
SRC Technical Note
1997 - 027

October 27, 1997

A Simple, Intuitive Hypermedia Synchronization Model and its

Realization in the Browser/Java Environment

Jin Yu

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

A Simple, Intuitive Hypermedia Synchronization Model and its
Realization in the Browser/Java Environment

Jin Yu
DEC Systems Research Center

130 Lytton Ave., Palo Alto, CA 94301
jinyu@pa.dec.com

Abstract

This paper presents a simple and intuitive hyperme-
dia synchronization model – the Media Relation Graph
(MRG), and an alternative implementation of the Hyper-
media Presentation and Authoring System (HPAS), which
is the testbed for MRG. Our model combines the power
of both interval-based and point-based synchronization
mechanisms. The new implementation exploits many rich
features of commercial web browsers and reuses existing
browser components, such as plugins and Java applets.
(An overview of HPAS and its original Unix/C implemen-
tation can be found elsewhere [18].)

1 Introduction

The exponential growth in the number and variety of web-
oriented products and services is driven by the use of rich
media types such as image, audio, and video. The com-
bination and integration of these monomedia, or multime-
dia, is widely used for representing and exchanging infor-
mation. Used together with both content-based and time-
based navigation, the result is the merging of multimedia
and hyperlinks, or hypermedia.

A distinction should be made between hypermedia doc-
uments and hypermedia objects (or simply documents and
objects). Objects usually represent monomedia data, such
as MPEG videos and GIF images. Documents function as
containers for objects. The main purpose of a document
is to describe the meta information about the enclosed ob-
jects. The information includes the attributes of individual
objects, and the content, temporal, and spatial relation-
ships among a number of related objects. Examples of
documents are HSL files (the format implemented by our
system) and HTML files. Documents can also be treated
like objects; e.g. an HTML file embedded into an HSL
document is treated as an HTML object.

The composition and presentation of hypermedia doc-
uments presents us with many new challenges because
of the dynamics of multimedia, and the volatile nature
of most run-time environments. In the HPAS project,
we are mainly interested in tackling the problems aris-
ing from the temporal aspect of hypermedia presentation
and authoring; i.e. the temporal relationships among ob-
jects contained within hypermedia documents. For this
purpose, we developed a simple temporal synchronization
model, the Media Relation Graph (MRG), and its SGML-
conforming [16] file format, HSL (Hypermedia Synchro-
nization Language).

MRG, our synchronization model, is based on a hy-
brid of interval-based and point-based synchronization
approaches [17]. The presentation of an HSL document
is achieved by traversing the vertices in the correspond-
ing MRG in the appropriate order; the authoring of an
HSL document is simply a stepwise construction of the
corresponding MRG. The Hypermedia Presentation and
Authoring System (HPAS) is the testbed for our synchro-
nization model and file format. The implementation of
HPAS described in this paper is based on the browser/Java
environment; it supports a rich subset of the features in the
original Unix/C implementation [18].

The hypermedia objects in HPAS are identified by Uni-
form Resource Locators (URLs) [2]. Each object can have
a media stream (but this is not required) with an appropri-
ate MIME type [4]. In addition to temporal relations,each
object has associated spatial layout information, which
can be either internal or external to the containing HSL
document.

The next section describes our temporal model in detail.
Sections 3 and 4 discuss the validation and presentation of
documents produced by our synchronization model, re-
spectively. Second 5 outlines the spatial layout mecha-
nism. Hyperlinks are briefly explained in second 6. Fi-
nally, section 7 describes the new browser/Java-based im-
plementation.

1

2 Synchronization model

There are two levels of multimedia synchronization,
namely intra-object synchronization and inter-object syn-
chronization [3]. The former is concerned with the time
relations within one media object, such as an MPEG
video, while the latter is concerned with time relations
between two or more media objects. There are yet two
more subtypes of synchronization within the inter-object
category: low-level “lip” synchronization and high-level
endpoints-based synchronization. In the HPAS project,
we are mainly interested in high-level endpoints-based
synchronization.

There have been numerous approaches in specifying
high-level media synchronizations. Most of them bear
two characteristics. First, the syntax is declarative. It
is well-known that scripting-based (non-declarative) sys-
tems are not suitable for describing multimedia presen-
tations, as proficiency in programming is required, which
severely limits the range of authors. Second, the specifica-
tions are relation-based; that is, each object is described in
terms of other temporally related objects. Timeline-based
(non-relational) systems require the start/end times of ob-
jects to be fixed on the time axis; therefore, document
parts cannot be efficiently reused (requires readjusting all
the start/end times of the objects to be reused); further-
more, timeline-based specifications cannot model nonde-
terminism (objects with unknown durations). It should
also be pointed out that both the scripting and timeline
approaches do not scale well.

The relation-based specifications can be further divided
into two major flavors: interval-based vs. point-based
[17]. In interval-based models, each media object is asso-
ciated with a temporal interval, which is characterized as a
nonzero duration of time. According to Allen, given any
two temporal intervals, there are 13 mutually exclusive
relationships [1]. The 13 temporal relations can be repre-
sented as Figure 1a [13]. The figure shows only seven of
the thirteen relations since the remaining ones are inverse
relations, by simply swapping the labels. For instance,
after is the inverse relation ofbefore. In point-based ap-
proaches, relations are based on time instants. Given two
time instants, there are 3 mutually exclusive relationships,
namelybefore (<), simultaneous to(=), andafter (>)
[17]. Few existing multimedia systems are solely based
on point-based specifications; Madeus [9] is purely based
on Allen’s interval relations; most other systems, such as
CMIF [7], ISIS [11], OCPN [13], Firefly [5], and CHIMP
[6], are based on a hybrid of the two approaches.

Our temporal synchronization model, MRG, is also
based on a hybrid of the interval-based and point-based
approaches. Media objects are modeled as temporal inter-

 α Pbefore

Pα P

αP

P

βPP

P
P

Pα

α

β α

β

meets

starts

βP

PPα P α
β

Pα Pβduring

β
β

equals P

Pα Poverlaps β

P α
τ

P

Pα β
finishes P

β

δ

Pα
τ δ

P β

δσ

δσ
P β

τ δ

δε
P α

δσ

a) Allen’s interval relations

P α

P α

P β

P α

b) Corresponding MRG

P β

Pα

P β

αPDτ

P α

P β

Dτ Dσ

Dσ

P α

D P β

Dσ

Dε

P β

Dτ βP

τ

P β
τ δ

Figure 1: Allen’s relations and MRG

vals, and the start/end times of the objects are treated as
time instants. The merit of this approach is that the spec-
ification is particularly intuitive; this makes the authoring
process much easier. In the following sections, the seman-
tics of MRG will be described in greater detail.

2.1 Endpoints-based relations

Allen’s 13 interval relations cover all the possible rela-
tionships between two temporal intervals. The 13 interval
relations can efficiently describe what happened between
two temporal intervals in history (i.e. after play-out of the
two objects corresponding to the two intervals); however,
Allen’s relations are not well-suited for specifying what
should happen between two intervals in the future [10].
For example, in the relationpα overlaps pβ , pβ cannot be
started duringpα if the end time ofpα is unknown.

Unlike Allen’s purely interval-based model, our ap-
proach takes into account not only time intervals, but
also time instants. Our model is based on the observa-
tion that there are 12 relations between the 4 endpoints
of 2 temporal intervals. The 12 relations are listed in Ta-
ble 1. Note that there are two implicit relations that always
hold between the endpoints, namely “a.start<a.end” and
“b.start<b.end”.

For the purpose of defining multimedia synchroniza-

2

a.end<b.start
a.end=b.start
a.end>b.start
a.start<b.end
a.start=b.end
a.start>b.end
a.start<b.start
a.start=b.start
a.start>b.start
a.end<b.end
a.end=b.end
a.end>b.end

Table 1: 12 endpoints-based relations

a.end≤b.start
a.end>b.start
a.start<b.end
a.start≥b.end
a.start<b.start
a.start=b.start
a.start>b.start
a.end<b.end
a.end=b.end
a.end>b.end

Table 2: 10 reduced endpoints-based relations

tion operators, it is useful to collapse the relations
“a.end<b.start” and “a.end=b.start” into one relation
“a.end≤b.start”, and the relations “a.start=b.end” and
“a.start>b.end” into one relation “a.start≥b.end”. There-
fore, we have reduced the 12 relations into 10 relations,
which are listed in Table 2.

Note that the 10 relations are not mutually exclusive
(Allen’s relations are). The interrelations of the 10 re-
lations are shown in the following implication table (Ta-
ble 3). The Venn diagram (Figure 2) illustrates the rela-
tionships graphically.

From the Venn diagram, we can see that some relations
are disjoint, some of them have subset relationship, and
yet others intersect but do not form subset relationship.

2.2 Media Relation Graph

Obviously, not all the 10 relations are needed to spec-
ify time relations in multimedia. Therefore, we define
the most useful and intuitive 3 out of the 10 relations
as MRG operators. The 3 relations are “a.end≤b.start”,
“a.start=b.start”, and “a.end=b.end”; they are named

a.end≤b.start ⇒ a.start<b.end,a.start<b.start,a.end<b.end
a.end>b.start ⇒ no info
a.start<b.end ⇒ no info
a.start≥b.end ⇒ a.end>b.start,a.start>b.start,a.end>b.end
a.start<b.start ⇒ a.start<b.end
a.start=b.start ⇒ a.end>b.start,a.start<b.end
a.start>b.start ⇒ a.end>b.start
a.end<b.end ⇒ a.start<b.end
a.end=b.end ⇒ a.end>b.start,a.start<b.end
a.end>b.end ⇒ a.end>b.start

Table 3: Implication table of the 10 relations

a.e>b.sa.s<b.e

a.s<b.s a.e>b.e

a.e<b.e a.s>b.s

a.e<=b.s a.s>=b.e

a.e=b.e a.s=b.s

Figure 2: Venn diagram of the 10 relations

SerialLink, StartSync, and EndSync, respec-
tively. For (a SerialLink b), we calla the parent andb
the child; for(a Start Sync b) and (a EndSync b), we
call a and b peers. Each of the three operators forms a
temporal constraint between its operands.

The combination of the three MRG operators can ex-
press all the 10 relations. With the help of an intermediate
interval i , we can express the remaining 7 relations, as
illustrated below.

• (a EndSync i Start Sync b)⇒ a.end>b.start

• (a Start Sync i EndSync b)⇒ a.start<b.end

• (b SerialLink a)⇒ a.start≥b.end

• (a Start Sync i SerialLink b)⇒ a.start<b.start

• (b Start Sync i SerialLink a)⇒ a.start>b.start

• (a SerialLink i EndSync b)⇒ a.end<b.end

3

c

b f

a

g

r.e

c.s d.s a.s

a.ec.e d.e

b.s f.s

b.e

g.s

g.e f.e

root

d

a) MRG b) TVG

Figure 3: MRG vs. TVG

• (b SerialLink i EndSync a)⇒ a.end>b.end

Intuitively speaking,(a SerialLink b) means objects
a and b occur in sequence; and(a Start Sync b) and
(a EndSync b) mean objectsa and b start and end at
the same time, respectively.

In graph context, the three operators are represented by
three kinds of edges in MRG. As shown in Figure 3a, a
one-way arrow denotes theSerialLink operator, where
the left hand side operand is the vertex at the starting end
of the arrow and the right hand side operand is the vertex
being pointed to by the arrow. Similarly, theStart Sync
operator is denoted by a solid line segment, and the
EndSyncoperator is represented by a dashed line seg-
ment. There are two kinds of vertices in MRG. A rectan-
gular vertex represents a regular media object and a round
vertex represents a dummy (delay) object, which does not
have media type, content, or spatial layout. Finally, for
an MRG to represent a complete HSL document, we also
need aroot vertex, which denotes the starting point of the
hypermedia presentation defined by the HSL document.
The root object is also a dummy object. Since an object
in an HSL document has an associated temporal interval
and is represented by a vertex in MRG, the operands of
the three MRG operators can be “object”, “interval”, or
“vertex”, depending on the context.

SerialLink is a best-effort operator. It tries its best
to make the transition between its two operands instan-
taneous (the “=” part of SerialLink). The “<” part of
SerialLink models nondeterministic delay, which is al-

ways minimized. For(a SerialLink b), what can cause
b.start to be delayed? First, if we have(c SerialLink b)
anda.end<c.end, then the start time ofb will be delayed
to the end time ofc. We call this “V”-shape, asa, b, c, and
the twoSerialLink edges form a “V”. This scenario can
be extended to “W”-shape or “M”-shape, involving any
number of parents and children. In general, the start time
of an object is the latest end time (which is nondetermin-
istic) of its parents. Second, if we have(f Start Sync b)
anda.end< f .start, then the start time ofb will be delayed
from the end time ofa to the start time off . Both situa-
tions are shown in Figure 3a. Note that the quantitative as-
pect (e.g.a.end<c.end anda.end< f .start) is not captured
in MRG. On the whole, if an MRG is a tree (no multiple
parents) and contains noStart Syncs, allSerialLinks are
instantaneous; i.e. “≤” becomes “=”. SerialLink is tran-
sitive.

Both the Start Syncand EndSyncoperators behave
like rendezvous points. That is, if(a Start Sync b), the
start time ofa andb is the greater ofstarta andstartb,
wherestarta and startb are the start times ofa andb
without theStart Syncconstraint. The same rule applies
to EndSync. Note thatEndSyncnever affects the start
times of its operands.Start SyncandEndSyncare tran-
sitive and symmetric.

In addition to the visible components (vertices and
edges) of MRG, which are qualitative,each object may
optionally define a quantitative attributet t l (time to live),
which specifies the lifetime of the object. For a text or
image object,t t l specifies how long the object will be dis-
played; for an audio or video object, it enforces how long
the object will be played, regardless of the object’s nat-
ural content length; for a dummy object, it specifies the
amount of delay time introduced by the object. Ift t l is
unspecified, a text or image object will be displayed for-
ever, and an audio or video object will be played until the
end of its natural content.

With the definitions of SerialLink, Start Sync,
EndSync, t t l , and dummy object, we can now use MRG
to express Allen’s 13 interval relations. This is illustrated
in Figure 1b.

The MRG operatorsSerialLink, Start Sync, and
EndSyncare generally called synchronization arcs, or
simply sync-arcs. The generalized sync-arc relates two
time instants, called source and destination. In CMIF
[14], the sync-arc modifies the destination; in the upcom-
ing W3C standard SMML [19], the sync-arc modifies the
source. Both of them allow a delay to be specified on
the arc. The former delays the destination, and the latter
delays the source. TheSerialLink operator is a sync-
arc from the end point of the first object to the start point

4

of the second object, with a minimized nondeterministic
delay applied to the destination. The above three types
of sync-arcs are all binary operators.Start Syncand
EndSyncoperators aren-ary sync-arcs; i.e. they can be
applied to a group of objects. This significantly reduces
the amount of specification effort required. Although de-
lays cannot be directly specified on the arcs, they can be
emulated by a combination of delay (dummy) objects and
SerialLinks. For example, to specifyf starts 5 seconds
afterc starts, we add a dummy objectd with t t l equal to
5 seconds, and relatec, f , andd by (c Start Sync d) and
(d SerialLink f) (Figure 3a).

3 Validation of MRG specifications

Temporal inconsistencies are easily introduced when au-
thoring complicated multimedia documents. There are
two major categories of inconsistencies, namely quali-
tative and quantitative. Qualitative inconsistencies are
caused by conflicting temporal relations, while quantita-
tive inconsistencies are caused by incompatible durations
[12]. Due to the simplicity of MRG and its rendezvous-
based operators, quantitative inconsistencies do not exist
in our model; i.e. quantitative consistency is guaranteed
by construction. Therefore, we only need to check for
qualitative inconsistencies.

To facilitate the detection of qualitative inconsistencies,
we first transform an MRG into a Temporal Validation
Graph (TVG), which contains two types of vertices. A
TVG “start” vertex contains one or more start points of
the vertices in MRG; a TVG “end” vertex contains one or
more end points of the vertices in MRG. The transforma-
tion satisfies the following rules:

1. For each vertexa in the MRG, there are two TVG
verticesas andae containinga.start anda.end, re-
spectively; there is also a directed dashed edge from
as to ae.

2. If (a Start Sync b), a.start andb.start are in one TVG
“start” vertex.

3. If (a EndSync b), a.end andb.end are in one TVG
“end” vertex.

4. If (a SerialLink b), there is a directed solid edge
from ae to bs.

Figure 3b shows the TVG corresponding to the MRG
in Figure 3a. Note that the vertices along a path in a TVG
alternate between “start” and “end” (edges from “start”
vertices to “end” vertices are dashed, while edges from

“end” vertices to “start” vertices are solid). TVG has the
following important properties:

• If there is a path fromas to bs, thena.start<b.start.

• If there is a path fromae to be, thena.end<b.end.

• If there is a path fromas to be, thena.start<b.end.

• If there is a path fromae to bs, thena.end≤b.start.

Therefore, to ensure the validity of a temporal speci-
fication represented by an MRG, we have to follow the
following procedure:

• To add (a SerialLink b), there must be no path from
bs to ae.

• To add (a Start Sync b), there must be no path from
as to bs, and no path frombs to as.

• To add (a EndSync b), there must be no path from
ae to be, and no path frombe to ae.

The above procedure can be implemented using stan-
dard reachability analysis (depth first search), therefore,
the running time ofeach addition of MRG edges is linear
(in terms of number of vertices and edges in the TVG);
hence the validation of the whole MRG is a quadratic
problem.

The consistency checking procedure is applied incre-
mentally in the authoring stage (via our authoring tool).
Since we allow the creation of HSL documents using text
editors, we also need to apply the validation algorithm be-
fore presenting an HSL document. The validation proce-
dure is applied to every temporal constraint (specified by
one of the three MRG operators) in the document. If an
inconsistent constraint is detected, the user is warned and
the constraint is simply ignored.

If there is no path from either endpoint of one object
to either endpoint of another object in a TVG, then there
is no temporal relationship between the two objects. This
usually means that the author does not care about the re-
lationship between the two – which one starts first, and so
on. If the author does care, he/she will add a constraint be-
tween the two objects in the corresponding MRG, whether
implicitly (through transitivity) or explicitly.

Finally, from the properties of TVG, we can further de-
rive two temporal overlapping rules:

• If as= bsor ae= be, thena andb overlap in time.

• If there is a path fromaeto bs, or frombeto as, then
a andb do not overlap in time.

5

4 Presentation scheduling

In order to ensure that media objects are presented in the
specified order, a presentation scheduler needs to be de-
veloped. There are two types of hypermedia schedulers,
namely compile-time scheduler and run-time scheduler
[5]. A compile-time scheduler is static. It fixes the start
and end times of objects, according to the temporal in-
formation specified in the hypermedia document; an opti-
mum schedule may be generated by some form of quan-
titative analysis. The compile-time scheduler may also
help prefetching, resource allocation and detection. A so-
phisticated compile-time scheduler may use heuristics and
statistics to pre-arm hyperlinks [14]. On the other hand, a
run-time scheduler is dynamic, and well-adapted to han-
dling unpredictable behaviors (such as user interactions).
It also constantly adjusts itself to match the changes in its
execution environment.

Before proceeding further with presentation schedul-
ing, let us make a distinction between various kinds of
media objects in hypermedia systems, based on their start
and end behavior:

• Bounded object
The start and end times (or the start time and dura-
tion) of the object are known. For example, text and
images witht t l specified, pre-recorded (stored) au-
dio/video clips, etc. We call audio/video continuous
objects and text/image discrete objects.

• Unterminated object
The start time of the object is known, but the end
time is unknown. For example, a live feed without
a scheduled end time, a program execution (such as
simulations and CGI scripts), etc.

• Unpredictable object
The object may be started by a hyperlink and termi-
nated by another hyperlink.

For most multimedia documents, the durations (t t l) of
stored audio/video objects are not specified, so we can-
not obtain their end times at the document level. First, if
an audio/video object is remote, we could try to retrieve
the meta information through a network protocol – using a
special purpose video server which implements a protocol
call that returns the intrinsic duration of a media object.
However, we cannot rely on special protocols, as the web
is built on top of generic protocols like HTTP. We could
also try to read the header of the media object to determine
its timing information, but this is highly media-dependent
(such as how many bytes we need to read). Moreover,

there are media types whose headers do not have the nec-
essary meta information (e.g. AVI). Even if we managed
to obtain the intrinsic duration of a stored media object,
the real play-out duration will likely vary under environ-
mental conditions, such as slow or bursty network access
and lack of client processing power. Second, if the au-
dio/video object is local, we must obtain the timing in-
formation by reading the header of the media file. As
described above, this is not always achievable. Further-
more, environmental constraints such as the speed of the
client CPU also make the duration of the stored object a
variable.

Because of the volatile nature of the Internet and the
large variety of media types, all bounded objects that do
not havet t l explicitly specified become unterminated ob-
jects. Hence, multimedia presentations on the web are
inherently nondeterministic.

Our conclusion is that the compile-time scheduler is
only useful in a closed environment, such as where me-
dia objects are all stored locally and media types are all
well understood by the system. Since our target environ-
ment is the web, we choose to implement a run-time only
scheduler, which handles unterminated and unpredictable
objects, as well as bounded continuous and discrete ob-
jects.

Now let us proceed with the presentation algorithm.
First, we need to describe the states of hypermedia objects
in HPAS:

• Activated
A visual object has appeared on the screen; an aural
object has occupied an audio resource (such as an
audio channel).

• Playing
A continuous object is in progress.

• Paused
A continuous object is temporarily paused.

• Content end
A continuous object has reached the end of its natural
content.

• t t l expired
The author-specified lifetime of an object has been
reached.

• Finished
If t t l is defined, this state is the same as “t t l expired”;
otherwise, it is the same as “content end”.

• Deactivated
A visual object has disappeared from the screen; an
aural object has released its audio resource.

6

If the lifetime (t t l) of an object has expired before the
end of its natural content, the object is immediately cut off
from playing. What is the behavior of an object between
the finished and deactivated states? For a discrete object,
it stays on the screen until entering the deactivated state;
for a video object, its last frame stays on the screen; for
an audio object, it keeps its visual components (such as
volume controls) visible, if any.

The activation of objecta is governed by the following
rules:

1. a’s parents and the parents’EndSyncpeers have all
entered the deactivated state; and for eachb, where
b is one ofa’s Start Syncpeers,b’s parents and the
parents’EndSyncpeers have all entered the deacti-
vated state.

2. a and all of itsStart Syncpeers enter the activated
state at the same time, once Rule 1 is satisfied.

The deactivation of objecta is governed by the follow-
ing rules:

1. a and all of itsEndSyncpeers have entered the fin-
ished state.

2. a and all of itsEndSyncpeers enter the deactivated
state at the same time, once Rule 1 is satisfied.

The root object is special, in that it enters the deacti-
vated state immediately upon the startup of the presenta-
tion.

The object activation/deactivation policies translate to
the following event-driven presentation algorithm, which
is the core of our run-time scheduler.

onContentEnd() {
if ttl unspecified

onFinished()
}

onTTLExpired() {
onFinished()

}

onFinished() {
set this object’s state to finished

for p in (EndSync peers of this object)
if p is not in the finished state

return
// now all EndSync peers are
// in the finished state

// deactivate this object
// and all of its EndSync peers,
// and activate their children if appropriate
for o in (this object and its EndSync peers) {

deactivate o

for c in (children of o)
if c satisfies the activation policy {

// implies that c’s StartSync peers also
// satisfy the activation policy
activate c and c’s StartSync peers
play c and c’s StartSync peers

}
}

}

Either one of the “onContentEnd” and “onTTLEx-
pired” event handlers may invoke “onFinished”, depend-
ing on whethert t l is defined. The event handler “onFin-
ished” tries to satisfy the deactivation policy in the first
“for” loop; it then deactivates the object and itsEndSync
peers, and activates their children if they satisfy the acti-
vation policy. Essentially, the “onFinished” event handler
traverses the MRG in a stepwise, breadth-first fashion.

Besides common functions like “play” and “pause”,
our presentation scheduler also implements the “skip”
and “jump” operations. The “skip” operation lets a user
deactivate all currently activated objects, and activate
their children, if the children satisfy the activation pol-
icy. “skip” allows a user to step through a presentation at a
faster pace. The user may also usehyperlinks to “jump” to
a future or past object in the presentation. When jumping
to a future object, the scheduler first traverses the MRG
until it finds the object, then it activates the object and its
Start Syncpeers. For a past object, the whole presen-
tation is first reset to its startup state, then the scheduler
treats the past object as a future object and advances to it.
The “jump” operation can also be used to start a presen-
tation from the middle of a document. In that case, the
starting point of the presentation is addressed by an object
ID. The scheduler simply advances to the object and starts
the presentation from there.

5 Spatial management

Many approaches exist for managing spatial layout in
multimedia documents. The simplest one is to use ab-
solute positioning, where the geometry of an object is
defined by the quintuple (x, y, width, height, z-index).
This mechanism is simple to use and simple to implement;
however, it does not scale well. Therefore, in addition to
this simple spatial management, we also provide a more
relative layout scheme, which uses the notions ofgrid and
cell. While authoring, the document window is divided
into a grid of cells, with the number of horizontal and ver-
tical cells specified by the author (so the size of each cell
is fixed within a presentation). Each object has its associ-
ated screen real estate, which we call the object’sarea. An

7

area may be defined either by an absolute quadruple (x, y,
width, height), or by a rectangular group of cells. The
object is constrained by its area, which essentially forms
a clipping rectangle; to avoid being clipped, the object is
responsible for resizing itself to fit into its area. Each area
may additionally have a “z-index” attribute, which speci-
fies the object’s stacking order. When an area is defined
in terms of cells, it may have several additional attributes,
such as offsets and alignment, which allow the object to be
placed relatively within its area. These attributes provide
another level of granularity in spatial layout. The layout
and the number of areas on the screen change with respect
to time. At any point in time, there may be zero or more
areas on the screen, corresponding to zero or more regular
objects. Dummy objects do not have areas.

The scheme above specifies how and where an object
may be placed on the screen. Since many objects may be
active on the screen at any time, we need a mechanism
for controlling the undesired or unexpected display over-
lapping effect. Display overlap occurs when two objecta
andb overlap in both space and time.

In the spatial aspect, we have three situations:

• The areas ofa andb do not intersect.

• The areas ofa andb intersect, anda andb have the
same z-index value.

• The areas ofa andb intersect, buta andb have dif-
ferent z-index values.

In the temporal aspect, we also have three situations
(according to the temporal overlap rules in the end of sec-
tion 3):

• a andb do not overlap in time.

• a andb overlap in time.

• Indeterminable.

Combining the spatial and temporal criteria, the system
can give authors different warnings when different levels
of display overlaps occur. Author anticipated or intended
display overlaps are therefore allowed.

6 Hyperlink

A hypermedia system must support extensive user inter-
actions. In HPAS, this is achieved throughhyperlinks.
In our model, a hyperlink defines a relationship between
two entities, namely the source anchor and the destina-
tion anchor. The source anchor is denoted by a hyper-
media object within an HSL document, the destination

is much more flexible – it can be any entity addressable
by a URL [2]. An author can specify the effect on the
source when a hyperlink is followed. The default behav-
ior is “replace”, which means the presentation containing
the source is terminated immediately and replaced with
the destination presentation. Alternatively, “new” means
the system should start another window to present the des-
tination, while keeping the source intact.

The destination of a hyperlink may also be a future or
past object in the current presentation, as we have de-
scribed in the “jump” operation from section 4. In ad-
dition, the destination may represent an object in anatem-
poral presentation [8]. If an MRG is not connected, it is
formed by the union of two or more connected subgraphs.
One of them is the subgraph containing theroot object,
which represents the default or main presentation; all
other subgraphs represent atemporal presentations. Those
atemporal presentations will only be activated by hyper-
links. The activation of such a hyperlink starts the atem-
poral presentation from the object represented by the des-
tination of the link. Essentially, this feature allows users to
choose among different paths (alternative presentations)
within a document.

What we have described so far is the document level
hyperlinks, which are defined by HSL. There is another
level of hyperlinks, namely object level links. Examples
include hyperlinks within a video stream, and the<a>
element within an HTML object which has been embed-
ded into an HSL document. Object level links require the
knowledge of specific media types, so their behaviors are
solely controlled by media handlers [18]; object level hy-
perlinks are not visible in the document layer.

7 Implementation

Advances in browser technology allow many new inter-
esting applications to be written. Plugins and ActiveX
controls extend browsers’ capabilities seamlessly, and
Java applets allow rapid development of platform inde-
pendent applications. However, most importantly, with
the introduction of Dynamic HTML, a whole new breed
of live, time-based applications can be created.

By exploiting features in Dynamic HTML, HPAS is
able to reuse existing software components as media han-
dlers. Continuous objects (audio/video) are played by the
Java Media Player [20] (wrapped in an applet) and the
RealPlayer [21] plugin; discrete objects (text/image) are
rendered directly in the HTML browser.

To control the browser, applets, and plugins, HPAS
uses the Java class “netscape.javascript.JSObject”, which
provides a handle to the JavaScript interpreter. Dy-

8

Figure 4: Visual MRG

namic HTML allows HTML elements to be created,
deleted, and modified by JavaScript on the fly. Therefore,
to activate an object, HPAS simply directs the JavaScript
interpreter to output the appropriate HTML element, and
the browser will either render the HTML element di-
rectly, or launch the appropriate plugin or applet to render
it. Here are some example HTML elements emitted by
HPAS:

<!-- text object -->
<object id="gold"
style="position:absolute;left:4;top:200;

width:320;height:240"
data="fish.html">
</object>

<!-- image object -->

<img id="silver"
style="position:absolute;..."
src="flower.html">

<!-- audio/video object -->
<object id="copper"
style="position:absolute;..."
classid="java:jmf">
<param name="MediaFile" value="run.mpg">
</object>

<!-- RealAudio/RealVideo -->
<object id="iron"
style="position:absolute;..."
data="realworld.rpm">
</object>

To deactivate an object, HPAS asks the JavaScript inter-
preter to delete the HTML element with the corresponding

9

Figure 5: A scene from an HSL presentation

ID. To control a media handler (applet or plugin), HPAS
gets the Java object representing the media handler from
JavaScript, and then calls whatever public methods are
available (such as “play” and “pause”) from that Java ob-
ject.

HPAS is implemented as a Java applet and a set of Java
classes, which can be either stored locally or downloaded
on the fly before presenting an HSL document. Running
as a Java applet also allows multiple HSL documents to
be played in multiple browser windows at the same time.
Because HPAS runs inside HTML browsers, to present an
HSL document, an HTML wrapper is needed:

<html><head>...</head><body>
<object classid="java:hpas"
mayscript width=0 height=0>

<param name="src"
value="http://www.goldfish.com/demo.hsl">

</object>

<div id="layout"
style="position:absolute;
left:100;top:200;width:640;height:480">
</div>

<!-- other HTML goes here -->
</body></html>

The<object> element contains the invisible HPAS ap-
plet. It is invisiblebecause HPAS controls are displayed as

popup windows, thus leaving all the space in the browser
window for media rendering. The<div> element defines
the area in which an HSL presentation will be displayed.
Typically the<div> occupies the whole browser window,
but in the above example, it starts from (100, 200) and
has the size 640×480. The<div> element must have the
ID “layout”, so that the HPAS applet mayaccess it from
JavaScript. An author can also define other static HTML
elements in the HTML wrapper, which will have nothing
to do with HPAS.

The HTML wrapper approach also facilitates the use
of external layout. Instead of the single<div> element
with ID “layout”, the author defines a series of<div> el-
ements, each corresponds to an HSL object (with the same
ID). Those<div> elements define theareasof the corre-
sponding HSL objects; therefore, no layout information is
needed in the HSL document itself. This external layout
mechanism allows a single HSL document to be reused
with different spatial layouts. The idea is analogous to
applying different stylesheets to an HTML document.

Some hyperlinks are implemented using HTML’s<a>
element. The destinations of these hyperlinks are outside
entities, e.g. “.../y.jpg”, “.../x.html”, and “.../x.html#red”.
Note that a destination of the form “.../z.hsl” cannot be
implemented this way, because when a user clicks on the

10

link, “z.hsl” will be downloaded by the browser, which
has no idea of how to present it. The solution is to wrap
the HSL file into an HTML file, with the “src” parameter
of the HPAS applet set to “.../z.hsl”. Finally, the desti-
nations of the form “#objid” are used to “jump” around
within the same HSL document, therefore neither<a>
element nor HTML wrapper would work. These links can
only be activated through the “visual MRG”, as shown in
Figure 4. The visual MRG highlights objects as they are
activated. Clicking on an object (represented by a button)
in the visual MRG activates the associated hyperlink. In
case the destination of the link is of the form “#objid”, the
“jump” operation of the presentation scheduler will be in-
voked. Note that the numeric IDs on the buttons are for
identification purpose only; they are assigned by HPAS
dynamically. The presentation window corresponding to
the visual MRG is shown in Figure 5.

The current browser/Java-based implementation con-
sists of less than 10,000 lines of Java code, while the origi-
nal Unix/C-based implementation has around 30,000 lines
of C/C++ code. Why is there such a big difference? First,
we are now reusing existing software as media handlers;
second, Java provides many useful utilities, such as Vector
and Hashtable, which saved us from rewriting them from
scratch.

8 Conclusions and future work

In the past two and a half years we have been working
on the HPAS project to support the composition and pre-
sentation of time-based hypermedia documents. The cur-
rent implementation provides services for integrating and
reusing pluggable components such as Java applets and
browser plugins. Hypermedia objects presented by those
software components are synchronized both temporally
and spatially during the authoring and presentation stages
of HSL documents.

The system is well suited for presenting dynamic
and interactive information on the web, such as prod-
uct/service advertisements, self-guided course work, etc.

Currently, the authoring tool is still based on Unix/C.
Therefore, one immediate goal is to rewrite it as a stan-
dalone Java application. The upcoming W3C standard
SMML [19] addresses many similar issues in hypermedia
synchronization; therefore, a converter has been planed
to present SMML documents in the HPAS environment.
Since SMML and HSL use different temporal models, it
is likely that some features will be missing after the con-
version.

9 Acknowledgment

I am in debt to Monika Henzinger, for her suggestion on
graph transformation (from MRG to TVG), and to Yuan
Yu, for the tireless discussion on the temporal model. Fi-
nally, I would like to give special thanks to the reviewers
Paul McJones, Marc Najork, and Krishna Bharat for their
timely advice on the structure and content of the paper.

References

[1] J.F. Allen. Maintaining Knowledge about
Temporal Intervals.Communications of the
ACM, vol.26. no.11, pp. 832-843, November
1983.

[2] T. Berners-Lee, L. Masinter, and M. Mc-
Cahill. Uniform Resource Locators (URL),
RFC1738. December1994.

[3] G. Blakowski and R. Steinmetz. A Media
Synchronization Survey: Reference Model,
Specification, and Case Studies.IEEE Jour-
nal on Selected Areas in Communications,
vol.14, no.1, pp. 5-35, January 1996.

[4] N. Borenstein and N. Freed. MIME (Multi-
purpose Internet Mail Extensions), RFC1341.
June 1992.

[5] M.C. Buchanan and P.T. Zellweger. Auto-
matic Temporal Layout Mechanisms.Pro-
ceedings of ACM Multimedia’93, pp. 341-
350, August 1993.

[6] K.S Candan, B. Prabhakaran, and V.S. Sub-
rahmanian. CHIMP: A Framework for Sup-
porting Distributed Multimedia Document
Authoring and Presentation.Proceedings of
ACM Multimedia’96, pp. 329-340, November
1996.

[7] L. Hardman, G. van Rossum, and D.C.A.
Bulterman. Structured Multimedia Author-
ing. Proceedings of ACM Multimedia’93, pp.
283-289, August 1993.

[8] L. Hardman, D.C.A. Bulterman, and G.
van Rossum. The Amsterdam Hypermedia
Model.Communications of the ACM, vol.37.
no.2, pp. 50-62, February 1994.

[9] M. Jourdan, N. Layaida, and L. Sabry-Ismail.
Time Representation and Management in

11

MADEUS: an Authoring Environment for
Multimedia Documents.Proceedings of Mul-
timedia Computing and Networking 1997, pp.
68-79, February 1997.

[10] C. Keramane and A. Duda. Interval Expres-
sions - a Functional Model for Interactive
Dynamic MultimediaPresentations.Proceed-
ings of IEEE ICMCS’96, pp. 283-286, June
1996.

[11] M.Y. Kim and J. Song. Multimedia Doc-
uments with Elastic Time.Proceedings of
ACM Multimedia’93, pp. 143-154, August
1993.

[12] N. Layaida and L. Sabry-Ismail. Maintaining
Temporal Consistency of Multimedia Docu-
ments Using Constraint Networks.Proceed-
ings of Multimedia Computing and Network-
ing 1996, pp. 124-135, January 1996.

[13] T.D.C. Little and A. Ghafoor. Synchroniza-
tion and Storage Models for Multimedia Ob-
jects. IEEE Journal on Selected Areas in
Communications, vol.8, no.3, pp. 413-427,
April 1990.

[14] G. van Rossum, J. Jansen, K.S. Mullender,
D.C.A. Bulterman. CMIFed: A Presentation
Environment for Portable Hypermedia Docu-
ments.Proceedings of ACM Multimedia’93,
pp. 183-188, August 1993.

[15] J. Schnepf, J.A. Konstan, and D.H.C. Du. Do-
ing FLIPS: FLexible Interactive Presentation
Synchronization.IEEE Journal on Selected
Areas in Communications, vol.14, no.1, pp.
114-125, January 1996.

[16] B. Travis and D. Waldt.The SGML Imple-
mentation Guide. Springer-Verlag, 1995.

[17] T. Wahl and K. Rothermel. Representing
Time in Multimedia Systems.Proceedings of
IEEE ICMCS’94, pp. 538-543, May 1994.

[18] J. Yu and Y. Xiang. Hypermedia Presenta-
tion and Authoring System.Proceedings of
the 6th International WWW Conference, pp.
153-164, April 1997.

[19] W3C SYMM Working Group. Synchronized
Multimedia Language (SMML).
http://www.w3.org/TR/WD-smile.

[20] Intel Media for Java.
http://www.intel.com/ial/jmedia/.

[21] RealPlayer 4.0.
http://www.real.com/products/player/.

12

