SRC Technical Note
1998-010
May 8, 1998

Scheduling Multicasts on Unit-Capacity Trees
and Meshes

Monika Rauch Henzinger and Stefano Leonardi

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright(©Digital Equipment Corporation 1998. All rights reserved

Stefano Leonardi is at the Max-Planck Institute fiifformatik, Saartrcken,
Germany and at the Dipartimento di Informatica Sistemistica, UnizediiRoma
“La Sapienza”, via Salaria 113, 00198-Roma, Italia. His electronic mail addresses
is: leon@dis.uniromal.it

Abstract

This paper studies the multicast routing and admission control problem
on unit-capacity tree and mesh topologies in the throughput-model. The
problem is a generalization of the edge-disjoint paths problem aN#is
hard both on trees and meshes.

We study both the offline and the online version of the problem: In the
offline setting, we give the first constant-factor approximation algorithm for
trees, and a®((log logn)?)-factor approximation algorithm for meshes.

In the online setting, we give the first polylogarithmic competitive online
algorithm for tree and mesh topologies. No polylogarithmic-competitive al-
gorithm is possible on general network topologies [8] and there exists a poly-
logarithmic lower bound on the competitive ratio of any online algorithm on
tree topologies [3]. We prove the same lower bound for meshes.

1 Introduction

Multicast routing and admission control are the basic operations required by future
high-speed communication networks that use bandwidth-reservation for quality-
of-service guarantees. A number of applications from collective communication to
data distribution will be based on efficient multicast communication.

Formally, themulticast routing and admission control problemith A multi-
casts consists of amnode graphG and a sequence or set of requésts;), where
the request node aind thesource nodejsare nodes irG andi € {1,2,..., M}.
Multicasti consists of all requests with sourse For each request the algorithm
has to decide whether to accept or reject it. If reques) is accepted, the algo-
rithm has to connect nodeto themulticast treeconnecting the already accepted
requests of multicastwith sources . In theunit-capacitysetting, each link can be
assigned to only one multicast tree: the trees spanning different multicasts must be
edge-disjoint. The objective function is to maximize the total number of accepted
requests. In thenline version the requests form a sequence and when processing
a request, the algorithm must decide without knowledge of future requests. In the
offline version the requests form a set, which is given before the algorithm decides
which requests to accept.

Online multicast routing was recently studied under gh®ll bandwidth as-
sumptionthat the link bandwidth required by every connection is at most a frac-
tion logarithmic in the size of the network. Awerbuch and Singh [7] gave an
O(logn(logn + log log M) log M)-competitive algorithm for the case in which
all the requests to a given multicast arrive before the next multicast is created.
Goel, Henzinger, and Plotkin [12] extended the study to the case in which requests
to different multicasts can be interleaved.

With the sizes of networks growing faster than the link capacity, the small
bandwidth request assumption is not necessarily a realistic assumption. There are
many applications, for instance a multimedia server managed by a supercomputer,
in which large amount of data must be transferred in a local network where a single
communication path consumes a large fraction of the available bandwidth on a link
[6]. Thus, the situation where the bandwidth required by a connection is a large
fraction of the link capacity needs to be studied as well for the multicast routing
problem. In this paper we take a first step into this direction by assuming that every
connection uses the total bandwidth on a link. We call thisuthiecapacitycase.

This paper studies both the offline and the online version of the multicast rout-
ing and admission control problem in unit-capacity graphs. The offline problem
models the case of arrival of a batch of connection requests to several multicasts. It
is also motivated by all those situations where the answer to the user can be delayed
for a limited time while other requests are collected.

We present algorithms for tree and mesh topologies, which are at the basis
of many communication networks. Trees are important practical network topolo-
gies [5, 6, 21, 17], they are at the basis of topologies for communication networks
such as trees of rings, often considered as interconnection of SONET rings optical
networks [21, 17], or topologies for connecting high performance multicomputers
systems as trees of meshes [6] and fat trees. The multicast routing problem on
trees, when all the multicast groups use the same spanning tree, is then a basic
problem to solve in this context. There has also been an extensive study of the uni-
cast problem on these network topologies motivated by virtual circuit assignment
and optical communication. Meshes topologies are often the basis of the inter-
connecting topology of high performance multiprocessor systems. They are also
relevant as a first approximation of nearly-planar communication networks [14].
The offline problem on meshes arises also in FPGA-routing, where various sub-
sets of components have to be connected by trees such that the trees of different
subsets do not overlap and the underlying routing fabric is a mesh. The unicast
problem for meshes was recently studied in both the offline and the online version
(see e.qg. [6, 14, 19, 16]).

Note that the multicast routing problem in unit-capacity graphs reduces to the
edge-disjoint paths probleifionly one request is presented for each multicast, also
called theunicastsetting. Multicast routing is also an interesting extension of the
maximum coverage problem [13].

Previous work on unit-capacity networks. All previous work on unit-capacity
networks studied unicast routing. Unlike multicast routing, the offline unicast prob-
lem is still polynomial on trees [11], but it NP-hardon meshes. Kleinberg and
Tardos [14] proposed the first constant approximation algorithm for edge-disjoint
paths on meshes and on a class of planar graphs called “densely embedded, nearly-

3

Eulerian graphs”. They formulated tlescape probleras an interesting subprob-

lem and gave a constant-factor approximation for the escape problem in the unicast
setting. A straightforward extension of their approach leads @ylag n)-factor
approximation for the escape problem for multicasts. We use instead a recursive
approach that achievesa (log logn)?)-factor approximation.

For the online problem no algorithm, not even a randomized one, has a poly-
logarithmic competitive ratio for any network topology [8]. This holds even in
the unicast setting. Therefore in the unicast setting restricted graph topologies like
trees, meshes, and “densely embedded, nearly-Eulerian graphs” [5, 6, 14, 16] were
studied before and algorithms with logarithmic competitive ratio were proposed
for all these network topologies.

Our offline results. The problem on trees contains the MAX-3SAT problem
and is thus MAX-SNP hard [1]. We present a polynomial time approximation al-
gorithm for unit-capacity trees that achieves an approximation ratio of 18. The
algorithm presents an interesting version of a greedy strategy. Each step schedules
the “densest residual subtree” for a multicast and discards the overlapping subtrees
of different multicasts already selected. The “densest residual subtree” of a multi-
cast is the subtree maximizing the ratio between a value related to the net increase
of the objective function after the selection, and a weight associated with the sub-
tree itself. The algorithm can be easily implemented using a dynamic programming
approach. To the best of our knowledge no approximation algorithm was known
for this problem before.

We also present the first approximation algorithm on unit-capacity meshes. Our
polynomial time algorithm obtains an approximation ratio@f(log logn)?). It
formulates the multicast routing problem as a fractional packing problem [10, 18,
23] which is solved using duality-based algorithms. The fractional solution is then
rounded probabilistically, leading to a potentially infeasible set of multicast trees,
which are used to guide the construction of an integral solution.

Our online results. An online algorithmA for the multicast routing problem
hascompetitive ratio af on any input sequence the ratio of the number of requests
accepted by the optimum offline algorithm to the expected number of requests
accepted byA is at mostc.

This paper shows how to achieve polylogarithmic-competitive algorithms for
restricted topologies in the multicast setting: For trees we presédtlag n(logn+
log log M) log M)-competitive multicast algorithm and for meshes we give an
O(log? n(logn + loglogM) log M)-competitive multicast algorithm. We also
show a randomized lower bound €f((lognlog.M)/d) for a connected graph
with minimum degreel. This gives a lower bound @& (log nlog M) for meshes.

The same lower bound for trees follows from [3]. No competitive multicast al-
gorithms were known for these topologies before. There are various difficulties

4

that multicast algorithms face over unicast algorithms. One of them is that latter
multicasts might be more profitable than earlier ones. Thus, our algorithms accept
each multicast that pass an initial screening for “routability” with roughly equal
probability.

Section 2 of this paper presents the constant approximation algorithm on trees,
Section 3 contains the online algorithm for trees, Section 4 gives the offline algo-
rithm on meshes, Section 5 presents the online algorithm on meshes.

2 The offline algorithm for trees

We present a constant-factor approximation algorithm on trees. To dendtghthe
multicast whose request node seYisve use the paifi, V). A submulticasti, V')

of (i, V) is a multicast with sourcg and request node sgt C V. Our approach

is to use a greedy algorithm that maintains an initially emptySseft (potentially)
accepted submulticasts and assigmseghtand aresidual profitto each submulti-
cast. The algorithm repeatedly addsSthe submulticast that maximizes the ratio
of its residual profit to its weight. Since the algorithm is offline, it can first accept
a submulticast and then later add or subtract from it. We indicate this by saying
that (i, V) is added to or removed frothme current se6 of submulticasts. Two
submulticastgi, V) and(i’, V') overlapif they share an edge. We only addV)

to Sif its profit is significantly larger than the profit lost by submulticasts which
overlap with(i, V).

We root the tre€l at an arbitrary leaf. This defines an ancestor-descendant
relation on the nodes of the tree. LEti, V) be the tree connecting the nodes of
V to the source of. The highest node of (i, V) is called the rootoot(i, V) of
(i, V). Note that the root does not have to belong\to We sayr is a subroot
of (i, V) if r is the root of one of the submulticasts @f V). For each subroot
r we say(i, V) is the maximum submulticast méxr) of (i, V) if (i, V) is the
submulticast ofi, V) with rootr that has the maximum number of requests.

Next we define a weight for each multicast such that multicasts “higher” in
the tree have higher weight and hence are addesi“tater”, except if they are
very profitable. Given a submulticaét V) with rootr and a multicast(i’, V')
withi’ #£1i, let R({’,i,r) be the set of subroots of (i’, V') such that’ is a true
descendant af andmax(i’, r’) overlaps withmax(, r). For each multicasti, V)
and each possible root positionwe define theveightw(i, r) to be

. _ -/ /
w(i,r) =1+ ;r/egl(?,)i(,r) w(’, r).

For all multicastg(i, V) and(i’, V’) withi # i’ and all subroots, max, r)

andR(’, i, r) can be computed in polynomial time. Thus(i, r) can be computed
in polynomial time by a bottom-up traversal of the tree.

The profit p(i, V) of a submulticasti, V) is the number of requests (n V).
Fori # i’ the overlapping profit @i, V,i’, V') of submulticasti, V) and(i’, V')
is defined to be the profit of the maximum submulticasti 6fV’) whose requests
cannot be accepted {f, V) is accepted, i.e., the number of requestgiafV’)
that cannot be accepted {n V) is accepted. For = i’ the overlapping profit
pa, V,i’, V') of submulticast(i, V) and (i’, V') is defined to be the profit of
(i’, V' NV). Note that in genergb(i, V,i’, V') #£ p@i’,V',i, V).

Let O(, V) be the set of submulticasts overlapping withV). For a submul-
ticast(i, V) theresidual profit

Pres@, V) = pi, V) —a >~ p(Q, Vi’ V),
(i",VHeSN0(i,V)
wherea > 1 is a constant to be chosen later. Let thto r (i, V) of a submulti-
cast be defined to bpres(i, V)/w(i, r), wherer = root(i, V). Now the greedy
algorithm works as follows:

1)S=0

(2) for each submulticast, V): the residual profipes(i, V) = p(, V)

(3) while there exists a submulticast not$with positive residual profit:

(4) Let(i, V) be a submulticast with maximungi, V) of all submulticasts not it%.

5) Let Syer = {(’, V"), (i’, V") is the maximum submulticast ¢f , V') € S
whose requests cannot be accepted together(iyith) }

6) S=SUG,V)\ Sue

(7 Update the residual profit for each submulticast.

Let the profitp(S) of setS of submulticasts b s PG, V). If (i, V) is
added toS, then

p(l, V5 i/a V/) = p(SJeI)
(i",V"HesSn0(i,V)

Thus, the residual profit of a submulticast compares its profit with the profit lost
from Sif the submulticast is added 8. We first show that the algorithm termi-
nates.

Lemma 1 The algorithm terminates after at mosit iterations.

Proof. Whenever a multicasi, V) is added tdS and a se§y¢ of submulticasts is
deleted,pres(i) > 0. It follows thatp(i, V) > ap(Se). Thus, p(S) increases in
each iteration by at least 1. The maximum value it can assumgs [

6

We prove in the next subsection that this algorithm gives a constant factor ap-
proximation of the optimum solution. In the following subsection we show how to
implement each iteration in polynomial time.

2.1 Proof of the constant approximation ratio

To prove that this algorithm gives a constant factor approximation we distinguish
three types of overlaps: T (i, V) contains an edge incident to theot(i’, V') then
(i, V) is ancestor-touching (a-touching)’, V’). Note that eitheroot(i’, V') =
root(i, V) orroot(i, V) is an ancestor afoot(i’, V’). If root(i, V) is a true de-
scendant ofoot(i’, V') andT (i, V) C T(’, V') then(i, V) isinternalto (i’, V).
Otherwise, i.e., if(i, V) and (i’, V') overlap,root(i, V) is a true descendant of
root(i’, V"), butT(, V) € T(’, V') then(i, V) isdescendant-touching (d-touching)
(', V.

The weight of a multicast was defined such that the following lemma holds.

Lemma 2 Let S be a set of nonoverlapping submulticasts that are all internal or
d-touching to a submulticast, V) such that S contains at most one submulticast
for each multicast’i Thenz(i,’v,)esw(i’, root(i’, V")) < w(,root(, V)).

Proof. Letr = root(i, V) and let(i’, V') € Sbe a submulticast with roat'.
Note thatr’ is a true descendant of Furthermore(i’, V') and (i, V) overlap,
thusmax(i, r) andmaxi’,r’) overlap. Hencer’ € R(’,i,r) andw(i’,r’) <
max crgin w(i’, r'").

Thus,
w(i’, root(i’, V/)) < max w(i’, r//)
(i/,V/)ES (i/,V/)ESr eR(’,i,r)
= Z max w(i’,r")
i r"eR(@’,i,r)

< w(,root(i, V))

The following lemma is used repeatedly.

Lemma 3 Let S be a set of non-overlapping submulticasts.
Then for each submulticast, V), "/ vies a_touchesi.vy) PG’ V.1, V) <
2p@, V).

Proof. Let S be the set of submulticasts 8fthat a-touch(i, V). Letr be the root
and lets be the source ofi, V). Furthermore let be the edge on the path from

stor thatis incident ta. Let (i*, V*) be the submulticast i whose multicast
tree containg if such a submulticast exists.

For each submulticast’, V') # (i*,V*) in S let children(i’, V") be the
childrenv of r such that(v, r) belongs toT (i’, V’). Then the overlapping profit
pd’, V',i, V) is at most the profit ofi, V) in the subtrees ofhildren(i’, V’).
Since the submulticasts i8 are non-overlapping, the sehildren(i’, V') and
children(i”, V") are disjoint for any paiti’, V'), (i”, V") € S. Thus,

pi’, V', i,V) < p@, V).
(i,VNeS, (i V)£ V)

Sincep(i*, V*,i, V) < p(, V), the lemma follows. []

Next we show that the above algorithm gives a constant approximation of the
optimum result: LetS,,; be the set of submulticasts chosen by the optimum al-
gorithm and letSs be the final value ofS. Note that every submulticast it
overlaps with a submulticast i&. We partitionS,; as follows: LetS, be the set
of submulticasts ir§p that are d-touching or internal to a submulticastef Let
S be the set of submulticasts & that are a-touching to a submulticast $f,
but are not internal or d-touching to any submulticasgaf

Lemma4 p(S) < 2ap(S)

Proof. Let (i’, V') € S;. LetS be the set of submulticasts 6f that are a-touched
by (i’, V'). Note thatS = O(i’, V') N S and that the residual profit ¢i’, V') is
not positive at termination. Thus,

pi’,Vh<a > pi, Vi, V).
(i,V)eSNO(G’,V")

Thus, by Lemma 3,

pPSH= D pi.Vhi<e). Y. P VLIV

(i"Vhes (iI'VHeS (1,V)eSNO(I’, V")
=a Yy > pA. Vi V) <a Y 2p(i.V) < 20p(S)
(i,V)e$ (i’,V)eS a—touches(i,V) (i,V)e&

[|
Next we handle submulticasts .

Lemmab5 p(S) < (10+ 20) p(S) fora > 2.

Proof. The lemma follows from the following claim which we show by induction
on the number of iterationg: let § be the setS after iterationj. Let Dj be
the subset of 3¢ consisting of all submulticasts that d-touch or are internal to a
submulticast inJx<j S. Then

> pi'.V)<10 Y pi.Vita > p(i’, V', i, V).

(i",V"eD; (i,V)es (i,V)e§ (i",V)eDj:(i’,V’) a-touches(i,V)

The claim holds before iteration 1 sinG and Dy are empty. Assume the
claim holds before iteratiof. Let (i, V) be added td& in iteration | and letSye
be deleted. Len = D; \ Dj_;. Then the left side of the inequality increases by
2 ir.vhea PG, V). We need to show that the right side increases by at least so
much.

Each(i”, V") e §_1is partitioned into two submulticasts’, V;") and(i”, V,)
with (i”, V]) € §and(i”, V) € Syei. Note thatp(i’, V', i”, V") < p(’, V',i”, V])+
pG’, vV',i”,Vy). By Lemma 3

> > PG’ V7, Vy) < 2p(Syel)

(i”,Vy)eSel (i, V) eDj_1:(i’,V’) a—touches(i”,V,)

Thus,
pi’, V', i", V") <
(i”7,V"e§_1(’,V)HeDj_1:(i’,V’) a—touches(i”,V")

> > PG’ VA7 VY + 2p(Sue).-
(i”,V])e§ (i’,V)eDj_1:(i",V') a—touches(i”,V;)

Thus, the total decrease of the right side by removig from Sis at most
(10+ 20) p(Syen)- It follows that the right side increases by at least

10pG, V)+a Y > PG’ V' i", V) —(10+20) P(Syel)-

{i”,V"e§ (i’,V)eA:(i’,V') a—touches(i”,V")

We know thatp(i, V) > ap(Ser), which implies that p(i, V) > (10+20) p(Sger)
fora > 2.
We show below that

> pla V) =3pi, V)t Y > pi’, V', i”", V"), (%)

i’ V)HeA (i”7,V"e§ (i’,V)eA:(i’,V') a—touches(i”,V")

Thus, the inductive claim continues to hold.
To show(x) we consider two cases. LA&t= A N Syq. Let B be the rest ofA.

Bounding A:As shown aboveyp(Se)) < p(i, V). Thus,p(A) < p(i,V)/a <
pa, V).

Bounding B:Consider a multicast§’, V') in B. When(i, V) is added(i’, V')
does not belong t&_; and it is not selected by the algorithm. Thus, the ratio

r(i’,V’) is at most the ratio (i, V). Note that each multicast has at most one
submulticast irB. Thus, using Lemma 2 it follows that

D Pres@ V)= D r(@, Vhw(' root(i’, V) <

(i’.V)eB (i".V)eB
ra,Vv) Z w(@’,root(i’, V")) <r (i, V)w(,root@, V)) = presi, V).
(i’ V)eB
Thus,
> (plA V) —« > PG’ V', i7, V") < pai, V) — ap(Sue).
(i"VeB (i”.V"eS _1N0G". V)

By definition no submulticasi’, V') in B d-touches or is internal to a submul-
ticast in§_1. Thus, all submulticasts if_, N O(’, V') are a-touched bgi’, V).
Using Lemma 3 for the second inequality in the same way as above shows that

p(B) < pi,V)—ap(Sie) +a Y > pa’, V', i", V")
(i”.V")eS 1 (I",V)eB:(i’,V’) a—touches(i”,V")
< PG, V) +ap(Se) +a) > pa’, Vi, V)
(i”,V]He§ (i’,V)eB:(i’,V’) a—touches(i”, V)
< 2pi,V)+a) > PG’ V', i", V).

(i”,V])e§ (i’,V")eB:(i’,V’) a—touches(i”, V)
Sincep(A) = p(A) + p(B), this showgx). [|
It follows that

P(Sopt) = P(S) + P(S) = (4o +10)p(S),

for « > 2. Choosingx = 2 gives an approximation factor of 18.

2.2 The polynomial time implementation of the algorithm

We are left with showing how to implement each iteration in polynomial time.
Given a sef, the algorithm must compute at each step a submulticast of maximum
ratior (i, V). Note that it suffices to compute for each multidashd each possible
root positionr* the submulticasbesti, r*) with maximum residual profit. The

10

desired submulticast is the one that maximizes over all multicastd all possible
root positiong * of i the ratio

Pres(best(i, r*))
w(i, r*).

Let T, be the subtree of rooted at node.

We describe a polynomial time procedure based on dynamic programming that
finds for each multicast and for each possible root positiori a submulticast
best(i, r*) with maximum residual profit. To be precise it suffices to consider all
submulticasts ofnax(, r*).

Let (i, V) be the submulticast af that currently belongs t& (V = @ if no
such submulticast exists.) To fidzesti, r*) root the treeT at the sources of
max(i, r*). (This rooting is completely independent of the rooting in the previous
section.) We first compute a cosbst(e) for each edge in the tree. Then we
construct a binary tre@’ from the original tree for use in a dynamic program.
Next, we use the edge costs to compute two cost functims§) and cost: for
each vertex € T’ using bottom-up dynamic programming. Finaltgst can be
used to determinbesf(i, r*).

Computing the edge costtlse a depth-first traversal of the tree starting.at
When traversing edge, a cost is assigned ® The cost of edge will be the
profit that is lost byS when this edge is assigned to multicasind thus is no
longer available for submulticasts B ignoring the profit thaS already lost on
the edges along the path fraato s.

Formally, we have the following definition: &belongs tdi, V) € S, oredoes
not belong to any submulticast B or e does not belong to the multicast tree of
max(, r*), cost(e) is 0. Otherwiseg belongs to the multicast tree ofax(i, r*)
and to a submulticast’, V') of Swith i’ £ i. Lete = (u, v) and letu be the
parent ofv. Let p(i’, V', s, X) be the number of requests @f, V') that use an
edge on the path fromto x. Thencost(e) = p(i’, V', s, v) — p(i’, V', s, u).

Obviously all edge costs can be computed in polynomial time.

To illustrate the edge costs, assume for a moment$raintains only 1 sub-
multicast(i’, V’). Lets be the source af. Then the only edge costs that have
non-zero value are the ones on the path febitn s or incident to a node on the path
from s’ to s. Call these edge costs tedge costs fo(i’, V'). If Sconsists of more
than one submulticast;, Vj), then the edge costs are simply assigned considering
separately eachij, Vj). Thus, a multicast’ # i of Swith an edge of positive cost
incident tov has its source in the subtree rooted at

Constructing the binary tree T For the bottom-up dynamic programming ap-
proach we need to transform the tree into a binary Treley introducing additional

11

nodes and edges. The cost of each additional edge is @.hest node in the orig-
inal tree withd > 1 children. We call an edge incident tounusedif it does not
belong to a submulticast & or hascost(e) = 0. All the other edges incident
to v have positive cost and belong to a submulticasEoRecall that a multicast

i’ # 1 of Swith an edge of positive cost incident tchas its source in the subtree
rooted atv. Letq be the number of different multicasts with a edge of positive cost
incident to vertex.

We replacev by a binary tree witlg + 1 leaves, if there are unused edges inci-
dent tov, and withq leaves otherwise. The firgtare calledspecialand correspond
to a submulticast irS incident tov with at least an edge of positive cost; the last
leaf L, if applicable, corresponds to all unused edges incident loeaf L is the
root of a binary tree with leaves, wheré is the number of unused edges incident
to v. Each unused edge incidentddn T is incident to one of these leaves such
that each leaf is incident to one of the unused edges.

Let v(i") be the special node corresponding to submulti¢isiv’) € Sand
assumet edges of(i’, V') are incident tov. Thenwv(i’) has two children, one
corresponding to the edgeconnectingy to the source of and the other being the
root of a binary tree with — 1 leaves. Theaubtree forv(i") in T’ consists ofu(i"),
its children and the binary tree bf— 1 leaves. Edge is connected to “its™ leaf
and each other edge @f, V') incident towv is incident to one of the other leaves
such that each leaf is incident to one of these edges. Note that these nodes have
one child each ifT’, i.e., are not leaves il’.

The root of the binary tree far is labeledv. A leaf of the binary tree corre-
sponding to a leab of T is also labeled.

All submulticasts are extended in a natural way to

Computing the cost functions c8sind cost: We want to compute a submul-
ticast ofmax(i, r *) with maximum residual profit. Thus, we find for each possible
profitb, b= 1,2, ..., n, the submulticasti, V*) that gets profit and maximizes
b — acost(b), wherecost(b) is the minimum profit tha& “looses” if (i, V*) is ac-
cepted. This is equivalent to finding the submulticast with ptofitat minimizes
cost(b). The basic idea is to use bottom-up dynamic programming to compute for
each noda’ in T’ the submulticast that minimizesost, (b), wherecost(b), is
the minimum cost tha “looses” in the subtree rooted a(tif the submulticast is
accepted.

However, there is a complication at special nodes that requires the use of two
cost functionscosﬁ andcosﬂ,: Letw be anode off with 2 childreny andz, both
belonging to submulticasi’, V') € S. Lety lie on the path from to the source
of i’. Letv’ be the special node(i’) in the subtree ofv in T’ and letl’ andr’ be
its children such thaf; contains the node labelgd Assume profitO< j < bis
achieved inTy and profitb — j is achieved inl,. Then we do not want to add both

12

cost(w, y) andcost(w, z) to cost,, sincecost(w, y) considers already the cost of
“loosing” all the requests ofi’, V') whose path uses. Instead we want to only
add cost(w, y) andnot cosi{w, z) to cost,. Thus, to “tell” the recursion on’
that it should not add in any more “lost profit” Gf, V) we use the cost function
cosf. If the recursion om’ is allowed to add in more “lost profit” ofi/, V') (since
e.g. no profit was achieved 1y), we usecos';l/. Note that this complication arises
only at special nodes.

We need to useost in T/, until we reach the leat’ of the subtree of(i’) in
T’ whose edge to its child corresponds taw, z). When computing:oslf, we do
not add in the costost(w, z) of e and then useost! to recurse on the children of
X', Thus,costf, is only needed at nodes belonging to the subtreg(iof in T’ for
some submulticagi’, V') € S.

We next give the formal definitions. When we want to avoid that the dynamic
program chooses a speciﬁosﬁ,(b), t =0, 1, combination, we set its value tc.

(1) For allv’ € T’ and fort = 0, 1: cos{,(0) = 0.

(2) For allv’ € T’ such that there are less thamequests ofmax(i, r*) in the
subtree ob in T’ and fort = 0, 1: cosﬁ,(b) = 00.

(3) For anyb > 0, fort = 0,1, and for allv’ € T’ with one child, call the
missing childr’. We assume thatosf, (b) = co.

(4) For all non-special’ € T, letc be the number of requests of niax *) at
v’. Then,

costt(b) = min{mingj_1_p ¢ 1,c0Stv’,1") + cosf(j) + cost(v, r’)
+costt(b—c— j),
cost(v’,1") + cost(b — ©), cost(v’, r’) + cost (b — ©)}

For all speciab’ = v(i’) € T’, letl’ be the child ofv that leads to the source
of multicasti’. Then

costi(b) = min{minj_1 _p_1costv’,l") 4 cosf(j) + cosP (b - j),
cost(v’, 1) + cosf (b), cost(v’, 1) + cost (b)}

(5) For allv’ € T whose children are not labeled by a vertexigfiet ¢ be the
number of requests of méxr*) atv’. Then

cosf(b) = minjj_o_p ¢ (cosf(j)+cosf(b—c—j)
For allv” € T’ whose children are labeled by a vertexTof
cosf(b) = minjj—o p(COSF(j)+ cosf(b— j))

In (5) we arenotadding incost(v’, 1) andcost(v’, r’).

13

Computingcosﬁ,(b) for a givenv’ andb by bottom-up dynamic programming
takes timeO(n). Since there ara different values folb and O(n) nodes in the
tree, we spend tim®(n®) for multicasti and possible root positiart to compute
all cosf andcost! values.

Lemma 6 Let s be the node of Tlabeled with the source s of i. The largest
residual profit of any submulticast of maxr*) is max,(b — acosgl, (b)).

Proof. Let T/, be the subtree of’ rooted at’. We prove the following claims by
bottom-up induction:
(1) For each vertex’ € T’ costbl, (b) equals

e the minimum number of requests Tij, of submulticasts ir§ that cannot be
accepted if a submulticast ofax(i, r*) acceptd submulticasts it

e andoo otherwise.

(2) For each vertex’ € T’ that belongs to the subtree ofi’) for some
(i’, V') € S, cosf (b) equals

e the minimum number of requests i, of submulticasts irS\ (i’, V') that
cannot be accepted if a submulticastnodx(i, r*) acceptsh submulticasts
inT/,

v

e andoo otherwise.

The second part of each claim follows by the definitionmﬂ, andcost),, we
only need to show the first part.

() For the basis of the induction, if is a leaf of T’ it is labeled with a leaf
v of T. We can assume thhtrequests ofnax(i, r*) are atv’. Note that any sub-
multicast(i’, V') of Swith a request at’ also must have its sourcewédt Thus, the
request of(i’, V') can be accepted, evenhifrequests ofmax(, r*) are accepted.
Hence,costbl,(b) = 0, and the claim holds.

If v"is an internal vertex of /, we distinguish two cases, depending on whether
v is a special node or not. LEtandr’ be the two children of’.

Case 1:v’ of T’ is not a special nodelf v’ is not a special node of’, then
cost. (b) is defined by the first part of rule (4).

If only one edge&v’, I') is incident tov’ thencost! (b) = cost(v’, I")+cosf (b—
¢) and the claim holds by induction on verﬂéthherwisepos;}/(b) is defined as
the minimum over all the possible partitionstof- ¢ between the two subtreds
andT/. Since inductively:osﬂ andcos;l, are equal to the minimum profit th&

looses inT;, andT,,, the claim holds also fotost..

14

Case 2:v' of T’ is a special nodelf v' = v(i’) is a special node of’, then
costbl,(b) is defined by the second part of rule (4). I(Et V') € S.

The minimum number of lost requests is the minimum over all the possible
partitions ofb between the subtreg/ that contains the edge leading to the source
of i’ and the subtreg&/ containing the other edges ofi’, V'). Letw be the node
in T to whose binary tree i’ v" belongs and ley be the child ofw such thafT,
contains the source of. Note that inT’ the edgee from | to its only child inT’
has costost(w, y).

If the submulticast ofmax(, r*) accepts requests ify, then the submulticast
containse. By the definition ofcost(w, y), €'s costcost(w, y) contains already
all the profit of (i’, V') lost in T/,. Thus, no further lost profit iff/, should not be
added tocosgl,. By the inductive claimposf’, computes the minimum profit lost
by Sin T/,, notconsidering the profit lost by the submulticast to which edder’)
belongs, i.e., the profit ai’, V).

Sincecost! (b) is again defined as the minimum over all the possible partitions
of b — ¢ between the two subtrees, usiogsf for T, andcosf for T/. Thus, the
claim follows as in case 1.

If, however, the submulticast afiax(i, r *) does not accept requestslify then
the lost profit equalsost(v’, r’) + cos;l, (b — ¢) and the claim holds by induction
onr’.

(2) The edges iT’ with non-zero cost are edges that connect nodes labeled
by a vertex ofT to their parents. Lee = (x/, y') be such an edge belonging to
submulticast(i’, V') € S. Note that the higher endpoint of e belongs to the
subtree ofvu(i’) in T' and that all children ok’, including y’, are labeled with a
node inT. Then the cost of no further edgeTr;j, is related to the profitofi’, V'),
i.e., if (i’, V') were the only submulticast i8, all edges inT)j, would have zero
cost.

To prove the claim focosﬁ,(b) we distinguish again two cases.

Case 1:v’s children are labeled by vertices of TNote thatv’ is not labeled
and thus, there is no requestfix(i, r *) atv’. By the above observation, no edges
in the subtree ob’’s children have costs related to the profit @f, V’). Using
induction onl” andr’, the minimum number of requests T}, of submulticasts
in S\ (i’, V') that cannot be accepted if a submulticastdix(, r*) acceptsb
submulticasts inT;, is given by the minimum over all &< j < b of cosﬁ(j) +
cost (b — j). Thus, the claim holds.

Case 2: v"’s children are not labeled by vertices of TLet (i’, V') be the
submulticast such that belongs to the subtree ofi’). Note that the edges from
v’ to its children have cost 0 and thatis an internal node of the subtreewi’).
Thus, the childrellf andr’ of v’ also belong to the subtree ofi"). Inductively their

15

cost equals the minimum number of requestsTih resp. T/, of submulticasts
in S\ (i’, V') that cannot be accepted if a submulticastdix(, r*) acceptsb
submulticasts i}, resp.T/.. Hence the minimum fof,, is given by the minimum

overall0< j <b—cofcosf(j)+ cosf (b—c— j). Thus, the claim holds.m

Determining best, r*): By Lemma 6 the largest residual profit of a submul-
ticast of max(, r*) is found by determining the valu,es; that maximizes the
functionb — acosgl(b). The submulticasbest(i, r*) is found by reconstructing
which edges were used for the computatiormmgl(bbest).

3 The online algorithm for trees

We describe an online algorithm ST for unit-capacity trees. For sake of simplicity
we assume that the sources as well as the members of the multicasts are leaves
of the tree. The general case can be easily reduced to this setting. The algorithm
consists of two stages. The first stage is a randomized procedure that selects a
subset of requests that will form the set of “candidate” requests the second

stage. The second stage decides for each requésivirether to accept or reject

it. The requests accepted by the second stage are the requests accepted by ST.

The first stage of the algorithm.
The first stage runs the multicast algorithm, caldc, of [12] on a tree with
capacityu, whereu = logu andpu = 4mP M. Then stage 1 adds the accepted
requests tc@.

On a graph where each link has capacifyM C achieves a competitive ration
of O((logn + log log M) (logn + M) logn). However, when applied to trees and
compared to an offline algorithm with link capacity ¥JC’s competitive ratio
is O(logn + log M): A first O(logn) factor is saved since in a tree both the
online algorithm and the offline algorithm connect the requests accepted by both
algorithms to the root through the same multicast tree. (In particular, in this setting
the claim of Lemma 5.1 of [12] can be proved without fB¢logn) factor). An
additional O(log) factor is saved since the online algorithm Hadog) more
capacity on the edges. This is proved in the same way as for unicast (see [16] and
[15]). (In particular in [12] a factor ofO(logn + log logM) is saved in Claim
5.7). Thus,MC, when applied to a tree network with(log 1) more capacity on
the edges i©(logn + log M)-competitive.

The second stage of the algorithm.

In the second stage all the vertices of the tree are partitionediditm n) different
classes, by recursively finding a balanced tree separatmlakhced tree separator
[22] is a vertex whose removal splits the tree into pieces of at r%mstertices.

16

The tree separator df is assignedevel @ Removing the level-0 node splitsinto
subtreesf level-1 In general, the tree separators of the lejétees are assigned
level j and removing them creates subtreedevkl j + 1. After a logarithmic
number of recursions the trees obtained are single vertices and the procedure stops.
A similar technique is also used in [5] for the online call-control problem on trees.

Each of the requests his assigned to one dd(logn) classes as follows. A
request from vertex to multicast source is assigned talass jif the vertex of
lowest level on the path fromto s has level;.

One of theO(logn) levels is chosen at random by the algorithm before to
process the sequence of requests. We denote whih level selected.

Stage 2 decides to accept or reject a requestlising the following algorithm:

1. If the request is not of levélthen reject it and stop.
2. If the request is the first one of multicasteen at this step, then:

e Flip a coin with success probabilit&n

e If success then pass to step 3 the current and all the future requests to
seen at this step; otherwise reject all the future requestsden at this
step and stop.

3. Accept a request from vertexto sources if no edge on the path fromto s
is assigned to other multicasts; otherwise reject.

The following lemma bounds the expected number of requests accep®d by

Lemma 7 The algorithm ST expects to acceptg@m fraction of the re-
guests accepted by MC.

Proof. The expected number of requests passed from step 1 to step 2 of stage 2 is
a o<+gn) fraction of the requests accepted B\C, since the level of each request

is chosen uniformly at random with probabili%rm. The expected number of
requests passed from step 2 to step 3 is a frac%icm all the requests received
from step 1. This follows since all the requests for a multicast are passed to step 3
with probability <.

We are left to prove that each request received at step 3 is accepted with con-
stant probability. Consider a pair of requests for different multicasts. If they in-
tersect, the intersection is on an edge adjacent to ailexaitex. Each request is
connected to the source through at most two edges adjacent to avevidx. The
probability that a request is accepted is then given by the probability that these 2
edges are not assigned to other multicasts.

17

Any edge of the tree is part of at masinulticasts given the maximum capacity
of the edges of the tree for the online algorithm in M€ solution. The edge is
assigned to each of these multicasts with probabﬂi,tjt the algorithm decides to
accept requests from this multicast. When a request arrives at step 3, the probability
that an edge adjacent to the levelertex on the path to the source has not been
assigned to a different multicast is then lower boundedlby %)“ > 1/e. The
probability that both edges adjacent to a levekrtex have not been assigned is
then lower bounded by/2e, thus proving the claim. [

This leads to the following theorem:

Theorem 8 There exists an @logn -+ M)(logn+log log.M) log n)-competitive
algorithm for multicast routing on unit-capacity trees.

A randomized lower bound &2 (log nlog M) follows from [3] since the mul-
ticast routing problem on trees of unit capacity contains the online set cover prob-
lem.

4 The offline algorithm for a mesh

We present arO((log logn)?)-factor approximation algorithm on meshes. The
algorithm patrtitions the mesh into squares of logarithmic size and divides every
square into an external and an internal region. The external region of a square
is reserved to route requests into, out of, and through the square. It is called the
crossbar structuref the mesh. To avoid edge-overlapping we discard all requests
whose request node or source belongs to an external region. From the remaining
requests the algorithm considers with equal probability either shiyt requests
directed from a request vertex to a source in the same square, dooglyequests
directed from a request vertex to a source in a different square. A randomized
rounding technique based on a novel formulation of the multicast routing problem
as an integer linear program is then used in conjunction with the use of a simulated
network with edges of higher capacity.

Let G denote then x m two dimensional mesh such that = ®(n). Wlog
m > n. We assumen sufficiently large such thatlogloglogn| > 3. Define
B = 4|logn], f (k) = kdiv9B, and f;(k) = k mod 9B. Given two integer values
a andb an(a, b, B)-partitioning of the meshs is a partitioning intof (n) x f (m)
submeshes 0O (B) size induced by segmenting the horizontal and the vertical
side of the mesh. The horizontal side is partitioned into a segment from column
1 to columna, followed by f(m) — f1(m) contiguous segments of siz&89by
f1(m) — 1 segments of size®+ 1 and by a last segment of siz89% 1 — a.

18

The vertical side of the mesh is partitioned in a similar way viaithsed in place
of a andn instead ofm. By abuse of notation every resulting submesh is called a
square even though the size of the two sides of a square may differ. Note that each
node belongs to exactly one square while an edge can be incident to nodes of two
different squares. We denote the square containing anby& .

Theborder of Gis formed by all nodes of degree less than 4. Theringin a
squareS consists of all nodes ddthat are incident to a node outsideSér belong
to the border of5. Recursively, the-th ring of Swith i > 1 consists of all nodes
of Sthat are incident to a node of riigl of S. The innermost ring of a square
is either a single vertex or a line of nodes. A ring that is not the innermost ring
either forms a rectangle (if its square does not contain nodes of the bor@r of
or forms a rectangle with one or two borders®f In any squares we define two
regions K and R3. RegionRE consists of rings from 1 t@, region R contains
all remaining rings ofS. Ring B + 1 is theborder of R%.

Let A be the sequence of requests. The algorithm chooses two integer values
a and b uniformly at random in the intervalR + 1,, 7B and constructs an
(a, b, B)-partitioning. Then it discards all requests s) such that eithet or s
does not belong to th&2 region of its square. The set of remaining requests
is denoted byC. The following lemma implies that for any input sequende
E[IOPT(C)|] = |OPT(A)|/25 since for every request, s) the probability that
t ands both belong tdR? is at least 125.

Lemma 9 Given two nodes t and s they both belong to regidroRheir squares
with probability at leastl/25.

Proof. We prove separately that tixeand they coordinates of ands are within
region R? with constant probability. Consider intervial= [2B + 1, ..., 7B] from
which a is chosen uniformly at random. Since regiB¥ has width B, x, falls
within region R? if a is chosen out of a subség of | of size at least B. Analo-
gously, xs falls within regionR? if a is chosen out of a subsktof | of size at least
3B. Sincel has size B, for at leastB out of 5B possible values o, i.e. with
probability at least 15, bothx; andxs fall with region R2. By symmetry,y; andys
fall within region R? with probability at least 15. It follows that with probability
at least 125 every request has both endpoints in regi8n [

By the choice ofa andb, at least B rings are contained in a square. Thus,
region Ré is always complete, while regioﬁé is formed by at leasB rings.

The set of requests is partitioned into the set of long requedls= {(t,s) €
C . S # S} and the set of short requesis= {(t,s) e C: § = S}. Fori e M,
denote byZ; = {t : (t,5) € £} the set of request nodes of multicast

19

The algorithm decides with equal probability to accept either only long requests
or only short requests. We describe next the algorithm specialized for long requests
then the algorithm specialized for short requests.

4.1 Long requests

Our approach is to transform the problem into a problem on a net@érkhen
formalize the problem o&5” as IP, relax it to an LP, solve the LP, and round the
LP solution probabilistically. Finally we use the rounded solution to construct a
solution inG.

Mesh G is transformed into a networts’ = (V’, E’) as follows. For every
squareS of G, network G’ contains vertexxs. The verticesxs and Xg of two
adjacent squareSand S are connected by an edge of capagign|. For every
squareS of G, every vertexu of region R% has a corresponding vertex in G'.

For any pair of adjacent vertices v in R, verticesu’, v’ in G’ are linked with an
edge of unit capacity. Every vertex of the borderRifis connected taxs by an
edge of unit capacity. For every multicasand for every request vertexe £;, a
vertexu; is connected to verten’ with a unit-capacity edge. The input sequence
for the multicast routing problem o8’ is created by transforming every request
(t,s) € £; into arequestt, s) in G'.

The next step is to formulate the multicast routing probler®iras a packing
problem: For every multicastconsider the sefi consisting of all trees containing
s and a non-empty subset of the request nateSince we introduced the nodes
t, iNT =¢@fori # j. LetT = Ujcr7i. Denote byV (T) the set of vertices
of treeT and byE(T) the set of edges. Let the benefit of tfEes 7; beb(T) =
{ti e V(T) : t € Li}l.

We associate a variabler € {0, 1} with every treeT € 7. Edges ofE’ are
subject to constraints:

Y xr=c(e), veeE, (6N
TeT:.ecE(T)
Xt <1, Vee E',Vi e M. @)
TeTZi:ecE(T)

The multicast routing problem consists in maximizing the following objective
function:
S= Z b(T)xT.
TeT
The fractional packing problem is obtained replacing the integrality constraints
on variables<y with constraintsxy > 0. We also drop edge constraints (2) to ob-
tain a linear program where every edge is involved in a single constraint and solve

20

it using the polynomial time-approximation algorithm of Garg anddkémann

[10] based on duality. The algorithm assigns a dual varigti&® to every edge

e € G'. The central step of the algorithm requires to find the variaklevith
maximum ratioopt = b(T)/> ..t Y(e). This problem isNP-hard since it cor-
responds to finding the densest tree in the netvigrkvhere edges are weighted
with the values of the dual variables. However it is easily checked that if we find a
variablex; with b(T)/ Y et Y(€) > opt/a then the algorithm of [10] also gives

a 1+ e-factor approximation of the fractional multicast problem®h

As was previously observed by [2]kaMST algorithm can be used to solve
the densest tree problem. The 3-approximkaMST algorithm of Garg [9] can be
adapted to work in the case thevertices are restricted to be request vertices of
the same multicast. Thus, for every multicasind evenyk = 1, ..., ||, the 3-
approximatek-MST algorithm is applied. It finds the trég(k) spanningk request
vertices of(; such thaEeeTi * Y(©) < 3opk i, whereopk i = min{d_ .7 y(©),b(T) =
k, T € 7;}. Then the tree of maximum ratky ZeeTi(k) y(e) over allk and alli
is selected. Since this ratio has value at legy3, this results in an % ¢-factor
approximation algorithm for the fractional multicast problem.

Denote byx: the solution of the fractional multicast routing probfem

Lets = 1/((cloglogn)?), wherec > eis an appropriate constant to be fixed
later. The algorithm rounds variable- to Xt = 1 with probability sx;, and to
Xt = 0 with probability 1— sxt. Let G; be the graph with edge&(G;) =
Uterx;=1E(T). For any multicast the algorithm selects an arbitrary spanning
treeT; of graphG;.

The treesT; do not form the integral solution since there might be violated edge
capacities for the unit-capacity edges. However, as described below, the requests
accepted by the final solution form a subset of the requests accepted by thg trees
and the size of the subset is a constant fraction of the requests accepted by the trees
of Ti. To prove the approximation bound we show in the appendix that the value
S of the optimal solution of the fractional packing formulation is within a constant
factor of the optimal integral solution on the set of requésfsemma 17), and that
the expected number of request nodes contained in the Treigswithin a factor
of O((loglogn)?) of the valueS (Lemma 18).

Let Eil = Li N V(T;) be the set of request vertices to multicaghat are
spanned by tre€; if no edge(xs, Xg) of G’ is violated,ﬁil = () otherwise, and let
L= Yiem Eil . We prove that with at least constant probability no e@gg xs)
of G’ is violated , i.e.,L! # ¥ (Lemma 19). If£! = @, the algorithm terminates
without accepting any multicast. Otherwise, each requedl; afccepted by the

!Let for somei, (T®, ..., T®} be the set of all the trees GF with X, = 1, forall1<1 < j.
ThenT® U... U TY forms the multicast tree for multicaist

21

final solution is routed along a path containing the same e@igess) as its path

to the source ifT;. The remaining problem is to route request nodes and sources
to the border of their square. This problem was calledebeape problemThe
solution proposed by Kleinberg and Tardos for unicast routing [14] uses the fact
that the benefit collected in a square is of the same order as the maximum flow
that can be routed through the border of the square. This is not true for multicast
routing: the maximum benefit that can be collected in a squadlisg? n), while

the maximum flow that can be routed through the border of the squarédag n).

Thus, using the same maximum flow approach as in [14], which means routing
request nodes individually out of the square, leads t@dng n)-factor approxi-
mation. We give instead a recursive approach that achie@gglag logn)?)-factor
approximation.

Our basic idea is to recursively partition every regl@\into subsquaresf size
O(loglogn), and each subsquaf@ into a subregionR&, and RZQ. Requests are
routed to the border dRZQ on the same path as in the trégsand from there they
use rings of theR! regions of subsquares to reach the bordeR%afThe sequence
of subsquares used for a request is the same as on the pkth Therefore we
enforce that the tre€B; are edge-disjoint within tthQ regions and that there are
at mostO(log logn) trees connecting between any two neighboring subsquares.

We next give the details: Aate vertexfor multicasti in squareSis a vertex
g on the border oR% such that(g, xs) belongs toT;. Let g(p) be the gate vertex
closest to nodg € £; on the path fronp to s in T; closest top. Letg(s) be a
gate vertex closest t§ on a path frons to a node outsid&; in T;. Theescape
problemis the problem to connect each request npde g(p) and to connect each
source tos to at least ong(s). Let Shbe a square whose regidﬁg consists of a
ki x ko mesh. Letk = min(ky, ko) and letBs = 4|logk]. Note thatk > B.

The algorithm uniformly chooses two integer valgsandbg from the interval
2Bs+1, ..., 7Bsfor each squar&and creates afas, bs, Bs)-partitioning for the
region R%. Each submest created by this partitioning is calledsabsquarelf Q

does not contain nodes of the borderR%f, region % of subsquare) consists of

rings 1 toBg, region I% consists of the remaining part §f. If Q contains nodes

of the border ofR2, we need a different definition: L&) be aks x ks mesh with

ks, ks < 9Bs. AssumeQ is extended into aBs x 9Bs meshQ’ by nodes outside

of RE. RegionsR{, and R, are defined as above. Regi@, is thenRp, N RE

and regionRy, is R, N RE. By the choice ofis andbs and the definition oR%,

there are gate vertices Bthat belong toRzQ if subsquareQ lies on the border of

R2.
(1) The algorithm rejects all requests whose source or request node belongs
to the regionR}? of their subsquare€). The remaining set of requests is called

22

£?. A subsquare is callemhvalid if one of the edges o’ incident to a node in

the subsquare belongs to more than one TreeSince every edge is assigned to

a tree with probabilityO(1/((log logn)?), a subsquare in not invalid with at least
constant probability (Lemma 23). (2) Every request node belonging to an invalid
subsquare is discarded and every multicast whose source belongs to an invalid
subsquare is discarded. The set of remaining requests is ¢llel squareSiis
calledinvalid if there exists a pair of neighboring subsqua@and Q' of Ssuch

that more tharBs/4 treesT; contain an edge incident © and Q’. Every square

is proved to be not invalid with at least constant probability (Lemma 24). (3) Every
request node belonging to an invalid square is discarded and every multicast whose
source belongs to an invalid subsquare is discarded. The set of remaining requests
is called£?. (4) All request nodes in £* such thag(p) belongs toRY, for some
subsquare) are discarded and multicasis discarded if all gate vertices of square

S containing source belong toRé. The set of remaining requests is calléel

(5) Finally all requestsp of £° such thatg(p) belongs to an invalid subsquare

are discarded, and multicaisis discarded if in a squar8 containing sources

all gate vertices irS connected te; in T; belong to invalid subsquares. The set

of remaining requests, calle€f, is accepted. Sef® is expected to be at least a
constant fraction of sef* (Lemma 25 and 26).

4.1.1 Routing Algorithm

We next show how to route the accepted requests, i.e., how to construct the multi-
cast treeTl; for multicasti. The basic idea is to route using the same squares and
subsquares as the tr&e but to route “through” a squarg@in Ré and “through” a
subsquare in R},

=f = . . =
LetT; be the subtree 6F; spannings and the vertices iff; N L8, the request
vertices accepted for multicastWe first explain how to connect gate vertices. For

=f . . : . .
every vertexxs of T; the algorithm assigns a ring;; of region Ré to multicast

i. For every edgéxs, Xg) of Tif letr be the ring offrs;, rg.i} with larger index.
The algorithm assigns to multicasthe straightline extension offrom one corner
of r to the other ring, thereby connecting; andrg j. For a vertexxs of Tif and
every gate vertex] of multicasti belonging to the horizontal (vertical) side of the
border ofR% and to a valid subsquare 8f the algorithm assigns to multicasthe
vertical (horizontal) straightline path fromtors;. Note that all gate vertices of
multicasti in Sare connected to the same ring .

Next we describe how to connect a request npdef multicasti in Sto its
gate vertexg = g(p). Let Q be the subsquare gf and Q' be the subsquare of.
Recall thatg(p) lies in regionRé. Let P be the path betweep andq in T; and

23

let ey be the edge o closest top and incident to exactly one node B% Letey
be defined symmetrically.

For every subsquar® such that (i)Tif contains a vertex oIRZQ and (i)s or a

request node of ; belongs toS we assign a ringq ; of R(lg to multicasti, where
Sis the square containin@.

If Q = Q' andp is connected tq in Tif by a path inR2Q thenp is connected

to g in the same way iff;. If Q = Q" and p is connected tq in Tif by a path
P with edges outsideRé, we connect bottp andqg torg; in Ti. Request vertex
p is connected tog; in T; by the part ofP from p to g, and then the straightline
extension frome, torg ;. Gate nodey is connected tog; in T in an analogue
way.

If Q # Q', thenpis connected tg by the same path as abovertg;, then the
path P’ described below toy ;, and finally the same path as above frog; to g.
To construct pathP’ the above algorithm to construct a path between gate vertices
is applied: for each neighboring paifQ1, Q) of subsquares o® a horizontal
or vertical connection between rings, i andrq,; is assigned to the multicast.
PathP’ is a simple path betweet, ; andr o ; created from the assigned rings and
connections.

Next we describe how to connect the source tf one of the gate verticag
of i in S. This suffices since all gate verticesioih S are connected to the same
ring rs;i. Recall that one of the gate vertices, spypelongs toRg. The algorithm
connectss to g in the same way as it connected a request notieg.

4.1.2 Proof of Correctness

We show that the resulting multicast tregsare edge-disjoint. The multicast tree
for multicasti is contained in the ringss; of squares and ringsy ; of subsquares
assigned ta, the assigned horizontal or vertical connections between assigned
rings and from gate vertices or edggsto rings, and paths oTif in regionsR2Q of
subsquares.

We distinguish the following seven types of paths used by the multi casts and
show below that (1) for each squésghe algorithm can assign a unique ring if

Xs € Tif (Claim 10); (2) for each subsquaf@ the algorithm can assign a unigue
rngrq, if Tif contains a vertex dRZQ ands or a request node df; belongs to the
square ofQ (Claim 11); (3) for every edgéxs, Xg) in Tif the algorithm can assign
a unique horizontal or vertical connection betwegn andrg ; (Claim 12); (4)

for each gate verteg of multicasti in squareS the algorithm can assign a unique
horizontal or vertical connection betwegrandrs; if g belongs to a valid sub-

24

square (Claim 13); (5) for every neighboring pé®1, Q») of subsquares and for
each multicast the algorithm can assign a unique horizontal or vertical connection
betweerr g, ; andrq,; if they both exist, (Claim 14); (6) i is either a request
vertex inTif or a gate vertex such that a request nodfifofn S, connects through

p to s, then the algorithm can assign a unique horizontal or vertical connection
betweene, torq i, whereQ is the subsquare containing (Claim 15); (7) if p

is either a request vertex ﬁf or a gate vertex such that a request nod?ibﬁn

S, connects througlp to s, then the algorithm can uniquely assign the patfin
from p to e, or to g(p) if this path is contained irRé, whereQ is the subsquare
containingp (Claim 16). Since the set of edges that can be used for typpaths

is disjoint from the set of edges that can be used for tyjpepaths withj # j’,
proving the claims shows the correctness of the algorithm.

Claim 10 The number of tree?if including vertex x for a square S is at most
the number of rings B of region]SR

Proof. The number of '[ree?if including an edge = (Xs, Xg) does not exceed
c(e). Every tree containings but not a terminal irR% takes 2 units of capacity
on edgesXs, Xg). Every tree containing a terminal Ré takes at least one unit of
capacity on edge&s, Xg). Since the overall capacity of edges;, Xg) is at most

4|logn] = B, aring of Ré can be assigned to every trfé containingxs. [

Claim 11 There are at most §3treesTif such that (i)Tif contains a vertex of

region I% of a subsquare Q and (ii); or a request node oTif belongs to S,
where S is the square containing Q.

Proof. Assume by contradiction that a subsqu&eloes not fulfill the claim. The

treesTif that contain a vertex of regioﬁé each use at least one edge with exactly
one endpoint iM. Thus there exists a neighboring subsquaref Q in Ssuch

that more tharBs/4 treesTif contain an edge incident tQ and Q'. It follows
that Sis invalid and the algorithm discards all request nodeS amd all multicasts

o —f .
whose source is i®. Thus, none of the tre€; contains a request node or source
in S. Contradiction. []

Claim 12 Let S and Sbe a pair of adjacent squares. For each multicast i with

edge (Xs, Xg) € Tif the algorithm can assign a unique horizontal or vertical
straightline connection betweegrand rg ;.

25

Proof. Since each ring is assigned to at most one multicast, there are at most two
multicasts that potentially want to use a straightline extension, namely one from
ringr in Sand one from ring in S. Since there are two “corners” of ring there

are two straightline extensions from ringpetweenSandS' and hence each of the

two multicasts can be assigned a unique one. [

Claim 13 For each gate vertex g of multicast i in a valid subsquare Q the algo-
rithm can assign a unique horizontal or vertical connection between q gnd r
where S is the square containing Q.

Proof. Since the subsquar@ of q is valid, the edgéq, xs) belongs to at most one
multicast and the horizontal or vertical connection betweemd any ring ofRS
can be uniquely assigned to this multicast. [

Claim 14 For every neighboring paifQz, Q) of subsquares and for each multi-
cast i the algorithm can assign a unique horizontal or vertical connection between
ro.i andrg,.

Proof. The same proof as for Claim 12 applies.]
For the following two claims, let be a multicast, and lgt either be a request

node inTif or a gate node such that a request npdef Tif in § connects through

ptos. Let Q be the subsquare gf. If p is a request node, l&, be the edge

closest top and incident toQ on the path fronp to s in Tif. If pis a gate node,
let e, be the edge closest and incident taQ on the path fronp to p'.

Claim 15 The algorithm can assign a unique horizontal or vertical connection
between gtorqg;;.

Proof. If pis arequest node, thepis valid since otherwis@ would not belong to
Tif . If pis agate node, the@ is valid since otherwise the request node connecting
through p would have been discarded.

It follows that each edge i belongs at most one trég, and the algorithm
assigns the straightline extension fregitorq; only to this multicast. [

Claim 16 If the path inT; from p to § or to g(p) is contained in % it is edge-
disjoint from any other multicast tree.

Proof. The same argument as in Claim 15 shows that each ed@ebielongs at
most one tred’;. Thus the edges on the pathlinfrom p to e, or tog(p) are used
only for one multicast. [

26

4.1.3 Proof of the approximation ratio

We prove that the algorithm gives aB((loglogn)?) approximation using the
following steps: Recall tha§ is an upper bound of the optimal fractional solu-
tion. Lemma 17 shows that the val&is within a constant factor of the opti-
mal integral solution on set of requesfs Lemma 18 shows that the expected
profit of the treesT; is at leasts S/e?. Lemma 19 shows that the capacity of no
edge(xs, Xg) is violated with at least constant probability. Lemma 21 shows that
E[I£Y] = sS/€%. Lemma 22 shows tha[|£?]] > |£Y]/25, Lemma 23 shows
thatE[|£3]] > |£?|/2, Lemma 24 shows th&[|£*|] > |£3|/4, Lemma 25 shows
that E[|£%]] > |£%|/25, and finally Lemma 26 shows th&f|£8|] > |£5|/4.

Lemma 17 Let OPT be the optimal integral solution on set of requéstdhen
OPT < 37S.

Proof. Edgee = (Xs, Xg) has capacitc(e) = [logn] in the fractional packing
formulation on networlG’. The border between squasandS has size 8 +1 <
37|logn]. The optimal integral solution for the multicast routing problem on set
of requestsC can be transformed into a feasible solution for the fractional packing
problem assigning capacity' 37. The claim of the lemma follows. [

Lemma 18 Letb=) 7 b(T;). Then Hb] > s§/€*.

Proof. Note thatE[b] equals the expected number of request nodes contained in
the treesT;.
Lett be a request node afi and letXy = > 1 7.ycy(T) X7 We show below

that _
/ = SXy
Pr[ti € V(T|)] > ?

Summing over all request nodgst follows that

E[b] > ZZ % => "> b(T)sx /& =sFe.

i TeT;

We are left with showing the bound d?r[t € V(Ti)]. Let{Ti : x1, > 0,i =
1, ..,r} be the set of trees in theiractional solution spanning vete¥ r = 1,
the claim is true, sinc@®r[t’' € V(T;)] = sX;. Consider > 2. The probability

.....

.....

t

|_ I

all the probabilities have equal vallxéj — —L. We then havePr[t/ € V(T)] >

il

Xy K -1 < oy o T < o2 QineESY
r--a--4 > SXyexp— (Sxt{ﬁ) > SXy€™ 4, sincesXy < 1. []

27

Lemma 19 For every edge e= (xs, Xg) of G’ with capacity ¢e) = [logn],
Pr[|{T: : e€ E(Ti)}| > c(e)] < n—'ogloglogn,

Proof. Let X(e) = |{T : e e E(T), Xt = 1}|. SinceX(e) > |{T; : e E(T))}| it
suffices to show the bound f&r[X(e) > c(e)].
We prove the claim using the following version of Chernoff bounds [20]:

Proposition 20 Let X3, X», ..., X, be independent Poisson trials such that , for
1<i <n, Pr[X; = 1] = p;, whereO < p; < 1. Thenfor X= Y1, X;,
n=E[X]=>",pi,andanys > 0,

PriX > (1+8)u] < [m]u

We need to boundPr[X > (1+ 8)u] = Pr[X(e) > c(e)], for which we set
8 = % — 1. For the expected vaIge we haven = } rcrecgm X7 < SAE).
Applying Chernoff bounds we obtain:

<n- loglog logn

Pr[X(e) > c(e)] < [L

Lemma 21 E[|£Y]] > sT/2€?

Proof. By Lemma 19, the capacity of an edge is violated with probability at most
n=3, since loglog log > 3. No edge(xs, Xg) of networkG’ is then violated with
probability at least An. The claim follows. [

Lemma 22 E[|£?]] > |£Y|/25,
Proof. Follows from Lemma 9. []

Lemma 23 There is a suitable choice of ¢ such that for every subsquare (HeRs
V(RY) : [{Titec E(TN} > 1] < 1/2

Proof. Region Ré containsO((log logn)?) edges. Consider edgeof subsquare

Q and consider the solution of the fractional packing problem. Every ed@RZQ
is assigned to tre& with probability sx; . Since the fractional solution is feasible,
Y 1o Xt < 1. The “expected capacity” of edgeassigned to a tre€; is then

28

bounded bys. Using the Markov inequality we have that the probability that the
capacity of an edgeis exceeded is bounded byWith a suitable choice df, the
probability that the capacity of at least one edgeRéf is violated is bounded by

sO((log logn)?) < 1/2. n
Lemma 24 E[|£*] > |£3]/4,

Proof. We show that the probability that a square is invalid is at mgat Let Q
and Q' be neighboring subsquares. &y be the set of trees containing an edge
betweenQ and Q" and having<y > 0. Letu =3 7.7 X7 < (9Bs+1)sand let

X be the number of tre€B in 7oy with Xt = 1. X is clearly an upper bound to
the number of distinct trees crossing the border between two subsquares. Choosing
a suitable large constant we prove in a way similar to Lemma 19 that[X >
Bs/4] < ((logn)~'egloglogny - Since there ar®(logn)? adjacent subsquares in a
squareS, and log log logn > 3, with probability at least + 22 (1/logn) no border
between two adjacent subsquares is crossed by moreBgahdistinct trees. A
requestt of multicasti of £3is in £* if squareS and squareS; are valid. The
theorem then follows. [

Lemma 25 E[|£%]] > |£%/25,

Proof. Let (s,t) be a request of£* and letq be a gate vertex irSs. Request
(s.t) belongs toL® if g € RE andg(p) € RE. By Lemma 9 this happens with
probability at least 125. [

Lemma 26 E[|£%]] > |£%|/4,

Proof. As shown by Lemma 23 a subsquare is invalid with probability at maat 1
A request of multicasti of £° is in £° if the subsquare&, and subsquar&ys,
are valid. m

We then conclude with the following:

Lemma 27 There exists an @log logn)?) approximation algorithm for long re-
quests for the multicast routing problem on meshes.

4.2 Short requests

We complete the approximation algorithm for meshes describing the algorithm for
short requests.

We separately consider every squ&ef G and set of requestSs = {(t,S) :
S = S}. We apply recursively the algorithm for requesksin a squareS. Square

29

Sis partitioned in subsquares of si@loglogn). Denote byQ the generic sub-
square. Those requests&¥ that are considered long requests within squzaee
dealt by the algorithm of the previous section. Those reques$s tfat are con-
sidered short requests within a subsqu@rare dealt with exhaustive search of the
best solution for the multicast routing problem in subm@&sbf size O(log logn),
which takes time polynomial in.

We then conclude with the following lemma for short requests.

Lemma 28 There exists an Qlog log logn)?) approximation algorithm for short
requests for the multicast routing problem on meshes.

This shows the desired theorem.

Theorem 29 The above algorithm gives an(Qog logn)?)-factor approximation
for multicast routing on unit-capacity meshes.

5 The online algorithm for meshes

We propose an algorithm with polylogarithmic competitive ratio on meshes. As in
the unicast algorithm for meshes [14] the algorithm partitions the mesh into squares
of size 1B x 13B, whereB = ©(logn). Then it uses four main ideas: (1) It “fil-

ters” requests in stage one to “make space” for our routing, but it guarantees that if
a square contains requests, then at least one request of them survives the filtering.
Thus, step one “looses” @B (log? n) factor. (2) Stage two contracts each square to

a node and runs the algorithMC of [12] on G’. For each accepted requedC

returns a path consisting of a sequence of neighboring squares. To translate this
sequence into a path in the original mesh we have to be able to corBtdigjbint

paths between neighboring squares. The idea is that a path from a neighboring
square enters a square in the “middle” B links between the two squares. Within
a square each path is assigned its own concentric ring on which it proceeds until
it reaches either the appropriate fowr column to exit the square or its multicast
tree. (3) However there can be requests acceptdd Gywhich cannot be routed
“locally”, i.e., there is a conflict in the squares of the endpoints. These requests
have to be rejected. In the unicast setting this causes no problem since the rejection
of a request does not affect routing of requests accepted later on. In the multicast
setting, howeverM C might output a path iz’ that does not connect the request

to its source inG since an earlier request of the same multicast was accepted by
MC and rejected by our algorithm. We handle this situation by always connect-
ing the same squares 8C even if the request is not accepted. (4) Since latter

2We userow to denote a horizontal path asdlumnto denote a vertical path in the mesh.

30

requests might be more profitable than earlier ones, the algositfeatseach mul-
ticast with roughly equal probability (after passing some additional screening for
“routability”) and discards all unselected multicasts.

5.1 The first stage of the algorithm

Let G = (V, E) denotes tha x n two dimensional mesh. We assume thas
sufficiently large such tha = [1992 | > 1.

Let f = ndiv [logn] and letf; = n mod [logn|. We patrtition the mesh
into f2 submeshes of logarithmic size. The partition of the mesh is obtained seg-
menting every side intd — f; contiguous segments of sizlogn| followed by f;
segments of siz§logn]. By abuse of notation every submesh is callextjaare
even though the size of the two sides may differ by 1. We denote the square con-
taining a nodd by S.

The firstring in a squareS consists of all nodes db that either are incident
to a node outside db or have degree less than 4 in the m&hRecursively, the
i-th ring of Swithi > 1 consists of all nodes d that are incident to a nhode of
ringi — 1 of S. Each ring, except the innermost, forms a rectangle of nodes, the
innermost ring either forms a rectangle or a line of nodes.oferof aring is a
corner of the rectangle or an endpoint of the line. The first ring is also called the
borderof S.

In any squareS we define threeegions R, R? and R3. RegionR! consists of
rings 1 to 2B, region R? consists of rings B + 1 to 4B, and regionR® is formed
by rings 4 + 1 to 6B and the remaining piece &, called thecentral regionof S.

The central region is a rectangle with sides of size at IBast., consisting of at
leastB rings.

The first stage of the algorithm selects for each square one of its regions at
random. The selected region is used to route paths “through” the square. All
requests whose request node or source belong to the selected region are rejected to
guarantee that they do not overlap with the paths routed through the selected region.
Additionally each ring of the square is randonulgdicatedeither to sources or to
request nodes and requests not following the dedication are rejected. Again the
idea is to guarantee that requests with a source in a ring does not overlap with a
request with a request node in the same ring.

The details of the first stage are as follows:

1. Dedicate each ring to multicast sources with probabiljtg, btherwise to
request nodes.

2. Select uniformly at random one of the three regions in each square.

31

3. Discard all the requests from vertexo sources if t or s are in a selected
region.

4. Discard all the requests from a vertean a ring dedicated to sources, unless
the request is directed to a souscen the same ring df.

5. Discard all the multicasts whose source is in a ring dedicated to requests.

Let the original sequence of requests be callednd let the remaining set of
requests be called. Denote byO PT(A) the sequence of requests accepted by
the optimal algorithm over a set of requests

Lemma 30 For any input sequence, E(|JOPT(C)|) > 1&2|o PT(A)].

Proof. Let us consider the probability that a requésts) of O P T(A) belongs to
C. Assume first that both ands are within the same square. Théns) belongs
to C if (a) both are outside the selected region, and (b) the rirgi®tiedicated to
sources and the ring dfis either dedicated to requests or equats®ring. The
condition (a) is fulfilled with probability at least/B, condition (b) with probability
at least ¥4. Thus,(t, s) belongs taC with probability at least 112.

Assume next that ands belong to different squares. Theéh s) belongs to
C if (a) both are outside the selected region, and (b) the ringisfdedicated to
sources and the ring ofis dedicated to requests. The condition (a) is fulfilled with
probability at least 49, condition (b) with probability at least/&4. Thus,(t, S)
belongs taC with probability at least 19.

This shows thatE[[OPT(A) N C|] > %2|OPT(A)|. Since|OPT(C)| =
[OPT(A) NC|, the result follows. [|

5.2 The second stage of the algorithm.

The second stage of the algorithm receives as input the requastacokpted by
the first stage, in the order in which they are presented to the algorithm. It partitions
C into the setlq of long requestsand the sefy of short requestsA request(t, s)
is along request if at presentation no branch of the multicast rootedisatn S .
Otherwise,(t, s) is ashortrequest. The algorithm routes short requests “locally”
within the square and us@&4C for long requests.

Recall that each square containsBl8oncentric rings. To guarantee that the
trees used for different multicasts are edge-disjoint we maintain the invariant that

(11) all edges of a ring that belong to any multicast tree belong to the same multi-
cast tree.

32

To maintain the invariant each ringassignedy the algorithm to at most one mul-
ticast and this is the only multicast whose tree is allowed to use edges of the ring.
To achieve this each request®has to pass various tests. These tests guarantee
that the following additional invariants are maintained.

(I12) No two request nodes of accepted requests belong to the same square.

(I3) No two sources of accepted requests of different multicasts belong to the same
ring.

(I14) No two sources of acceptéohg requests of different multicasts belong to the
same square.

(15) No two sources of acceptatiortrequests from the same square belong to the
same square.

(16) No two request nodes of accepted long requests belong to the same square.

Invariant (16) follow from invariant (12).

5.2.1 Long requests

The algorithm for long requests decides whether to accept or reject a request in
four steps. Each step rejects the request if certain conditions are not fulfilled. The
requests which are not rejected after stap= 1, 2, 3, 4, form a sequencs;.

Whenever the first request of a multicast is added4iathe algorithm decides
whether the multicast iselected for long requestd his is needed (1) to discard
multicasts were the “local” routing causes potential conflicts and (2) to guarantee
that latter multicasts have roughly the same probability of being accepted as earlier
ones. A multicast with sourceis selected for long requesifsall of the following
conditions are fulfilled at the time of the test:

(i) no multicast with source on the ring sis already selected fahortrequests;
(i) no multicast with source i%; is already selected fdong requests;

(iii) a coin toss with success probability(4B) is successful; and

(iv) if sisin R® then the largest ring dR® in S; is dedicated to sources.

When a multicast becomes selected for long requests, up to two of the rings
in S are assigned to the multicast: (a) the ring contairsnig assigned to the
multicast; and (b) i6 is in R3, the largest ring oR® in S;.

33

The second ring is needed for the following reason: When routing a long re-
guest to the border &; the algorithm needs to be able to use any available crossbar
row or column. However, i§ belongs to the central region, the ringsafoes not in-
tersect all crossbar rows and columns. Thus, we route the path from the sng of
the largest ring oR? and from this ring the algorithm can connect to any crossbar
row or column. To avoid that the connection between the ringarid the largest
ring of R® overlaps with any other multicast tree, the two rings are connected along
a “straightline extension” of the internal ring assignedstavhich will guarantee
that the connection does not use an edge of a short request (see Section 5.2.2).

However, the connection affrom the central region to the largest ring &f
overlaps a crossbar row or column that may be used to connect a request node
t’ € R® of a different long request’, s') to the border. Our algorithm will reject
all long requests from a request node in the square if (i) a request to a source node
in the square has been accepted, or (i) if a long request to a request node in the
square has been accepted. This implies that if a connection from a souR&¢adn
the largest ring oR?2 exists then no further long requests are accepted. Thus, the
problem is restricted to the situation when the long request from a request node in
R3 was accepted arafterwardsa request with source iR® appears. We avoid the
intersection by selecting an appropriate straightline extension connecting a ring of
the central region to the largest ring B that avoids the crossbar row or column
used by the long request with request nod&

We now give the details of the decision algorithm when a reqiies} arrives.

Let G’ be a mesh such that each square of the original mesh is represented by a ver-
tex in G’ and two vertices o6&’ are connected by an edge if the two corresponding
squares are adjacent. Each edge has capBcity

1. If a long request with request node or sourc&imas been added 63, the
algorithm rejectqt, s) and stops. If a short request with request nod& in
has been accepted, the algorithm rejétts) and stops. Otherwise it adds
the request t&;.

2. The requestt, s) of £, is transformed into a request between the two vertices
S and §; of G/, and then submitted tMC. If MC accepts the transformed
request, request, s) is added taC,. In this caseM C also returns a route in
G’ which corresponds to a sequence of squares in the original mesh. Other-
wise, the request is rejected and the algorithm stops.

3. If the multicast of the request, s) in L, is selected for long requests, the
request is added t63 and an unassigned ring of the selected regio§ a$
assigned to the multicast of the request. Otherwise the algorithm rejects the
request and stops.

34

4. If t is not in the central region d&, then(t, s) is added to 4.

If t belongs to the central region &, and one of ringsB + 1,...,6B in
S is dedicated to request nodes thgns) is added tal, and one of rings
4B+1,...,6Bin S dedicated to request nodes is assigned to the multicast.

If (t, s) is added taZ, it is accepted. The ring dfis assigned to the multicast
of (t, s) andt is connected to the multicast tree fOtherwise the request
is rejected and an arbitrary noden the assigned ring of the selected region
is connected to the multicast treef

Step 4 guarantees that the following invariant is maintained:
(17) If arequestt, s) is added taC3, then a node 0§ is connected ta.

We show next how the algorithm routes a requegtpfFor each such request
denotes the source node andenotes the node & to which the request is routed,

i.e., eitherv =t or v = u, whereu is a hode on the assigned ring of the selected
region. For every such request we are givenM§ a path inG’ consisting of a
sequence of neighboring squares. BgtS, ..., S be the sequence of squares
such thatS; = § andS; contains a nod& of the multicast tree dé. If S, contains

s, letx = s. Otherwise, ifS, contains an accepted request node nd¥inlet x be

this node. Otherwise, as we show in Lemma 34, a ring of the selected region was
assigned to the multicast and at least one node on the ring is connestdd this

case leix be this node.

Each request of 3 is routed fromw to the border betwee§, andS;, from there
to the border betweef, and S3 and so forth, until finally to the border between
S-1and§, and from there tx. Let P denote the resulting path fromto x. We
describe next each step in detalil.

To route paths between two neighboring squares we resererdbsbarof
rowseB +1,...,7Band columns 8 4+ 1, ..., 7B. All rows and columns in the
crossbar cross the central region of the square. By Lemma 34 there is an unassigned
crossbar row resp. column for each accepted request.

Case 1. Fromw to the border between;&nd $: Wlog the border betweefy
and$; is a row. We assign an unassigned crossbar column and the ring of
to the multicast.

If v does not belong to the central region, we roBtalong the ring of until
it reaches the point on its assigned crossbar column closest to the border. At
this point P is routed along the assigned column until it reaches the border.

If v belongs to the central region, we rouReon the ring ofv until a corner
of the ring is reached. TheR continues straight to the assigned ringr5t
From the assigned ring &® we continue as above.

35

Case 2: From one border of a square to another border of the squatleg the
entering border is a column and the exiting border is a row. One unassigned
ring of the selected region is assigned to the multicast. We additionally as-
sign one of the unassigned crossbar columns between the current square and
the next square t&.

Path P follows the entering row until it intersects the assigned ring. Then
P is routed along the ring until it reaches the intersection point with the as-
signed column closest to the exiting border. Themwitches to the assigned
column until it reaches the border.

Case 3: From the border of ;S0 the node x:Wlog the border betwee,_;
andS, is a row. There are three cases to considerx @ s, (i) x ¢ R®
is a request node of an accepted request of the multicast, ot (@i node
connected te that belongs to a ring of the selected region assigned to the
multicast.

(i) If s does not belong tdR3, we routeP along the entering column until
the ring ofs is reached. At this poinP is routed along the ring &fto s. If s
belongs toR3, P follows the entering column until the largest ring Bf is
reached. TherR is routed along this ring until it reaches a point from which

a row or column is available that (1) connects straight to a corner of the ring
of s and (2) does not intersect any existing multicast tree. By Lemma 34
such a row or column exists. Pakhroutes along this row or column to the
ring of s and along the ring a to s.

(i) When the request at ¢ R® was accepted, the ring afwas assigned to
the multicast. We routd® along the entering column until the ring &fis
reached. At this poinP is routed along the ring of to x.

(iii) We route P along the entering column until the assigned ring of the
selected region is reached. At this poihis routed along the ring t.

We need to show that this routing is always possible. We first show two prop-
erties ofMC.

Lemma 31 The maximum number of paths routed by MC between two adjacent
squares is B.

Proof. Each edge inG’ has capacityB and MC does not violate the capacity
constraints. mWe say a path i’ is routed througha squareSif Sis an internal

node of the path.

36

Lemma 32 Let S be a square. There are at ma#& paths of MC routed through
S. If a request node of a requestda belongs to S, then at ma2B — 1 paths of
MC are routed through S.

Proof. Every path routed through a square consumes two units of bandwidth on
the edges incident to the vertex Gf associated with the square. Additionally, a
long request consumes one unit of bandwidth. The overall bandwidth on the edges
incident to a vertex 06’ is 4B.]

We prove with the next two lemmata that all paths constructed for different
multicasts are edge-disjoint.

Lemma 33 Invariants (14) and (16) are maintained.

Proof. Condition (ii) of being selected for long requests guarantees that invariant
(14) is maintained. Step 1 of the algorithm guarantees invariant (16).]

Lemma 34 Let (t, s) be a request of 3 and let(v, X) be the corresponding pair

of nodes that has to be connected by a path. Then the above algorithm succeeds in
constructing a path fromr to x. Furthermore, this path does not share any edge
with paths constructed for requests4n for different multicasts.

Proof. We first show that the algorithm succeeds in constructing a pathidram.

We need to show that (a) whenever the algorithm tries to assign an unassigned ring
of the selected region to the multicast, such a ring is available; @)AfS, and

no request node of this multicast Rt or R? was accepted thesis connected to
anodex on a ring of the selected region &f that is assigned to the multicast; (c)
whenever the algorithm tries to assign an unassigned column or row between two
neighboring squares, such a column or row is available; (d) whenever the algorithm
tries to connect the largest ring & with vertexs in R3, such connection is
possible without overlapping with a different multicast tree.

(a) The selected region consists d 2ings. The algorithm tries to assign a
ring of the selected region for each requestgfwith request node in the square
and for each request routed through a square. Step (1) of the algorithm guarantees
that at most one long request with request node in a square belodgs kothis
happens, Lemma 32 shows that at md3t21 paths are routed through the square,
otherwise at mostR paths are routed through the square. Thus, in either case there
are enough rings in the selected region.

(b) If s ¢ Sy but MC routed the path frong to S, thenMC connectedS, to
S during an earlier request. Thus, an earlier requess) of the same multicast
was added taC, and, since the multicast is selected for long requests, was also
added toCs. Thus, aring of the selected region @, is assigned to the multicast.

37

If (t',s) € L3\ L4, then a nodeu of r is connected ta. If (t',s) € L4, then by
assumptiort’ € R3. Thus, the crossbar row or column on the path fitono the
border ofS; also contains a node of

(c) The crossbar consists & rows and columns. By Lemma 31 there are
at mostB requests that have to cross the border between any two neighboring
squares. Thus, it is guaranteed that whenever a path needs to be routed between
two neighboring squares an unassigned row or column is available.

(d) The ring ofs has at least one corner, and thus there are at least two possible
rows and two possible columns through which the largest rinB%éan be con-
nected with the ring o§. At most one long request’, s') with t’ in R® has been
accepted inS;, potentially using one of these crossbar rows or columns. Thus,
there are still at least three possible ways to connect to the ring of

Let Sbe a square. We show next that the path froto x does not share any
edge inS with paths constructed for requests4n for different multicasts. The
lemma follows.

Note first that no ring ofs shares an edge with a crossbar row or column or a
straightline segment connecting two rings. To complete the proof that no two paths
of different multicasts share an edgeShit then suffices to show that the rings of
the two paths are edge-disjoint and that the straightline segments of the two paths
are edge-disjoint. The straightline segments connect the various rings of a path and
a ring with the border o&.

A path that is routed throug8 consists of an entering crossbar row or column,

a part of a ring in the selected region, and a departing crossbar row or column.
Both crossbar pieces go from the border to the selected region. By points (a) and
(c) and the observation that the straightline extensions beloiR} tavhich is in

this case not the selection region, all these three pieces are disjoint from the paths
used by any other request path with edgeS.iithus, any path routed throudis
edge-disjoint from any path of a different multicastSn

We are left with showing that no two paths of long requests starting or ending
in Sshare an edge i®. Let P and P’ be two such paths belonging to different
multicasts and ley andy’ be their endpoints ir8. By invariants (14) and (16),

y andy’ can only be a source node and a non source node. Wjladg.a source
andy’ is a non-source node. Nodebelongs to a ring that is assigned to sources
and does not belong to the selected region, ngdsther belongs to the selected
region or to a ring that is assigned to requests. In either case, the riyganaf of

y' are edge-disjoint. Furthermore, the largest ringRdimight have been assigned
to path P and in this case is dedicated to sources. A different rinB%fwhich is
dedicated to request nodes, might have been assigned t@pathain these rings
are edge-disjoint.

By point (c) the crossbar rows or columns assigne® tand P’ are different

38

and, thus, edge-disjoint. Since the straightline extensions start at different rings,
they are edge-disjoint. We are left to show that the straightline extensions con-
necting the rings assigned yoandy’ are edge-disjoint with the crossbar rows or
columns used irP and P’. If neither y nor y’ belong toR3, no straightline ex-
tension is necessary. If only one betweeandy’ belongs toR3, one straightline
extension exists, belonging completely RS, and the crossbar row or column of
the other path does not rea8ti. Thus, of P and P’ are edge-disjoint. If botly
andy’ belong toR3, note that by Step P’ was accepted and routed befd?e By
point (d) above the straightline extension®floes not overlap with’.

It follows that P and P’ are edge-disjoint. [

5.2.2 Short Requests

Recall that a request, s) is short if a nodex in § belongs to the multicast tree of
s. The algorithm for short requests decides whether to accept or reject a request in
three steps. Each step rejects the request if certain conditions are not fulfilled. The
requests which are not rejected after stdp= 1, 2, 3 form a sequencs;.

Whenever the first request with = S of a multicast is added t6,, the
algorithm decides whether the multicastsislected for short requestdNote that
this decision will only affect short requests wih = S;, other short requests of
the same multicast are accepted or rejected independent of this decision.

A multicast with sources is selected for short requesifsall of the following
conditions are fulfilled at the time of the test:

(i) no short request of a multicast with sourceSyhas been added ;
(i) a coin toss with success probability2lis successful.

Whenever a multicast is selected for short requests, the riagsadssigned to the
multicast.

In the following lety denote a node of that belongs to the multicast tree of
s. Note thaty = sis possible. The decision part of the algorithm for short requests
consists of three steps:

1. (a) If a short request with request node&itas been accepted then rejécs)
and stop. (b) If a long request with request nod&ihas been added 03,
reject(t, s) and stop. (c) If a long request with sourceSnhas been added
to L3, reject(t, s) and stop. Otherwise addl, s) to S;.

2. If eithert or y, but not both, is in the central region, the other vertex is not in
R3, and ring 8 + 1 to 6B of § are all dedicated to sources, then rejgcst)
and stop. Otherwise add, s) to S».

39

3. If§ # Sorif § = S and the multicast with sourceis selected for short
requests, then add, s) to S3. Otherwise rejectt, s) and stop.

Accept every request, s) in Sz and assign the ring dfto the multicast. If
eithert or y, but not both, belong to the central region®f and the other
vertex does not belong &2, assign one of ringsB+1 to 6B of S dedicated
to requests to the multicast sf

We describe next the routing part of the algorithm. Pedenote the path used
by an accepted requedt s) to connect to y. If t andy belong to the same ring,
simply connect them by a path along the ring.

If t andy do not belong to the same ring, ketdenote the vertex df, y} that
belongs to a ring of§ with larger index than the other vertex. Letdenote the
other vertex. Ifa is outside the central region thdh starts ata and follows the
ring containinga until a corner of the ring is reached. Thdn,continues along a
straightline extension of the ring to the ringlmind from there along the ring bf
tob.

If ais in the central region and is not, thenP starts ata, follows the ring
of a until a corner of the ring is reached. ThdpPecontinue straight to the ring in
the external B rings of R® assigned to the multicast. Then, pa&hcontinues as
described above, i.e., it routes to a corner of the ring, extends straight from there
until it reaches the ring db, and follows the ring ob to b.

If both a andb belong to the central regiot, is routed froma along the ring
of a until it reaches a corner of the ring. From there it continues straight until it
reaches the ring df and it follows the ring ob to b.

Lemma 35 Invariant (11), (12), (13), and (I15) hold.

Proof. Step 1(a) and 1(b) of the algorithm for short requests and step 1 of the
algorithm for long requests ensure that invariant (12) holds.

Condition (i) and(ii) of being selected for a long request and conditijrof
being selected for a short request ensure invariant (13).

Condition(i) of being selected for a short request ensure invariant (15).

Finally, we show that invariant (I1) holds. The routing phase guarantees that
edges on a ring are only used by the multicast to whom the ring is assigned. Thus,
we need to show that each ring is assigned to at most one multicast. A ring is
assigned to a multicast during requésts) (a) if it containss, (b) if it containst,

(c) if it belongs to the selected region, (d) if it is the largest ringpénd dedicated
to sources or, (e) if it is one of rings4+ 1 to 6B in § and dedicated to requests.

During a requestt, s) a type (c) assignment is only done if the ring was not
previously assigned. Thus, we only need to show that type (a), (b), (d), and (e)

40

assignments do not assign previously assigned rings. Recall that each ring is either
dedicated to a source or to a request node. A request is rejected if its source lies
on a ring dedicated to request nodes or its request node lies on a ring dedicated to
sources and its source does not lie on this ring. In the following B#note the

ring that is assigned.

Type (a): The ringr of s is dedicated to sources. When the ringf s is
assigned to the multicast with sourgethe multicast with source is selected for
long or short requests. If it becomes selected for long requests, by cor{fitom
(i) for selection for long requests no multicast with source ®already selected
for short or long requests. If the multicast becomes selected for short requests,
note thatS; = S. By by condition(i) for selection for short requests and step 1c of
the algorithm for short requests no multicast with sourc&iis already selected
for short or long requests. Thus,was not assigned to any other multicast with
source orr. Furthermorer does not belong to the selected region. Thubkas
not been assigned because of type (a), (b), (¢), or (e) assignments. Finally a type
(d) assignment can happen only if a previous source of a long request belongs to
S;. This is impossible by conditiofii) of being selected for a long request if the
current requestt, s) is a long request, and by step (1c) of the algorithm for short
requests if the current requdst s) is a short request.

Type (b): The ringr is dedicated to request nodes and does not belong to
the selected region. Thus,was not previously assigned with type (a), (c), and
(d) assignments. Sinag, s) is an accepted short request, no earlier request with
request node ir§ was accepted by invariant (I12). Thus,was not previously
assigned by type (b) or (e) assignments.

Type (d):In this case ring belongs toS; and is dedicated to sources. Further-
more,s € R?, i.e., R? is not selected and the current multicast is selected for long
requests. It follows that no multicast with sourceShis already selected for long
requests and no multicast with sourcerowas previously selected. The former
implies that no type (d) assignment has happenedfore, the latter implies that
no type (a) assignment has happened before. Since does not belong to the
selected region and is dedicated to sources, type (b), (c), and (e) assignments are
not possible.

Type (e):In this case ring belongs toS and is dedicated to request nodes.
Furthermore R? is not selected antl e R3. It follows that type (a), (c), and (d)
assignments are not possible. By invariant (12) no earlier request with request node
in § was accepted. Thus, no previous type (b) or (e) assignment can have occurred.

[]

Lemma 36 No two paths constructed for different multicasts share an edge.

41

Proof. Let Sbe a square. We show that no two pafh@nd P’ constructed for
different multicasts share an edge$n By Lemma 34 no two paths assigned to
long requests share an edge. Thus, we can assume tha path constructed for
a short request. Ldt, s) be the request leading to the constructionPoénd let
(t’, §') be the request leading to the constructiorPof

By step (1a) of the algorithm, only one short request is accepted in a square.
By step (1b) of the algorithm, if a long request from a request node in a square has
been added td 3, no short request from that square is accepted. By step (1c) of the
algorithm if a long request with source node in a square was addégl t@ short
request from that square is accepted. Thus, it follows that whe is accepted,
no previously accepted request has either its source or its request Madé ivus,
either P’ routes througl§ or (t’, §') is a long request accepted afters). By step
1 of the algorithm for long requests it additionally follows tigt# S, i.e., that
S=%.

Lemma 35 shows that we maintain invariant (I11), i.e., the edges of a given ring
are used by at most one multicast tree. Thus, no two different multicast trees share
an edge on aring. As argued in Lemma 34, no ringsathares an edge with a
crossbar row or column or a straightline segment connecting two rings.

We are left with proving that the subpaths Bf used to connect the (at most
2) rings of P” and the border(s) of the square are edge-disjoint with the (at most 2)
subpaths of that connect the (at most 3) rings usedRy

Each subpath used ¥ is a straightline extension either (a) from a corner of a
ring outside the central region to a more external ring, (b) from a corner of a ring of
the central region to a ring d®® with smaller index, or (c) from a corner of a ring
of the central region to another ring of the central region. Each subpath ud&d by
is either (i) a straightline extension from a corner of a ringRSfto ring 4B + 1,
or (ii) a crossbar row or column from a vertex of rin@ 4 1 or of a ring outside
R3 to the border of the square. Since they start from different rings, every type
(i) subpath ofP’ is edge-disjoint with all type (a), (b), or (c) subpaths usedPby
Every type (ii) subpath oP’ is edge disjoint with any type (a) subpathfsince
a type (a) subpath does not use edges on the crossbar. Every type (ii) subpath of
P’ is also edge-disjoint with any type (b) or (c) subpathPofsince type (b) or (c)
subpaths only use edges with both endpoint®in

Thus,P and P’ are edge-disjoint. [

5.2.3 The analysis

Let p = logn(logn + loglog.M) log M. Recall thatM C achieves a competitive
ratio of O(p). We prove in this section that the expected number of requests ac-
cepted by the second stage of the algorithm €& log n) fraction of OPT(C),

42

for any possible sef. Together with Lemma 30 it follows that our algorithm is
O(p logn) = O(log? n(logn + log logM) log M) competitive.
Since

|OPT(C)|=|OPT() N Lol + [OPTC) N Sol
=[OPTC) N ((Lo\ £1) U (So\ S +[OPTC) N L1+ [OPTC) NSy

it suffices to show the following results:
JOPT(C) N ((Lo\ £1) U (So\ S1)| < 48log nE[JON(C)|] (Lemma 39),
[OPT(C) N L1 < O(plogn)E[|ON(C)|] (Lemma 40), and
JOPT(C) NS1| < O(log? n)E[JON(C)|] (Lemma 42).
We first need to show the following claim. We assume here that each node can
receive at most one request per multicast.

Claim 37 At most4 log? n requests with request node in a given square can be
accepted in a solution.

Proof. Each node in a square is incident to four edges and thus can belong to at
most four multicast trees. Thus at most 4dogrequests with request node in a
square can be accepted by a solution. [

Claim 38 Every request of 3 is added toL, with probability at leastl/2, i.e.,
E[I£4]] = |£3]/2.

Proof. Let (t,s) be such a request afz3. By Step 4 of the algorithm for long
requests(t, s) is not added ta, if t belongs to the central region and ring3 4 1
to 6B are all dedicated to sources Ibelongs toR®, R® is not the selected region,
and thus every ring oR? is dedicated to request nodes with probabilifl m

Lemma 39 [OPT(C) N (Lo \ £1) U (So \ S1)| < 4102 nE[[ON(C)]]

Proof. We first show thatO P T(C) N (Lo \ £1)| < 24 lod nE[|ON()]].

A request(t, s) of Lg is not added ta; because (i) a long request with request
node in§ was added t&; or (ii) a long request with source § was added t&€3
or (i) a short request with request nodeSnwas accepted. Consider the following
charging from long requests ify\ £; to squares of the mesh: (A) If a requéists)
of Lo was not added td; because situation (i) or (iii) arose, the request is charged
to S. (B) If (t, s) was not added because a type (ii) requésts’) was added to
L3, we charge(t, s) to §. Claim 37 shows that there are at most #lndype (A)
charges and at most 4 Idg type (B) charges to a given square.

43

Let g be the number of squares to which at least one requesi §f L1 is
charged. ThenOPT(C) N (Lo \ £1)| < 8log?ng. It suffices to proveq <
3E[ION(O)I]

Every square with a type (A) charge contains the request node of an accepted
request ofC. Every square with a type (B) charge contains the request node of
a request inC3. By Claim 38,|L3] < 2E[|ON(C)|]. Thus,gq < |[ON(O)| +
2E[JON()I].

Then,|OPT(C) N (Lo \ £1)| < 8log? ng < 24 lod nE[|ON(C)]]

The same argument appliesSg\ Si. [

Lemma 40 [OPT(C) N L1 < O(plogn)E[|[ON(C)[]

Proof. The requests of; are transformed into requests @i, giving rise to a
request sequencé; ¢' submitted toMC. The bandwidth orM is a factor of 13
larger than the bandwidth d@’. On the request sequentg c: we compareMC

on G’ with an optimum algorithm on a megh’” whose topology is identical tG¢’

and whose edge capacity is a factor of 13 larger. Then we compare the optimum
algorithm onG” with the request sequendl ¢ with the optimum algorithm on

M with the request sequengs. Note thatO Nyc (L1.6') = L2.

The same arguments as in [4, 14] show P T(L1.¢7)| < O(p)E[|ON(L1.¢)]
= O(p)E[IL2]].

Note that OPT(L1.¢7)| > |OPT(Ly)], since routing requests @&’ is iden-
tical to routing requests iM where all edges inside a square have infinite capacity.
Thus,

IOPT() N L] < |OPT(Ly)| = O(p)E[IL2]].

Claim 41 below shows that,| < O(logn)E[|£3]]. From Claim 38 we obtain
that |£3] < 2E[|La4]]. Since|Ls] < |[ON(C)|, this concludes the proof of the
lemma. [|

Claim 41 |£5| < O(logn)E[|£3]]

Proof. A request of, is added taZ; if its multicast is selected for long requests.
We show that a multicast is selected for long requests with probakilifyy logn).
This shows the claim.

A multicast is selected for long requests if conditigijs— (iv) hold. Letr be
the ring of of the source of the multicast. We bound next the probability that each
condition holds.

Condition (i): The first short request with source oadded taS; is selected for
short requests with probability at most2l None of the short requests with source
onr added later t&, can become selected for short requests. Thus, condijion

44

that no source on is already selected for short requests holds with probability at
least 1/2.

Condition (ii): The total capacity of edges incident & is 4B. Thus there
exist at most B multicasts with source ii% in £,. Each of them is selected with
probability at most 1(4B). Thus the probability that conditiofii) holds, i.e., that
none of them is selected, is at legst— 1/(4B))*8 > 1/e.

Condition (iii): The coin toss is successful with probability(4B).

Condition (iv): The largest ring oR3 in S is dedicated to sources with proba-
bility 1/2.

Thus a multicast is selected for long requests with probability at |[¢a$64B) =
Q(1/logn).]

Lemma 42 |OPT(C) N S1| = O(log? N)E[|ON(C)(]

Proof. Since|OPT(C) NS1| = |[OPT(C) N (S1\ S3)| + |OPT(C) N S3] and
[OPT(C) NS3| < |ON(O)| it suffices to show

IOPT(C) N (S1\ Sa)| < 32log? nE[JON(C)|].

Let Sbe a square and I€&tN Sdenote the sequencerestricted to the requests
with either request or source nodeSnWe show that for each squaghat

IOPT(CNSN(S1\S3)| <16log? nE[JON(C) N SI].

Since
IOPT@) N (S1\S3)| = > [OPTCN YN (S1\Ss)
< ilGIoganHON(C)ﬂSl]
< SZIogZE[|ON(C)I].
By Claim 37,

IOPT(CNSN(S1\S3)| <|OPT(CNS)| <4logn.

It suffices to show that

(*) For each square S witls; NS # @, E[JON(C) N §]] = 1/4. Consider
the first requestt, s) of S1 N S. It is added taS; if t andy either both belong to
the central region or both not belong to the central region. Otherwise, the request
is added taS; if at least one of rings B + 1 to 6B is dedicated to request nodes.
This happens with probability at leastZ

45

If y # s, then the request is added & and the claim is proved. If = s,
then the request is added & if the multicast is selected for short requests. If
Condition (i) of being selected for short request is not satisfied, there exists a short
request(t’, s') of S» with Sy = Sfor which Condition (i) of being selected for
short requests was satisfied, that has been addé&d wath probability 1/2. If
Condition (i) of being selected for short requests holds for sosirtieen(t, s) is
added taS3 with probability 1/2. Thus, with probability 12 at least one request
of S, is added taS3. This shows that ifS; N S # @, then a request af N Siis
accepted by the online algorithm with probability at legst.1 [

Lemmata 39, 40 and 42 together prove the following theorem:

Theorem 43 There exists a Qog? n(logn + log log M) log M) competitive al-
gorithm for multicast routing on unit capacity meshes.

5.3 Alower bound for the online algorithm on meshes

In [12] a lower bound of©2(log(M /u)logn) against an oblivious adversary is
given for the online multicast algorithm in a tree, wheres the (minimum) edge
capacity, M is the number of multicasts, andis the size of the tree. We show
here how to modify the proof to give a lower bound@t(log(M/u) logn)/d)

in a connected graph whose minimum degred.isThis gives a polylogarithmic
lower bound for a mesh.

We assume first that all demands and all edge capacities are 1 and prove a lower
bound of2(log M logn). Afterwards we show how to add edge capacities to the
proof.

We restrict ourself to the case thafn > logM. Let M = M/logn and

N = n/logM. Assume that the nodes are numbered with consecutive numbers
from O ton — 1 such that the node with minimum degree is labeled 0. Consider the
following sequence of multicast requests. There ardNgghases. In the following
we describe phase with 1 < i < log N. In each phase the adversary generates
M new multicasts. Each multicast has source 0. Its requests consistshdfdets.
The first set of requests consists of the nodes 1.t¥8en the adversary flips a coin
and terminates the multicast with probability 1/2. Théh set of requests consists
of nodes 2x (j — 1)+ 1to 2 « j. After processing alM multicasts a new phase
starts.

Let c(i) be the capacity on any edge incident to node 0 used by the online
algorithm during phase Also, let p(i) be the profit obtained by the online algo-
rithm during thei-th phase. We use*(i) and p*(i) to denote the corresponding
quantities for the optimal algorithm.

46

By contradiction we show below that there exists a pkemech thad , _; ., E[p(i)] <
2“t1d/log N. The adversary stops the sequence of requests after this phase
Claim 8.2 of [12] proves that during phakehe optimal algorithm can obtain a
profit of at least(log M/4)2 by accepting the multicast with highest profit in this
round. This gives a lower bound &f((log M log N)/d) = Q2 ((log M logn)/d).

We are left with showing that there exists a phiasaech thad _,_; ., E[p(i)] <
2“t1d/log N. Assume by contradiction that no such phase exists. Slet =
(1/2) 31 - E[p@)]. Then for allk, S(k) > 2d/log N, €., 1<k<togn S(K) >
2d. But

doosko= Y @29) ElpOl=). E[pd]/2"

1<k<log N 1<k<log N 1<i<k 1<i<logN

Claim 8.1 of [12] shows thaE[p(i)] < 2'E[c(i)]. Since) ; c(i) < d, it follows
that) 1 k<iogn SK) < X 1<i<iogn 2E[C()] < 2d, which gives a contradiction.

If the edge capacity isi, each phase is repeatadimes. This increases the
number of multicasts by a factor @f Thus, the same proof as above gives a
lower bound of2 ((log(M/u) log n)/d). We summarize the result in the following
theorem.

Theorem 44 No randomized algorithm for online multicast routing on a con-
nected graph with minimum degree @ 0 can have a competitive ratio better
than @ ((log(M/u) logn)/d) even against an oblivious adversary, where u is the
capacity of an edge.

References

[1] P. Alimonti, 1997. Personal communication.

[2] B. Awerbuch. Online selective multicastand maximal dense trees: A survey,
1996. Available as http://www.cs.jhu.edu/baruch/MULTICAST/index.html.

[3] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in
the face of uncertainty: How to pick a winner almost every timePtac. of
the 28th Annual ACM Symposium on Theory of Compupages 519-530,
1996.

[4] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online rout-
ing. In 34th IEEE Symposium on Foundations of Computer Scjqranges
32-40, 1993.

47

[5] B. Awerbuch, Y. Bartal, A. Fiat, and A. Res. Competitive non-preemptive
call control. InProc. of 5th ACM-SIAM Symposium on Discrete Algorithms
pages 312-320, 1994.

[6] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission
control and circuit routing for high performance computing and communica-
tion. In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Scien¢gages 412-423, 1994.

[7] B. Awerbuch and T. Singh. On-line algorithms for selective multicast and
maximal dense trees. Proceedings of the 29th Annual ACM Symposium on
Theory of Computingpages 354—-362, 1997.

[8] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems
with application to on-line circuit and optical routing. Rroceedings of the
28th ACM Symposium on Theory of Computipgges 531-540, 1996.

[9] N. Garg. A 3-approximation for the minimum tree spannkgertices. In
Proc. of the of 37th Annual IEEE Symposium on Foudations of Computer
Sciencepages 302-309, 1996.

[10] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommod-
ity flow and other fractional packing problems. Technical Report MPI-1-97-
1-025, Max Planck Institute fuer Informatik, 1998. Also submitted to FOCS
98.

[11] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. Pmoceedings of the Interna-
tional Colloquium on Automata, Languages and ProgrammiMCS, pages
64—75. Springer-Verlag, 1993.

[12] A. Goel, M.R. Henzinger, and S. Plotkin. Online throughput-competitive
algorithm for multicast routing and admission control.Rroceedings of the
9th ACM-SIAM Symposium on Discrete algorithmages 97—106, 1998.

[13] D. Hochbaum. Approximation Algorithms for NP-Hard ProblemsPWS,
1997.

[14] J. Kleinberg andE. Tardos. Disjoint paths in densely embedded graphs. In
Proceedings of the 36th Annual IEEE Symposium on Foundations of Com-
puter Sciencepages 52—61, 1995.

48

[15] S. Leonardi and A. Marchetti-Spaccamela. On-line resource management
with applications to routing and scheduling.Rroceedings of the 23rd Inter-
national Collogium on Automata, Languages and ProgramiriiNCS 955,
pages 303-314. Springer-Verlag, 1995.

[16] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A.dRosOn-
line randomized call-control revisited. Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithnmages 323-332, 1998.

[17] M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth.
In Proc. of the of 36th Annual IEEE Symposium on Foudations of Computer
Sciencepages 548-557, 1995.

[18] S. Plotkin, D. Shmoys, anid Tardos. Fast approximation algorithms for frac-
tional packing and covering problemglathematics of Operations Reseayrch
20:257-301, 1995.

[19] Y. Rabani. Path-coloring on the mesh.Rroceedings of the 37th Ann. IEEE
Symposium on Foundations of Computer Sciepages 400—409, 1996.

[20] P. Raghavan. Probabilistic construction of deterministic algorithms: approxi-
mating packing integer programkurnal of Computer and Systems Sciences
2(37):130-143, 1988.

[21] P. Raghavan and E. Upfal. Efficient routing in all-optical networksPto-
ceedings of the 26th Annual ACM Symposium on Theory of Comppiéiggs
133-143, 1994.

[22] Jan van Leeuwen eddandbook of theoretical computer science, Vol A, Al-
gorithms and ComplexityThe MIT Press, 1990.

[23] N. Young. Randomized rounding without solving teh linear program. In
Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorjthages
170-178, 1995.

49

