SRC Technical Note
1998 - 005
March 10, 1998

Reduction in TLA

Ernie Cohen and Leslie Lamport
Bellcore

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright@©Digital Equipment Corporation 1998. All rights reserved

Reduction in TLA

Ernie Cohen Leslie Lamport
Bellcore Digital Equipment Corporation

10 March 1998

Abstract

Reduction theorems allow one to deduce properties of a concurrent sys-
tem specification from properties of a simpler, coarser-grained version called
the reduced specification. We present reduction theorems based upon a more
precise relation between the original and reduced specifications than ear-
lier ones, permitting the use of reduction to reason about a larger class of
properties. In particular, we present reduction theorems that handle general
liveness properties.

Contents

7

8

Introduction

The Relation BetweenS and S#
An Intuitive View of Reduction
Safety in TLA

Liveness in TLA

Reducing Fairness Conditions
Proofs

Further Remarks

References

10

14

14

15

1 Introduction

We reason about a high-level specification of a system, with a large grain of atom-
icity, and hope thereby to deduce properties of a finer-grained implementation.
For example, the single atomic action

z,y = [f(z,y), g(x,y)

of a high-level algorithm might be implemented by the sequence of actions
P(sem); t i=uax; x 1= f(z,y); y 1= g(t, y); V(sem) 1)

where P and V' are the usual operations on a binary semaphkere andi is a

new variable. This process is usually justified by asserting that the two specifica-
tion are, in some suitable sense, “equivalent’refluction theorenis a general

rule for deriving an “equivalent” higher-level specificatiSf from a lower-level
oneS. We call S¥ thereducedversion ofS. For exampleS might be a multipro-

cess program containing critical sections, aHftimight be obtained fron$ by
replacing each critical section with a single atomic statement.

The first reduction theorem was proposed by Lipton [10]. Several others fol-
lowed [3, 5, 4, 6, 9]. In these theorems, executions of the reduced specification and
of the original one are completely separate, sharing only certain properties. In the
reduction theorems we present here, the original and reduced specifications “run
in parallel”, their executions connected by a coupling invariant [7]. Our theorems
thereby provide a more precise (and hence stronger) statement of the relation be-
tween the original and the reduced specifications. This enables certain hypotheses
to be stated as assumptions about a given execution, rather than in the stronger
form of assumptions about all executions. In particular, we relate liveness prop-
erties of executions of the two specifications, obtaining what we believe to be the
first published general reduction theorems that handle liveness. The only previous
theorems we know that concern liveness are Back’s [3] results for total correct-
ness of sequential programs and a theorem in [4] showing that certain progress
properties of a component are preserved under fair parallel composition with an
environment.

Our theorems are stated in TLA (the Temporal Logic of Actions) [8], but they
should be adaptable to other formalisms with a trace-based semantics. Space does
not permit us to include examples; they will appear elsewhere.

2 The Relation BetweenS and S*%

We begin by examining the relation between the original specificatiand the
reduced versiod' . We want to infer properties d¢f by proving properties of ©.
For this, S and S¥ needn’t be equivalent; it's necessary only taimplement
SE—for some suitable notion of implementation.

SupposeS represents a multiprocess program with shared variabbasd y
that are accessed only in critical sections, and the reduced vei8imobtained
by replacing each critical section with a single atomic statement—for example,
replacing (1) with

tz,y 1= f(x, 9, 9(z,y)

One sense in whicls implementsS* is that, if we ignore the times when
a process is in a critical sectiof, assigns the same sequences of values to all
variables that5”® does. This is the notion of implementation used by Doeppner
in his reduction theorem [6]. While satisfactory for many purposes, this notion of
implementation is rather weak. It says nothing about what is true while a process
is in its critical section, which can be a problem because assertional reasoning
requires proving that an invariant holds at all times.

Let v be the tuple of all variables @, includingz andy. Our stronger notion
of implementation is that there exists a tuple of “virtual variablésuch that,
asS changes the real variablesthe virtual variable$ change according to the
specificationS# obtained fromS* by replacing each real variable by its virtual
counterpart. The relation between the real and virtual variables is expressed by a
predicatel relatingv andv. (Such a predicate is known as a “coupling invariant”
[7].) This generalizes Doeppner’s notion of implementation impliesv = v
when no process is in a critical section. For example, during execution of the
critical section (1) might imply:

t, X, y before executing := ...
TR y= t, f(x,y), g(x,y) justafter executing:=...
T t, X, g(t, y) just after executing := ...
t, X,y after executing/ := ...

All the steps of the critical section leave the virtual variables unchanged except
for the assignment t6 which performs the “virtual assignment”

1,7,7 =7, @7, 9@ 7

Expressed in temporal logic, this implementation relation is
S = 37 :0IASE)

where3 is existential quantification over flexidlevariables® This is approxi-
mately the conclusion of our reduction theorems.

We would like to prove that” satisfies (implies) a property and deduce
that S satisfiesIT. By (2), all we can infer from5” = ITis S = 37:07 ATI.
How useful this is depends upon the naturé @hdI1. Space precludes a discus-
sion of how our reduction theorem can be applied. We just mention one important
case. Supposeimpliesz = z for every variable occurring ifil. In this case,
37:0 ATI impliesIT, so we inferS = II from S% = TII. It is this result that
justifies the well-known rule for reasoning about multiprocess programs that al-
lows grouping a sequence of operations into a single atomic action if they include
only a single access to a shared variable [11].

3 An Intuitive View of Reduction

We consider the situation in which one operatigns reduced to a single atomic
action M *—for example, one critical section is replaced by an atomic statement.
Reduction of multiple operations can be performed by applying the theorem mul-
tiple times to reduce one operation at a time.

A single execution of the operatioll consists of a sequence &f steps.
These can be interleaved with other system steps, which wé& céps, as in:

M E M E E M M
© 8541 —> S42 7> 543 —> S44 —> S45 —> S46 —> S47 —> S48 " (3)

We think of E asM'’s environment. The idea is to construct a behavior “equivalent
to” (3) by moving all theM steps together, as in

E M M M M E E
- Sa1 —> Usp —> Usz —> Usg —> Ugs —> Use —> Us7 —> Sag -+ (4)

which is then equivalent to the behavior

E MFE E E
© 841 —> Ug2 —> Uge —> Ug7y —> S48 - (5)

1In temporal logic, a flexible variable is one whose value can change over time; a rigid variable
is one whose value is fixed.

2As with any form of implementation, this works only 7 allows stuttering steps arii
preserves stuttering invariance [8].

R E e E E L L
© 841 —> S$42 —> S43—> S44 —> S45 —> S46 —> S47 —> S48 - - -

E R X E L E L
© 841 —> U42 —> S43 —> S44—> S45——> V46 —> S47 —> S48 - - -

E R X L E L E
© 841 —> U42 —> S$43 —> S44 —> Ugs —> T46 —> U47 —> S48 - - -

E R X L L E E
© 841 —> Ug2 —> S$43 —> S44 —> Ugs —> Uge —> U4q7 —> S48 - - -

Figure 1: Constructing (7) from (6).

of the reduced system.

To construct behavior (4), we restridgf so that its execution consists of a
sequence oR steps, followed by atX step, followed by a sequence bfsteps.
We say that an execution @f is in its first phasebefore X is executed, and in
its second phasafter X is executed. (The terminology comes from the use of
reduction to prove serializability of the two-phased locking discipline of database
concurrency control.) Intuitively)/ receives information from its environment
in the first phase, and sends information to its environment in the second phase.
Behaviors (3) and (4) are then

R E X E E L L

- S41 —> Sap —> Sa3 —> Saa —> Sa5 —> Sa5 —> Sa7 —> Sag -+ (6)
E R X L L E E

- 541 —> Usp —> Ugz —> Uss —> Uss —> Usg —> Ua7 —> Sag -+ (7)

To obtain (7) from (6), we must movR actions to the right and actions to the
left. We say that actiod right commutesvith action B, andB left commutegvith

A, iff for any statesr, s, andt such that- LN t, there exists a statesuch

thatr 2> u -2 £. If R actions right commute witlv actions and. actions left
commute withZ actions, then we can obtain (7) from (6) by commuting actions
as shown in Figure 1. Observe that, since we don’t have to commu#é #ntion,
Us3 = Saz ANAUss = 544

Lipton [10] was concerned with pre/postconditions, so he essentially trans-
formed (6) to (5). Doeppner [6] transformed (6) to (7) and observed that the new
behavior differs from the original only on states in which the system is in the
middle of operationM. In our theorems, we use the behavior (7) to construct
the virtual variable$ for the behavior (6). The value af in a states; of (6) is
defined to be the value of in a corresponding staig(s;) of (7), where the cor-

4

. 541—> 842—> 843—> 544—> 845—> 546—> 847—> S48 - - -

A AN

: 541—>U42—> 843—> 544—>U45—> U46—> U47—> S48 - - -

Figure 2: The correspondencdetween states of (6) and of (7).

respondence is shown in Figure 2. For exampi&,44) = w46, SO the value o
in statesyy Of (6) is the value ol in stateuse Of (7). Observe thaRk and L steps
leavev unchanged, and th& step changes the way anM/ * step changes (see
(5))

. At . . . At
For an actiod, let — be the irreflexive transitive closure eﬁ S0s — t

iff there exist statesy, ..., r, such thats A A A r. —2 t. There

is the following relation between a stateand its corresponding staiés;).

e If (in state s;) M is not currently being executed—states and s4g in
Figure 2—thens; = v(s;).

e In the first phase (execution dff begun butX not yet executed)—states
S4p @ndsgz in Figure 2—we have (s;) N ;.

¢ Inthe second phas&(executed buf/ not terminated)—stateg, through

+ +

s471in Figure 2—we have; AN v(s;). (To see thatys EAN V(s45), Observe
. L L

from Flgure 1 thaB’45 —> Ty —> ’l,L47.)

Observe also that:
e M is not currently being executed in a staig;).

The construction of described by Figure 2 works only if, once the step
has occurred, the execution &f eventually terminates. The construction can also
be made to work if the entire system halts after execulin@s long as we can
extend the behavior (6) by adding a finite sequenck attions that complete the
execution ofM . Therefore, in the conclusion of our reduction theorems, we must
replace (2) with .

SAQ = 37 : Ol ASE (8)
where () asserts that, once aki step has occurred, either the executionlof
eventually terminates or else the entire system halts in a state in which it is possible
to complete the execution @f . Note that we allow behaviors in which execution
of M remains forever in its first phase, never takingXastep.

5

4 Safetyin TLA

In TLA, a state is an assignment of values to all flexible variables, and a behavior
is a sequence of states. An action is a predicate that may contain primed and

unprimed flexible variables. IAl is the actiom:’ = 1+ 3, thens A tis trueiff

the value assigned toby statet equals 1 plus the value assigned by state .

The canonical form of the safétypart of a specification init A O[N],,, where

Init is a state predicate (a formula containing only unprimed flexible variables),
N is an action called thaext-state actioyw is the tuple of all flexible variables

occurring infnit andN, and [NV], is an abbreviation foN v (v' = v).* A behavior

e g . . - . e el N,
s1, 82, . .. satisfies this formula iffnit is true in the initial state; ands; 15 Sit1

holds for alli—that is, iff Init holds initially and every step is either ahstep or
a stuttering step (one that leaves all the relevant variables unchanged).

From now on, we assume that is the tuple of all flexible variables that
appear in our formulas.

The next-state actioV is usually written as the disjunction of all the indi-
vidual atomic actions of the system. For our reduction theorémis,defined to
equalM v E, wherel is the disjunction of the atomic actions of the operation be-
ing reduced, and’ is the disjunction of the other system actions. We assume two
state predicateR andZ, whereR is true when execution a¥/ is in its first phase
(M has begun buX has not yet been executed), aids true when execution
of M is in its second phaseX(has been executed blif has not yet terminated).
We takelnit, M, E, R, andL to be parameters of the theorems. The theorems
assume the following hypotheses, which assert®aind £ are consistent with
their interpretations as assertions about the progred4.offhe hypotheses are
explained below.

(@) Init = —(RV L) () ~(LAMATR) 9
(b) E= R =R)AL =L) (d) =(RAL)

(a) The system starts withl not in the middle of execution.

(b) Executing an action of the environment cannot change the phase.

3Any property is the conjunction of a safety property, which constrains finite behavior, and a
liveness property. [2]

4For any expression containing no primesg’ is the expression obtained froenby priming
its flexible variables.

(c) Execution ofM can’t go directly from the second phase to the first phase
(without completing the execution).

(d) The two phases are disjoint. This hypothesis is actually unnecessary; given
predicatesk and £ that satisfy the other hypotheses, we can satisfy this
assumption as well by replacing eiti@rwith R A =L or £ with £ A =R.

We define the actionB, L, and X in terms ofM, R, and. by
R = MAR L = LAM X = (LOAMAGR) (10)

That is, anR step is anV/ step that ends in the first phase, astep is anV/ step
that starts in the second phase, andXastep is any othei/ step. Either phase
can be empty. Both phases might even be empty, in which case executlén of
consists of just a singl& step.

We define the sequential compositidnB of actionsA and B so thats A8

iff there exists a state for which s —> u —2> t. Equivalently, A-B equals
dr: A(r/v") A B(r/v), wherer is a tuple of rigid variablesA(r/v") denotesA
with each primed variable of replaced by the corresponding component,of
and B(r/v) denotesB with each unprimed flexible variable ofreplaced by the
corresponding component of The equivalence of the two definitions is seen
by lettingr be the tuple of values assigned to the variables by the stateu.
The definition of commutativity given above can be restated as: acticaght
commuteswvith action B, and B left commutewith A, iff A-B = B-A. We
can then state the commutativity hypotheses we used in the previous section as
R-E= E-RandE-L = L-FE. X

We defineA™ to equalA v (A-A) v (A-A-A) v This definess A
to have the same meaning as above. A complete executioh isfa sequence
of M steps starting and ending in states for whidhis not in the middle of its
execution—that is, in states satisfyirgR Vv £). We therefore define:

ME = “S(RVLAMTA=(RVL) (11)
We defineN, N2, S, andS* by

N

- Init A O[N], (12)
NE £ MEVE SE

Init AO[N%],

= l>

Suppose At Ifthe tuple of variables has the value in states and the
valuew, in statet, then the relatioM (v, /v, v;/v"), obtained by substituting the

7

elements o, for the unprimed flexible variables af and the elements af; for
the primed variables of, holds. We constructed the tuplef virtual variables by
defining a mapping on states of a behavior and defining the value of a state

s to be the tuple of values af in the states(s). This means that, i§ A v(s),
then the values of andw in states satisfy A(v/v,v/v’"), which is justA(v/v’).

If v(s) LN s, then the values of and®v in states satisfy A(v/v, v/v"). From the
four observations above, based on Figure 2, abouthandv(s) are related, we
obtain the following definition of the relatiohbetweeny andv:®

A

[2 AR= R @/v, v/v) (13)
AL = LY@/
A=(RVL)= (V=)
A=(RV L)Y@/v)

5 Livenessin TLA

In temporal logicJ meansalwaysand its duak>, defined to equakC—, means
eventually Thus,0< meansinfinitely oftenand &0 meanseventually forever
Let o be the behavioky, s,,.... For a predicate’, formulad< P is true for
o iff P is true for infinitely many states;, and<OP is true foro iff P is true
for all statess,; with i > n, for somen. For an action4d, formulaO< A is true

for o iff s, A, s;41 IS true for infinitely manyi. To maintain invariance under
stuttering, we must writé1>(A), rather thandO A, where(A), is defined to
equalA A (v' # v). The formulad<(A), asserts of a behavior that there are
infinitely many nonstutteringl steps.

We define RIABLED A to the be predicate asserting that actibis enabled.

It is true of a state iff there exists some statesuch thats — ¢. Equivalently,
ENABLED A equalsdr: A(r/v’), wherer is a tuple of rigid variables.

We observed above that the conclusion of a reduction theorem should be (8),
where () asserts that either (i)/ must eventually terminate after tbé step has
occurred, or (ii) the entire system halts in a state in which execution of a finite
number ofL steps can complete the execution\éf

To express (i), note that aki step make< true, andC remains true until\/
terminates. Thus, (i) asserts that does not remain true forever, an assertion ex-

SWe let a list of formulas bulleted with or v denote the conjunction or disjunction of the
formulas, using indentation to eliminate parentheses.
5More precisely, anX step either makes true or terminates the execution bf.

8

pressed by-COL, which is equivalent ta$—L. We can weaken this condition
by allowing the additional possibility that, infinitely often, it is possible to take a
sequence of, steps that makes false, if such a sequence can lead to only a finite
number of possible values of

To express (ii), we note that in TLA, halting is described by a behavior that
ends with an infinite sequence of stuttering steps, so eventual halting is expressed
by CO[FALSE], (which is equivalent te>O[v" = v],). It is possible to complete
the execution ofl/ by taking L steps iff a sequence df steps can maké false,
which is true iff it is possible to take ah* step with£ false in the final state.
Thus, condition (ii) can be expressed@&s ([FALSE], A ENABLED (LT A =L)).

Using the temporal logic tautologyO(F A G) = (OOF A<OG), we define

Q by

Q = vOO(=L v @llr: ENABLED (LT A =L)(r/vY))) (14)
v OO[FALSE], A OOENABLED (LT A =L')

whered!! r: F' means that there exists a finite, nonzero number of valuesdor
which £ holds. We can now state our first reduction theorem, for specifications
that are safety properties.

Theorem 1 Let Init, R, and £ be state predicates; |ef and M be actions; and
let v be the tuple of all flexible variables that occur free in these predicates and
actions. LetR, L, S, S%, I, and) be defined by (10)—(14). If

1.(a) Init = —~(RV L) () " (LAMATR)
b)E= R=R)AL=L) () —=(RAL)
2@QR-E=E-R (OE-L=1L-FE

then SAQ = 3v : Ol A SR, whereT is a tuple of new variables and
denotes substitution of the variablgégor the variablesv.

The specificationss and S% are safety properties, so it may appear that we
are using the liveness propery to prove that one safety property implies an-
other. We need) in general because, even thoughA S* is necessarily a safety
property,3v : OI A ST need not be one. Recall that the purpose of a reduction
theorem is to deduce propertiesby proving properties of . For the purpose
of proving safety properties, we can elimingjeby adding the hypothesis

L = ENABLED (LT A =L (15)

9

which asserts that, after executiAg it is always possible to complete the execu-
tion of M. LetC(IT) be the strongest safety property implied by propé&riysoIl

is a safety property iff1 = C(IT). (The operato€ is a topological closure opera-
tor [1].) Hypothesis (15) implie€(S A Q) = S. SinceC is monotonic [1 = &
impliesC(IT) = C(®d)), this proves:

Corollary 2 With the notations and assumptions of Theorem 1[ll&e a safety
property. If£ = ENABLED (Lt A =£'), then(37 : OI A SE) = II implies
S =TIl

6 Reducing Fairness Conditions

Most TLA specifications are of the forifi A £, whereS is as in (12) and is a
liveness condition. We would like to extend the conclusion (8) to

S/\F/\Q:>3’fu‘:|:|[/\§7?/\ﬁ (16)

where F'¥ is a suitable reduced version 6% The liveness conditiod” is usu-
ally expressed as a conjunction of WF (weak fairness) and/or SF (strong fairness)
formulas, defined by

WF,(A) = <OENABLED (A4), = OO(A),

SF,(A) = OOENABLED (4), = O0(4),
Let's begin by considering the simple case whérequals WFE(A), for some
action A. (The caseF' = SF,(A) is similar.) In this case}'* should equal
WF,(A%®), where A% is the reduced version of actiofi. Reduction means re-
placing the given actiord/ by MF%; it's not clear what the reduced version of

an arbitrary actiod should be. There are two cases in which the definition is
obvious:

o If Aisdisjoint fromA/, thenAf = A.
e If AincludesM,soA = (AAE)Vv M,thenAf® = (AAE)v ME.

We generalize these two cases by takitfgto be (A A E) v A%, where anA%,
step consists of a complete executiométthat includes at least oné A M step.
The formal definition is:

AL = S(RVLAM* - (AAM)-M*A—=(RV LY (17)

10

whereM* stands for [/ *].,.
From the definition of WF and a little predicate logic, we see that to prove
(16), it suffices to prove:

SAQ = 37 : 01 ASEA (OO(A), = OO(AR),) (18)
07 A OOENABLED (217?)@ = OOENABLED (A), (29)

(For SF, we must replaceC by O< in (19).) We consider the proofs of (18) and
(19) separately.

To prove (18), we must show that if a behavior contains infinitely maty,
steps, then it contains infinitely manyl %); steps. To simplify this discussion, we
temporarily drop the angle brackets and subscripts. We must show that infinitely
manyA steps imply infinitely manyl” steps. Those infinitely many steps must
include (i) infinitely manyA A E steps or, (i) infinitely manyd A M steps. We
consider the two possibilities in turn. e

To show that infinitely manyl A E steps imply infinitely manyd? steps, it
suffices to construct the virtual variables so that edch F step is aAAE step.
We have already constructed the virtual variables so that &astep is also a

B step. We must strengthen that construction solan £ step is also ai{//\\E
step. Recall that, in Figure 2, the step — s45 of the top behavior is & step
because the corresponding steg — u47 Of the bottom behavior is af' step.

We must therefore guarantee thatjf — ss5is anA A E step, thenuys — uy7is

also anA A F step. Recalling the construction of the bottom behavior, shown in
Figures 1, we see that we can make — u47 an A A E step if R right commutes
with AA E andL left commutes withA A E. In general, reintroducing brackets and
subscripts, we can guarantee that infinitely mandy\), steps imply infinitely
many(A%); steps with the additional hypotheses:

R-(AANE), = (AANE), R (ANE),-L = L-({ANE),

These hypotheses are vacuousliih £ equalsFALSE. If A A F equalsFE, they
follow from the commutativity conditions we are already assuming.

Step (ii) in proving (18) is showing that if there are infinitely maayx M
steps, then there are infinitely many, steps. It suffices to guarantee that if one
of the steps in a complete execution\dfis also an4 step, then the corresponding
M?% step is anA¥, step. Figure 2 shows that an step corresponds to &

N

step because its starting statsatisfiesv(s) R s, its ending state satisfies
+

TN v(t), and M is not in the middle of its execution in stateés) andv(t).

11

If the X step is and A X step, then it is clear that the correspondf?@z step is
an A, step. Suppose that one of tiesteps is am A R step, and leR’ equal
R*- (A A R)- R*. The M % step will be anA¥, step if the starting state of the

N
X step satisfies(s) RN s. Figure 1 shows that we can constructo satisfy
this condition if we can interchangé A R and F actions—that is, ifA A R (as

well as R) right commutes with¥. Similarly, when one of thé steps is am A L
step, we can guarantee that the® step is and®, step if A A L (as well asl) left
commutes withE. Putting the brackets and subscripts in, we see that infinitely
many(A A M), steps imply infinitely manyd? steps if

(AANR)y-E = E-{AAR), E-(AAL), = (AAL),-E

These hypotheses are vacuoud ik M equalsFALSE. If A A M equalsM, they
follow from the commutativity conditions we are already assuming.

The argument we just made assumes that each executidriefminates. For
example, a behavior might contain infinitely maAyA R steps but noX steps,
in which case there would be nbf; steps. We need the assumption that if there
are infinitely manyA A M steps, then there are infinitely maiysteps. So, we
replace (18) with

SAQAO = 37 : OIASEA(OO(A), = OO(AR);) (20)

whereO equalsA A OC(A A M), = OO(X),.
__ Finally, we showed only that infinitely manyd), steps imply infinitely many
A" steps, which are not necessarfly’*); steps. We need to rule out the degen-
erate case in which thosg® steps are stuttering steps that leawenchanged. We
do this by assuming(4),)% = (v’ # v). In most cases of interest/ # implies
v # v. SO({A),), = (v' # v) holds for anyA.
A specification can contain a (possibly infinite) conjunction of fairness prop-
erties, so we must generalize from a single actioio a collection of actions;,
for ¢ in some sef. The definitions above are generalized to

AR = (A, AE) v (A)E (21)
O = VieZ: OO(A,AM), = O00(X),
The theorem whose conclusion is the generalization of (20) is:

Theorem 3 With the notation and assumptions of Theorem 14ldbe an action,
for all 4 in a finite or countably infinite séf, and let(A;)¥,, A%, and O be defined
by (17) and (21). If, in addition,

12

2.(c)VieZ: R-(A;ANE), = (A;ANE),-R
dViel: (A;ANE),-L = L-{(A;ANE),
eyvieZ: (A;,AR),-E = FE-{(A; ANR),
N Vviel:FEF-(AAL), = (A;AL),-F
@VYiel: A= (v #v)

then SA QA O = 37 : OIASEA(VieT : O0(4,), = OO(AF),).
To prove (19) and its analog for SF, it suffices to prove
I N ENABLED (Z@)a = ENABLED (A4),

This can be done with the following result, which is a simple consequence of the
definition of /.

Proposition 4 Let I be defined by (13). For any state predicateand 9, if
@P=9Q ((OIAAR=Q (LA =Q
thenl A P = Q, whereis defined as in Theorem 1.

Combining this proposition with the definitions of WF and SF proves the follow-
ing corollary to Theorem 3.

Corollary 5 With the notations and assumptions of Theorem 3, if

3.() Vi € Z : ENABLED (AF), = ENABLED (A4;),
(b) Vi e Z : (ENABLED (A;),) AR = (ENABLED (A;),)
(c)VieZ : LA(ENABLED (A;),) = ENABLED (A4;),

then
SANiel : XF,(4) A Q AN O .
= 37 : 01 A SEA (Vie : XFp(AR))
whereXF,(A4,) is eitherWF, (A;) or SF,(4,).

Hypothesis 3(a) holds automatically for eacbuch that4; A M equalsFALSE

or M, the two cases that inspired our definition4f. It is this hypothesis that
most severely limits the class of actioAs to which we can apply the corollary.

In applying the theorem or the corollary, we expect the specification’s fairness
properties to implyQ A O.

13

7 Proofs

We now briefly describe how our results are proved; complete proofs will appear
elsewhere. Theorem 1 follows from Theorem 3 by letfinige the empty set. We
already observed how Corollary 2 is proved by showing that (15) imgli&sa

Q) = S, aresult that follows directly from the definition 6f[1]. Proposition 4

is proved by a straightforward calculation based on the definitiodsaoid of the

* operator; it easily proves Corollary 5. This leaves Theorem 3.

In Section 3 we sketched an intuitive proof of (8). Section 6 indicated how we
can extend that proof to a proof of Theorem 3 for a single fairness condition—that
is, whenZ contains a single element. We used hypotheses 2 to cominufé or
A A E steps. In the general case, we have the extra difficulty that the hypotheses
do not allow us simultaneously to commute all the steps. When extending
the construction shown in Figure 1, we must choose a SiAgh® commute at
each step. The choice must be made in such a way that dvehat is executed
infinitely often is chosen infinitely often.

This proof sketch can be turned directly into a semantic proof of Theorem 3.
The theorem can also be proved using only the rules of TLA, with no semantic
reasoning. The key idea is to introduce a history variable that gives the value of
v whenR is true (beforeX is executed) and a prophecy variable that gives the
value ofv when/ is true (afterX is executed). (History and prophecy variables
are explainedin [1].) In addition, we need a new type of infinite prophecy variable
that tells which disjunct of) holds, as well as history and prophecy variables that
choose, at each point in the construction, whicho commute.

8 Further Remarks

We often want to use an invariatitv of the specificationS to verify the hy-
potheses of the theorems. For example, when provingizmatht commutes with
E, we want to consider only states satisfyihgy. With TLA, it isn’t necessary
to weaken the hypotheses to take account of an invariant. Instead, we apply the
general rule

Olnv = (O[A4], = 0O[Inv A A A Inv'],)

Thus, if S impliesO/nv, then we can replac&/ and £ by Inv A M A Inv’ and
Inv AN E A Inv'.

Many TLA specifications are of the forghw : S A F, wherew is a tuple of
“internal variables”. Since one provésw : SAF) = I1byprovingSAF = I1

14

(renaming variables if necessary), it suffices to redticeF’. Thus, we can ignore
existential quantification (hiding) when applying a reduction theorem.

References

[1] Martin Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Sciencg2(2):253-284, May 1991.

[2] Bowen Alpern and Fred B. Schneider. Defining livenesgormation Pro-
cessing Letter21(4):181-185, October 1985.

[3] R. J. R. Back. Refining atomicity in parallel algorithms. Reports on Com-
puter Science and Mathematics Ser. A, No 57, Swedish Universiypof
February 1988.

[4] Ernie CohenCompositional Proofs of Asynchronous PrograikD thesis,
University of Texas at Austin, May 1993.

[5] Ernie Cohen. A guide to reduction. Technical Report TM-ARH-023816,
Bellcore, 1993. Available from the authorernie@bellcore.com

[6] Thomas W. Doeppner, Jr. Parallel program correctness through refinement.
In Fourth Annual ACM Symposium on Principles of Programming Lan-
guagespages 155-169. ACM, January 1977.

[7] David Gries and Ivan Stojmenaxi’A note on gramham’s convex hull algo-
rithm. Information Processing Letter@5(5):323-327, July 1987.

[8] Leslie Lamport. The temporal logic of actionACM Transactions on Pro-
gramming Languages and Systet®(3):872—923, May 1994.

[9] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research
Report 44, Digital Equipment Corporation, Systems Research Center, May
1989.

[10] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs.Communications of the ACM8(12):717-721, December 1975.

[11] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica 6(4):319-340, 1976.

15

