
SRC Technical Note

1998 - 007

March 18, 1998

Two Facets of Authentication

Mart́ın Abadi

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c©IEEE 1998. All rights reserved. Republished by permission.

Two Facets of Authentication

Mart́ın Abadi
Digital Equipment Corporation

Systems Research Center
ma@pa.dec.com

March 18, 1998

Abstract

Authentication can serve both for assigning responsibility and for
giving credit. Some authentication protocols are adequate for one pur-
pose but not the other. This paper explains the distinction between
responsibility and credit, through several examples, and discusses the
role of this distinction in the design and analysis of protocols.

Contents

1 Responsibility and Credit 1

2 Four Examples 2
2.1 Signing a Public Key . 2
2.2 Encrypting a Session Key . 4
2.3 Making a Session Key from Encrypted Shares 5
2.4 The Station-to-Station Protocol 7

3 Discussion 8
3.1 Design . 8
3.2 Analysis . 9

Acknowledgements 10

References 11

1 Responsibility and Credit

Authentication can serve both for assigning responsibility and for giving
credit. An “authenticated” message M from a principal A to a principal B
may be used in at least two distinct ways:

• B may believe that the messageM is being supported by A’s authority.
For example, suppose thatB is a file server, A a client, andM a request
to delete a file f . Then B may use A’s identity as an argument to the
access control decision of whether to delete f .

• B may attribute credit for the message M to A. For example, suppose
that B is running a contest, offering a prize to the principal that mails
the factors for a large number. When B receives the message M as an
entry, B may give credit for the entry to A.

These two uses are sharply different, and require different concepts of au-
thentication. Furthermore, some natural protocols are adequate for assign-
ing responsibility but not for giving credit, and vice versa. We consider some
of those protocols in this paper.

When a new authentication protocol is designed, it is therefore prudent
to state whether the protocol is intended to establish responsibility, credit, or
both. Similarly, when an authentication protocol is analyzed, it is prudent to
clarify whether its properties suffice for establishing responsibility or credit.
However, a quick look at the literature (discussed below) suggests that this
clarification is not often present.

This paper explains the distinction between responsibility and credit,
through several examples, and discusses the role of this distinction in the
design and analysis of protocols. Papers by Gollman, Lowe, and others have
shed light on several possible definitions of authentication [Gol96, Low97].
This paper does not attempt to review those studies, but aims to comple-
ment them.

The two facets of authentication are most clearly separate in proto-
cols that rely on asymmetric cryptosystems, such as the RSA cryptosys-
tem [RSA78]. We therefore take public-key protocols as examples. Al-
though our list of examples is not meant to be comprehensive, we illustrate
the distinction between responsibility and credit through several protocols of
different styles. Our emphasis is not on classifying cryptographic techniques.
(See [MvOV96, Chapter 12] for a helpful classification.) Rather, we focus on
the higher-level guarantees that protocols provide to the applications that
may rely on them.

1

The direct author of a message need not always be held responsible for
the message or be given credit for it. In particular, a principal may delegate
some part of its authority to another principal, taking responsibility for
messages sent by the delegate (much like one can let a friend withdraw from
one’s bank account). Similarly, a principal may legitimately divert credit for
its messages to another principal (much like one can deposit into a friend’s
bank account). Therefore, even when it is proved beyond a reasonable doubt
that a principal sent a message, responsibility and credit may not follow.
Responsibility and credit are thus distinct from non-repudiation of origin
and other related concepts [ZG96, Roe].

2 Four Examples

This section discusses four examples that illustrate the concepts of respon-
sibility and credit, and their applications. The examples concern techniques
that are common in published, useful protocols. In all four examples, re-
sponsibility and credit for the messages between two parties is assigned by
the parties themselves. For simplicity, we do not consider scenarios where a
third party (for example, a judge) may assign responsibility or credit, but
such scenarios could be interesting too.

2.1 Signing a Public Key

As a first example, we consider a simple protocol where a principal A creates
a short-term key pair, sends the short-term public key to a principal B,
signing it with its long-term secret key, then uses the short-term secret key
for signing further messages:

Message 1 A→ B : A, B, {K, A, B, T}K−1
A

Message 2 A→ B : A, B, {{M}K−1}KB

Here M is an arbitrary message, T is a timestamp, KA is A’s long-term
public key, K−1

A is the corresponding secret key, K is A’s short-term public
key, and K−1 is the corresponding secret key. We use braces for signatures,
as in {M}K−1 , and for encryptions, as in {{M}K−1}KB . Message 1 is the
core of the protocol; Message 2 appears only as an example of the use of K.

In one interpretation of this protocol, Message 1 conveys that A takes
responsibility for the key K, so B can blame A for any message signed with
K−1. Thus, the protocol fits applications that require responsibility for a
message (or for a connection). For example, the protocol seems adequate

2

for the situation where B is a file server, A a client, and M a request
to delete a particular file. It seems adequate even if A gives K−1 to a
delegate, allowing the delegate to make requests on A’s behalf (although
delegation mechanisms where B knows the identity of the delegate may be
preferable [LABW92]).

In a second interpretation of this protocol, B would assign credit to A for
every message that is signed with K−1. This interpretation is not justified,
as the following would constitute an attack:

Message 1 A→ B : A, B, {K, A, B, T}K−1
A

(intercepted by C)
Message 1’ C → B : C, B, {K, C, B, T}K−1

C

Message 2 A→ B : A, B, {{M}K−1}KB (intercepted by C)
Message 2’ C → B : C, B, {{M}K−1}KB

Here C is an attacker who signs the public key generated by A. On receipt
of M , we would have B give credit for M to C rather than to A. This
sequence of messages constitutes an attack with the second interpretation,
since it may result in erroneous credit to C. On the other hand, with the
first interpretation, this sequence of messages may result in erroneous blame
to C; it may also result in denial of service to A and B, but has no other
direct negative impact on them.

The protocol can be strengthened in a variety of ways. In particular, A
may sign its own name with the secret key K−1, for example as in:

Message 1 A→ B : A, B, {K, A, B, T}K−1
A
, {A}K−1

Message 2 A→ B : A, B, {{M}K−1}KB
or

Message 1 A→ B : A, B, {K, A, B, T}K−1
A

Message 2 A→ B : A, B, {{A, M}K−1}KB
These modification do not prevent an attacker C from signing the key K
with its key K−1

C ; however, C cannot sign its own name with K−1, since C
does not have K−1. Therefore, the protocol becomes adequate for giving
credit for M to A.

We may say that, with these modifications, A proves possession of the
secret key K−1 [MvOV96, Definition 12.7]. However, this statement should
not be taken literally. For example, suppose that A is a user with a smart-
card and that B is a server. The smart-card may sign a short-term key K
generated by the workstation to which the smart-card is connected, and the
workstation may sign the name A, while the user and the smart-card may
never have access to the secret key K−1.

3

Protocols similar to this one may be used for registering public keys. In
this application, B is a certification authority and A is a client that enters
a new public key K into B’s registry. It has been argued that, whenever a
client is associated with a public key K, the client should prove possession
of the corresponding secret key K−1 [MvOV96, Remark 13.23]. However,
this view is not universal—it is not shared, in particular, in some recent
public-key-infrastructure designs [Ell97].

2.2 Encrypting a Session Key

While the first example shows that a signature may lead to responsibility,
the second example shows that an encryption may lead to credit, and that
a decryption may lead to responsibility.

We consider the situation where a principal A transmits a session key K
(say, a DES key [DES77]) to another principal B, encrypting K under B’s
public key KB, and including the name A along with K:

Message 1 A→ B : {A, K}KB
Message 2 A→ B : {M}K
Message 3 B → A : {M ′}K

Messages 2 and 3 simply illustrate the use of the session key K for sending
some messages, M and M ′. We assume that both principals have means
for recognizing and ignoring their own messages, so for example A will not
mistake a replay of {M}K for a message from B.

This protocol is adequate for applications that require responsibility for
B, and perhaps for applications that require credit for A:

• Only B can extract K from Message 1. Therefore, B can take respon-
sibility for the use of K. Whenever A receives a message encrypted
under K, if A did not generate the message itself, then A can be cer-
tain that B generated the message, or that some principal to which B
gave K generated the message. So A can hold B responsible for the
message.

• Since Message 1 yields no proof of A’s identity, B does not know who
else has K. Therefore, B should not send any secrets under K. We do
not consider the issue of credit for B for lack of a compelling example
where B would claim credit for public data. (Perhaps only secrets are
worth claiming credit for.)

• Since any principal could have produced Message 1, B cannot hold
anyone responsible for messages from A encrypted under K.

4

• Nevertheless, by including its name in Message 1, A claims credit for
messages encrypted under K. Of course, if A chooses K incompetently
or maliciously, then another principal C might have K as well, and
might also produce messages encrypted under K. Still, since A has K,
and assuming that C sends those messages to A or that A is capable
of intercepting them, A can read and produce those same messages.
Therefore, (some) credit to A is justified.

The last of these points indicates that this protocol may not be a solid
basis for unqualified credit to A. The following alternative protocol provides
a clearer case for credit to A and preserves the responsibility of B:

Message 1 A→ B : {JA}KB
Message 2 B → A : JB
Message 3 A→ B : {M}K
Message 4 B → A : {M ′}K

(K = H(JA, JB, A,B))

where JA and JB are random quantities invented by A and B, respectively,
and K is computed by applying a one-way hash function H to the concate-
nation of JA, JB, and the names A and B. With this alternative protocol,
A can still forward a message M received from another principal, of course,
but A cannot pick a session key K in use by other principals.

2.3 Making a Session Key from Encrypted Shares

As a third example, we consider a protocol for obtaining a shared key from
encrypted shares. The protocol has been applied in several contexts. It
appears in the work of Lampson et al. [LABW92], and it also appears as a
component of Krawczyk’s SKEME protocol [Kra96]. We adopt Krawczyk’s
name for this protocol: SHARE.

SHARE enables two principals A and B to obtain a shared key, assuming
that initially each knows the public key of the other (KA or KB). Each of
the principals invents a random quantity (JA or JB), as a “half key”. Then
the following exchange takes place:

Message 1 A→ B : {JA}KB
Message 2 B → A : {JB}KA

After this exchange, the two principals A and B compute a shared key K
by applying a one-way hash function to the concatenation of the half keys
JA and JB.

In his explanation of SHARE, Krawczyk says:

5

If A follows the protocol then she is assured that the shared key
[. . .] is not know to anyone except B (though A does not have
the assurance that B knows the key). And analogously for B.

These properties should not be interpreted literally (and it is not Krawczyk
intention that they be interpreted literally [Kra97]). In fact, in their literal
interpretation, these properties do not hold. Consider, for example, the
following message sequence:

Message 1 A→ B : {JA}KB
Message 1’ B → C : {JA}KC
Message 2 C → A : {JC}KA

In this sequence, A sends a half key to B, who then sends the same half
key to C. By whatever means, B makes C believe that Message 1’ comes
from A. Therefore, C replies to A with another half key. As a result of this
exchange, both A and C compute a shared key; C believes that it is shared
with A, while A believes that it is shared with B.

Whether this scenario constitutes an attack depends on the use of the
protocol. It constitutes an attack in applications where it can result in harm
to the principals A and C, which follow the protocol.

• In some situations, this scenario may cause some confusion, but no
clear harm. As a result of B’s behavior, A may attribute C’s requests
to B, and lend them the weight of B’s authority. Moreover, A may
inadvertently reveal some of B’s secrets to C. Thus, B’s behavior may
harm B, but would not directly harm A or C.

Note thatB does not obtain the key that A and C compute. Therefore,
B cannot learn C’s secrets by decrypting the subsequent messages
from C to A. (In this respect, this scenario is quite different from
Lowe’s attack on the Needham-Schroeder public-key protocol [Low96],
although its structure is reminiscent of that attack.)

• More concretely, A may be a file server, and B and C two of its clients.
In this case, the confusion may result in some immediate damage to
B’s files as a result of C’s requests. Moreover, C may be able to read
some of B’s files.

Indirectly, however, there can also be some harm to C if C’s requests
are not sufficiently explicit. Because of the confusion, A may write
some of C’s data into B’s files. In a later session B can read these
files, obtaining C’s data.

6

• Finally, if A is running a contest, then it may think that a winning
entry that arrives under K came from B when in fact it came from C.

In short, SHARE is adequate for some applications that require responsibil-
ity but not necessarily for applications that give credit.

With some additional precautions, SHARE can be used in applications
that give credit. For example, each message that an application encrypts
under the shared key could include (bound in the encryption) the name of
its source, who expects credit for this message if any credit is to be had at
all. The inclusion of this name is a prudent measure in any case; it agrees
with Principle 3 of [AN96]:

If the identity of a principal is essential to the meaning of a
message, it is prudent to mention the principal’s name explicitly
in the message.

Thus, the issue of credit can be separated from the protocol for agreement
on a key, and shifted to the use of the key.

Alternatively, we can easily strengthen SHARE, preventing the scenario
described above. One possible modification is to let K be the result of
applying a one-way hash function to the concatenation of JA, JB, and the
names A and B, as in section 2.2. Another one is to add messages where
the two parties A and B prove knowledge of K, as in SKEME.

Krawczyk does not view SHARE as a complete protocol, but only as a
phase of SKEME:

To be really meaningful this phase [SHARE] needs to be com-
bined with the other phases of the protocol [SKEME].

One may instead argue that SHARE is meaningful on its own, although
precautions are needed for its use, and elucidating its meaning requires sep-
arating credit from responsibility.

2.4 The Station-to-Station Protocol

As a last example, we consider the Station-to-Station protocol [DvOW92].
This protocol is fairly well known, so we do not reproduce it or discuss it in
detail.

Basically, the Station-to-Station protocol consists of a signed Diffie-
Hellman exchange [DH76], where both parties sign the Diffie-Hellman shares,
and where they confirm possession of the resulting session key by using it
to encrypt the signed Diffie-Hellman shares.

7

Without the key confirmation, the protocol suffices for establishing re-
sponsibility: each party may hold the other responsible for messages under
the session key. With the key confirmation, the protocol is also suitable for
establishing credit.

Although the Station-to-Station protocol may be rather attractive, it
is not without alternatives. Other techniques for key confirmation could
replace the encryption of the signed Diffie-Hellman shares. Furthermore,
the key confirmation could be postponed or avoided altogether if, whenever
credit is wanted, each message encrypted under the session key would contain
the name of its source.

3 Discussion

While the examples of the previous section may be somewhat confusing,
they are fairly typical of the authentication field. As this section discusses,
there does not seem to be a general agreement on the goals of authentication,
or a systematic analysis of the guarantees that authentication mechanisms
provide to higher-level applications.

3.1 Design

In the literature on protocol design, there seems to be a consensus that
an authentication protocol should at least establish responsibility, probably
because responsibility is crucial for access control. In the context of access
control, the primary property of a secure channel from a principal is that
the channel “speaks for” the principal [LABW92, ABLP93]. In essence, a
channel C speaks for a principal A if A’s authority backs every message on
C. This semantics justifies the following axioms:

• if A says that C speaks for A, then C does speak for A;

• if C speaks for A and C says s, then A says s.

These axioms are useful and sensible when “A says s” entails that A takes
responsibility for s; but they would be unreasonable if “A says s” was meant
to imply that A deserves credit for s. In access control, responsibility is
largely separate from credit.

There does not seem to be a consensus that an authentication protocol
should also establish credit. Although the literature does not seem to con-
tain an explicit, articulate debate about this issue, we can propose likely
arguments for both sides.

8

• We may argue that, once an authentication protocol has set up a
channel that speaks for a principal, it is easy to use the channel for
establishing credit whenever the need arises. (For example, the prin-
cipal may send its name on the channel; see sections 2.1 and 2.3.) So
it is not essential that an authentication protocol establish credit.

• On the other hand, we may say that stronger guarantees are better
than weaker guarantees, particularly when protocols may be applied
carelessly or in ways not fully anticipated by their designers. Estab-
lishing credit is a matter of prudence.

The latter argument may be prevailing. Popular Internet protocols (such
as the SSL protocol [FKK96]) probably establish credit, although one may
conjecture that applications rarely take advantage of this feature.

3.2 Analysis

Formal analyses seldom highlight the distinction between responsibility and
credit, and the effect of a proof of possession of a secret key. There are some
exceptions, for example in the work of van Oorschot and Syverson [vO93,
SvO94]. Elsewhere, the distinction between responsibility and credit seems
to be made through decisions in the modelling of protocol participants. (See,
for example, work based on process algebras [Sch96, Low96, AG97].)

• Honest protocol participants are expected to follow the rules of the
protocol faithfully, and not to try to obtain credit for messages that
they did not generate themselves. A proof about honest protocol par-
ticipants may show that a protocol establishes responsibility, but not
credit.

• When an attacker is included as protocol participant, the attacker is
not forced to follow the rules of the protocol, and may attempt to get
undue credit. A proof that concerns such an attacker can show that a
protocol establishes credit.

The protocols described in this paper should make good examples for fu-
ture work on protocol analysis. While these protocols do not present any
challenges of scale, they exhibit common subtleties.

There seem to be indications that responsibility and credit are dual no-
tions. For example, through simple protocols, a principal may take responsi-
bility for the statements of another principal, or may defer credit for its own
statements to another principal. Moreover, responsibility sometimes comes

9

with signatures, while credit sometimes comes with encryptions. A crisper
understanding of this duality might lead to more regular protocol designs
and to more systematic arguments about their correctness.

Acknowledgements

Discussions with Mike Burrows, Hugo Krawczyk, and Butler Lampson led
to this paper. I believe that the arguments “for credit” and “against credit”
of section 3.1 approximately reflect the views of Krawczyk and Lampson,
respectively. (So they deserve some credit for these arguments but are not
responsible for them.) Also helpful were discussions with Ross Anderson,
Dieter Gollman, Gavin Lowe, Ron Rivest, Mike Roe, and Adi Shamir. Com-
ments by anonymous referees suggested the mention of non-repudiation and
the mention of third-party judgement.

10

References

[ABLP93] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon
Plotkin. A calculus for access control in distributed systems.
ACM Transactions on Programming Languages and Systems,
15(4):706–734, October 1993.

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. In Proceedings of the Fourth
ACM Conference on Computer and Communications Security,
pages 36–47, 1997.

[AN96] Mart́ın Abadi and Roger Needham. Prudent engineering prac-
tice for cryptographic protocols. IEEE Transactions on Software
Engineering, 22(1):6–15, January 1996.

[DES77] Data encryption standard. Fed. Inform. Processing Standards
Pub. 46, National Bureau of Standards, Washington DC, Jan-
uary 1977.

[DH76] W. Diffie and M. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, IT-22(6):644–654,
November 1976.

[DvOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener.
Authentication and authenticated key exchanges. Designs,
Codes and Cryptography, 2:107–125, 1992.

[Ell97] Carl M. Ellison. SPKI certificate documentation. Web pages at
http://www.clark.net/pub/cme/html/spki.html, 1997.

[FKK96] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL
protocol: Version 3.0. Available at http://home.netscape
.com/newsref/std/SSL.html, March 1996.

[Gol96] Dieter Gollman. What do we mean by entity authentication?
In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, pages 46–54, May 1996.

[Kra96] Hugo Krawczyk. SKEME: A versatile secure key exchange
mechanism for internet. In Proceedings of the Internet So-
ciety Symposium on Network and Distributed Systems Secu-
rity, February 1996. Available at http://bilbo.isu.edu/
sndss/sndss96.html.

11

[Kra97] Hugo Krawczyk. Private communication. 1997.

[LABW92] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward
Wobber. Authentication in distributed systems: Theory and
practice. ACM Transactions on Computer Systems, 10(4):265–
310, November 1992.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 1055 of Lec-
ture Notes in Computer Science, pages 147–166. Springer Verlag,
1996.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In
Proceedings of the 10th IEEE Computer Security Foundations
Workshop, pages 31–43, 1997.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[Roe] Michael Roe. Cryptography and Evidence. PhD thesis, Univer-
sity of Cambridge Computer Laboratory.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, February 1978.

[Sch96] Steve Schneider. Security properties and CSP. In IEEE Sympo-
sium on Security and Privacy, pages 174–187, 1996.

[SvO94] Paul F. Syverson and Paul C. van Oorschot. On unifying some
cryptographic protocol logics. In IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages 14–28, 1994.

[vO93] Paul C. van Oorschot. Extending cryptographic logics of belief
to key agreement protocols. In Proceedings of the first ACM
Conference on Computer and Communications Security, pages
232–243, 1993.

[ZG96] Jianying Zhou and Dieter Gollman. A fair non-repudiation pro-
tocol. In Proceedings of the 1996 IEEE Symposium on Security
and Privacy, pages 55–61, May 1996.

12

