
SRC Technical Note
1997 - 030a

December 9, 1997
Corrected December 25, 1997

Composition: A Way to Make Proofs Harder

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Composition: A Way to Make Proofs Harder

Leslie Lamport

December 9, 1997

Abstract

Compositional reasoning about a system means writing its specification as the par-
allel composition of components and reasoning separately abouteach component.
When distracting language issues are removed and the underlying mathematics is
revealed, compositional reasoning is seen to be of little use.

Contents

1 Introduction 2

2 The Mathematical Laws of Composition 2

3 Describing a System with Mathematics 3
3.1 Discrete Dynamic Systems . 4
3.2 An Hour Clock . 4

3.2.1 A First Attempt . 4
3.2.2 Stuttering . 5
3.2.3 Fairness . 6

3.3 An Hour-Minute Clock . 7
3.3.1 The Internal Specification 7
3.3.2 Existential Quantification 8

3.4 Implementation and Implication 9
3.5 Invariance and Step Simulation 11
3.6 A Formula by any Other Name 11

4 Invariance in a Pseudo-Programming Language 11
4.1 The Owicki-Gries Method . 12
4.2 Why Bother? . 14

5 Refinement 15
5.1 Refinement in General . 15
5.2 Hierarchical Refinement . 16
5.3 Interface Refinement . 16

6 Decomposing Specifications 17
6.1 Decomposing a Clock into its Hour and Minute Displays 17
6.2 Decomposing Proofs . 19
6.3 Why Bother? . 21
6.4 When a Decomposition Theorem is Worth the Bother. 23

7 Composing Specifications 23

8 Conclusion 24

References 25

1 Introduction

When an engineer designs a bridge, she makes a mathematical model of it and
reasons mathematically about her model. She might talk aboutcalculatingrather
thanreasoning, but calculating

√
2 to three decimal places is just a way of proving

|√2− 1.414| < 10−3. The engineer reasons compositionally, using laws of math-
ematics to decompose her calculations into small steps. She would probably be
mystified by the concept of compositional reasoning about bridges, finding it hard
to imagine any form of reasoning that was not compositional.

Because computer systems can be built with software rather than girders and
rivets, many computer scientists believe these systems should not be modeled with
the ordinary mathematics used by engineers and scientists, but with something that
looks vaguely like a programming language. We call such a language apseudo-
programming languages(PPL). Some PPLs, such as CSP, use constructs of ordi-
nary programming languages. Others, like CCS, use more abstract notation. But,
they have two defining properties: they are specially designed to model computer
systems, and they are not meant to implement useful, real-world programs.

When using a pseudo-programming language, compositional reasoning means
writing a model as the composition of smaller pseudo-programs, and reasoning
separately about those smaller pseudo-programs. If one believes in using PPLs to
model computer systems, then it is natural to believe that decomposition should be
done in terms of the PPL, so compositionality must be a Good Thing.

We adopt the radical approach of modeling computer systems the way engi-
neers model bridges—using mathematics. Compositionality is then a trivial con-
sequence of the compositionality of ordinary mathematics. We will see that the
compositional approaches based on pseudo-programming languages are analogous
to performing calculations about a bridge design by decomposing it into smaller
bridge designs. While this technique may occasionally be useful, it is hardly a
good general approach to bridge design.

2 The Mathematical Laws of Composition

Mathematical reasoning is embodied in statements (also called theorems) and their
proofs. The reasoning is hierarchical—the proof of a statement consists of a se-
quence of statements, each with its proof. The decomposition stops at a level at
which the proof is sufficiently obvious that it can be written as a short, simple
paragraph. How rigorous the proof is depends on what “obvious” means. In the
most rigorous proofs, it means simple enough so that even a computer can verify
it. Less rigorous proofs assume a reader of greater intelligence (or greater faith).

2

We will use the notation introduced in [10] to write hierarchical proofs.
Two fundamental laws of mathematics are used to decompose proofs:

∧-Composition A⇒ B

A⇒ C

A⇒ B ∧ C

∨ -Composition A⇒ C

B ⇒ C

A ∨ B ⇒ C

Logicians have other names for these laws, but our subject is compositionality, so
we adopt these names. A special case of∨-composition is:

Case-AnalysisA ∧ B ⇒ C

A ∧ ¬B ⇒ C

A⇒ C

The propositional∧- and∨-composition rules have the following predicate-logic
generalizations:

∀ -Composition (i ∈ S) ∧ P ⇒ Q(i)

P ⇒ (∀ i ∈ S : Q(i))

∃ -Composition (i ∈ S) ∧ P(i)⇒ Q

(∃ i ∈ S : P(i))⇒ Q

Another rule that is often used (under a very different name) is

Act-Stupid A⇒ C

A ∧ B ⇒ C

We call it the act-stupid rule because it proves thatA ∧ B impliesC by ignoring
the hypothesisB . This rule is useful whenB can’t help in the proof, so we need
only the hypothesisA. Applying it in a general method, when we don’t know what
A andB are, is usually a bad idea.

3 Describing a System with Mathematics

We now explain how to use mathematics to describe systems. We take as our
example a digital clock that displays the hour and minute. For simplicity, we ignore
the fact that a clock is supposed to tell the real time, and we instead just specify the
sequence of times that it displays. A more formal explanation of the approach can
be found in [9].

3

3.1 Discrete Dynamic Systems

Our clock is a dynamic system, meaning that it evolves over time. The classic way
to model a dynamic system is by describing its state as a continuous function of
time. Such a function would describe the continuum of states the display passes
through when changing from 12:49 to 12:50. However, we view the clock as a
discrete system. Discrete systems are, by definition, ones we consider to exhibit
discrete state changes. Viewing the clock as a discrete system means ignoring the
continuum of real states and pretending that it changes from 12:49 to 12:50 with-
out passing through any intermediate state. We model the execution of a discrete
system as a sequence of states. We call such a sequence abehavior. To describe a
system, we describe all the behaviors that it can exhibit.

3.2 An Hour Clock

3.2.1 A First Attempt

To illustrate how systems are described mathematically, we start with an even sim-
pler example than the hour-minute clock—namely, a clock that displays only the
hour. We describe its state by the value of the variablehr . A typical behavior of
this system is

[hr = 11] → [hr = 12] → [hr = 1] → [hr = 2] → · · ·
We describe all possible behaviors by aninitial predicatethat specifies the possible
initial values ofhr , and anext-state relationthat specifies how the value ofhr can
change in any step (pair of successive states).

The initial predicate is justhr ∈ {1, . . . , 12}. The next-state relation is the
following formula, in whichhr denotes the old value andhr ′ denotes the new
value.

((hr = 12) ∧ (hr ′ = 1)) ∨ ((hr 6= 12) ∧ (hr ′ = hr + 1))

This kind of formula is easier to read when written with lists of conjuncts or dis-
juncts, using indentation to eliminate parentheses:

∨ ∧ hr = 12
∧ hr ′ = 1
∨ ∧ hr 6= 12
∧ hr ′ = hr + 1

There are many ways to write the same formula. Borrowing some notation from
programming languages, we can write this next-state relation as

hr ′ = if hr = 12 then 1 elsehr + 1

4

This kind of formula, a Boolean-valued expression containing primed and un-
primed variables, is called anaction.

Our model is easier to manipulate mathematically if it is written as a single
formula. We can write it as

∧ hr ∈ {1, . . . , 12}
∧ 2 (hr ′ = if hr = 12 then 1 elsehr + 1)

(1)

This is a temporal formula, meaning that it is true or false of a behavior. A state
predicate likehr ∈ {1, . . . , 12} is true for a behavior iff it is true in the first state. A
formula of the form2N asserts that the actionN holds on all steps of the behavior.

By introducing the operator2, we have left the realm of everyday mathematics
and entered the world of temporal logic. Temporal logic is more complicated than
ordinary mathematics. Having a single formula as our mathematical description is
worth the extra complication. However, we should use temporal reasoning as little
as possible. In any event, temporal logic formulas are still much easier to reason
about than programs in a pseudo-programming language.

3.2.2 Stuttering

Before adopting (1) as our mathematical description of the hour clock, we ask the
question, what is a state? For a simple clock, the obvious answer is that a state is
an assignment of values to the variablehr . What about a railroad station with a
clock? To model a railroad station, we would use a number of additional variables,
perhaps including a variablesig to record the state of a particular signal in the
station. One possible behavior of the system might behr = 11

sig= “ red”
...

 →
hr = 12

sig= “ red”
...

 →
hr = 12

sig= “green”
...

 →
hr = 12

sig= “ red”
...

 →
hr = 1

sig= “ red”
...

 → · · ·
We would expect our description of a clock to describe the clock in the railroad
station. However, formula (1) doesn’t do this. It asserts thathr is incremented in
every step, but the behavior of the railroad station with clock includes steps like
the second and third, which changesig but leavehr unchanged.

To write a single description that applies to any clock, we let a state consist
of an assignment of values to all possible variables. In mathematics, the equation

5

x + y = 1, doesn’t assert that there is noz . It simply says nothing about the value
of z . In other words, the formulax +y = 1 is not an assertion about some universe
containing onlyx andy . It is an assertion about a universe containingx , y , and all
other variables; it constrains the values of only the variablesx andy .

Similarly, a mathematical formula that describes a clock should be an assertion
not about the variablehr , but about the entire universe of possible variables. It
should constrain the value only ofhr and should allow arbitrary changes to the
other variables—including changes that occur while the value ofhr stays the same.
We obtain such a formula by modifying (1) to allow “stuttering” steps that leave
hr unchanged, obtaining:

∧ hr ∈ {1, . . . , 12}
∧2

(∨ hr ′ = if hr = 12 then 1 elsehr + 1
∨ hr ′ = hr

) (2)

Clearly, every next-state relation we write is going to have a disjunct that leaves
variables unchanged. So, it’s convenient to introduce the notation that [A]v equals
A ∨ (v ′ = v), wherev ′ is obtained from the expressionv by priming all its free
variables. We can then write (2) more compactly as

∧ hr ∈ {1, . . . , 12}
∧ 2[hr ′ = if hr = 12 then 1 elsehr + 1]hr

(3)

This formula allows behaviors that stutter forever, such as

[hr = 11] → [hr = 12] → [hr = 12] → [hr = 12] → · · ·
Such a behavior describes a stopped clock. It illustrates that we can assume all
behaviors are infinite, because systems that halt are described by behaviors that
end with infinite stuttering. But, we usually want our clocks not to stop.

3.2.3 Fairness

To describe a clock that doesn’t stop, we must add a conjunct to (3) to rule out
infinite stuttering. Experience has shown that the best way to write this conjunct is
with fairnessformulas. There are two types of fairness, weak and strong, expressed
with the WF and SF operators that are defined as follows.

WFv (A) If A ∧ (v ′ 6= v) is enabled forever, then infinitely manyA ∧ (v ′ 6= v)

steps must occur.

SFv (A) If A∧ (v ′ 6= v) is enabled infinitely often, then infinitely manyA∧ (v ′ 6=
v) steps must occur.

6

Thev ′ 6= v conjuncts make it impossible to use WF or SF to write a formula that
rules out finite stuttering.

We can now write our description of the hour clock as the formula5, defined
by

N
1= hr ′ = if hr = 12 then 1 elsehr + 1

5
1= (hr ∈ {1, . . . , 12}) ∧ 2[N]hr ∧ WFhr(N)

The first two conjuncts of5 (which equal (3)), express asafetyproperty. Intu-
itively, a safety property is characterized by any of the following equivalent condi-
tions.

• It asserts that the system never does something bad.

• It asserts that the system starts in a good state and never takes a wrong step.

• It is finitely refutable—if it is violated, then it is violated at some particular
point in the behavior.

The last conjunct of5 (the WF formula) is an example of alivenessproperty.
Intuitively, a liveness property is characterized by any of the following equivalent
conditions.

• It asserts that the system eventually does something good.

• It asserts that the system eventually takes a good step.

• It is not finitely refutable—it is possible to satisfy it after any finite portion
of the behavior.

Formal definitions of safety and liveness are due to Alpern and Schneider [4].
Safety properties are proved using only ordinary mathematics (plus a couple

of lines of temporal reasoning). Liveness properties are proved by combining tem-
poral logic with ordinary mathematics. Here, we will mostly ignore liveness and
concentrate on safety properties.

3.3 An Hour-Minute Clock

3.3.1 The Internal Specification

It is now straightforward to describe a clock with an hour and minute display. The
two displays are represented by the values of the variableshr andmin. To make
the specification more interesting, we describe a clock in which the two displays
don’t change simultaneously when the hour changes. When the display changes
from 8:59 to 9:00, it transiently reads 8:00 or 9:59. Since we are ignoring the

7

Init8
1= ∧ hr ∈ {1, . . . , 12}
∧min ∈ {0, . . . , 59}
∧ chg = FALSE

Mm
1= ∧ ¬((min = 0) ∧ chg)
∧min ′ = (min + 1) mod 60
∧ chg ′ = (min = 59)∧ ¬chg
∧ hr ′ = hr

M h
1= ∧ ∨ (min = 59) ∧ ¬chg

∨ (min = 0) ∧ chg
∧ hr ′ = (hr mod 12)+ 1
∧ chg ′ = ¬chg
∧min ′ = min

8
1= ∧ Init8
∧ 2[Mm ∨M h]〈hr ,min,chg 〉
∧WF〈hr ,min,chg 〉(Mm ∨M h)

Figure 1: The internal specification of an hour-minute clock.

actual times at which state changes occur, these transient states are no different
from the states when the clock displays the “correct” time.

Figure 1 defines a formula8 that describes the hour-minute clock. It uses an
additional variablechg that equalsTRUE when the display is in a transient state.
Action Mm describes the changing ofmin; actionM h describes the changing of
hr . The testing and setting ofchg by these actions is a bit tricky, but a little thought
reveals what’s going on. ActionM h introduces a gratuitous bit of cleverness to re-
move theif /then construct from the specification of the new value ofhr . The next-
state relation for the hour-minute clock isMm ∨M h , because a step of the clock
increments eithermin or hr . Since〈hr , min chg 〉′ equals〈hr ′, min ′, chg ′ 〉, it
equals〈hr , min, chg 〉 iff hr , min, and,chg are all unchanged.

3.3.2 Existential Quantification

Formula8 of Figure 1 contains the free variableshr , min, andchg . However,
the description of a clock should mention onlyhr andmin, notchg . We need to
“hide” chg . In mathematics, hiding means existential quantification. The formula
∃ x : y = x2 asserts that there is some value ofx that makesy = x2 true; it
says nothing about the actual value ofx . The formula describing an hour-minute

8

clock is∃∃∃∃∃∃chg : 8. The quantifier∃∃∃∃∃∃ is a temporal operator, asserting that there is
a sequenceof values ofchg that makes8 true. The precise definition of∃∃∃∃∃∃ is a bit
subtle and can be found in [9].

3.4 Implementation and Implication

An hour-minute clock implements an hour clock. (If we ask someone to build a
device that displays the hour, we can’t complain if the device also displays the
minute.) Every behavior that satisfies the description of an hour-minute clock also
satisfies the description of an hour clock. Formally, this means that the formula
(∃∃∃∃∃∃chg :8)⇒ 5 is true. In mathematics, if something is true, we should be able to
prove it. The rules of mathematics allow us to decompose the proof hierarchically.
Here is the statement of the theorem, and the first two levels of its proof. (See [10]
for an explanation of the proof style.)

Theorem 1 (∃∃∃∃∃∃chg : 8)⇒ 5

〈1〉1. 8⇒ 5

〈2〉1. Init8⇒ hr ∈ {1, . . . , 12}
〈2〉2. 2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2[N]hr
〈2〉3. 8⇒WFhr (N)

〈2〉4. Q.E.D.
PROOF: By 〈2〉1–〈2〉3 and the∧-composition and act-stupid rules.

〈1〉2. Q.E.D.
PROOF: By 〈1〉1, the definition of8, and predicate logic1, sincechg does not
occur free in5.

Let’s now go deeper into the hierarchical proof. The proof of〈2〉1 is trivial, since
Init8 contains the conjuncthr ∈ {1, . . . , 12}. Proving liveness requires more
temporal logic than we want to delve into here, so we will not show the proof of
〈2〉3 or of any other liveness properties. We expand the proof of〈2〉2 two more
levels as follows.

〈2〉2. 2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2[N]hr
〈3〉1. [Mm ∨M h]〈hr ,min,chg 〉 ⇒ [N]hr
〈4〉1. Mm ⇒ [N]hr
〈4〉2. M h ⇒ [N]hr
〈4〉3. (〈hr ,min, chg 〉′ = 〈hr ,min, chg 〉)⇒ [N]hr
〈4〉4. Q.E.D.

PROOF: By 〈4〉1–〈4〉3 and the∨-composition rule.

1We are actually reasoning about the temporal operator∃∃∃∃∃∃ rather than ordinary existential quan-
tification, but it obeys the usual rules of predicate logic.

9

〈3〉2. Q.E.D.
PROOF: By 〈3〉1 and the rule

A⇒ B

2A⇒ 2B
.

The proof of〈4〉1 is easy, sinceMm implies hr ′ = hr . The proof of〈4〉3 is
equally easy. The proof of〈4〉2 looks easy enough.

〈4〉2. M h ⇒ [N]hr
PROOF: M h ⇒ hr ′ = (hr mod 12)+ 1

⇒ hr ′ = if hr = 12 then 1 elsehr + 1
1= N

However, this proof is wrong! The second implication is not valid. For example,
if hr equals 25, then the first equation assertshr ′ = 2, while the second asserts
hr ′ = 26. The implication is valid only under the additional assumptionhr ∈
{1, . . . , 12}.

DefineInv to equal the predicatehr ∈ {1, . . . , 12}. We must show thatInv is
true throughout the execution, and use that fact in the proof of step〈4〉2. Here are
the top levels of the corrected proof.

〈1〉1. 8⇒ 5

〈2〉1. Init8⇒ hr ∈ {1, . . . , 12}
〈2〉2. Init8 ∧2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2Inv

〈2〉3. 2Inv ∧2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2[N]hr
〈2〉4. 2Inv ∧8⇒WFhr (N)

〈2〉5. Q.E.D.
PROOF: By 〈2〉1–〈2〉4, and the∧-composition and act-stupid rules.

〈1〉2. Q.E.D.
PROOF: By 〈1〉1, the definition of8, and predicate logic, sincechg does not
occur free in5.

The high-level proofs of〈2〉2 and〈2〉3 are

〈2〉2. Init8 ∧2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2Inv

〈3〉1. Init8⇒ Inv

〈3〉2. Inv ∧ [Mm ∨M h]〈hr ,min,chg 〉 ⇒ Inv ′

〈3〉3. Q.E.D.
PROOF: By 〈3〉1, 〈3〉2 and the rule

P ∧ [A]v ⇒ P ′

P ∧2[A]v ⇒ 2P
.

〈2〉3. 2Inv ∧2[Mm ∨M h]〈hr ,min,chg 〉 ⇒ 2[N]hr
〈3〉1. Inv ∧ [Mm ∨M h]〈hr ,min,chg 〉 ⇒ [N]hr
〈3〉2. Q.E.D.

PROOF: By 〈3〉1 and the rules
A⇒ B

2A⇒ 2B
and 2(A ∧ B) ≡ 2A ∧2B .

10

The further expansion of the proofs is straightforward and is left as an exercise
for the diligent reader.

3.5 Invariance and Step Simulation

The part of the proof shown above is completely standard. It contains all the
temporal-logic reasoning used in proving safety properties. The formulaInv satis-
fying 〈2〉2 is called aninvariant. Substep〈3〉2 of step〈2〉3 is called provingstep
simulation. The invariant is crucial in this step and in step〈2〉4 (the proof of live-
ness). In general, the hard parts of the proof are discovering the invariant, substep
〈3〉2 of step〈2〉2 (the crucial step in the proof of invariance), step simulation, and
liveness.

In our example,Inv asserts that the value ofhr always lies in the correct set.
Computer scientists call this assertiontype correctness, and call the set of correct
values thetypeof hr . Hence,Inv is called a type-correctness invariant. This is
the simplest form of invariant. Computer scientists usually add a type system just
to handle this particular kind of invariant, since they tend to prefer formalisms that
are more complicated and less powerful than simple mathematics.

Most invariants express more interesting properties than just type correctness.
The invariant captures the essence of what makes an implementation correct. Find-
ing the right invariant, and proving its invariance, suffices to prove the desired
safety properties of many concurrent algorithms. This is the basis of the first practi-
cal method for reasoning about concurrent algorithms, which is due to Ashcroft [5].

3.6 A Formula by any Other Name

We have been calling formulas like8 and5 “descriptions” or “models” of a sys-
tem. It is customary to call themspecifications. This term is sometimes reserved for
high-level description of systems, with low-level descriptions being calledimple-
mentations. We make no distinction between specifications and implementations.
They are all descriptions of a system at various levels of detail. We use the terms
algorithm, description, model, and specification as different names for the same
thing: a mathematical formula.

4 Invariance in a Pseudo-Programming Language

Invariance is a simple concept. We now show how a popular method for proving
invariance in terms of a pseudo-programming language is a straightforward conse-
quence of the rules of mathematics.

11

S (i)0

S (i)n−1

{A(i)n−1}

?

?

...

?

{A(i)0}

Figure 2: An Owicki-Gries style annotation of a process.

4.1 The Owicki-Gries Method

In the Owicki-Gries method [8, 11], the invariant is written as a program annota-
tion. For simplicity, let’s assume a multiprocess program in whicheach processi
in a setP of processes repeatedly executes a sequence of atomic instructionsS (i)0,
. . . , S (i)n−1. The invariant is written as an annotation, in whicheach statement
S (i)j is preceded by an assertionA(i)j , as shown in Figure 2.

To make sense of this picture, we must translate it into mathematics. We first
rewrite each operationS (i)j as an action, which we also callS (i)j . This rewriting
is easy. For example, an assignment statementx := x + 1 is written as the action
(x ′ = x + 1) ∧ (〈 . . .〉′ = 〈 . . .〉), where “. . . ” is the list of other variables. We
represent the program’s control state with a variablepc, wherepc[i] = j means
that control in processi is immediately before statementS (i)j . The program and
its invariant are then described by the formulas5 andInv of Figure 3.

We can derive the Owicki-Gries rules for proving invariance by applying the
proof rules we used before. The top-level proof is:

Theorem 2 (Owicki-Gries) 5⇒ 2I

〈1〉1. Init ⇒ Inv

〈1〉2. Inv ∧ [N]〈vbl, pc 〉 ⇒ Inv ′

〈2〉1. Inv ∧N ⇒ Inv ′

〈2〉2. Inv ∧ (〈vbl , pc 〉′ = 〈vbl , pc 〉)⇒ Inv ′
〈2〉3. Q.E.D.

PROOF: By 〈2〉1, 〈2〉2, and the∨-composition rule.
〈1〉3. Q.E.D.

12

Init
1= ∧ ∀ i ∈ P : pc[i] = 0
∧ . . . [The initial conditions on program variables.]

Go(i)j
1= ∧ pc[i] = j

∧ pc[i]′ = (j + 1) modn
∧ ∀ k ∈ P : (k 6= i)⇒ (pc[k]′ = pc[k])

N
1= ∃ i ∈ P, j ∈ {0, . . . , n−1} : Go(i)j ∧ S (i)j

vbl
1= 〈 . . .〉 [The tuple of all program variables.]

5
1= Init ∧ 2[N]〈vbl, pc 〉

Inv
1= ∀ i ∈ P, j ∈ {0, . . . , n−1} : (pc[i] = j)⇒ A(i)j

Figure 3: The formulas describing the program and annotation of Figure 2.

PROOF: By 〈1〉1, 〈1〉2, and the rule
P ∧ [A]v ⇒ P ′

P ∧2[A]v ⇒ 2P
.

The hard part is the proof of〈2〉1. We first decompose it using the∀ - and∃ -
composition rules.

〈2〉1. Inv ∧N ⇒ Inv ′

〈3〉1.

∧ i ∈ P
∧ j ∈ {0, . . . , n−1}
∧ Inv ∧Go(i)j ∧ S (i)j

 ⇒ Inv ′

〈4〉1.


∧ i ∈ P
∧ j ∈ {0, . . . , n−1}
∧ k ∈ P
∧ l ∈ {0, . . . , n−1}
∧ Inv ∧Go(i) j ∧ S (i)j

⇒ ((pc[k]′ = l)⇒ (A(k) l)′)

〈4〉2. Q.E.D.
PROOF: By 〈4〉1, the definition ofInv , and the∀ -composition rule.

〈3〉2. Q.E.D.
PROOF: By 〈3〉1, the definition ofN , and the∃ -composition rule.

We prove〈4〉1 by cases, after first using propositional logic to simplify its state-
ment. We letj ⊕ 1 equal(j+1) modn.

13

〈4〉1.


∧ i , k ∈ P
∧ j , l ∈ {0, . . . , n−1}
∧ pc[k]′ = l

∧ Inv ∧Go(i) j ∧ S (i)j

 ⇒ (A(k)l)
′

〈5〉1. CASE: i = k

〈6〉1.

∧ i ∈ P
∧ j ∈ {0, . . . , n−1}
∧ A(i)j ∧ S (i)j

 ⇒ (A(i)j⊕1)
′

〈6〉2. Q.E.D.
PROOF: By 〈6〉1, the level-〈5〉 assumption, the definition ofInv , and the
act-stupid rule, since(pc[i]′ = l) ∧Go(i)j implies(l = j ⊕ 1).

〈5〉2. CASE: i 6= k

〈6〉1.

∧ i , k ∈ P
∧ j , l ∈ {0, . . . , n−1}
∧ A(i)j ∧A(k)l ∧ S (i)j

 ⇒ (A(k)l)
′

〈6〉2. Q.E.D.
PROOF: By 〈6〉1, the level-〈5〉 assumption, the definition ofInv , and the
act-stupid rule, since(pc[k]′ = l)∧Go(i)j implies(pc[k] = l), for k 6= i ,
and(pc[k] = l)∧ Inv impliesA(k)l .

We are finally left with the two subgoals numbered〈6〉1. Summarizing, we see
that to proveInit ⇒ 2Inv , it suffices to prove the two conditions

A(i)j ∧ S (i)j ⇒ (A(i)j⊕1)
′

A(i)j ∧A(k)l ∧ S (i)j ⇒ (A(k)l)
′

for all i , k in P with i 6= k , and allj , l in {0, . . . , n−1}. These conditions are
calledSequential CorrectnessandInterference Freedom, respectively.

4.2 Why Bother?

We now consider just what have has been accomplished by describing by prov-
ing invariance in terms of a pseudo-programming language instead of directly in
mathematics.

Computer scientists are quick to point out that using “ :=” instead of “=”
avoids the need to state explicitly what variables are left unchanged. In practice,
this reduces the length of a specification by anywhere from about 10% (for a very
simple algorithm) to 4% (for a more complicated system). For this minor gain, it
introduces the vexing problem of figuring out exactly what variables can and can-
not be changed by executingx := x + 1. The obvious requirement that no other
variable is changed would not allow us to implementx as the sumlh ∗ 232+ rh

of two 32-bit values, since it forbidslh andrh to change whenx is incremented.

14

The difficulty of deciding what can and cannot be changed by an assignment state-
ment is one of the things that makes the semantics of programming languages (both
real and pseudo) complicated. By using mathematics, we avoid this problem com-
pletely.

A major achievement of the Owicki-Gries method is eliminating the explicit
mention of the variablepc. By writing the invariant as an annotation, one can write
A(i)j instead of(pc[i] = j)⇒ A(i)j . At the time, computer scientists seemed to
think that mentioningpc was a sin. However, when reasoning about a concurrent
algorithm, we must refer to the control state in the invariant. Owicki and Gries
therefore had to introduce dummy variables to serve as euphemisms forpc. When
using mathematics, any valid formula of the formInit ∧2[N]v ⇒ 2P , for a state
predicateP , can be proved without adding dummy variables.

One major drawback of the Owicki-Gries method arises from the use of the
act-stupid rule in the proofs of the two steps numbered〈6〉2. The rule was applied
without regard for whether the hypotheses being ignored are useful. This means
that there are annotations for which step〈2〉1 (which assertsN ∧ Inv ⇒ Inv ′) is
valid but cannot be proved with the Owicki-Gries method. Such invariants must be
rewritten as different, more complicated annotations.

Perhaps the thing about the Owicki-Gries method is that it obscures the un-
derlying concept of invariance. We refer the reader to [6] for an example of how
complicated this simple concept becomes when expressed in terms of a pseudo-
programming language. In 1976, the Owicki-Gries method seemed like a major
advance over Ashcroft’s simple notion of invariance. We have since learned better.

5 Refinement

5.1 Refinement in General

We showed above that an hour-minute clock implements an hour clock by proving
(∃∃∃∃∃∃chg : 8) ⇒ 5. That proof does not illustrate the general case of proving that
one specification implements another because the higher-level specification5 has
no internal (bound) variable. The general case is covered by the following proof
outline, wherex , y , andz denote arbitrary tuples of variables, and the internal
variablesy andz of the two specifications are distinct from the free variablesx .
The proof involves finding a functionf , which is called arefinement mapping[1].

Theorem 3 (Refinement) (∃∃∃∃∃∃y : 8(x , y)) ⇒ (∃∃∃∃∃∃z : 5(x , z))

LET: z
1= f (x , y)

〈1〉1. 8(x , y) ⇒ 5(x , z)

15

〈1〉2. 8(x , y) ⇒ (∃∃∃∃∃∃z : 5(x , z))
PROOF: By 〈1〉1 and predicate logic, since the variables ofz are distinct from
those ofx .

The proof of step〈1〉1 has the same structure as in our clock example.

5.2 Hierarchical Refinement

In mathematics, it is common to prove a theorem of the formP ⇒ Q by in-
troducing a new formulaR and provingP ⇒ R andR ⇒ Q . We can prove
that a lower-level specification∃∃∃∃∃∃y : 8(x , y) implies a higher-level specification
∃∃∃∃∃∃ z :5(x , z) by introducing an intermediate-level specification∃∃∃∃∃∃w :9(x ,w) and
using the following proof outline.

LET: 9(x ,w)
1= . . .

〈1〉1. (∃∃∃∃∃∃y : 8(x , y)) ⇒ (∃∃∃∃∃∃w : 9(x ,w))
LET: w

1= g(x , y)
. . .

〈1〉2. (∃∃∃∃∃∃w : 9(x ,w)) ⇒ (∃∃∃∃∃∃z : 5(x , z))
LET: z

1= h(x ,w)
. . .

〈1〉3. Q.E.D.
PROOF: By 〈1〉1 and〈1〉2.

This proof method is calledhierarchical decomposition. It’s a good way to explain
a proof. By using a sequence multiple intermediate specifications,each differing
from the next in only one aspect, we can decompose the proof into conceptually
simple steps.

Although it is a useful pedagogical tool, hierarchical decomposition does not
simplify the total proof. In fact, it usually adds extra work. Hierarchical decom-
position adds the task of writing the extra intermediate-level specification. It also
restricts how the proof is decomposed. The single refinement mappingf in the
outline of the direct proof can be defined in terms of the two mappingsg andh of
the hierarchical proof byf (x , y)

1= h(x , g(x , y)). The steps of a hierarchical proof
can then be reshuffled to form a particular way of decomposing the lower levels of
the direct proof. However, there could be better ways to decompose those levels.

5.3 Interface Refinement

We have said that implementation is implication. For this to be true, the two speci-
fications must have the same free variables. If the high-level specification describes
the sending of messages on a network whose state is represented by the variable

16

net , then the low-level specification must also describe the sending of messages on
net .

We often implement a specification by refining the interface. For example, we
might implement a specification6(net) of sending messages onnet by a specifi-
cation3(tran) of sending packets on a “transport layer” whose state is represented
by a variabletran. A single message could be broken into multiple packets. Cor-
rectness of the implementation cannot mean validity of3(tran)⇒ 6(net), since
3(tran) and6(net) have different free variables.

To define what it means for3(tran) to implement6(net), we must first define
what it means for sending a set of packets to represent the sending of a message.
This definition is written as a temporal formulaR(net, trans), which is true of
a behavior iff the sequence of values oftrans represents the sending of packets
that correspond to the sending of messages represented by the sequence of values
of net . We callR an interface refinement. ForR to be a sensible interface refine-
ment, the formula3(trans)⇒ ∃∃∃∃∃∃net : R(net, trans)must be valid, meaning that
every set of packet transmissions allowed by3(trans) represents some set of mes-
sage transmissions. We say that3(tran) implements6(net) under the interface
refinementR(net, trans) iff 3(tran) ∧ R(net, trans) implies6(net).

6 Decomposing Specifications

Pseudo-programming languages usually have some parallel composition operator
‖, whereS1‖S2 is the parallel composition of specificationsS1 andS2. We ob-
served in our hour-clock example that a mathematical specificationS1 does not
describe only a particular system; rather, it describes a universe containing (the
variables that represent) the system. Composing two systems means ensuring that
the universe satisfies both of their specifications. Hence, when the specifications
S1 andS2 are mathematical formulas, their composition is justS1 ∧ S2.

6.1 Decomposing a Clock into its Hour and Minute Displays

We illustrate how composition becomes conjunction by specifying the hour-minute
clock as the conjunction of the specifications of an hour process and a minute
process. It is simpler to do this if each variable is modified by only one process. So,
we rewrite the specification of the hour-minute clock by replacing the variablechg

with the expressionchgh 6= chgm , wherechgh andchgm are two new variables,
chgh being modified by the hour process andchgm by the minute process. The
new specification is∃∃∃∃∃∃ chgh , chgm : 9, where9 is defined in Figure 4. Proving
that this specification is equivalent to∃∃∃∃∃∃chg : 8, where8 is defined in Figure 1,

17

Init9
1= ∧ hr ∈ {1, . . . , 12}
∧min ∈ {0, . . . , 59}
∧ chgm = chgh = TRUE

Nm
1= ∧ ¬((min = 0)∧ (chgm 6= chgh))

∧min ′ = (min + 1) mod 60
∧ chg ′m = if min = 59 then¬chgm elsechgh
∧ 〈hr , chgh 〉′ = 〈hr , chgh 〉

N h
1= ∧ ∨ (min = 59) ∧ (chgm = chgh)

∨ (min = 0) ∧ (chgm 6= chgh)

∧ hr ′ = (hr mod 12)+ 1
∧ chg ′

h
= ¬chgh

∧ 〈min, chgm 〉′ = 〈min, chgm 〉
9

1= ∧ Init9
∧ 2[Nm ∨N h]〈hr ,min, chgm , chgh 〉
∧WF〈hr ,min, chgm , chgh 〉(Nm ∨N h)

Figure 4: Another internal specification of the hour-minute clock.

is left as a nice exercise for the reader. The proof that∃∃∃∃∃∃chgh , chgm : 9 implies
∃∃∃∃∃∃ chg : 8 uses the refinement mappingchg

1= (chgh 6= chgm). The proof of the
converse implication uses the refinement mapping

chgh
1= chg ∧ (min = 59) chgm

1= chg ∧ (min = 0)

The specifications9h and9m of the hour and minute processes appear in Figure 5.
We now sketch the proof that9 is the composition of those two specifications.

Theorem 4 9 ≡ 9m ∧9h

Initm
1= ∧min ∈ {0, . . . , 59}
∧ chgm = TRUE

Inith
1= ∧ hr ∈ {1, . . . , 12}
∧ chgh = TRUE

9h
1= Inith ∧2[N h]〈hr , chgh 〉 ∧WF〈hr , chgh 〉(N h)

9m
1= Initm ∧2[Nm]〈min, chgm 〉 ∧WF〈min, chgm 〉(Nm)

Figure 5: Definition of the specifications9h and9m.

18

〈1〉1. Init9 ≡ Initm ∧ Inith
〈1〉2. 2[Nm ∨N h]〈hr ,min, chgm , chgh 〉 ≡ 2[Nm]〈min, chgm 〉 ∧ 2[N h]〈hr , chgh 〉
〈2〉1. [Nm ∨N h]〈hr ,min, chgm , chgh 〉 ≡ [Nm]〈min, chgm 〉 ∧ [N h]〈hr , chgh 〉
〈2〉2. Q.E.D.

PROOF: By 〈2〉1 and the rules
A⇒ B

2A⇒ 2B
and 2(A ∧ B) ≡ 2A ∧2B .

〈1〉3. ∧ 9 ⇒ WF〈min, chgm 〉(Nm) ∧WF〈hr , chgh 〉(N h)

∧ 9m ∧9h ⇒ WF〈hr ,min, chgm , chgh 〉(Nm ∨N h)

〈1〉4. Q.E.D.
PROOF: By 〈1〉1–〈1〉3.

Ignoring liveness (step〈1〉3), the hard part is proving〈2〉1. This step is an imme-
diate consequence of the following propositional logic tautology, which we call the
∨ ↔ ∧ rule.

N i ∧ (j 6= i) ⇒ (v ′j = v j) for 1≤ i , j ≤ n

[N 1 ∨ . . . ∨N n]〈v1,...,vn 〉 = [N 1]v1 ∧ . . . ∧ [N n]vn

Its proof is left as an exercise for the reader.

6.2 Decomposing Proofs

In pseudo-programming language terminology, a compositional proof of refine-
ment (implementation) is one performed by breaking a specification into the paral-
lel composition of processes and separately proving the refinement ofeach process.

The most naive translation of this into mathematics is that we want to prove
3⇒ 6 by writing6 as61 ∧ 62 and proving3⇒ 61 and3⇒ 62 separately.
Such a decompositionaccomplisheslittle. The lower-level specification3 is usu-
ally much more complicated than the higher-level specification6, so decomposing
6 is of no interest.

A slightly less naive translation of compositional reasoning into mathematics
involves writing both3 and6 as compositions. This leads to the following proof
of3⇒ 6.

〈1〉1. ∧ 3 ≡ 31 ∧32

∧ 6 ≡ 61 ∧62
PROOF: Use the∨ ↔ ∧ rule.
〈1〉2. 31 ⇒ 61

〈1〉3. 32 ⇒ 62

〈1〉4. Q.E.D.
PROOF: By 〈1〉1–〈1〉3 and the∧-composition and act-stupid rules.

19

The use of the act-stupid rule in the final step tells us that we have a problem.
Indeed, this method works only in the most trivial case. Proving each of the im-
plications3i ⇒ 6i requires proving3i ⇒ Inv i for some invariantInv i . Except
when each process accesses only its own variables, so there is no communication
between the two processes,Inv i will have to mention the variables of both pro-
cesses. As our clock example illustrates, the next-state relation ofeach process’s
specification allows arbitrary changes to the other process’s variables. Hence,3i

can’t imply any nontrivial invariant that mentions the other process’s variables. So,
this proof method doesn’t work.

Think of each process3i as the other process’senvironment. We can’t prove
3i ⇒ 6i because it asserts that3i implements6i in the presence of arbitrary be-
havior by its environment—that is, arbitrary changes to the environment variables.
No real process works in the face of completely arbitrary environment behavior.

Our next attempt at compositional reasoning is to write a specificationE i of the
assumptions that processi requires of its environment and prove3i ∧ E i ⇒ 6i .
We hope that one process doesn’t depend on all the details of the other process’s
specification, soE i will be much simpler than the other process’s specification
32−i . We can then prove3 ⇒ 6 using the following propositional logic tautol-
ogy.

31 ∧32 ⇒ E1

31 ∧E1 ⇒ 61

31 ∧32 ⇒ E2

32 ∧ E2 ⇒ 62

31 ∧32 ⇒ 61∧62

However, this requires proving3 ⇒ E i , so we still have to reason about the
complete lower-level specification3. What we need is a proof rule of the following
form

61 ∧62 ⇒ E1

31 ∧ E1 ⇒ 61

61 ∧62 ⇒ E2

32 ∧ E2 ⇒ 62

31 ∧32 ⇒ 61∧62

(4)

In this rule, the hypotheses3⇒ E i of the previous rule are replaced by6 ⇒ E i .
This is a great improvement because6 is usually much simpler than3. A rule like
(4) is called adecomposition theorem.

Unfortunately, (4) is not valid for arbitrary formulas. (For example, let the3i

equalTRUE and all the other formulas equalFALSE.) Roughly speaking, (4) is valid
if all the properties are safety properties, and if6i andE i modify disjoint sets of
variables, for eachi . A more complicated version of the rule allows the3i and6i

to include liveness properties; and the condition that6i andE i modify disjoint sets
of variables can be replaced by a weaker, more complicated requirement. More-
over, everything generalizes from two conjuncts ton in a straightforward way. All
the details can be found in [2].

20

6.3 Why Bother?

What have we accomplished by using a decomposition theorem of the form (4)? As
our clock example shows, writing a specification as the conjunction ofn processes
rests on an equivalence of the form

2[N 1 ∨ . . . ∨N n]〈v1,...vn 〉 ≡ 2[N 1]v1 ∧ . . . ∧2[N n]vn

Replacing the left-hand side by the right-hand side essentially means changing
from disjunctive normal form to conjunctive normal form. In a proof, this replaces
∨-composition with∧-composition. Such a trivial transformation is not going to
simplify a proof. It just changes the high-level structure of the proof and rearranges
the lower-level steps.

Not only does this transformation not simplify the final proof, it may add extra
work. We have to invent the environment specificationsE i , and we have to check
the hypotheses of the decomposition theorem. Moreover, handling liveness can be
problematic. In the best of all possible cases, the specificationsE i will provide
useful abstractions, the extra hypotheses will follow directly from existing theo-
rems, and the decomposition theorem will handle the liveness properties. In this
best of all possible scenarios, we still wind up only doing exactly the same proof
steps as we would in proving the implementation directly without decomposing it.

This form of decomposition is popular among computer scientists because it
can be done in a pseudo-programming language. A conjunction of complete speci-
fications like31∧32 corresponds to parallel composition, which can be written in
a PPL as31‖32. The PPL is often sufficiently inexpressive that all the specifica-
tions one can write trivially satisfy the hypotheses of the decomposition theorem.
For example, the complications introduced by liveness are avoided if the PPL pro-
vides no way to express liveness.

Many computer scientists prefer to do as much of a proof as possible in the
pseudo-programming language, using its special-purposerules, before being forced
to enter the realm of mathematics with its simple, powerful laws. They denigrate
the use of ordinary mathematics as mere “semantic reasoning”. Because mathe-
matics can so easily express the underlying semantics of a pseudo-programming
language, any proof in the PPL can be translated to a semantic proof. Any law for
manipulating language constructs will have a counterpart that is a theorem of ordi-
nary mathematics for manipulating a particular class of formulas. Mathematics can
also provide methods of reasoning that have no counterpart in the PPL because of
the PPL’s limited expressiveness. For example, because it can directly mention the
control state, an invariance proof based on ordinary mathematics is often simpler
than one using the Owicki-Gries method.

21

Many computer scientists believe that their favorite pseudo-programming lan-
guage is better than mathematics because it provides wonderful abstractions such
as message passing, or synchronous communication, or objects, or some other pop-
ular fad. For centuries, bridge builders, rocket scientists, nuclear physicists, and
number theorists have used their own abstractions. They have all expressed those
abstractions directly in mathematics, and have reasoned “at the semantic level”.
Only computer scientists have felt the need to invent new languages for reasoning
about the objects they study.

Two empirical laws seem to govern the difficulty of proving the correctness of
an implementation, and no pseudo-programming language is likely to circumvent
them: (1) the length of a proof is proportional to the product of the length of the
low-level specification and the length of the invariant, and (2) the length of the in-
variant is proportional to the length of the low-level specification. Thus, the length
of the proof is quadratic in the length of the low-level specification. To appreci-
ate what this means, consider two examples. The specification of the lazy caching
algorithm of Afek, Brown, Merritt [3], a typical high-level algorithm, is 50 lines
long. The specification of the cache coherence protocol for a new computer that
we worked on is 1900 lines long. We expect the lengths of the two corresponding
correctness proofs to differ by a factor of 1500.

The most effective way to reduce the length of an implementation proof is to
reduce the length of the low-level specification. A specification is a mathematical
abstraction of a real system. When writing the specification, we must choose the
level of abstraction. A higher-level abstraction yields a shorter specification. But
a higher-level abstraction leaves out details of the real system, and a proof cannot
detect errors in omitted details. Verifying a real system involves a tradeoff between
the level of detail and the size (and hence difficulty) of the proof.

A quadratic relation between one length and another implies the existence of
a constant factor. Reducing this constant factor will shorten the proof. There are
several ways to do this. One is to use better abstractions. The right abstraction can
make a big difference in the difficulty of a proof. However, unless one has been
really stupid, inventing a clever new abstraction is unlikely to help by more than a
factor of five. Another way to shorten a proof is to be less rigorous, which means
stopping a hierarchical proof one or more levels sooner. (For real systems, proofs
reach a depth of perhaps 12 to 20 levels.) Choosing the depth of a proof provides
a tradeoff between its length and its reliability. There are also silly ways to reduce
the size of a proof, such as using small print or writing unstructured, hand-waving
proofs (which are known to be completely unreliable).

Reducing the constant factor still does not alter the essential quadratic nature
of the problem. With systems getting ever more complicated, people who try to
verify them must run very hard to stay in the same place. Philosophicallymotivated

22

theories of compositionality will not help.

6.4 When a Decomposition Theorem is Worth the Bother

As we have observed, using a decomposition theorem can only increase the total
amount of work involved in proving that one specification implements another.
There is one case in which it’s worth doing the extra work: when the computer does
a lot of it for you. If we decompose the specifications3 and6 into n conjuncts
3i and6i , the hypotheses of the decomposition theorem become6 ⇒ E i and
3i ∧ E i ⇒ 6i , for i = 1, . . . , n. The specification3 is broken into the smaller
components3i . Sometimes, these components will be small enough that the proof
of3i∧E i ⇒ 6i can be done by model checking—usinga computer to examine all
possible equivalence classes of behaviors. In that case, the extra work introduced
by decomposition will be more than offset by the enormous benefit of using model
checking instead of human reasoning. An example of such a decomposition is
described in [7].

7 Composing Specifications

There is one situation in which compositional reasoning cannot be avoided: when
one wants to reason about a component that may be used in several different sys-
tems.

The specifications we have described thus far have beencomplete-systemspec-
ifications. Such specifications describe all behaviors in which both the system and
its environment behave correctly. They can be written in the formS ∧ E , where
S describes the system andE the environment. For example, if we take the com-
ponent to be our clock example’s hour process, thenS is the formula9h andE is
9m . (The hour process’s environment consists of the minute process.)

If a component may be used in multiple systems, we need to write anopen-
systemspecification—one that specifies the component itself, not the complete sys-
tem containing it. Intuitively, the component’s specification asserts that it satisfies
S if the environment satisfiesE . This suggests that the component’s open-system
specification should be the formulaE ⇒ S . This specification allows behaviors
in which the system misbehaves, if the environment also misbehaves. It turns out
to be convenient to rule out behaviors in which the system misbehaves first. (Such
behaviors could never be allowed by a real implementation, which cannot know in
advance that the environment will misbehave.) We therefore take as the specifica-
tion the formulaE +−F S , which is satisfied by a behavior in whichS holds as long
asE does. The precise definition of+−F and the precise statement of the results

23

about open-system specifications can be found in [2].
The basic problem of compositional reasoning is showing that the composi-

tion of component specifications satisfies a higher-level specification. This means
proving that the conjunction of specifications of the formE +−F S implies another
specification of that form. For two components, the proof rule we want is:

E ∧ S1 ∧ S2 ⇒ E1 ∧ E2 ∧ S
(E1

+−F S1) ∧ (E2
+−F S2) ⇒ (E

+−F S)
Such a rule is called acomposition theorem. As with the decomposition theorem
(4), it is valid only for safety properties under certain disjointness assumptions; a
more complicated version is required ifS and theS i include liveness properties.

Composition of open-system specifications is an attractive problem, having ob-
vious application to reusable software and other trendy concerns. But in 1997, the
unfortunate reality is that engineers rarely specify and reason formally about the
systems they build. It is naive to expect them to go to the extra effort of prov-
ing properties of open-system component specifications because they might re-use
those components in other systems. It seems unlikely that reasoning about the
composition of open-system specifications will be a practical concern within the
next 15 years. Formal specifications of systems, with no accompanying verifica-
tion, may become common sooner. However, the difference between the open-
system specificationE +−F M and the complete-system specificationE ∧M is one
symbol—hardly a major concern in a specification that may be 50 or 200 pages
long.

8 Conclusion

What should we do if faced with the problem of finding errors in the design of a
real system? The complete design will almost always be too complicated to handle
by formal methods. We must reason about an abstraction that represents as much
of the design as possible, given the limited time and manpower available.

The ideal approach is to let a computer do the verification, which means model
checking. Model checkers can handle only a limited class of specifications. These
specifications are generally small and simple enough that it makes little differ-
ence in what language they are written—conventional mathematics or pseudo-
programming languages should work fine. For many systems, abstractions that
are amenable to model checking omit too many important aspects of the design.
Human reasoning—that is, mathematical proof—is then needed. Occasionally,
this reasoning can be restricted to rewriting the specification as the composition of
multiple processes, decomposing the problem into subproblems suitable for model

24

checking. In many cases, such a decomposition is not feasible, and mathematical
reasoning is the only option.

Any proof in mathematics is compositional—a hierarchical decomposition of
the desired result into simpler subgoals. A sensible method of writing proofs will
make that hierarchical decomposition explicit, permitting a tradeoff between the
length of the proof and its rigor. Mathematics provides more general and more
powerful ways of decomposing a proof than just writing a specification as the par-
allel composition of separate components. That particular form of decomposition
is popular only because it can be expressed in terms of the pseudo-programming
languages favored by computer scientists.

Mathematics has been developed over two millennia as the best approach to
rigorous human reasoning. A couple of decades of pseudo-programming language
design poses no threat to its pre-eminence. The best way to reason mathematically
is to use mathematics, not a pseudo-programming language.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Martı́n Abadi and Leslie Lamport. Conjoining specifications.ACM Transac-
tions on Programming Languages and Systems, 17(3):507–534, May 1995.

[3] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazycaching. ACM
Transactions on Programming Languages and Systems, 15(1):182–205, Jan-
uary 1993.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness.Information Pro-
cessing Letters, 21(4):181–185, October 1985.

[5] E. A. Ashcroft. Proving assertions about parallel programs.Journal of Com-
puter and System Sciences, 10:110–135, February 1975.

[6] Edsger W. Dijkstra. A personal summary of the Gries-Owicki theory. In
Edsger W. Dijkstra, editor,Selected Writings on Computing: A Personal Per-
spective, chapter EWD554, pages 188–199. Springer-Verlag, New York, Hei-
delberg, Berlin, 1982.

[7] R. P. Kurshan and Leslie Lamport. Verification of a multiplier: 64 bits and
beyond. In Costas Courcoubetis, editor,Computer-Aided Verification, volume
697 ofLecture Notes in Computer Science, pages 166–179, Berlin, June 1993.
Springer-Verlag. Proceedings of the Fifth International Conference, CAV’93.

25

[8] Leslie Lamport. Proving the correctness of multiprocess programs.IEEE
Transactions on Software Engineering, SE-3(2):125–143, March 1977.

[9] Leslie Lamport. The temporal logic of actions.ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, May 1994.

[10] Leslie Lamport. How to write a proof.American Mathematical Monthly,
102(7):600–608, August-September 1995.

[11] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6(4):319–340, 1976.

26

