
SRC Technical Note
1997 - 032

17 December 1997

A Semantic Approach to Secure Information Flow

K. Rustan M. Leino and Rajeev Joshi

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Abstract

A classic problem in security is the problem of determining whether a given program has
secure information flow. Informally, this problem may be described as follows: Given a pro-
gram operating on public and private variables, check whether observations of the public vari-
ables before and after execution reveal any information about the initial values of the private
variables. Although the problem has been studied for several decades, most of the previous ap-
proaches have been syntactic in nature, often using type systems and compiler data flow analysis
techniques to analyze program texts. This paper presents a considerably different approach to
checking secure information flow, based on a semantic characterization of security. A semantic
approach has several desirable features. Firstly, it gives a more precise characterization of secu-
rity than that possible by conservative methods based on type systems. Secondly, it applies to
any programming constructs whose semantics are definable; for instance, nondeterminism and
exceptions pose no additional problems. Thirdly, it can be applied to reasoning about indirect
leaking of information through variations in program behavior (e.g., whether or not the program
terminates). The method is also useful in the context of automated verification, since it can be
used to develop a mechanically-assisted technique for checking whether the flow of a given
program is secure.

A Semantic Approach to Secure Information Flow

K. Rustan M. Leino
DEC SRC, Palo Alto, CA
rustan@pa.dec.com

Rajeev Joshi
University of Texas, Austin, TX
joshi@cs.utexas.edu

17 December 1997

0 Introduction

A classic problem in security is the problem of determining whether a given computer program
hassecure information flow[BLP73, Den76]. In its simplest form, the problem may be described
informally as follows: Given a program operating on “high-security” and “low-security” variables,
check whether observations of the initial and final values of the low-security variables reveal any-
thing about the initial values of the high-security variables. A related problem is that of detecting
covert flows, where information may be leaked by variations in program behavior [Lam73]. For
instance, it may be possible to conclude something about the initial values of the high-security vari-
ables by examining the resource usage of the program (e.g., by counting the number of times it
accesses the disk head).

The problem of secure information flow is more important today than ever before, because more
and more computers are becoming connected. The risk of information being leaked inappropriately
is a concern in protecting high-security military and financial data as well as in protecting data
stored on personal computers. For example, with the advent of the Web, there is a danger that a
downloaded applet will leak private data (such as the contents of a local file) by communicating it
to other sites.

Most previous approaches to checking secure information flow have been syntactic in nature,
often using type systems and compiler data flow analysis techniques to analyze program texts. In this
paper, we present a considerably different approach to secure information flow, based on a semantic
notion of program equality. A definition based on program semantics has several desirable features.
Firstly, it provides a more precise characterization of secure information flow than that possible
by conservative methods based on types. Secondly, it is applicable to any programming construct
whose semantics are defined; for instance, nondeterminism and exception handling constructs pose
no additional problems. Thirdly, it can be applied to reasoning about a variety of covert channels,
including termination behavior and timing channels. Finally, the method is also useful in the context
of automated verification, since it can be used to develop a mechanically-assisted technique for
certifying program flow.

0

The outline of the rest of the paper is as follows. We start in section 1 by informally defining the
problem and discussing several small examples. We present the formal characterization of security
in section 2. In section 3, we relate our definition to a notion used elsewhere in the literature. In
sections 4 and 5, we show how to rewrite our definition in the weakest precondition calculus so that
it is amenable for use with tools for mechanical verification. Finally, we discuss related work in
section 6 and give a short summary in section 7.

1 Informal description of the problem

Throughout this paper, we assume that for each program that we consider, the program variables are
partitioned into two disjoint tuplesh (denoting “high-security” variables) andk (denoting “low-
security” variables). Informally, we say that a program issecureif:

Observations of the initial and final values ofk do not give any information about the
initial value of h .

We illustrate this notion with a number of program examples.
The program

k := h

is not secure, since the initial value ofh can be observed as the final value ofk . However, the
program

h := k

is secure, sincek , whose value is not changed, is independent of the initial value ofh . Similarly,
the program

k := 6

is secure, because the final value ofk is always 6 , regardless of the initial value ofh .
It is possible for an insecure program to occur as a subprogram of a secure program. For

example, in each of the four programs

(0)k := h ; k := 6
(1)h := k ; k := h
(2)k := h ; k := k− h
(3)if falsethen k := h end

the insecure programk := h occurs as a subprogram; nevertheless, the four programs are all secure.

1

There are more subtle ways in which a program can be insecure. For example,

if h then k := trueelsek := falseend

is insecure, despite the fact that each branch of the conditional is secure. This program has the same
effect ask := h , but the flow of information fromh to k is calledimplicit [Den76].

In the insecure programs shown so far, the exact value ofh is leaked intok . This need not
always be the case: a program is considered insecure if it leaksany information abouth . For
example, neither of the two programs

k := h ∗ h
if 0≤ h then k := 1 elsek := 0 end

transmits the entire value ofh , but each of the programs is insecure because the final value ofk
does reveal some information about the initial value ofh .

A nondeterministic program can be insecure even if an adversary has no control over how the
nondeterminism is resolved. For example, the following program is insecure, because the final value
of k is always very close to the initial value ofh :

k := h− 1 k := h+ 1

(The operator denotes demonic choice: execution ofS T proceeds by choosing any one ofS
or T and executing it.) The program

skip k := h

is also insecure, because if the initial and final values ofk are observed to be different, then the
initial value of h is known.

Finally, we give some examples of programs that transmit information abouth via their ter-
mination behavior. The nicest way to present these examples is by using Dijkstra’sif fi con-
struct [Dij76]. The operational interpretation of the program

if B0−→ S0 B1−→ S1 fi

is as follows. From states in which neitherB0 nor B1 is true, the program loops forever; from all
other states it executes eitherS0 (if B0 is true) orS1 (if B1 is true). If bothB0 and B1 are true,
the choice betweenS0 and S1 is made arbitrarily. Now, the deterministic program

if h= 0−→ loop h 6= 0−→ skipfi (4)

(where loop is the program that never terminates) is insecure, because whether or not the program
terminates depends on the initial value ofh . In addition, each of the nondeterministic programs

(5)if h= 0−→ skip true−→ loopfi
(6)if h= 0−→ loop true−→ skipfi

2

is also insecure. Program (5) terminates only if the initial value ofh is 0 ; even though there is
always a possibility that the program will loop forever, if the program is observed to terminate, the
initial value of h is known. Similarly, if an adversary is able to detect infinite looping, then the
nontermination of program (6) indicates that the initial value ofh is 0 .

We hope that these examples, based on our informal description of secure information flow,
have helped give the reader an operational understanding of the problem. From now on, we will
adopt a more rigorous approach. We start in the next section by formally defining security in terms
of program semantics.

2 Formal characterization

In this section, we give a formal characterization of secure information flow. As stated in the
introduction, our characterization is expressed as an equality between two program terms. We use
the symbol

.= to denote program equality and we write “S is secure” to mean that programS has
secure information flow.

A key ingredient in our characterization is the program

“assign toh an arbitrary value”

which we denote byHH (“havoc on h ”). Program HH may be used to express some useful
properties. Firstly, observe that the difference between a programS and the programHH ; S is
that the latter executesS after settingh to an arbitrary value. Thus, the programsS and HH ;S are
equal provided thatS does not depend on the initial value ofh . Secondly, observe that the program
S; HH “discards” the final value ofh resulting from the execution ofS. These observations help
in giving an informal justification to the following definition of security.

Definition 0 (Secure Information Flow)

S is secure ≡ (HH ; S; HH
.= S; HH) (7)

Using the two observations above, this characterization may be understood as follows. First, note
that the final occurrence ofHH on each side means that only the final value ofk , not of h , is of
interest. Next, observe that the prefix “HH ; ” in the first program means that the two programs are
equal provided that the final value ofk produced byS does not depend on the initial value ofh .
In section 3, we provide a more rigorous justification for this definition, by relating it to a notion of
secure information flow that has been used elsewhere in the literature; but, for now, we hope that
this informal argument gives the reader an operational understanding of our definition. In the rest
of this section, we discuss some of the features of our approach.

Firstly, note that we have not stated the definition in terms of a particular style of program
semantics (e.g., axiomatic, denotational, or operational). Sequential program equality can be ex-
pressed in any of these styles [Hoa96] and different choices are suitable for different purposes. For

3

instance, in this paper, we will use a relational semantics to establish the correctness of our defini-
tion, but we will use weakest precondition semantics to obtain a definition that is more amenable
for use in mechanical verification. Secondly, observe that our definition is given purely in terms
of program semantics; thus it can be used to reason about any programming construct whose se-
mantics are defined. For instance, nondeterminism and exceptions (cf. [Cri84, LvdS94]) pose no
additional problems in this approach, nor do data structures such as arrays, records, or objects
(cf. [Hoa72, Lei97]). Finally, note that our definition leaves open the decision of which variables
are deemed to be low-security (i.e., observable by an adversary). Different choices may be used to
reason about different kinds of covert channels, by introducing appropriate special variables (such
as those used by Hehner [Heh84]) and including them in the low-security variablesk . For example,
one can reason about timing channels by introducing ink a program variable that models execution
time.

3 Security in the relational calculus

In this section, we justify our characterization of security by showing that it is equivalent to a
notion used elsewhere in the literature. Since that notion was given in operational terms, we find
it convenient to use a relational semantics. Thus, for the purposes of this section, a program is a
relation over the state space formed by variablesh and k .

We use the following notational conventions. The identifiersw, x, y, z denote elements of a
state space. We writex.k and x.h to denote the values ofk and h in a statex . For any relation
S and statesx and y , we write x〈S〉y to denote thatS relatesx to y ; this means that there is an
execution of programS from the pre-statex to the post-statey . The identity relation is denoted by
Id ; it satisfiesx〈Id〉y ≡ x= y for all x and y . The symbol ⊆ denotes relational containment
and the operator; denotes relational composition. We will use the facts thatId is a (left and right)
identity of composition and that; is monotonic with respect to⊆ in each of its arguments.

We use the following format for writing quantified expressions [DS90]: ForQ denoting either
∀ or ∃ , we write

(Q j : r .j : t.j)

to denote the quantification over allt.j for all j satisfyingr .j . We call j thedummy, r .j therange,
and t.j the termof the quantification. When the range istrue or is understood from context, we
omit it. We use similar notation and conventions to define sets, by writing

{ j : r .j : t.j }
to mean the set of elements of the formt.j for all j satisfyingr .j .

The relational semantics of programHH are given by

(∀ x, y :: x〈HH〉y ≡ x.k = y.k)

4

Note that the relationHH is both reflexive and transitive:

Id ⊆ HH (8)

HH ; HH ⊆ HH (9)

Using these properties, condition (7) may be rewritten in relational terms as follows.

S is secure
= f Security condition (7), program equality

.= is relational equality= g

HH ; S; HH = S; HH
⇒ f (8) and ; monotonic, henceHH ; S; Id ⊆ HH ; S; HH g

HH ; S ⊆ S; HH
⇒ f Applying “ ; HH ” to both sides, using; monotonic g

HH ; S; HH ⊆ S; HH ; HH
⇒ f (9) and ; monotonic g

HH ; S; HH ⊆ S; HH
⇒ f (8) and ; monotonic, henceId ; S; HH ⊆ HH ; S; HH g

HH ; S; HH = S; HH

Since the second and last lines are equal, we have equivalence throughout; thus, we have shown

S is secure ≡ (HH ; S ⊆ S; HH) (10)

This definition is useful because it facilitates the following derivation, which expresses security in
terms of the values of program variables.

HH;S ⊆ S;HH
= f Definition of relational containmentg

(∀ y,w :: y〈HH;S〉w ⇒ y〈S;HH〉w)
= f Definition of relational compositiong

(∀ y,w :: (∃ x :: y〈HH〉x ∧ x〈S〉w) ⇒ (∃ z :: y〈S〉z ∧ z〈HH〉w))
= f Relational semantics ofHH , shunting between range and termg

(∀ y,w :: (∃ x :: y.k = x.k ∧ x〈S〉w) ⇒ (∃ z : y〈S〉z : z.k = w.k))
= f Predicate calculusg

(∀ y,w :: (∀ x :: y.k = x.k ∧ x〈S〉w ⇒ (∃ z : y〈S〉z : z.k = w.k)))
= f Unnesting of quantifiersg

(∀ x, y,w :: y.k = x.k ∧ x〈S〉w ⇒ (∃ z : y〈S〉z : z.k = w.k))
= f Nesting, shuntingg

(∀ x, y : y.k = x.k : (∀w :: x〈S〉w ⇒ (∃ z : y〈S〉z : z.k= w.k)))
= f Set calculus g

(∀ x, y : y.k = x.k : {w : x〈S〉w : w.k } ⊆ { z : y〈S〉z : z.k })
= f Expression is symmetric inx and y g

(∀ x, y : y.k = x.k : {w : x〈S〉w : w.k } = { z : y〈S〉z : z.k })

5

Thus, we have established that, for anyS,

S is secure ≡ (∀ x, y : x.k = y.k : {w : x〈S〉w : w.k } = { z : y〈S〉z : z.k }) (11)

This condition says that the set of possible final values ofk is independent of the initial value of
h . The condition has appeared in the literature [BBLM94] as the definition of secure information
flow, and similar definitions for deterministic programs have been used elsewhere [VSI96, VS97b].
Thus, one may view the derivation above as a proof of the soundness and completeness of our
characterization (7) with respect to the notion used by others.

4 Security in the weakest precondition calculus

In this section, we show how our definition of secure information flow may be written succinctly in
the weakest precondition calculus [Dij76]. In section 5, we go one step further by showing how to
write this weakest precondition formulation of security as a first-order predicate.

We begin by introducing some useful notation. Recall that we are considering programs whose
variables are partitioned byk and h . Thus, every predicate on the state space of such a program
depends only on the variablesk and h . We will use identifiersp and q to denote such predicates;
for any suchp we will write [p] (read “everywherep ”) as an abbreviation for(∀ k, h :: p) .
For any programS, the predicate transformerswlp.S (“weakest liberal precondition”) andwp.S
(“weakest precondition”) are informally defined as follows [Dij76]: For any predicatep ,

wlp.S.p holds in exactly those initial states from which every terminating computation
of S ends in a state satisfyingp , and wp.S.p holds in exactly those initial states from
which every computation ofS terminates in a state satisfyingp .

The two predicate transformers are related by the following pairing property [Dij76]: For any pro-
gramsS and T ,

(∀ p :: [wp.S.p ≡ wlp.S.p∧ wp.S.true]) (12)

The predicate transformerwlp.S is universally conjunctive, that is, it distributes over arbitrary
conjunctions. Universal conjunctivity implies monotonicity [DS90]. Thewlp and wp semantics
of the programHH are:

(∀ p :: [wlp.HH.p ≡ (∀ h :: p)])
[wp.HH.true ≡ true]

Program equality in the weakest precondition calculus is defined as the equality ofwp and wlp on
each predicate; thus

S
.= T ≡ (∀ p :: [wlp.S.p≡ wlp.T.p] ∧ [wp.S.p ≡ wp.T.p])

6

which, on account of the pairing property, can be simplified to

S
.= T ≡ (∀ p :: [wlp.S.p≡ wlp.T.p]) ∧ [wp.S.true≡ wp.T.true]

Using this definition of program equality, we now rewrite security condition (7) in the weakest
precondition calculus as follows.

HH ; S; HH
.= S; HH

= f Program equality in terms ofwlp and wp g

(∀ p :: [wlp.(HH ; S; HH).p ≡ wlp.(S; HH).p])
∧ [wp.(HH ; S; HH).true ≡ wp.(S; HH).true]

= f wlp and wp of HH and ; g

(13)(∀ p :: [(∀ h :: wlp.S.(∀ h :: p)) ≡ wlp.S.(∀ h :: p)])
(14)∧ [(∀ h :: wp.S.true) ≡ wp.S.true]

The last formula above contains expressions having the form of a predicateq satisfying

[(∀ h :: q) ≡ q]

Predicates with this property occur often in our calculations, so it will be convenient to introduce
a special notation for them and identify some of their properties. This is the topic of the following
subsection.

4.0 Cylinders

A predicateq that satisfies [q ≡ (∀ h :: q)] has the property that its value is independent of the
variableh . We shall refer to such predicates as “h -cylinders”, or simply as “cylinders” whenh is
understood from context. For notational convenience, we define the setCyl of all cylinders:

Definition 1 (Cylinders) For any predicate q ,

q ∈ Cyl ≡ [q ≡ (∀ h :: q)] (15)

The following lemma provides several equivalent ways of expressing that a predicate is a cylinder.

Lemma 0 For any predicate q , the following are all equivalent.

i. q ∈ Cyl

ii. [q ≡ (∀ h :: q)]

iii. [q ⇒ (∀ h :: q)]

iv. (∃ p :: [q ≡ (∀ h :: p)])

v. ¬q ∈ Cyl

Proof. Follows from simple predicate calculus. 2

7

4.1 Security in terms of cylinders

We now use the results in the preceding subsection to simplify the formulation of security in the
weakest precondition calculus. We begin by rewriting (13) as follows.

(∀ p :: [(∀ h :: wlp.S.(∀ h :: p)) ≡ wlp.S.(∀ h :: p)])
= f Definition of Cyl (15) g

(∀ p :: wlp.S.(∀ h :: p) ∈ Cyl)
= f One-point rule g

(∀ p, q : [q ≡ (∀ h :: p)] : wlp.S.q ∈ Cyl)
= f Nesting and tradingg

(∀ q :: (∀ p :: [q ≡ (∀ h :: p)] ⇒ wlp.S.q ∈ Cyl))
= f Consequent is independent ofp g

(∀ q :: (∃ p :: [q ≡ (∀ h :: p)]) ⇒ wlp.S.q ∈ Cyl)
= f Lemma 0.iv, and tradingg

(∀ q : q ∈ Cyl : wlp.S.q ∈ Cyl)

Similarly, we rewrite the expression (14) as follows.

[(∀ h :: wp.S.true) ≡ wp.S.true]
= f Definition of Cyl (15) g

wp.S.true∈ Cyl

Putting it all together, we get the following condition for security: For any programS,

S is secure ≡ (∀ p : p ∈ Cyl : wlp.S.p ∈ Cyl) ∧ wp.S.true∈ Cyl (16)

5 A first-order characterization

Checking whether a given programS is secure using condition (16) given in the previous section
involves checking that certain predicates are cylinders; this can be done with a theorem prover.
(Checking whether a given predicate is a cylinder can also be done by the considerably cheaper and
more conservative method of syntactically scanning the predicate for free occurrences ofh .) Thus,
checking the second conjunct on the right-hand side of (16) is straightforward. However, checking
the first conjunct, namely

(∀ p : p ∈ Cyl : wlp.S.p ∈ Cyl) (17)

involves a quantification over predicates; thus, it is not well-suited for automated checking (nor does
the syntactic scan for free occurrences ofh work). In this section, we show how this higher-order
quantification overp can be reduced to a first-order quantification over the domain ofk .

To explain how the reduction is brought about, we need two new notions, namely that ofcon-
junctiveanddisjunctive spans. Informally speaking, for any setX of predicates, the conjunctive

8

(disjunctive) span ofX , denotedA.X (E .X), is the set of predicates obtained by taking conjunc-
tions (disjunctions) over subsets ofX . The main theorem of this section asserts that the range ofp
in the quantification (17) above may be replaced by any set of predicates whose conjunctive span is
the setCyl . The usefulness of the theorem is demonstrated in subsection 5.1, where we show that
there exist small sets of predicates whose conjunctive span isCyl .

We will use the following notational conventions in this section. For any setX of predicates,
we write ¬X to mean the set{ q : q ∈ X : ¬q } . We also write∀.X to mean the conjunction of
all the predicates inX , and ∃.X to mean the disjunction of all the predicates inX . Note that, as a
result of these conventions, we have [¬(∀.X) ≡ ∃.(¬X)] .

5.0 Spans

For any setX of predicates, we define setsA.X and E .X as follows.

Definition 2 (Spans)

A.X = {XS : XS⊆ X : ∀.XS}
E .X = {XS : XS⊆ X : ∃.XS}

The two notions are related by the following lemma, whose proof follows from simple predicate
calculus.

Lemma 1 For any set X of predicates,

¬E .X = A.(¬X)

We are now ready to present the main theorem of this section, which states that one can establish
the quantified expression

(∀ q : q ∈ A.X : f .q ∈ Cyl)

by establishing a quantified expression over a smaller range.

Theorem 0 Let f be a universally conjunctive predicate transformer and let X be any set of pred-
icates. Then

(∀ p : p ∈ X : f .p ∈ Cyl) ≡ (∀ q : q ∈ A.X : f .q ∈ Cyl)

Proof. Note that the left-hand side follows from the right-hand side, sinceX ⊆ A.X ; thus, it
remains to prove the implication

(∀ p : p ∈ X : f .p ∈ Cyl) ⇒ (∀ q : q ∈ A.X : f .q ∈ Cyl)

We prove this implication by showing that for any predicateq in A.X , the antecedent implies that
f .q is a cylinder. So, letq be any predicate inA.X . By the definition of a conjunctive span, there
is a subsetXS of X such that [q ≡ ∀.XS] . Observe:

9

(∀ p : p ∈ X : f .p ∈ Cyl)
⇒ f XS⊆ X , antimonotonicity of∀ in its range g

(∀ p : p ∈ XS : f .p ∈ Cyl)
= f Lemma 0.iii g

(∀ p : p ∈ XS : [f .p ⇒ (∀ h :: f .p)])
⇒ f f is universally conjunctive, hence monotonic, also [∀.XS⇒ p] g

(∀ p : p ∈ XS : [f .(∀.XS) ⇒ (∀ h :: f .p)])
= f Rangep ∈ XS is independent ofk and h g

[(∀ p : p ∈ XS : f .(∀.XS) ⇒ (∀ h :: f .p))]
= f Antecedent is independent ofp g

[f .(∀.XS) ⇒ (∀ p : p ∈ XS : (∀ h :: f .p))]
= f Interchange quantifications, rangep ∈ XS is independent ofh g

[f .(∀.XS) ⇒ (∀ h :: (∀ p : p ∈ XS : f .p))]
= f f is universally conjunctiveg

[f .(∀.XS) ⇒ (∀ h :: f .(∀ p : p ∈ XS : p))]
= f Notation “∀. ” described aboveg

[f .(∀.XS) ⇒ (∀ h :: f .(∀.XS))]
= f Lemma 0.iii g

f .(∀.XS) ∈ Cyl
= f By assumption, [q ≡ ∀.XS] g

f .q ∈ Cyl

2

From the standpoint of mechanical verification, the usefulness of the result above is due to the
fact that there are sets of predicates much smaller thanCyl whose conjunctive span isCyl . In
the following subsection, we show such a set of predicates whose cardinality is the same as the
cardinality of the domain ofk .

5.1 A lower-order quantification

Consider the following two sets of predicates, whereK ranges over the set of possible values of the
variablesk .

PP = {K :: k = K } (18)

NN = {K :: k 6= K } (19)

It follows directly from these definitions that

PP = ¬NN (20)

The relationship of these sets toCyl is given by the following lemma.

10

Lemma 2 With PP and NN as defined above, we have

i. E .PP = Cyl

ii. A.NN = Cyl

Proof. We give an informal sketch of the proof here; details are left to the reader. By definition,Cyl
consists of exactly those predicates that are independent ofh , that is, they depend on the variable
k only. But every predicate onk may be written as a disjunction of predicates, one foreach value
in the domain ofk ; thus part (i) follows. Part (ii) follows directly from part (i), observation (20),
Lemma 1, and Lemma 0.v. 2

Using the fact thatwlp.S is universally conjunctive for any statementS, and Lemma 2.ii, we
apply Theorem 0 withf ,X := wlp.S,NN to obtain the following result.

S is secure ≡ (∀ q : q ∈ NN : wlp.S.q ∈ Cyl) ∧ wp.S.true∈ Cyl.

Using the definition ofNN (19), this may be further simplified to the following.

S is secure ≡ (∀K :: wlp.S.(k 6= K) ∈ Cyl) ∧ wp.S.true∈ Cyl (21)

Note that this is simpler than (16) since the range of the quantification is the domain ofk . Thus, in
particular, security according to (21) is stated as a first-order formula.

5.2 Deterministic programs

In the case thatS is also known to be deterministic, we can simplify the security condition (21)
even further. A deterministic programS satisfies the following properties [DS90]:

(∀ p :: [wp.S.p ≡ ¬wlp.S.(¬p)]) (22)

wp.S is universally disjunctive (23)

Consequently, the term involvingwp in (21) is subsumed by the term involvingwlp :

wp.S.true∈ Cyl
= f (22), with p := true g

¬wlp.S.false∈ Cyl
= f Lemma 0.v g

wlp.S.false∈ Cyl
⇐ f false∈ Cyl g

(∀ q : q ∈ Cyl : wlp.S.q ∈ Cyl)

11

Thus, the security condition for deterministicS is given by

S is secure ≡ (∀K :: wlp.S.(k 6= K) ∈ Cyl) (24)

Next, we show that condition (24) may also be expressed in terms ofwp and PP instead of
wlp and NN .

(∀ q : q ∈ Cyl : wlp.S.q ∈ Cyl)
= f Theorem 0 g

(∀ q : q ∈ NN : wlp.S.q ∈ Cyl)
= f Negation is its own inverse, so rename dummyq to ¬p g

(∀ p : ¬p ∈ NN : wlp.S.(¬p) ∈ Cyl)
= f Observation (20), and (22)g

(∀ p : p ∈ PP : ¬wp.S.p ∈ Cyl)
= f Lemma 0.v g

(∀ p : p ∈ PP : wp.S.p ∈ Cyl)

Thus we have another way of expressing the condition for security of deterministic programs,
namely,

S is secure ≡ (∀K :: wp.S.(k = K) ∈ Cyl) (25)

5.3 Examples

We give some examples to show our formulae at work.
Firstly, consider the secure program (2). We calculate,

(k := h ; k := k− h) is secure
= f Security condition (21) g

(∀K :: wlp.(k := h ; k := k− h).(k 6= K) ∈ Cyl)
∧ wp.(k := h ; k := k− h).true∈ Cyl

= f wlp and wp of := and ; g

(∀K :: (h− h 6= K) ∈ Cyl) ∧ true∈ Cyl
= f Lemma 0.ii, andtrue∈ Cyl g

(∀K :: [h− h 6= K ≡ (∀ h :: h− h 6= K)])
= f Arithmetic g

(∀K :: [0 6= K ≡ (∀ h :: 0 6= K)])
= f Predicate calculusg

true

This shows that our method does indeed establish that program (2) is secure.
Secondly, we apply the security condition to program (5), which is insecure because of its

termination behavior.

12

(if h= 0−→ skip true−→ loopfi) is secure
= f Security condition (21) g

(∀K :: wlp.(if h= 0−→ skip true−→ loopfi).(k 6= K) ∈ Cyl)
∧ wp.(if h= 0−→ skip true−→ loopfi).true∈ Cyl

= f wlp and wp ,
using (∀ p :: [wlp.loop.p ≡ true]) and [wp.loop.true ≡ false] g

(∀K :: ((h= 0 ⇒ k 6= K) ∧ (true ⇒ true)) ∈ Cyl)
∧ ((h= 0 ∨ true) ∧ (h= 0 ⇒ true) ∧ (true ⇒ false)) ∈ Cyl

= f Predicate calculusg
(∀K :: (h= 0 ⇒ k 6= K) ∈ Cyl) ∧ false∈ Cyl

= f Lemma 0.ii, andfalse∈ Cyl g

(∀K :: [h= 0 ⇒ k 6= K ≡ (∀ h :: h= 0 ⇒ k 6= K)])
= f [p] is shorthand for(∀ k, h :: p) g

(∀K, k, h :: h= 0 ⇒ k 6= K ≡ (∀ h :: h= 0 ⇒ k 6= K))

⇒ f Instantiate withK, k, h := 2, 2, 2 g

2= 0 ⇒ 2 6= 2 ≡ (∀ h :: h= 0 ⇒ 2 6= 2)
= f Arithmetic and predicate calculusg

(∀ h :: h 6= 0)
⇒ f Instantiateh := 0 g

false

Finally, using program (4), we illustrate how one can reason about secure termination behavior
of deterministic programs usingwlp .

(if h= 0−→ loop h 6= 0−→ skipfi) is secure
= f Security condition for deterministic programs (24)g

(∀K :: wlp.(if h= 0−→ loop h 6= 0−→ skipfi).(k 6= K) ∈ Cyl)
= f wlp g

(∀K :: ((h= 0 ⇒ true) ∧ (h 6= 0 ⇒ k 6= K)) ∈ Cyl)
= f Definition of Cyl , sinceh 6= 0 ⇒ k 6= K is not independent ofh g

false

6 Related work

The problem of secure information flow has been studied for several decades. A frequently used
mathematical model for secure information flow is Denning’s lattice model [Den76], which is based
on the Bell and La Padula security model [BLP73]. Static certification mechanisms for secure
information flow, an area pioneered by Denning and Denning [Den76, DD77], seem to fall into two
general flavors: type systems and data flow analysis techniques. In this section, we discuss each of
these and compare them to our work. A historical perspective on secure information flow can be
found, for example, in a book by Gasser [Gas88].

13

6.0 Type systems approach

The static certification mechanism proposed by Denning and Denning [DD77] can be described as
a type checker for secure information flow. Each variablex occurring in a program is declared to
have a particularsecurity class, or type, written class.x . These security classes are related by a
given lattice ordering≤ . The type checker computes the type of an expression as the lattice join of
the types of its subexpressions. For example,

class.(E+ F) = class.E ↑ class.F

Each program statement also has a security class, computed as the lattice meet of the security classes
of the statement’s l-expressions. For example,

class.(x := E) = class.x
class.(if E then SelseT end) = class.S↓ class.T

The type checker certifies a programS as being secure only if:

0. for every assignment statementx := E in S, class.E ≤ class.x , and

1. for every conditional statementif E then T elseU end in S, class.E ≤ class.T and
class.E≤ class.U .

Other programming constructs, such as loops, give rise to similar requirements.
Denning and Denning gave an informal proof of thesoundnessof their certification mechanism,

that is, a proof that the mechanism certifies only secure programs. Recently, Volpanoet al. have
given a more rigorous proof thereof [VSI96, VS97b].

The advantage of using a type system as the basis of a certification mechanism is that it caters
for a simple implementation. However, because of the nature of type systems, this certification
mechanism rejects any program that contains a subprogram that by itself would be insecure. But
as we saw in examples (0)–(3) of section 1, an insecure program can occur as a subprogram of a
secure program. In contrast, our approach does recognize programs like (0)–(3) as being secure.

Also, just like it would be too much to hope for a useful type system that would reject programs
that may fail to terminate, it would be too much to hope for a useful type system that would reject
programs that may leak information via their termination behavior. (Volpano and Smith [VS97a]
have attempted such a type system; however, their type system rejects any program that mentionsh
in a loop guard, which can be construed as resigning the game before it starts.)

6.1 Data flow analysis approach

Just like there are data flow analysis techniques that let an optimizing compiler analyze a given pro-
gram beyond type checking [ASU86], there are data flow analysis techniques for secure information
flow. The idea is to conservatively find the program paths through which data may flow.

14

We choose to present the data flow analysis approach to secure information flow as a translation
from a given programS to a programS′ that captures and facilitates reasoning about the possible
flows of S. For every variablex of S, program S′ instead contains a variablex , representing
the security class of the value dynamically computed intox . To deal with implicit flows,S′ also
contains a special variablelocal , representing the security class of the values used to compute the
guards that led execution to the current instruction. We describe the translation by example. For
every assignment statement of the formx := y+ z in S, S′ contains a corresponding statement

x := y ↑ z↑ local

where, as in the previous subsection,↑ denotes the lattice join on the set of security classes. For
every conditional statement

if x= y−→ S0 z< 0−→ S1 fi

in S, S′ contains a corresponding statement

var old := local in
local := local ↑ x ↑ y ↑ z
; if true−→ S0′ true−→ S1′ fi
; local := old
end

whereS0′ and S1′ are the statements inS′ that correspond toS0 and S1 . If a programS has the
variablesk and h belonging to the security classes low and high (denoted⊥ and> , respectively,
where⊥ ≤ >), then “ S is secure ” can be expressed as the following Hoare triple onS′ :

{ k≤ ⊥ ∧ h≤ > ∧ local≤ ⊥ } S′ { k ≤ ⊥ } (26)

The first data flow analysis approach of this kind was given by Andrews and Reitman [AR80],
whose treatment also dealt with communicating sequential processes. Banˆatreet al. [BBLM94]
used a variation of the method described above that attempts to keep track of the set of initial vari-
ables used to produce a value rather than only the security class of the value. They also developed
an efficient algorithm for this approach, akin to data flow analysis algorithms used in compilers,
and wrestled with a proof of soundness for the approach. (Contrary to what our description of
the approach above may suggest, Andrews and Reitman used an ordinaryif then else construct
rather than Dijkstra’sif fi construct. Banˆatreet al.used theif fi construct, but, as Volpanoet al.
point out, their soundness theorem is actually false for programs that make use of the nondetermin-
ism [VSI96].)

The data flow analysis approach can offer more precision than the type system approach. For
example, the approach will certify the programs (0) and (1). However, the approach still rejects
some secure programs that our approach will certify. This comes about because of two reasons. The

15

first reason is that the semantics of operators like+ and− are lost in the rewriting ofS into S′ .
Thus a program like (2), which is secure on account of thath− h= 0 , is rejected by the data flow
analysis approach. The second reason is that guards are replaced bytrue in the rewriting of S into
S′ . Thus, a program like (3) whose security depends on when control can reach a certain statement
is rejected.

A way to reduce rejections of secure programs that result from the second of these reasons, one
can combine the data flow analysis approach with a correctness logic, as mentioned by Andrews and
Reitman [AR80]: Instead of rewriting programS into S′ , one can superimpose the new variables
(k , h , local) and their updates onto programS, and then reason aboutS using the Hoare triple
(26) but onS instead of onS′ . A consequence of this combination with a correctness logic is that
one can rule out some impossible control paths, such as the one in program (3).

7 Summary

We have presented a simple and novel mathematical characterization of what it means for a program
to have secure information flow. The characterization is general enough to accommodate reasoning
about a variety of covert channels. Unlike previous methods like type systems and compiler data
flow analysis techniques, the characterization is in terms of the semantics of the program. Conse-
quently, our method is more precise, and can therefore certify more secure programs, than previous
methods.

We showed an application of our security characterization with a weakest precondition seman-
tics, deriving a first-order predicate whose validity implies that an adversary cannot deduce any
secure information from observing the public inputs, outputs, and termination behavior of the pro-
gram. As far as we know, our approach is the only one that can analyze termination behavior in a
useful way and is also the only one that handles nondeterminism correctly.

Future work includes employing our method in practice, and investigating the utility of our
method in other areas, such as program slicing [Wei84].

Acknowledgments. We are grateful to the following colleagues for sharing their insights and
comments on our work: Mart´ın Abadi, Ernie Cohen, Mark Lillibridge, Jayadev Misra, Greg Nelson,
Raymie Stata, and the participants at the September 1997 session of the IFIP WG 2.3 meeting in
Alsace, France.

References

[AR80] Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to informa-
tion flow in programs.ACM Transactions on Programming Languages and Systems,
2(1):56–76, January 1980.

16

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley Publishing Company, 1986.

[BBLM94] Jean-Pierre Banˆatre, Ciarán Bryce, and Daniel Le M´etayer. Compile-time detection of
information flow in sequential programs. InProceedings of the European Symposium
on Research in Computer Security, pages 55–73. Lecture Notes in Computer Science
875, Sprinter Verlag, 1994.

[BLP73] D. E. Bell and L. J. La Padula. Secure computer systems: Mathematical foundations
and model. Technical Report M74-244, MITRE Corporation, Bedford, Massachusetts,
1973.

[Cri84] Flaviu Cristian. Correct and robust programs.IEEE Transactions on Software Engi-
neering, 10:163–174, 1984.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure infor-
mation flow.Communications of the ACM, 20(7):504–513, July 1977.

[Den76] Dorothy E. Denning. A lattice model of secure information flow.Communications of
the ACM, 19(5):236–243, May 1976.

[Dij76] Edsger W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[DS90] Edsger W. Dijkstra and Carel S. Scholten.Predicate Calculus and Program Semantics.
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

[Gas88] Morrie Gasser.Building a secure computer system. Van Nostrand Reinhold Company,
New York, 1988.

[Heh84] Eric C. R. Hehner. Predicative programming Part I.Communications of the ACM,
27(2):134–143, February 1984.

[Hoa72] C. A. R. Hoare. Notes on data structuring. In O.-J. Dahl, E. W. Dijkstra, and C. A. R.
Hoare, editors,Structured Programming, pages 83–174. Academic Press, 1972.

[Hoa96] C. A. R. Hoare. Unifying theories of programming. InMarktoberdorf Summer School
on Programming Methodology, 1996.

[Lam73] Butler W. Lampson. A note on the confinement problem.Communications of the ACM,
16(10):613–615, October 1973.

[Lei97] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. InThe Fourth International Workshop on Founda-
tions of Object-Oriented Languages, January 1997. Proceedings available from
http://www.cs.indiana.edu/hyplan/pierce/fool/ .

17

[LvdS94] K. Rustan M. Leino and Jan L. A. van de Snepscheut. Semantics of exceptions. In E.-
R. Olderog, editor,Proceedings of the IFIP WG2.1/WG2.2/WG2.3 Working Conference
on Programming Concepts, Methods, and Calculi, pages 447–466. Elsevier, 1994.

[VS97a] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typings.
In Proceedings of the 10th IEEE Computer Security FoundationsWorkshop, pages 156–
168, June 1997.

[VS97b] Dennis Volpano and Geoffrey Smith. A type-based approach to program security. In
Theory and Practice of Software Development: Proceedings / TAPSOFT ’97, 7th In-
ternational Joint Conference CAAP/FASE, volume 1214 ofLecture Notes in Computer
Science, pages 607–621. Springer, April 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure
flow analysis.Journal of Computer Security, 4(3):1–21, 1996.

[Wei84] Mark Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, July 1984.

18

