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Abstract

We construct new families of error-correcting codes based on Gallager’s low-density parity-check
codes, which we callirregular codes. When decoded using belief propagation, our codes can correct
more errors than previously known low-density parity-check codes. For example, for rate 1/4 codes on
16,000 bits over a binary symmetric channel, previous low-density parity-check codes can correct up
to approximately 16% errors, while our codes can correct over 17%. Our improved performance comes
from using codes based on irregular random bipartite graphs, based on the work of [7]. Previously studied
low-density parity-check codes have been derived from regular bipartite graphs. We report experimental
results for our irregular codes on both binary symmetric channels and Gaussian channels. In some cases
our results come very close to reported results for turbo codes, suggesting that, with improvements,
irregular codes may be able to match turbo code performance.

1 Introduction

Low-density parity-check codes, introduced by Gallager in 1962 [6], and their performance under “belief
propagation” decoding, has been the subject of much recent experimentation and analysis [2, 11, 12, 16].
The interest in these codes stems from their near Shannon limit performance, their simple descriptions and
implementations, and their amenability to rigorous theoretical analysis [6, 7, 8, 9, 11, 16, 17]. Moreover,
there appears to be a connection between these codes and turbo codes, introduced by [1]. In particular, the
turbo code decoding algorithm can be understood as a belief propagation based algorithm [10, 5], and hence
any understanding of belief propagation on low-density parity-check codes may be applicable to turbo codes
as well.

In this paper, we construct new families of low-density parity-check codes, which we callirregular
codes, that have significantly improved performance over previously known codes of this type. Our codes
can correct a significantly higher number of errors, albeit at the expense of a slightly slower running time.
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Our work significantly lowers the gap between the performance of low-density parity-check codes and
the best known turbo codes, opening the question of whether further improvements may yield low-density
parity-check codes with equivalent or better performance.

Our codes are most easily visualized in terms of graphs. In the following we refer to the nodes on the
left and the right of a bipartite graph as itsmessagenodes andchecknodes respectively. A bipartite graph
with n nodes on the left andr nodes on the right gives rise to a linear code of dimensionk ≥ n−r and block
lengthn in the following way. The bits of a codeword are indexed by the message nodes. A binary vector
x = (x1, . . . , xn) is a codeword if and only ifHx = 0, whereH is ther × n incidence matrix of the graph
whose rows are indexed by the check nodes and whose columns are indexed by the message nodes. In other
words,(x1, . . . , xn) is a codeword if and only for each check node the exclusive-or of its incident message
nodes is zero. (We note that our code construction can also be used to construct linear time encodable codes
based on cascading series of bipartite graphs, as described for example in [15] or [7], but for convenience
we will not address this issue here.)

Most previously studied low-density parity-check codes have been constructed using sparse regular, or
nearly regular, random bipartite graphs [2, 6, 11, 12]. We call these codesregular codes. Our improved
performance comes from using codes based onirregular graphs. That is, the degrees of the nodes on each
side of the graph can vary widely. In terms of the parity check matrixH , the weight per row and column is
not uniform, but instead governed by an appropriately chosen distribution of weights. By carefully choosing
the distributions, we achieve improved performance. In fact, the codes we describe use a number of largely
disparate weights, suggesting that often the best distributions are far from those that produce regular codes.

As an example of our improved performance, we have found a rate 1/4 irregular code that, on 16,000
message bits, corrects over 17% random errors with high probability on our experiments. On 64,000 mes-
sage bits, this code corrects up to 18% random errors on our experiments. In contrast, the best regular code
corrects up to approximately 16.0% random errors with 16,000 message bits and approximately 16.2% on
64,000 message bits. (The Shannon bound for rate 1/4 codes is 21.45%.)

That irregular structure improves performance is not surprising in light of recent work rigorously prov-
ing the power of irregular graphs in designing erasure codes [7, 8]. Irregular graphs appear to have been
rarely studied in the setting of error-correcting codes because of the difficulty in determining what irreg-
ular structures might perform well. The erasure codes and the techniques for finding good erasure codes
determined in [7, 8] provide the basis for the codes we define here.

Finally, we note that although we can not provide a formal analysis for the performance of our new codes
under belief propagation, we have fully analyzed similar codes that use a simpler, hard decision decoding
scheme. This work appears in [9].

The rest of the paper proceeds as follows: we first review the fundamentals of low-density parity-check
codes and belief propagation. We then provide some useful intuition for why irregular codes should provide
better performance than regular codes. We demonstrate our improved performance with experimental results
for both the binary symmetric channel and the Gaussian channel. We conclude with open questions.

2 Low-Density Parity-Check Codes and Belief Propagation

We first review the low-density parity-check codes developed by Gallager and his suggested decoding algo-
rithm, using the framework of MacKay and Neal [6, 11]. The parity check matrixH of the code is obtained
by creating a matrix chosen uniformly (or near uniformly) at random such that the weight per column is a
fixed constant and the weight per row is as uniform as possible. The decoding algorithm attempts to find the
most probable vectorx such thatHx = 0 mod 2.

In practice, the parity check matrixH can easily be constructed by randomly generating an appropriate
bipartite graph. We describe the construction method. Message nodes are located on the left and the check
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nodes on the right. Each message node has a certain number of edges which connect to check nodes;
similarly each check node has a certain number of edges connecting to message nodes. The total number of
edges in the graph ise. A random permutationπ of {1, . . . ,e} is chosen, and then, for alli ∈ {1, . . . ,e},
the edge with indexi out of the left side is identified with the edge with indexπi out of the right side. Note
that this may potentially lead to multi-edges; often in practice multi-edges and small cycles can be removed
to improve performance [11].

Gallager’s decoding algorithm uses the idea of belief propagation. As explained in [11], the algorithm
runs two alternating phases, in which for each non-zero entry inH with row i and columnj (or, in other
terms, for each edge of the associated bipartite graph) two valuesqi j andri j are iteratively updated. The
quantityqz

i j approximates the probability that thej th bit of x is z, given the information obtained from all
checks ofj other thani . Similarly, the quantityr z

i j approximates the probability that thei th check node is
satisfied when thej th bit of x is z and all other message bitsj ′ associated with checki have a separable
distribution given by the appropriateqi j ′ . That is, we assume that the other message bitsj ′ are independently
1 with probabilityq1

i j ′ , and use this to calculater z
i j . If errors occur with probabilityp, then initially all qi j

have the value 1− p. In the first phase of a round, all theri j values are updated in parallel; then in the second
phase all theqi j values are updated in parallel. (These parallel updates can also be simulated sequentially in
a straightforward manner.) The total amount of work performed each round is linear in the number of edges
of the graph. If the bipartite graph defined byH contains no cycles of length up to 2r , then afterr rounds
of updates the algorithm produces the exact posterior probabilities that each message bit is in error based on
the neighborhood within a diameter of 2r of the message node. The presence of cycles in the graph skews
the probabilities, but in practice the effect on the algorithm appears to be small. More details can be found
in [4, 6, 11, 16].

3 Irregular Graphs: Intuition

Before we demonstrate irregular random graphs that improve the performance of low-density parity-check
codes, we offer some intuition as to why irregular graphs should improve performance. Consider trying to
build a regular low-density parity-check code that transmits at a fixed rate. It is convenient to think of the
process as a game, with the message nodes and the check nodes as the players, and each player trying to
choose the right number of edges. A constraint on the game is that the message nodes and the check nodes
must agree on the total number of edges. From the point of view of a message node, it is best to have high
degree, since the more information it gets from its check nodes the more accurately it can judge what its
correct value should be. In contrast, from the point of view of a check node, it is best to have low degree,
since the lower the degree of a check node, the more valuable the information it can transmit to its neighbors.

These two competing requirements must be appropriately balanced. Previous work has shown that
for regular graphs, low degree graphs yield the best performance [11, 12]. If one allows irregular graphs,
however, there is significantly more flexibility in balancing these competing requirements. Message nodes
with high degree will tend to their correct value quickly. These nodes then provide good information to the
check nodes, which subsequently provide better information to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect, where high degree message nodes tend to get corrected first, and
then message nodes with slightly smaller degree, and so on down the line.

This intuition (which we observe in our experiments) unfortunately does not provide clues as to how
to construct appropriate irregular graphs. Moreover, because belief propagation is not yet well understood
mathematically, creating the proper irregular graphs appears a daunting challenge. We meet this challenge
by using irregular graphs that have been proven to be effective for erasure codes that function in a similar
manner. In the area of erasure codes, the mathematical framework has been established to both design
irregular graphs and prove their effectiveness. Intuitively, graphs that work well for erasure codes should
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Code Rate 1/2
Left Degrees λ3 = 0.166600,λ5 = 0.166600,λ9 = 0.166600,

λ17= 0.166600,λ33 = 0.166600,λ65= 0.166700
Right Degrees ρ7 = 0.154091,ρ8 = 0.147486,ρ19= 0.121212,

ρ20= 0.228619,ρ84= 0.219030,ρ85 = 0.129561
Code Rate 1/4
Left Degrees λ3 = 0.166600,λ5 = 0.166600,λ9 = 0.166600,

λ17= 0.166600,λ33 = 0.166600,λ65= 0.166700
Right Degrees ρ4 = 0.160416,ρ10= 0.404478,

ρ33= 0.303338,ρ34= 0.131768

Table 1: Parameters of our codes.

also work well for error-correction codes, since the two are closely related.

4 Irregular Graph Performance: Simulations

We describe a few important details of our experiments and implementations. We performed simulations
using two types of channels for several rates and block lengths. The first channel we model is a binary
symmetric channel. To more accurately compare code quality, instead of introducing errors with probability
p, we introduced the same number of errors at each trial (corresponding to a fractionp of the block length).
This procedure allows for easier comparison with other codes and minimizes the variance in the experiments
that might arise from the variance in the number of errors. The second channel type we model is a white
Gaussian channel with binary input±1 and an additive noise of varianceσ 2. We report results for the Gaus-
sian channel of rateR and additive noiseσ 2 in terms of the signal to noise ratioEb/N0 = 1/2Rσ 2 expressed
as decibels (10 log10 Eb/N0). Here Eb represents the average energy per bit (1/R) and N0 represents the
noise spectral density (2σ 2).

Rather than encoding a message for each trial, we use an initial message consisting entirely of zeroes.
Since the code is linear and the decoding algorithm respects its linearity, no generality is lost. In our
experiments, we allowed the belief propagation algorithm to run for up to 200 rounds. If the algorithm
failed to converge on a codeword within 200 rounds, a failure was reported. This was in fact the only failure
we saw in our experiments; that is, the algorithm never returned a codeword that differed from the initial
message.

A different random graph was conducted for each trial. No effort was made to test graphs and weed out
potentially bad ones, and hence we expect that our results would be slightly better if several random graphs
were tested and the best ones chosen. Also, following the ideas of [11, 14], when necessary we remove
double edges from our graphs.

We describe the irregular graphs used in Table 1, using the notation of [7]. We say that an edge has
degreei on the left if its adjacent node on the left has degreei , and we similarly define an edge with degree
i on the right. Our graphs are described in the following terms: for each graph, there is a corresponding
left degree vectorλ and a right degree vectorρ. The valueλi represents the fraction ofedgeswith degreei
on the left, and similarly the valueρ j represents the fraction ofedgeswith degreej on the right. Note that
given a vectorλ andρ one can construct a graph with (approximately) the correct edge fractions for any
number of nodes, using the construction method described in Section 2. (Some care must be taken because
of rounding and the necessity to have the number of edges on the left equal the number of edges on the right;
however, this is easily handled.)
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n R f C errs trials
Reg 16000 0.5 0.078 0.605 0 10000

0.5 0.080 0.598 35 10000
0.5 0.082 0.591 1033 10000

Irreg 16000 0.5 0.078 0.605 1 10000
0.5 0.080 0.598 14 10000
0.5 0.082 0.591 40 10000
0.5 0.084 0.584 116 10000

Reg 64000 0.5 0.082 0.590 1 1000
0.5 0.084 0.583 249 1000

Irreg 64000 0.5 0.086 0.577 0 1000
0.5 0.088 0.570 0 1000
0.5 0.090 0.563 25 1000

Reg 16000 0.25 0.158 0.370 0 10000
0.25 0.160 0.366 0 10000
0.25 0.162 0.361 45 10000
0.25 0.164 0.356 697 10000
0.25 0.166 0.352 3767 10000

Irreg 16000 0.25 0.166 0.352 0 10000
0.25 0.168 0.347 0 10000
0.25 0.170 0.342 4 10000
0.25 0.172 0.338 15 10000
0.25 0.174 0.333 53 10000

Reg 64000 0.25 0.164 0.356 0 1000
0.25 0.166 0.352 176 1000

Irreg 64000 0.25 0.178 0.324 0 1000
0.25 0.180 0.320 2 1000
0.25 0.182 0.316 63 1000

Table 2: Comparing regular and irregular graphs.

4.1 Binary Symmetric Channel

Table 2 compares the performance of regular and irregular codes of rates 1/2 and 1/4. Our results for regular
codes (based on graphs in which all nodes on the left have degree 3) are slightly better than (but consistent
with) previous results reported in [11]. In the table,n represents the block length,R represents the rate,f
represents the fraction of errors introduced, andC represents the channel capacity. The results are reported
in terms of the number of trials, or blocks decoded, and the number of errors, or the number of blocks for
which the decoding algorithm failed to find a solution within 200 rounds.

At rate 1/2, our irregular codes perform only slightly better than the regular codes at block lengths of
16,000 bits. They do appear notably more robust at higher error rates, however. At 64,000 bits, our code
can handle over a half a percent more errors. While it has been previously noted that low-density parity-
check codes perform better as the block length increases [11], we believe that this effect is magnified for
our irregular codes, because the degrees of the nodes can be quite high. For example, our irregular rate 1/2
codes have nodes on the left of degree 65 and nodes on the right of degree 85.

At rate 1/4, we have different irregular codes with lower degrees. This code greatly outperforms the
regular codes, even at block lengths of 16,000, where they correct approximately 1% more errors. At block
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Figure 1: Irregular codes vs. regular codes and turbo codes: rate 1/2.

lengths of 64,000 bits, the effect is even more dramatic, and the irregular codes appear to correct more than
1% more errors. We note that initial experiments at other rates further validate our contention that irregular
codes can outperform regular codes in terms of the number of errors that can be corrected.

For both regular and irregular codes, the number of operations required is proportional to the product
of the number of edges in the corresponding graph and the number of rounds until the process terminates.
The irregular graphs have approximately 2.5 times as many edges as the regular graphs, and at higher error
rates they can take approximately 1.5 times as many iterations to complete. Hence it takes approximately
4 times as many operations to decode at higher rates. In practice, performance can actually be worse than
this, however, since the larger graph size for the irregular codes requires more accesses to slower levels of
the memory hierarchy. However, we believe the slower running time is not dramatic in light of the improved
performance.

4.2 Gaussian Channel

Figures 1 and 2 compare the performance (in terms of the bit error rate (BER)) of irregular codes of rate
1/2 and 1/4 with reported results for turbo codes [3] and regular codes [12] at these rates. Again, our
experiments were with block lengths of 16,000 bits, and for this block length each data point is the result of
10,000 trials. (We compare with results using comparable block lengths. The results from [3] are available
athttp://www331.jpl.nasa.gov/public/TurboPerf.html . The results we report from [12]
are only approximate, as [12] does not provide actual numbers but only a graph.) For our irregular codes,
the belief propagation algorithm terminated after 200 rounds if the solution was not found.

For rate 1/2 codes, our irregular codes perform notably better than regular codes, greatly reducing the
gap between the performance of low-density parity-check codes and turbo codes. This gap is further reduced
when we move to larger block sizes, as our codes prove to perform better for larger block lengths in this
setting as well. At block lengths of 64,000 bits, our code never failed in 1,000 trials at both 0.95 dB and 1.00
dB. Our estimates for the bit error rate from 1,000 trials at 0.9 dB is 3.97·10−5 and at 0.85 dB is 6.03·10−5.
Again, this is much better than the performance of regular codes at a comparable block length presented in
[12].

Our results for irregular codes at rate 1/4 (Figure 2) similarly show significant improvement over regular
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Figure 2: Irregular codes vs. regular codes and turbo codes: rate 1/4.

codes. At this lower rate and block length, however, turbo codes appear to have a significant edge. We
believe this edge can be reduced with further exploration and experimentation.

Our irregular codes at this rate again perform significantly better with larger block lengths. At block
lengths of 64,000 bits, our code never failed in 1,000 trials at both 0.70 dB and 0.60 dB. Our estimates for
the bit error rate from 1,000 trials at 0.50 dB is 6.18 · 10−4 and at 0.40 dB is 8.39 · 10−3.

5 Conclusions

We have demonstrated that low-density parity-check codes based on irregular graphs can substantially out-
perform similar codes based on regular graphs. Our irregular graph based codes approach the performance
of turbo codes at certain rates.

Our graphs were designed using the techniques of [7]. These graphs are known to yield good loss-
resilient codes in the model of [7], but there is no clear reason why there cannot be substantially better
codes for error-correction based on other irregular graphs. If this is the case, then it may be possible to
achieve performance similar to that of turbo codes using irregular codes. Designing and analyzing such
codes remains an exciting open problem.
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