2) approximation algorithm for short
requests for the multicast routing problem on meshes.

This shows the desired theorem.

Theorem 29 The above algorithm gives an O((log logn)2)-factor approximation
for multicast routing on unit-capacity meshes.

5 The online algorithm for meshes

We propose an algorithm with polylogarithmic competitive ratio on meshes. As in
the unicast algorithm for meshes [14] the algorithm partitions the mesh into squares
of size 13B× 13B, whereB = 2(logn). Then it uses four main ideas: (1) It “fil-
ters” requests in stage one to “make space” for our routing, but it guarantees that if
a square contains requests, then at least one request of them survives the filtering.
Thus, step one “looses” anO(log2 n) factor. (2) Stage two contracts each square to
a node and runs the algorithmMC of [12] on G′. For each accepted requestMC
returns a path consisting of a sequence of neighboring squares. To translate this
sequence into a path in the original mesh we have to be able to constructB disjoint
paths between neighboring squares. The idea is that a path from a neighboring
square enters a square in the “middle” B links between the two squares. Within
a square each path is assigned its own concentric ring on which it proceeds until
it reaches either the appropriate row2 or column to exit the square or its multicast
tree. (3) However there can be requests accepted byMC which cannot be routed
“locally”, i.e., there is a conflict in the squares of the endpoints. These requests
have to be rejected. In the unicast setting this causes no problem since the rejection
of a request does not affect routing of requests accepted later on. In the multicast
setting, however,MC might output a path inG′ that does not connect the request
to its source inG since an earlier request of the same multicast was accepted by
MC and rejected by our algorithm. We handle this situation by always connect-
ing the same squares asMC even if the request is not accepted. (4) Since latter

2We userow to denote a horizontal path andcolumnto denote a vertical path in the mesh.

30

requests might be more profitable than earlier ones, the algorithmselectseach mul-
ticast with roughly equal probability (after passing some additional screening for
“routability”) and discards all unselected multicasts.

5.1 The first stage of the algorithm

Let G = (V, E) denotes then × n two dimensional mesh. We assume thatn is
sufficiently large such thatB = bblognc

13 c ≥ 1.
Let f = n div blognc and let f1 = n mod blognc. We partition the mesh

into f 2 submeshes of logarithmic size. The partition of the mesh is obtained seg-
menting every side intof − f1 contiguous segments of sizeblognc followed by f1
segments of sizedlogne. By abuse of notation every submesh is called asquare,
even though the size of the two sides may differ by 1. We denote the square con-
taining a nodet by St .

The first ring in a squareS consists of all nodes ofS that either are incident
to a node outside ofS or have degree less than 4 in the meshG. Recursively, the
i -th ring of S with i > 1 consists of all nodes ofS that are incident to a node of
ring i − 1 of S. Each ring, except the innermost, forms a rectangle of nodes, the
innermost ring either forms a rectangle or a line of nodes. Acornerof a ring is a
corner of the rectangle or an endpoint of the line. The first ring is also called the
borderof S.

In any squareSwe define threeregions R1, R2 andR3. RegionR1 consists of
rings 1 to 2B, regionR2 consists of rings 2B + 1 to 4B, and regionR3 is formed
by rings 4B+ 1 to 6B and the remaining piece ofS, called thecentral regionof S.
The central region is a rectangle with sides of size at leastB, i.e., consisting of at
leastB rings.

The first stage of the algorithm selects for each square one of its regions at
random. The selected region is used to route paths “through” the square. All
requests whose request node or source belong to the selected region are rejected to
guarantee that they do not overlap with the paths routed through the selected region.
Additionally each ring of the square is randomlydedicatedeither to sources or to
request nodes and requests not following the dedication are rejected. Again the
idea is to guarantee that requests with a source in a ring does not overlap with a
request with a request node in the same ring.

The details of the first stage are as follows:

1. Dedicate each ring to multicast sources with probability 1/2, otherwise to
request nodes.

2. Select uniformly at random one of the three regions in each square.

31

3. Discard all the requests from vertext to sources if t or s are in a selected
region.

4. Discard all the requests from a vertext on a ring dedicated to sources, unless
the request is directed to a sources on the same ring oft .

5. Discard all the multicasts whose source is in a ring dedicated to requests.

Let the original sequence of requests be calledA and let the remaining set of
requests be calledC. Denote byO PT(A) the sequence of requests accepted by
the optimal algorithm over a set of requestsA.

Lemma 30 For any input sequenceσ , E(|O PT(C)|) ≥ 1
12|O PT(A)|.

Proof. Let us consider the probability that a request(t, s) of O PT(A) belongs to
C. Assume first that botht ands are within the same square. Then(t, s) belongs
to C if (a) both are outside the selected region, and (b) the ring ofs is dedicated to
sources and the ring oft is either dedicated to requests or equal tos’s ring. The
condition (a) is fulfilled with probability at least 1/3, condition (b) with probability
at least 1/4. Thus,(t, s) belongs toC with probability at least 1/12.

Assume next thatt ands belong to different squares. Then(t, s) belongs to
C if (a) both are outside the selected region, and (b) the ring ofs is dedicated to
sources and the ring oft is dedicated to requests. The condition (a) is fulfilled with
probability at least 4/9, condition (b) with probability at least 1/4. Thus,(t, s)
belongs toC with probability at least 1/9.

This shows thatE[|O PT(A) ∩ C|] ≥ 1
12|O PT(A)|. Since |O PT(C)| ≥

|O PT(A) ∩ C|, the result follows.

5.2 The second stage of the algorithm.

The second stage of the algorithm receives as input the requests ofC accepted by
the first stage, in the order in which they are presented to the algorithm. It partitions
C into the setL0 of long requests, and the setS0 of short requests. A request(t, s)
is a long request if at presentation no branch of the multicast rooted ats is in St .
Otherwise,(t, s) is ashort request. The algorithm routes short requests “locally”
within the square and usesMC for long requests.

Recall that each square contains 13B concentric rings. To guarantee that the
trees used for different multicasts are edge-disjoint we maintain the invariant that

(I1) all edges of a ring that belong to any multicast tree belong to the same multi-
cast tree.

32

To maintain the invariant each ring isassignedby the algorithm to at most one mul-
ticast and this is the only multicast whose tree is allowed to use edges of the ring.
To achieve this each request ofC has to pass various tests. These tests guarantee
that the following additional invariants are maintained.

(I2) No two request nodes of accepted requests belong to the same square.

(I3) No two sources of accepted requests of different multicasts belong to the same
ring.

(I4) No two sources of acceptedlong requests of different multicasts belong to the
same square.

(I5) No two sources of acceptedshortrequests from the same square belong to the
same square.

(I6) No two request nodes of accepted long requests belong to the same square.

Invariant (I6) follow from invariant (I2).

5.2.1 Long requests

The algorithm for long requests decides whether to accept or reject a request in
four steps. Each step rejects the request if certain conditions are not fulfilled. The
requests which are not rejected after stepi , i = 1,2,3,4, form a sequenceLi .

Whenever the first request of a multicast is added toL2, the algorithm decides
whether the multicast isselected for long requests. This is needed (1) to discard
multicasts were the “local” routing causes potential conflicts and (2) to guarantee
that latter multicasts have roughly the same probability of being accepted as earlier
ones. A multicast with sources is selected for long requestsif all of the following
conditions are fulfilled at the time of the test:

(i) no multicast with source on the ring ofs is already selected forshortrequests;

(ii) no multicast with source inSs is already selected forlong requests;

(iii) a coin toss with success probability 1/(4B) is successful; and

(iv) if s is in R3 then the largest ring ofR3 in Ss is dedicated to sources.

When a multicast becomes selected for long requests, up to two of the rings
in Ss are assigned to the multicast: (a) the ring containings is assigned to the
multicast; and (b) ifs is in R3, the largest ring ofR3 in Ss.

33

The second ring is needed for the following reason: When routing a long re-
quest to the border ofSs the algorithm needs to be able to use any available crossbar
row or column. However, ifs belongs to the central region, the ring ofs does not in-
tersect all crossbar rows and columns. Thus, we route the path from the ring ofs to
the largest ring ofR3 and from this ring the algorithm can connect to any crossbar
row or column. To avoid that the connection between the ring ofs and the largest
ring of R3 overlaps with any other multicast tree, the two rings are connected along
a “straightline extension” of the internal ring assigned tos, which will guarantee
that the connection does not use an edge of a short request (see Section 5.2.2).

However, the connection ofs from the central region to the largest ring ofR3

overlaps a crossbar row or column that may be used to connect a request node
t ′ ∈ R3 of a different long request(t ′, s′) to the border. Our algorithm will reject
all long requests from a request node in the square if (i) a request to a source node
in the square has been accepted, or (ii) if a long request to a request node in the
square has been accepted. This implies that if a connection from a source inR3 to
the largest ring ofR3 exists then no further long requests are accepted. Thus, the
problem is restricted to the situation when the long request from a request node in
R3 was accepted andafterwardsa request with source inR3 appears. We avoid the
intersection by selecting an appropriate straightline extension connecting a ring of
the central region to the largest ring ofR3 that avoids the crossbar row or column
used by the long request with request node inR3.

We now give the details of the decision algorithm when a request(t, s) arrives.
Let G′ be a mesh such that each square of the original mesh is represented by a ver-
tex in G′ and two vertices ofG′ are connected by an edge if the two corresponding
squares are adjacent. Each edge has capacityB.

1. If a long request with request node or source inSt has been added toL3, the
algorithm rejects(t, s) and stops. If a short request with request node inSt

has been accepted, the algorithm rejects(t, s) and stops. Otherwise it adds
the request toL1.

2. The request(t, s) of L1 is transformed into a request between the two vertices
St andSs of G′, and then submitted toMC. If MC accepts the transformed
request, request(t, s) is added toL2. In this caseMC also returns a route in
G′ which corresponds to a sequence of squares in the original mesh. Other-
wise, the request is rejected and the algorithm stops.

3. If the multicast of the request(t, s) in L2 is selected for long requests, the
request is added toL3 and an unassigned ring of the selected region ofSt is
assigned to the multicast of the request. Otherwise the algorithm rejects the
request and stops.

34

4. If t is not in the central region ofSt , then(t, s) is added toL4.

If t belongs to the central region ofSt , and one of rings 4B + 1, . . . ,6B in
St is dedicated to request nodes then(t, s) is added toL4 and one of rings
4B+1, . . . ,6B in St dedicated to request nodes is assigned to the multicast.

If (t, s) is added toL4 it is accepted. The ring oft is assigned to the multicast
of (t, s) andt is connected to the multicast tree ofs. Otherwise the request
is rejected and an arbitrary nodeu on the assigned ring of the selected region
is connected to the multicast tree ofs.

Step 4 guarantees that the following invariant is maintained:

(I7) If a request(t, s) is added toL3, then a node ofSt is connected tos.

We show next how the algorithm routes a request ofL3. For each such requests
denotes the source node andv denotes the node ofSt to which the request is routed,
i.e., eitherv = t or v = u, whereu is a node on the assigned ring of the selected
region. For every such request we are given byMC a path inG′ consisting of a
sequence of neighboring squares. LetS1, S2, . . . , Sp be the sequence of squares
such thatS1 = St andSp contains a nodex of the multicast tree ofs. If Sp contains
s, let x = s. Otherwise, ifSp contains an accepted request node not inR3, let x be
this node. Otherwise, as we show in Lemma 34, a ring of the selected region was
assigned to the multicast and at least one node on the ring is connected tos. In this
case letx be this node.

Each request ofL3 is routed fromv to the border betweenS1 andS2, from there
to the border betweenS2 and S3 and so forth, until finally to the border between
Sp−1 andSp and from there tox. Let P denote the resulting path fromv to x. We
describe next each step in detail.

To route paths between two neighboring squares we reserve thecrossbarof
rows 6B+ 1, . . . ,7B and columns 6B+ 1, . . . ,7B. All rows and columns in the
crossbar cross the central region of the square. By Lemma 34 there is an unassigned
crossbar row resp. column for each accepted request.

Case 1: Fromv to the border between S1 and S2: Wlog the border betweenS1

andS2 is a row. We assign an unassigned crossbar column and the ring ofv

to the multicast.

If v does not belong to the central region, we routeP along the ring ofv until
it reaches the point on its assigned crossbar column closest to the border. At
this pointP is routed along the assigned column until it reaches the border.

If v belongs to the central region, we routeP on the ring ofv until a corner
of the ring is reached. ThereP continues straight to the assigned ring ofR3.
From the assigned ring ofR3 we continue as above.

35

Case 2: From one border of a square to another border of the square:Wlog the
entering border is a column and the exiting border is a row. One unassigned
ring of the selected region is assigned to the multicast. We additionally as-
sign one of the unassigned crossbar columns between the current square and
the next square toP.

PathP follows the entering row until it intersects the assigned ring. Then
P is routed along the ring until it reaches the intersection point with the as-
signed column closest to the exiting border. ThereP switches to the assigned
column until it reaches the border.

Case 3: From the border of Sp to the node x:Wlog the border betweenSp−1

and Sp is a row. There are three cases to consider: (i)x = s, (ii) x 6∈ R3

is a request node of an accepted request of the multicast, or (iii)x is a node
connected tos that belongs to a ring of the selected region assigned to the
multicast.

(i) If s does not belong toR3, we routeP along the entering column until
the ring ofs is reached. At this pointP is routed along the ring ofs to s. If s
belongs toR3, P follows the entering column until the largest ring ofR3 is
reached. Then,P is routed along this ring until it reaches a point from which
a row or column is available that (1) connects straight to a corner of the ring
of s and (2) does not intersect any existing multicast tree. By Lemma 34
such a row or column exists. PathP routes along this row or column to the
ring of s and along the ring ofs to s.

(ii) When the request atx 6∈ R3 was accepted, the ring ofx was assigned to
the multicast. We routeP along the entering column until the ring ofx is
reached. At this pointP is routed along the ring ofx to x.

(iii) We route P along the entering column until the assigned ring of the
selected region is reached. At this pointP is routed along the ring tox.

We need to show that this routing is always possible. We first show two prop-
erties ofMC.

Lemma 31 The maximum number of paths routed by MC between two adjacent
squares is B.

Proof. Each edge inG′ has capacityB and MC does not violate the capacity
constraints. We say a path inG′ is routed througha squareS if S is an internal

node of the path.

36

Lemma 32 Let S be a square. There are at most2B paths of MC routed through
S. If a request node of a request inL2 belongs to S, then at most2B − 1 paths of
MC are routed through S.

Proof. Every path routed through a square consumes two units of bandwidth on
the edges incident to the vertex ofG′ associated with the square. Additionally, a
long request consumes one unit of bandwidth. The overall bandwidth on the edges
incident to a vertex ofG′ is 4B.

We prove with the next two lemmata that all paths constructed for different
multicasts are edge-disjoint.

Lemma 33 Invariants (I4) and (I6) are maintained.

Proof. Condition(ii) of being selected for long requests guarantees that invariant
(I4) is maintained. Step 1 of the algorithm guarantees invariant (I6).

Lemma 34 Let (t, s) be a request ofL3 and let(v, x) be the corresponding pair
of nodes that has to be connected by a path. Then the above algorithm succeeds in
constructing a path fromv to x. Furthermore, this path does not share any edge
with paths constructed for requests inL3 for different multicasts.

Proof. We first show that the algorithm succeeds in constructing a path fromv to x.
We need to show that (a) whenever the algorithm tries to assign an unassigned ring
of the selected region to the multicast, such a ring is available; (b) ifs 6∈ Sp and
no request node of this multicast inR1 or R2 was accepted thens is connected to
a nodex on a ring of the selected region ofSp that is assigned to the multicast; (c)
whenever the algorithm tries to assign an unassigned column or row between two
neighboring squares, such a column or row is available; (d) whenever the algorithm
tries to connect the largest ring ofR3 with vertex s in R3, such connection is
possible without overlapping with a different multicast tree.

(a) The selected region consists of 2B rings. The algorithm tries to assign a
ring of the selected region for each request ofL3 with request node in the square
and for each request routed through a square. Step (1) of the algorithm guarantees
that at most one long request with request node in a square belongs toL3. If this
happens, Lemma 32 shows that at most 2B−1 paths are routed through the square,
otherwise at most 2B paths are routed through the square. Thus, in either case there
are enough rings in the selected region.

(b) If s 6∈ Sp but MC routed the path fromSt to Sp, thenMC connectedSp to
Ss during an earlier request. Thus, an earlier request(t ′, s) of the same multicast
was added toL2 and, since the multicast is selected for long requests, was also
added toL3. Thus, a ringr of the selected region ofSp is assigned to the multicast.

37

If (t ′, s) ∈ L3 \ L4, then a nodeu of r is connected tos. If (t ′, s) ∈ L4, then by
assumptiont ′ ∈ R3. Thus, the crossbar row or column on the path fromt ′ to the
border ofSp also contains a node ofr .

(c) The crossbar consists ofB rows and columns. By Lemma 31 there are
at most B requests that have to cross the border between any two neighboring
squares. Thus, it is guaranteed that whenever a path needs to be routed between
two neighboring squares an unassigned row or column is available.

(d) The ring ofs has at least one corner, and thus there are at least two possible
rows and two possible columns through which the largest ring ofR3 can be con-
nected with the ring ofs. At most one long request(t ′, s′) with t ′ in R3 has been
accepted inSs, potentially using one of these crossbar rows or columns. Thus,
there are still at least three possible ways to connect to the ring ofs.

Let S be a square. We show next that the path fromv to x does not share any
edge inS with paths constructed for requests inL3 for different multicasts. The
lemma follows.

Note first that no ring ofS shares an edge with a crossbar row or column or a
straightline segment connecting two rings. To complete the proof that no two paths
of different multicasts share an edge inS, it then suffices to show that the rings of
the two paths are edge-disjoint and that the straightline segments of the two paths
are edge-disjoint. The straightline segments connect the various rings of a path and
a ring with the border ofS.

A path that is routed throughSconsists of an entering crossbar row or column,
a part of a ring in the selected region, and a departing crossbar row or column.
Both crossbar pieces go from the border to the selected region. By points (a) and
(c) and the observation that the straightline extensions belong toR3, which is in
this case not the selection region, all these three pieces are disjoint from the paths
used by any other request path with edges inS. Thus, any path routed throughS is
edge-disjoint from any path of a different multicast inS.

We are left with showing that no two paths of long requests starting or ending
in S share an edge inS. Let P and P′ be two such paths belonging to different
multicasts and lety and y′ be their endpoints inS. By invariants (I4) and (I6),
y and y′ can only be a source node and a non source node. Wlog.,y is a source
and y′ is a non-source node. Nodey belongs to a ring that is assigned to sources
and does not belong to the selected region, nodey′ either belongs to the selected
region or to a ring that is assigned to requests. In either case, the rings ofy and of
y′ are edge-disjoint. Furthermore, the largest ring ofR3 might have been assigned
to pathP and in this case is dedicated to sources. A different ring ofR3, which is
dedicated to request nodes, might have been assigned to pathP′. Again these rings
are edge-disjoint.

By point (c) the crossbar rows or columns assigned toP and P′ are different

38

and, thus, edge-disjoint. Since the straightline extensions start at different rings,
they are edge-disjoint. We are left to show that the straightline extensions con-
necting the rings assigned toy and y′ are edge-disjoint with the crossbar rows or
columns used inP and P′. If neither y nor y′ belong toR3, no straightline ex-
tension is necessary. If only one betweeny andy′ belongs toR3, one straightline
extension exists, belonging completely toR3, and the crossbar row or column of
the other path does not reachR3. Thus, ofP and P′ are edge-disjoint. If bothy
andy′ belong toR3, note that by Step 1P′ was accepted and routed beforeP. By
point (d) above the straightline extension ofP does not overlap withP′.

It follows that P andP′ are edge-disjoint.

5.2.2 Short Requests

Recall that a request(t, s) is short if a nodex in St belongs to the multicast tree of
s. The algorithm for short requests decides whether to accept or reject a request in
three steps. Each step rejects the request if certain conditions are not fulfilled. The
requests which are not rejected after stepi , i = 1,2,3 form a sequenceSi .

Whenever the first request withSt = Ss of a multicast is added toS2, the
algorithm decides whether the multicast isselected for short requests. Note that
this decision will only affect short requests withSt = Ss, other short requests of
the same multicast are accepted or rejected independent of this decision.

A multicast with sources is selected for short requestsif all of the following
conditions are fulfilled at the time of the test:

(i) no short request of a multicast with source inSs has been added toS2;

(ii) a coin toss with success probability 1/2 is successful.

Whenever a multicast is selected for short requests, the ring ofs is assigned to the
multicast.

In the following lety denote a node ofSt that belongs to the multicast tree of
s. Note thaty = s is possible. The decision part of the algorithm for short requests
consists of three steps:

1. (a) If a short request with request node inSt has been accepted then reject(t, s)
and stop. (b) If a long request with request node inSt has been added toL3,
reject(t, s) and stop. (c) If a long request with source inSt has been added
toL3, reject(t, s) and stop. Otherwise add(t, s) to S1.

2. If either t or y, but not both, is in the central region, the other vertex is not in
R3, and ring 4B+1 to 6B of St are all dedicated to sources, then reject(t, s)
and stop. Otherwise add(t, s) to S2.

39

3. If St 6= Ss or if St = Ss and the multicast with sources is selected for short
requests, then add(t, s) to S3. Otherwise reject(t, s) and stop.

Accept every request(t, s) in S3 and assign the ring oft to the multicast. If
either t or y, but not both, belong to the central region ofSt , and the other
vertex does not belong toR3, assign one of rings 4B+1 to 6B of St dedicated
to requests to the multicast ofs.

We describe next the routing part of the algorithm. LetP denote the path used
by an accepted request(t, s) to connectt to y. If t andy belong to the same ring,
simply connect them by a path along the ring.

If t andy do not belong to the same ring, leta denote the vertex of{t, y} that
belongs to a ring ofSt with larger index than the other vertex. Letb denote the
other vertex. Ifa is outside the central region thenP starts ata and follows the
ring containinga until a corner of the ring is reached. Then,P continues along a
straightline extension of the ring to the ring ofb and from there along the ring ofb
to b.

If a is in the central region andb is not, thenP starts ata, follows the ring
of a until a corner of the ring is reached. ThereP continue straight to the ring in
the external 2B rings of R3 assigned to the multicast. Then, pathP continues as
described above, i.e., it routes to a corner of the ring, extends straight from there
until it reaches the ring ofb, and follows the ring ofb to b.

If both a andb belong to the central region,P is routed froma along the ring
of a until it reaches a corner of the ring. From there it continues straight until it
reaches the ring ofb and it follows the ring ofb to b.

Lemma 35 Invariant (I1), (I2), (I3), and (I5) hold.

Proof. Step 1(a) and 1(b) of the algorithm for short requests and step 1 of the
algorithm for long requests ensure that invariant (I2) holds.

Condition (i) and(ii) of being selected for a long request and condition(i) of
being selected for a short request ensure invariant (I3).

Condition(i) of being selected for a short request ensure invariant (I5).
Finally, we show that invariant (I1) holds. The routing phase guarantees that

edges on a ring are only used by the multicast to whom the ring is assigned. Thus,
we need to show that each ring is assigned to at most one multicast. A ring is
assigned to a multicast during request(t, s) (a) if it containss, (b) if it containst ,
(c) if it belongs to the selected region, (d) if it is the largest ring ofSs and dedicated
to sources or, (e) if it is one of rings 4B+ 1 to 6B in St and dedicated to requests.

During a request(t, s) a type (c) assignment is only done if the ring was not
previously assigned. Thus, we only need to show that type (a), (b), (d), and (e)

40

assignments do not assign previously assigned rings. Recall that each ring is either
dedicated to a source or to a request node. A request is rejected if its source lies
on a ring dedicated to request nodes or its request node lies on a ring dedicated to
sources and its source does not lie on this ring. In the following letr denote the
ring that is assigned.

Type (a): The ring r of s is dedicated to sources. When the ringr of s is
assigned to the multicast with sources, the multicast with sources is selected for
long or short requests. If it becomes selected for long requests, by condition(i) and
(ii) for selection for long requests no multicast with source onr is already selected
for short or long requests. If the multicast becomes selected for short requests,
note thatSs = St . By by condition(i) for selection for short requests and step 1c of
the algorithm for short requests no multicast with source inSs is already selected
for short or long requests. Thus,r was not assigned to any other multicast with
source onr . Furthermore,r does not belong to the selected region. Thus,r has
not been assigned because of type (a), (b), (c), or (e) assignments. Finally a type
(d) assignment can happen only if a previous source of a long request belongs to
Ss. This is impossible by condition(ii) of being selected for a long request if the
current request(t, s) is a long request, and by step (1c) of the algorithm for short
requests if the current request(t, s) is a short request.

Type (b): The ring r is dedicated to request nodes and does not belong to
the selected region. Thus,r was not previously assigned with type (a), (c), and
(d) assignments. Since(t, s) is an accepted short request, no earlier request with
request node inSt was accepted by invariant (I2). Thus,r was not previously
assigned by type (b) or (e) assignments.

Type (d):In this case ringr belongs toSs and is dedicated to sources. Further-
more,s ∈ R3, i.e., R3 is not selected and the current multicast is selected for long
requests. It follows that no multicast with source inSs is already selected for long
requests and no multicast with source onr was previously selected. The former
implies that no type (d) assignment has happened tor before, the latter implies that
no type (a) assignment has happened tor before. Sincer does not belong to the
selected region and is dedicated to sources, type (b), (c), and (e) assignments are
not possible.

Type (e): In this case ringr belongs toSt and is dedicated to request nodes.
Furthermore,R3 is not selected andt ∈ R3. It follows that type (a), (c), and (d)
assignments are not possible. By invariant (I2) no earlier request with request node
in St was accepted. Thus, no previous type (b) or (e) assignment can have occurred.

Lemma 36 No two paths constructed for different multicasts share an edge.

41

Proof. Let S be a square. We show that no two pathsP and P′ constructed for
different multicasts share an edge inS. By Lemma 34 no two paths assigned to
long requests share an edge. Thus, we can assume thatP is a path constructed for
a short request. Let(t, s) be the request leading to the construction ofP and let
(t ′, s′) be the request leading to the construction ofP′.

By step (1a) of the algorithm, only one short request is accepted in a square.
By step (1b) of the algorithm, if a long request from a request node in a square has
been added toL3, no short request from that square is accepted. By step (1c) of the
algorithm if a long request with source node in a square was added toL3, no short
request from that square is accepted. Thus, it follows that when(t, s) is accepted,
no previously accepted request has either its source or its request node inSt . Thus,
eitherP′ routes throughSt or (t ′, s′) is a long request accepted after(t, s). By step
1 of the algorithm for long requests it additionally follows thatSt 6= St ′, i.e., that
St = Ss′.

Lemma 35 shows that we maintain invariant (I1), i.e., the edges of a given ring
are used by at most one multicast tree. Thus, no two different multicast trees share
an edge on a ring. As argued in Lemma 34, no ring ofS shares an edge with a
crossbar row or column or a straightline segment connecting two rings.

We are left with proving that the subpaths ofP′ used to connect the (at most
2) rings ofP′ and the border(s) of the square are edge-disjoint with the (at most 2)
subpaths ofP that connect the (at most 3) rings used byP.

Each subpath used byP is a straightline extension either (a) from a corner of a
ring outside the central region to a more external ring, (b) from a corner of a ring of
the central region to a ring ofR3 with smaller index, or (c) from a corner of a ring
of the central region to another ring of the central region. Each subpath used byP′

is either (i) a straightline extension from a corner of a ring ofR3 to ring 4B + 1,
or (ii) a crossbar row or column from a vertex of ring 4B + 1 or of a ring outside
R3 to the border of the square. Since they start from different rings, every type
(i) subpath ofP′ is edge-disjoint with all type (a), (b), or (c) subpaths used byP.
Every type (ii) subpath ofP′ is edge disjoint with any type (a) subpath ofP, since
a type (a) subpath does not use edges on the crossbar. Every type (ii) subpath of
P′ is also edge-disjoint with any type (b) or (c) subpath ofP, since type (b) or (c)
subpaths only use edges with both endpoints inR3.

Thus,P andP′ are edge-disjoint.

5.2.3 The analysis

Let ρ = logn(logn+ log logM) logM. Recall thatMC achieves a competitive
ratio of O(ρ). We prove in this section that the expected number of requests ac-
cepted by the second stage of the algorithm is anO(ρ logn) fraction of O PT(C),

42

for any possible setC. Together with Lemma 30 it follows that our algorithm is
O(ρ logn) = O(log2 n(logn+ log logM) logM) competitive.

Since

|O PT(C)|= |O PT(C) ∩ L0| + |O PT(C) ∩ S0|
= |O PT(C) ∩ ((L0 \ L1) ∪ (S0 \ S1))| + |O PT(C) ∩ L1| + |O PT(C) ∩ S1|

it suffices to show the following results:
|O PT(C) ∩ ((L0 \ L1) ∪ (S0 \ S1))| ≤ 48 log2 nE[|ON(C)|] (Lemma 39),
|O PT(C) ∩ L1| ≤ O(ρ logn)E[|ON(C)|] (Lemma 40), and
|O PT(C) ∩ S1| ≤ O(log2 n)E[|ON(C)|] (Lemma 42).
We first need to show the following claim. We assume here that each node can

receive at most one request per multicast.

Claim 37 At most4 log2 n requests with request node in a given square can be
accepted in a solution.

Proof. Each node in a square is incident to four edges and thus can belong to at
most four multicast trees. Thus at most 4 log2 n requests with request node in a
square can be accepted by a solution.

Claim 38 Every request ofL3 is added toL4 with probability at least1/2, i.e.,
E[|L4|] ≥ |L3|/2.

Proof. Let (t, s) be such a request ofL3. By Step 4 of the algorithm for long
requests,(t, s) is not added toL4 if t belongs to the central region and rings 4B+1
to 6B are all dedicated to sources. Ift belongs toR3, R3 is not the selected region,
and thus every ring ofR3 is dedicated to request nodes with probability 1/2.

Lemma 39 |O PT(C) ∩ ((L0 \ L1) ∪ (S0 \ S1))| ≤ 4 log2 nE[|ON(C)|]

Proof. We first show that|O PT(C) ∩ (L0 \ L1)| ≤ 24 log2 nE[|ON(C)|].
A request(t, s) of L0 is not added toL1 because (i) a long request with request

node inSt was added toL3 or (ii) a long request with source inSt was added toL3

or (iii) a short request with request node inSt was accepted. Consider the following
charging from long requests inL0\L1 to squares of the mesh: (A) If a request(t, s)
of L0 was not added toL1 because situation (i) or (iii) arose, the request is charged
to St . (B) If (t, s) was not added because a type (ii) request(t ′, s′) was added to
L3, we charge(t, s) to St ′. Claim 37 shows that there are at most 4 log2 n type (A)
charges and at most 4 log2 n type (B) charges to a given square.

43

Let q be the number of squares to which at least one request ofL0 \ L1 is
charged. Then|O PT(C) ∩ (L0 \ L1)| ≤ 8 log2 nq. It suffices to proveq ≤
3E[|ON(C)|]

Every square with a type (A) charge contains the request node of an accepted
request ofC. Every square with a type (B) charge contains the request node of
a request inL3. By Claim 38, |L3| ≤ 2E[|ON(C)|]. Thus, q ≤ |ON(C)| +
2E[|ON(C)|].

Then,|O PT(C) ∩ (L0 \ L1)| ≤ 8 log2 nq ≤ 24 log2 nE[|ON(C)|]
The same argument applies toS0 \ S1.

Lemma 40 |O PT(C) ∩ L1| ≤ O(ρ logn)E[|ON(C)|]

Proof. The requests ofL1 are transformed into requests onG′, giving rise to a
request sequenceL1,G′ submitted toMC. The bandwidth onM is a factor of 13
larger than the bandwidth onG′. On the request sequenceL1,G′ we compareMC
on G′ with an optimum algorithm on a meshG′′ whose topology is identical toG′

and whose edge capacity is a factor of 13 larger. Then we compare the optimum
algorithm onG′′ with the request sequenceL1,G′ with the optimum algorithm on
M with the request sequenceL1. Note thatONMC(L1,G′) = L2.

The same arguments as in [4, 14] show that|O PT(L1,G′′)| ≤ O(ρ)E[|ON(L1,G′)|]
= O(ρ)E[|L2|].

Note that|O PT(L1,G′′)| ≥ |O PT(L1)|, since routing requests onG′′ is iden-
tical to routing requests inM where all edges inside a square have infinite capacity.
Thus,

|O PT(C) ∩ L1| ≤ |O PT(L1)| = O(ρ)E[|L2|].
Claim 41 below shows that|L2| ≤ O(logn)E[|L3|]. From Claim 38 we obtain

that |L3| ≤ 2E[|L4|]. Since |L4| ≤ |ON(C)|, this concludes the proof of the
lemma.

Claim 41 |L2| ≤ O(logn)E[|L3|]

Proof. A request ofL2 is added toL3 if its multicast is selected for long requests.
We show that a multicast is selected for long requests with probability�(1/ logn).
This shows the claim.

A multicast is selected for long requests if conditions(i) – (iv) hold. Letr be
the ring of of the sources of the multicast. We bound next the probability that each
condition holds.

Condition (i): The first short request with source onr added toS2 is selected for
short requests with probability at most 1/2. None of the short requests with source
on r added later toS2 can become selected for short requests. Thus, condition(i)

44

that no source onr is already selected for short requests holds with probability at
least 1/2.

Condition (ii): The total capacity of edges incident toSs is 4B. Thus there
exist at most 4B multicasts with source inSs in L2. Each of them is selected with
probability at most 1/(4B). Thus the probability that condition(ii) holds, i.e., that
none of them is selected, is at least(1− 1/(4B))4B ≥ 1/e.

Condition (iii): The coin toss is successful with probability 1/(4B).
Condition (iv): The largest ring ofR3 in Ss is dedicated to sources with proba-

bility 1/2.
Thus a multicast is selected for long requests with probability at least 1/(16eB) =

�(1/ logn).

Lemma 42 |O PT(C) ∩ S1| = O(log2 n)E[|ON(C)|]

Proof. Since|O PT(C) ∩ S1| = |O PT(C) ∩ (S1 \ S3)| + |O PT(C) ∩ S3| and
|O PT(C) ∩ S3| ≤ |ON(C)| it suffices to show

|O PT(C) ∩ (S1 \ S3)| ≤ 32 log2 nE[|ON(C)|].
Let Sbe a square and letC ∩ Sdenote the sequenceC restricted to the requests

with either request or source node inS. We show that for each squareS that

|O PT(C ∩ S) ∩ (S1 \ S3)| ≤ 16 log2 nE[|ON(C) ∩ S|].
Since

|O PT(C) ∩ (S1 \ S3)| ≤
∑

S

|O PT(C ∩ S) ∩ (S1 \ S3)|

≤
∑

S

16 log2 nE[|ON(C) ∩ S|]

≤ 32 log2 E[|ON(C)|].
By Claim 37,

|O PT(C ∩ S) ∩ (S1 \ S3)| ≤ |O PT(C ∩ S)| ≤ 4 log2 n.

It suffices to show that
(*) For each square S withS1 ∩ S 6= ∅, E[|ON(C) ∩ S|] ≥ 1/4. Consider

the first request(t, s) of S1 ∩ S. It is added toS2 if t andy either both belong to
the central region or both not belong to the central region. Otherwise, the request
is added toS2 if at least one of rings 4B + 1 to 6B is dedicated to request nodes.
This happens with probability at least 1/2.

45

If y 6= s, then the request is added toS3 and the claim is proved. Ify = s,
then the request is added toS3 if the multicast is selected for short requests. If
Condition (i) of being selected for short request is not satisfied, there exists a short
request(t ′, s′) of S2 with Ss′ = S for which Condition (i) of being selected for
short requests was satisfied, that has been added toS3 with probability 1/2. If
Condition (i) of being selected for short requests holds for sources, then(t, s) is
added toS3 with probability 1/2. Thus, with probability 1/2 at least one request
of S2 is added toS3. This shows that ifS1 ∩ S 6= ∅, then a request ofC ∩ S is
accepted by the online algorithm with probability at least 1/4.

Lemmata 39, 40 and 42 together prove the following theorem:

Theorem 43 There exists a O(log2 n(logn + log logM) logM) competitive al-
gorithm for multicast routing on unit capacity meshes.

5.3 A lower bound for the online algorithm on meshes

In [12] a lower bound of�(log(M/u) logn) against an oblivious adversary is
given for the online multicast algorithm in a tree, whereu is the (minimum) edge
capacity,M is the number of multicasts, andn is the size of the tree. We show
here how to modify the proof to give a lower bound of�((log(M/u) logn)/d)
in a connected graph whose minimum degree isd. This gives a polylogarithmic
lower bound for a mesh.

We assume first that all demands and all edge capacities are 1 and prove a lower
bound of�(logM logn). Afterwards we show how to add edge capacities to the
proof.

We restrict ourself to the case that
√

n > logM. Let M = M/ logn and
N = n/ log M. Assume that the nodes are numbered with consecutive numbers
from 0 ton−1 such that the node with minimum degree is labeled 0. Consider the
following sequence of multicast requests. There are logN phases. In the following
we describe phasei , with 1 ≤ i ≤ log N. In each phase the adversary generates
M new multicasts. Each multicast has source 0. Its requests consists of logM sets.
The first set of requests consists of the nodes 1 to 2i . Then the adversary flips a coin
and terminates the multicast with probability 1/2. Thej -th set of requests consists
of nodes 2i ∗ (j − 1)+ 1 to 2i ∗ j . After processing allM multicasts a new phase
starts.

Let c(i) be the capacity on any edge incident to node 0 used by the online
algorithm during phasei . Also, let p(i) be the profit obtained by the online algo-
rithm during thei -th phase. We usec∗(i) and p∗(i) to denote the corresponding
quantities for the optimal algorithm.

46

By contradiction we show below that there exists a phasek such that
∑

1≤i≤k E[p(i)] ≤
2k+1d/ log N. The adversary stops the sequence of requests after this phasek.
Claim 8.2 of [12] proves that during phasek the optimal algorithm can obtain a
profit of at least(log M/4)2k by accepting the multicast with highest profit in this
round. This gives a lower bound of�((log M log N)/d) = �((logM logn)/d).

We are left with showing that there exists a phasek such that
∑

1≤i≤k E[p(i)] ≤
2k+1d/ log N. Assume by contradiction that no such phase exists. LetS(k) =
(1/2k)

∑
1≤i≤k E[p(i)]. Then for allk, S(k) > 2d/ log N, i.e.,

∑
1≤k≤log N S(k) >

2d. But

∑
1≤k≤log N

S(k) =
∑

1≤k≤log N

(1/2k)
∑

1≤i≤k

E[p(i)] =
∑

1≤i≤log N

E[p(i)]/2i−1.

Claim 8.1 of [12] shows thatE[p(i)] < 2i E[c(i)]. Since
∑

i c(i) ≤ d, it follows
that

∑
1≤k≤log N S(k) <

∑
1≤i≤log N 2E[c(i)] ≤ 2d, which gives a contradiction.

If the edge capacity isu, each phase is repeatedu times. This increases the
number of multicasts by a factor ofu. Thus, the same proof as above gives a
lower bound of�((log(M/u) logn)/d). We summarize the result in the following
theorem.

Theorem 44 No randomized algorithm for online multicast routing on a con-
nected graph with minimum degree d> 0 can have a competitive ratio better
than�((log(M/u) logn)/d) even against an oblivious adversary, where u is the
capacity of an edge.

References

[1] P. Alimonti, 1997. Personal communication.

[2] B. Awerbuch. Online selective multicastand maximal dense trees: A survey,
1996. Available as http://www.cs.jhu.edu/baruch/MULTICAST/index.html.

[3] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in
the face of uncertainty: How to pick a winner almost every time. InProc. of
the 28th Annual ACM Symposium on Theory of Computing, pages 519–530,
1996.

[4] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online rout-
ing. In 34th IEEE Symposium on Foundations of Computer Science, pages
32–40, 1993.

47

[5] B. Awerbuch, Y. Bartal, A. Fiat, and A. Ros´en. Competitive non-preemptive
call control. InProc. of 5th ACM-SIAM Symposium on Discrete Algorithms,
pages 312–320, 1994.

[6] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission
control and circuit routing for high performance computing and communica-
tion. In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science, pages 412–423, 1994.

[7] B. Awerbuch and T. Singh. On-line algorithms for selective multicast and
maximal dense trees. InProceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 354–362, 1997.

[8] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems
with application to on-line circuit and optical routing. InProceedings of the
28th ACM Symposium on Theory of Computing, pages 531–540, 1996.

[9] N. Garg. A 3-approximation for the minimum tree spanningk vertices. In
Proc. of the of 37th Annual IEEE Symposium on Foudations of Computer
Science, pages 302–309, 1996.

[10] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. Technical Report MPI-I-97-
1-025, Max Planck Institute fuer Informatik, 1998. Also submitted to FOCS
98.

[11] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. InProceedings of the Interna-
tional Colloquium on Automata, Languages and Programming, LNCS, pages
64–75. Springer-Verlag, 1993.

[12] A. Goel, M.R. Henzinger, and S. Plotkin. Online throughput-competitive
algorithm for multicast routing and admission control. InProceedings of the
9th ACM-SIAM Symposium on Discrete algorithms, pages 97–106, 1998.

[13] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS,
1997.

[14] J. Kleinberg and̀E. Tardos. Disjoint paths in densely embedded graphs. In
Proceedings of the 36th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 52–61, 1995.

48

[15] S. Leonardi and A. Marchetti-Spaccamela. On-line resource management
with applications to routing and scheduling. InProceedings of the 23rd Inter-
national Colloqium on Automata, Languages and Programming, LNCS 955,
pages 303–314. Springer-Verlag, 1995.

[16] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Ros`en. On-
line randomized call-control revisited. InProceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, pages 323–332, 1998.

[17] M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth.
In Proc. of the of 36th Annual IEEE Symposium on Foudations of Computer
Science, pages 548–557, 1995.

[18] S. Plotkin, D. Shmoys, and́E Tardos. Fast approximation algorithms for frac-
tional packing and covering problems.Mathematics of Operations Research,
20:257–301, 1995.

[19] Y. Rabani. Path-coloring on the mesh. InProceedings of the 37th Ann. IEEE
Symposium on Foundations of Computer Science, pages 400–409, 1996.

[20] P. Raghavan. Probabilistic construction of deterministic algorithms: approxi-
mating packing integer programs.Journal of Computer and Systems Sciences,
2(37):130–143, 1988.

[21] P. Raghavan and E. Upfal. Efficient routing in all-optical networks. InPro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing, pages
133–143, 1994.

[22] Jan van Leeuwen ed.Handbook of theoretical computer science, Vol A, Al-
gorithms and Complexity. The MIT Press, 1990.

[23] N. Young. Randomized rounding without solving teh linear program. In
Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pages
170–178, 1995.

49

