SRC Technical Note
1997 -025
October 27, 1997

Recursive object types in a logic of
object-oriented programs

K. Rustan M. Leino

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright®©Digital Equipment Corporation 1997. All rights reserved

Abstract

This paper formalizes a small object-oriented programming notation. The no-
tation features imperative commands where objects can be shared (aliased), and is
rich enough to allow subtypes and recursive object types. The syntax, type check-
ing rules, axiomatic semantics, and operational semantics of the notation are given.
A soundness theorem, showing the consistency between the axiomatic and opera-
tional semantics is stated and proved. A simple corollary of the soundness theorem
demonstrates the soundness of the type system. Because of the way types, fields,
and methods are declared, no extra effort is required to handle recursive object

types.

O Introduction

It is well known that C.A.R. Hoare’s logic of the basic commands of imperative, pro-
cedural languages [8] has been useful in understanding imperative languages. Object-
oriented programming languages being all the rage, one is surprised that the literature
has not produced a corresponding logic for modern object-oriented programs. The con-
trol structures of object-oriented programs are similar to those treated by Hoare, but
the data structures of object-oriented programs are more complicated, mainly because
objects are (possibly shared) references to data fields.

This paper presents a logic for an object-oriented programming notation. In an early
attempt at such a logic, Leavens gave an axiomatic semantics for an object-oriented
language [10]. However, the language he used differs from popular object-oriented lan-
guages in that it is functional rather than imperative, so the values of the fields of objects
cannot be changed. America and de Boer have given a logic for the parallel language
POOL [3]. This logic applies to imperative programs with object sharing (sometimes
called aliasing), but without subtyping and method overriding. In a logic that | will refer
to as logic AL, Abadi and | defined an axiomatic semantics for an imperative, object-
oriented language with object sharing [1], but it does not permit recursive object types.
The present logic deals with imperative features, subtyping, and recursive object types.

The literature has paid much attention to the type systems of object-oriented lan-
guages. Such papers tend to define some notion of types, the commands of some lan-
guage, the type rules and operational semantics for the commands, and a soundness
theorem linking the type system with the operational semantics. (Several examples of
this are found in Abadi and Cardelli's book on objects [0].) But after all that effort,
one still doesn’t know how teeasonabout the programs that can be written with the
provided commands, since no axiomatic semantics is given. In addition to giving a pro-
gramming notation and its axiomatic semantics, this paper, like the paper describing
logic AL, gives an operational semantics and a soundness theorem that links the opera-
tional semantics with the axiomatic semantics. The soundness theorem directly implies
the soundness of the type system.

A complication with type systems is that types canréeursive that is, an object
type T may contain a field of typd or a method whose return typeTs. The literature
commonly treats recursive data types by introducing some sort of fix-point operator
into the type system, good examples of which are a paper by Amadio and Cardelli on
recursive types and subtypes [2] and the book by Abadi and Cardelli. By treating types
in a dramatically different way, the present logic supports recursive object types without
the need for any special mechanism like fix-points. The inclusion of recursive object
types is the main advantage of the present logic over logic AL, which does not allow

them. Because the given soundness theorem implies the soundness of the type system,
the present work contributes also to the world of type systems.

In difference to the paper by Amadio and Cardelli, which considers unrestricted
recursive types, the type system in the present paper uses a restriction along the lines
of name matching. In particular, types are simply identifiers, and the subtype relation
is simply a given partial order among those identifiers. This is much like the classes
in Java [7] or the branded object types in Modula-3 [14]. But in contrast to languages
like Java or Modula-3, fields and methods are declared separately from types in the
language considered in this paper. (This is also done in Cecil [4] and Ecstatic [12].) Not
only does this simplify the treatment without loss of applicability to languages like Java
and Modula-3, but it also makes explicit the separation of concerns. For example, as the
logic shows, having to know all the fields of a particular object type is necessary only
for the allocation of a new object.

Furthermore, when a field or method is declared at some Typeach subtype of
T automatically acquires, anherits that field or method. Consequently, one gets be-
havioral subtyping for free, something that can also be achieved by the inheritance dis-
cipline considered by Dhara and Leavens [5]. In contrast, subtype relations frequently
found in the literature (including the subtype relation used in logic AL), involves the
fields and methods of types. In such treatments of types, one often encounters words
like “co-variant”; there will be no further occurrence of such words in this paper.

The rest of this paper is organized as follows. Section 1 relates the present logic to
some work that has influenced it. Section 2 describes the declarations that can be used in
program environments, and Section 3 describes the commands: their syntax, axiomatic
semantics, and operational semantics. Then, Section 4 states the soundness theorem,
whose proof is given in the appendix. Section 5 discusses some limitations of the logic,
and the paper concludes with a brief summary.

1 Sources of influence

My work with Abadi has inculcated the present logic with its style and machinery. The
present logic also draws from other sources with which | am quite familiar: my the-
sis [11], my work on an object logic with Nelson [13], and the Ecstatic language [12].
This section compares the features of these sources of influence with the features of the
present logic.

My thesis includes a translation of common object-oriented language constructs into
Dijkstra’sguarded commandgan imperative language whose well-known axiomatic se-
mantics is given in terms ofieakest precondition§]. My attempt at an object logic

with Nelson is also based on guarded commands, and Ecstatic is a richer object-oriented
programming language defined directly in terms of weakest preconditions. Types, fields,
and methods in these three sources are declared in roughly the same way as in the present
logic. While these sources do provide a way to reason about object-oriented programs,
they take for granted the existence of an operational semantics that implements the ax-
iomatic semantics. The present paper includes an operational semantics for the given
commands, and establishes the correctness of the operational semantics with respect to
the axiomatic semantics by proving a soundness theorem.

Like logic AL, the present logic has few and simple commands. Each command in
logic AL operates on an object store and produces a value placed in a special register
called r. In the present logic, commands are allowed to refer to the initial value of
that register, which simplifies many of the rules. (It also makes the commands “cute”.)
Another difference is that the present logic splits logic Alé&s command into two
commands: sequential composition and binding. The separation works well because
the initial value of register can be used. Perhaps surprisingly, another consequence
of using the initial value ofr is that the present logic manages fine without Abadi and
Cardelli's ¢ binder that appears in logic AL to bind a method’s self parameter.

2 Environments

This section starts defining the logic by describing program environments and the dec-
larations that a program environment can contain.

A program environmenis a list of declarations. A declaration introduces a type, a
field, or a method.

An identifier is said to be declared in an environment if it is introduced by a type,
field, or method declaration in the environment, or if it is one of the built-in types. |
write X € E to denote that identifiex is not declared in environmeitt .

The judgementE + ¢ says thatE is a well-formed environment. The empty list,
written ¢, is a valid environment.

Empty environment

Do

The next three subsections describe types, fields, and methods, and give the remaining
rules for well-formed environments.

2.0 Types

A typeis an identifier. There are two built-in typeBpoleanand Object. (Other types,

like integers, can easily be added, but | omit them for brevity.) Types otherBbatean

are calledobject typesA new object type is introduced bysabtyping paiy which has

the form T<:U, where T is identifier that names the new type, ahidis an object
type. Like in Java,Object denotes the root of the class hierarchy. The analogue of a
subtyping pairT <:U in Java is a clas§ declared as a subclass of a cla$s

class T extends Y ... }

A type is said to be declared in an environment if iBeolean Object, or if it oc-
curs as the first component of a subtyping pair. To express this formally, the judgement
E Fype T says thatT is a type in environmenE, and the judgemenE oy T says
that T is an object type irE. The rules for these judgements are as follows. Here and
throughout this paper, | usé and U , possibly subscripted, to denote types.

Types in environments

EboyU T¢E
(E,T<:U) - o

Declared types (Fiype, Fobj)

EFo (E,T<UE)Fo
E Fopj Object (EET<U,E)bFoy T

EFo E l_obj T
E Fype Boolean EFype T

The reflexive, transitive closure of the subtyping pairs forms a partial order called
the subtyping order The judgemenE + T <: U says thatT and U are types inE
that are ordered by the subtyping order. Typas then said to be subtypeof U . The
rules are:

Subtyping order (- <:)

E FypeT (E,T<:U,E)Fo
EFT<T (ET<UE)FT<:U

EI—T0<:T1 EI—T1<:T2
EFTy<:Ts

2.1 Fields

A field is a map from an object type to another type. A field f is introduced byld
triple, written f: T — U, where f is the identifier that names the field,is an object
type called thendex typeof f, and U is atype called theange typeof f. The analogue
of afield triple f:T — U in Java is an instance variable f of typk declared in a class
T:

classT{ ... Uf; ...}

An environment can contain field triples. A field f is said to be declared in an
environmentE if it occurs in some field triple fT — U in E. This is expressed by
the judgement Hieq f: T — U . The rules for these judgements are as follows. Here
and throughout, | use f, possibly subscripted, to denote field names.

Fields in environments
ELT-UFo

Declared fields (i)

(EFT— UE)Fo
(E,f:T — U,E/) |—ﬁe|d f:T— U

For a typeTy declared in an environmertf, theset of fields of § in E, written
Fields(To, E) , is the set of all field triples fT — U such thatE Feq f: T — U and
EFTo<:T.

2.2 Methods and relations

A method quadrupléas the form mT — U : R, where m is an identifier denoting a
method T is an object typel is atype, andR is arelation. The analogue of a method
quadruple mT — U : R in Java is a method m with return typé declared in a class
T and given a specificatioR:

classT{...UmO){...} ...}

Note that the Java language does not have a place to write down the specification of a
method. In the present language, the declaration of a method includes a specification,
which specifies the effect of the method as a relation on the pre- and post-state of each
method invocation. Note also that methods take no parameters (other than the object

on which the method is invoked, an object commonly referred te#y This simpli-
fies the logic without losing theoretical expressiveness, since parameters can be passed
through fields.

An environment can contain method quadruples. A method m is said to be declared
in an environment if it occurs in some method quadruple M= U : R in E. This
is expressed by the judgemeBt FmemogM: T — U : R. Formally, the rules are as
follows. I use m, possibly subscripted, to denote methods.

Methods in environments

EmMT—->U:RFo

Declared methods (Fmethod)

EmMT—-U:RE)Fo
(E,m:T — U:RFE) Fhethodm: T — U R

The judgementE, ¥ . R, which will be described in more detail in Section 3.1,
essentially says thaR is a relation that may mention fields declaredinbut doesn’t
mention any local program variables.

For atypeT, declared in an environmelii, theset of methods of gTin E, written
MethodsT, E) , is the set of all method quadruples T U : R such thatE Fmethoqg
mT—-U:RandE+Ty<: T.

| now describe relations in more detail.rélationis an untyped first-order formula,
made up only of:

e the constantgalse, true, andnil;

e constants for field names, and the special field alloc;

e the special variables, f, o, 7;

e other variables (I will writev to denote a typical variable);
e equality between terms;

e applications of the functionselectand store;

e the usual logical connectives, A ,andV.

The grammar for relations is thus:

R = g=¢6 | R|RRAR | (VX R)
e ;= false| true | nil | f

| Tl F|o |6 |V

| selectey, 1, &) | store(ep, €1, €, €3)

It will be convenient to also allows, v , = , « , = ,and3 as the usual
abbreviations of the operators above.

The semantics of a command (program statement) is defined in terms of a relation
on aregisterand a(data) store together called atate The variables andf denote the
register in the pre- and post-states of the command, respectivelyy aaml 6 denote
the store in those respective states. The value of a field f for an obj@tta store
o is denotedselecto, e, f) . The expressiorstorgo, e, f, €1) represents the store that
results from setting the f field of objee} in storeo to the valuee; . The relationship
betweenselectand store is defined as follows.

(Vo, ey, e fo,f1,e i
selectstorgo, ey, fo, €), &, fo) =€ A
(o#e Vvi#f =
selectstorgo, ey, fo, ©), €1, f1) = selecto, e, 1)))

(0)

The special field alloc is used to record which objects in the data store have been allo-
cated; the alloc field of an object false until the object is allocated, and tsue from
there on. The valuefalse and true are distinct:

false=# true) ()

Formulas (0) and (1) are axioms that can be used in rewriting logical expressions, as we
shall see later.

3 Commands

This section describes commands: their syntax, their axiomatic semantics, and their
operational semantics.

3.0 Syntax
A commandhas a form dictated by the following grammar.
a = ¢ constant
| v local variable
| ag < ag conditional
| ap; & composition
| withv.:T doa binding
| [T:fi=c's', m =3g!¥] object construction
| f field selection
| fi=v field update
| m method invocation
c = false| true | nil

Informally, the semantics of the language is as follows. (Recall from the previous
section that commands operate on a register and a store.)

e The constantdalse, true, and nil evaluate to themselves. That is, they have the
effect of setting the register to themselves.

e A local variable is an identifier introduced via a binding command. Every local
variable is immutable: once bound (usimgth, see below), the value of a local
variable cannot be changed. A local variable evaluates to its value.

e The conditional command evaluateg if the register is initiallyfalse, and eval-
uatesa; is the register is initiallytrue. Note that the guard of the conditional
is not shown explicitly in the command; rather, the initial value of the register is
used as the guard.

e The sequential composition @ and a; first evaluates, and then evaluates; .
The final values of the register and store in the evaluatiopoére used as the
initial values of the register and store in the evaluatiompf Composition is usu-
ally written ap ; a;, but to keep the language looking like popular object-oriented
languages, | also allow the alternative syntax a; (see examples below).

e The binding commanavith v.: T do aintroduces a local variable for use ina.
Its evaluation consists in evaluatirg with v bound to the initial value of the
register.

e The command T: fi = ¢ '¢', m = a!¥’] constructs a new object of typ€,
and sets the register to (a reference to the fields and methods of) the object. The
command must list every field from the set of fields ofT . The initial value
for field f; is the given constant;. The command must also list every method
m from the set of methods of . The implementation of method; rfor the new
object is given as the commargl, which receives self as the initial value of the
register and returns the method result value as the final value of the register. The
commanda cannot reference local variables other than those it declares.

e A field can be selected (f) and updated & v). Both operate on the object
referenced by the initial value of the register. Selection sets the register to the f
field of the object. Update sets the f field of the object to the value,déaving
the register unchanged.

e The method invocation m finds the implementation of method m for the object
referenced by the initial value of the register, and then proceeds to evaluate that
implementation. The evaluation of the implementation begins with the initial reg-
ister and store values of the invocation, and the invocation ends with the final
register and store values of the evaluation of the implementation. Other than the
initial and final register values (which encode self and the result value, respec-
tively), a method does not have explicit parameters; instead, parameters can be
passed via the fields of the object.

Here are some examples that compare the present commands with programs written
in other languages. The Modula-3 program stateniebtthen S else T ends written
as the command

b; (T<9

The Modula-3 expressionew(T, f := true).f, where T is an object type with one field
f and no methods, is written as the command

[T:f=trug; f ,

or with the alternative syntax for composition, the command is written
[T:f=true.f

The Modula-3 progranx.f := true is written

true; with v. Booleando X :=v

As an example of object sharing, the command
[T: f=c]; withv.T dowithwT do(v.f:=y; w.f)

allocates a newl' object whose f field is set t@, creates two references to the object
(v andw), updates the object’s f field via, and reads f back viav, returningy.

The following example shows the construction ofTa object whose method or
computes the disjunction of fields x and y:

[T: x =false y = false or = with self. T do(x; (self.y <« true))]

Note that although primitive, the programming notation is expressive enough to ad-
mit common object-oriented languages features like object construction, method invoca-
tion, and object sharing. The programming notation is kept minimal in order to simplify
the associated rules.

3.1 Axiomatic semantics

This subsection gives the axiomatic semantics of the commands. The judgement
E,VFkFa: T—U:R

says that command in command environmeniE, V) can be started in a state where
the register contents has tyfde, and terminates in a state where the register contents
has typeU . The execution ofa is such that its pre- and post-states satisfy the relation
R. The rules of the axiomatic semantics double as type checking rules, because with a
trivial R (such ast = 1), the judgement expresses what it means for comnaatalbe
well-typed.

Before giving the axiomatic semantics, some other definitions and rules pertaining
to constants, local variables, and command environments are in order.

There are three constantfalse, true, and nil. The judgemenE st C: T €X-
presses that constanthas typeT .

Type of constants

EFo EFo E l_obj T
E Fconstfalse Boolean E Fconsttrue: Boolean E FeonstNil: T

A local variable declaratiorhas the formv: T, wherev is an identifier denoting a
local variableand T is a type. Acommand environmeis a pair (E, V) , whereE is
a program environment and is a list of local variable declarations. A local variable

10

v is said to be declared in a command environmé@atV) if it occurs in some local
variable declarationv: T in V. This is expressed by the judgemeatV 4 Vi T.
Thus, in a command environmerE, V), E contains declarations of types, fields, and
methods, wherea¥ contains declarations of local variables. This separation allows a
simple characterization of a command environment without local variable declarations:
(E, ¥) . We saw this in the “Methods in environments” rule in Section 2.2, and we will
see it in the “Object construction” rule below and in Theorems 0, 1, and 2 in Section 4.
The judgement

E, V l_re| R

says thatR is a relation whose free variables are fields or local variables declared in
(E, V), or are among the special fields and variables allo¢ f, 6, and 6. The
obvious formal rules for this judgement are omitted. Thus, the judgerBentt R
used in the hypothesis of the “Methods in environments” rule in Section 2.2 implies that
R does not mention local variables.

| write x € (E, V) to denote that identifiek is not declared in command environ-
ment (E, V) . The formal rules of the above are then:

Well-formed command environment
Elo EVFo v (EV) EFype T
E,0Fo E,(V,vT)Fo

Declared local variables
E,\V,v.T,V) ko
E, V,vT,V)Fuau V. T

Now for the rules of the axiomatic semantics. There is one rule for each command,
and one subsumption rule.

Subsumption
E, VFkFa: T1—T,: R
EFTo<: Ty EFT, <: T3 Ho R = R E,VFea R
E.VEa:To— T3: R

The judgement—, P represents provability in first-order logic, under axioms (0) and
(1) from Section 2.2.

Constant
E,V l_ & E l_constC:T El_typeU
EVFc:U—=>T:f=cAoc=0

Local variable
E,V l_var VT El_typeU
EVEFv:U=>T:f=vVAoc =0

Conditional

E,VF a :Boolean— T: Ry
E,VIFa :Boolean— T: R

E,VFay< a :Boolean— T: (f =false = Ry A (I =true = Ry)

Composition

E,Vl‘&oZTo—)Tl:Ro
E.VkEa :T1i—>T: Ry
f ands do not occur free iRy or Ry

E.Vkay; a1:To— To: (3F,0 1 Ry[f,0 :=F,6] ARy[f,o0 :=F,5])

Binding
E,(V,vTFa: T—-U:R
E,VEwithv.Tdoa: T — U:RVv:=1]

Object construction

EVFo EbyeU EboyT
fi: T; — U, '€ are the elements ¢fieldS(T, E)
m: T, — U : R are the elements dflethodsT, E)
E Fconst Gt U i€l EdFa:T—>U: RjEJ
EVHI[T:fi=¢'®, m=3g/9:U—>T:

f £ nil A selecto, f, alloc) = false A

¢ = storg- - - (storg(o, ¥, alloc, true), f,f;, ¢) '€

Field selection
E.VEo El—ﬁe|df:T—>U
EVEf:T—>U:t #nil = f=selecto,i,f) Ao =0

Field update

E |—ﬁe|d f: To — Uo EF Tl <. To
E,V Fyar ViU EF U; <:Ug

EVEf:=v:Ti > Tt #nil = t=f Aé =storgo, T, f, V)

12

Method invocation
EVEmM:T—>U:r#nl =R

3.2 Operational semantics
The operational semantics is defined by the judgement
r,o,u,Ska~r', o',

It says that given an initiaperational state(r, o, 1) andstack S executing command
a terminates in operational state’, o', ') . Operational states are triples whose first
two components correspond to the register and data store components of states, as de-
fined above. The third component iseethod storeTo define stacks and method stores,
| first give some definitions.

For a partial functionf from A to B, a € A, andb € B, | write f.(a— b) to
denote the function that is like except possibly at, which it maps tob. A function
f’ is called arextensiorof a functionf , written f < ", if dom(f) € dom(f’) and, for
every a € domf), f(a) =f’'(a). Whena € A'® are distinct ando; € B'€', | write
(a +— b; '€ for the partial function fromA to B that mapsa; to b; for i € | andis
otherwise undefined. The partial function whose domain is empty is wiitten

Let H denote a set of giveobject namesl assumeH N {false true, nil} = #. A
stackis a partial function from local variables tH U {false true, nil} . A method store
is a partial functionu from # , such that

e u(h)(type is the allocated type of objedt, and
e u(h)y(m), if defined, is the implementation of method m of objéct

A store pairis a pair (o, u) whereo is a data store angt is a method store.

In addition to keeping the method implementations of objects, the method store
keeps the allocated type of objects. The operational semantics records this informa-
tion as it allocates a new object, but doesn’t use it subsequently. The information is used
only to state and prove the soundness theorem. By conveniently recording this informa-
tion in the operational semantics, where it causes no harm, one avoids the isteref a
type(cf. [1]). The result is a simpler statement and proof of soundness.

The rest of this subsection gives the rules of the operational semantics.

Constant

r,o,iu,SkHc~c,o,u

Local variable
r'=3(v)

ro,u,SEv~1,o,u

Conditional
falsg o, u, Skag~r',o’, i true,o, u,SkHa;~r',o’, u

falsgo, u,Skagwa,~r,o’, true,o, u, SFawa~r,o’, 1w

Composition

r,o,u,Skag~r,o’, u r'yo',u',Ska;~ 1", 0", u”
ro,u,Skag; ag~r’,0", u

Binding
rho,u,S(Ve=rykFa~r,o',u
r,o,u,SEwithv.Tdoa~ 1,0, u

Object construction

he#H selecto, h, alloc) = false

o’ = storg- - - (storg(o, h, alloc, true), h, f;, ¢;) '€
W =p.(h— (type— T, m — g ')
ro,u, SE[T: fi=c'e, m=3agi<¥~ ho’,

Field selection

reH r' = selecto,r, f)
ro,u,Skf~r,o,u

Field update

reH o' = storgo, 1, f, (V)
ro,u,SkEf:=v~r,o’,u

Method invocation

reH a=upum(m roudFa~r,o, W
ro,u,SEm~sr.,o', 1

13

14

4 Soundness

This section states a soundness theorem, which proves the correctness of the operational
semantics with respect to the axiomatic semantics. | first motivate the soundness the-
orem, and then state it together with an informal explanation. The appendix provides
some additional formal definitions and gives the proof.

As a gentle step in presenting the full soundness theorem, consider the following
theorem.

Theorem 0. If one can derive botte, ¥ + a : Object— Boolean: f = true and
nil, oo, ¥, =a~»r, o, u, thenr = true.

Here and in the next two theoremsg, denotes a data store that satisfies
(Vh e H :: selectoy, h, alloc) = false)

The theorem says that if in an environménibne can prove that a commamdsatisfies
the transition relationf = true, then any terminating execution of commaadrom a
“reset” state ends with a register valuetadie.

A simple theorem about the result type of a command is the following.

Theorem 1. If one can deriveE, ¥ - a : Object - T : R and E ko, T and
nil, oo, ¥, 4 +a~»r, o, u, thenthe valug has typeT , that is, eithemr = nil or
EF u(r)(type <: T.

This theorem says that if one can prove, using the axiomatic semantics, that a command
a has final typeT , whereT is an object type, and one can show that, operationally, the
program terminates with a register valueragfthenr is a value of typeT (thatis, itis
nil or its allocated type is a subtype 0f). This theorem shows the soundness of the
type system'’s treatment of object types.

An interesting theorem that says something about the final object store of a program
is the following.

Theorem 2. If one can derive bottE, ¥ - a : Object— T : R and nil, 09, 4, ¥ +
a~r,o,u,thenR[t,o,f,d :=nil, og,r, o] holds as a first-order predicate.

This theorem says that if one can prove the two judgements abptiten relationR
actually describes the relation between the initial and final states.

To prove the theorems above, one needs to prove something stronger. | call the
stronger theorem, of which the theorems above are corollaries, the main theorem. The
theorem is stated as follows.

15

Main Theorem. If
(2 E.VFEFa: T—-U:R , and
3) ro,u,Ska~r,o’,u , and
(4) E,ooulFr:T , and
(5) ElFo,u , and
(6) E,V,o,ulFS ,
then

(7 r,o,r',o’,SIFR , and

(8 (o,) < (o', 1) , and

9 E,o/,u/IFr U , and

(10 ElFo’,

In the antecedent of this theorem, (2) and (3) express the judgements that have been
derived for some command. One can hope to say something interesting in the con-
clusion of the theorem only if the execution under consideration is from a “reasonable”
state (r, o, u) and uses a “reasonable” staBk Therefore, judgement (4) states that
is a value of typeT , judgement (5) says that store p&r,) matcheshe environment
E, and judgement (6) says th&tis awell-typed stack

In the conclusion of the theorem, (7) expresses fRatloes indeed describe the
relation between the initial and final states of the execution, and (9) expresses that
has typeU . In addition, to use the theorem as a sulfficiently strong induction hypothesis
in the proof, (8) says thafo, 1) is continued by(o’, ') . This property expresses a
kind of monotonicity that holds between two store pairs, the first of which precedes the
other in some execution. Also, judgement (10) says thatu') , like the initial store
pair, matches the environment.

By removing (7) from the conclusion of the main theorem, one gets a corollary that
expresses that the type system is sound with respect to the operational semantics. Such
a corollary follows directly from the main theorem, but could also be proved directly in
the same way that | prove the main theorem in the appendix.

5 Limitations of the logic

In this section, | discuss some limitations of the logic.

The object construction command is rather awkward. Because it lists method imple-
mentations, a method cannot directly construct objects whose type and method imple-
mentations are the same as for self. Instead, one can declare object types representing

16

classes, as is done, for example, by Abadi and Cardelli [0]. As an example, consider
an object typeSeq representing sequences of elements as a linked lisketfhas a
method extend that appends a node to the end of the linked list, then one cannot write:

[Seq ...,
extend= with self. Seq do... [Seq ...] ...
1 .

because the inner object construction command must textually contain whatever the
outer one does. Rather, what works is to introduce an object 8ggClasswith a
method new that returns a new instance of tyge, and add a field class teqg One

can then write:

[SeqClassnew= with selfclassSeqClass do
[Seq class=nil, ...,
extend= with self. Seq do. .. self.classnew...
].class = selfclass
].new

One can consider modifying the present logic to remove the limitation from the ob-
ject construction command. For example, like in common class-based object-oriented
languages, one can extend the program environment to include method implementa-
tions. One must then have a “link-time” check that ensures that every method that
may be called by the program at run-time has an implementation. Or, like in common
object-based languages, one can add a construct for cloning objects or their method
implementations.

Another omission from the present logic is the ability to directly test whether or not
a field is nil . To work around this omission, one can introduce a boolean field fIsNil
for each object-valued field f, and then program so as to maintain the invariant

fIsNil = true = f =nil

Alternatively, a straightforward change in the logic would add a command that tests for
nil, or add more general expression commands.

A logic of programs provides a connection between programs and their specifica-
tions. In the present logic, method declarations contain specifications that are given
simply as transition relations. Transition relations are not practically suited for writing
down method specifications, because they are painfully explicit. Specification features
like modifies clauses and abstract fields would remedy the situation, but lie outside the
scope of this paper. To mention some work in this area, Lano and Haughton [9] have

17

surveyed object-oriented specifications, and my thesis [11] shows how to deal with mod-
ifies clauses and data abstraction in modular, object-oriented programs. The logic for
POOL [3] includes some specification features that can be used to state properties of
recursive data structures.

6 Summary

| have presented a sound logic for object-oriented programs whose commands are im-
perative and whose objects are references to data fields. The programming notation
requires that types, fields, and methods be declared in the environment before they can
be used in a program. The main contributions of the paper are the logic itself, the sound-
ness theorem, and the way that types are handled, which makes the subtype relation and
the admission of recursive object types trivial.

Acknowledgements

| am grateful to Mamth Abadi, Luca Cardelli, Greg Nelson, and Raymie Stata for helpful
comments on the logic and the presentation thereof.

18

A Proof of the main soundness theorem

A.0 Definitions

This subsection gives the definitions of the judgements used in the soundness theorem.

Definition of holds. Judgement, o,1r’',¢’, SIF R says thatR is a relation that,
when interpreted using, o, ', ¢’, and S, is a provable first-order formula. The
judgement is defined aisi, R[t,0,f, 6 :=r1,0,r',0'][§, where [§ denotes the fol-
lowing substitution: for everyv € domS), every free occurrence of variabke is
replaced by the result of the function applicati®&wv) . | assume throughout that the
domain of S does not contain values frori. U {false true, nil} (which I will denote
h, c, or r, possibly primed), field names (like f or alloc), nor data stores (which I will
denoteo , possibly primed).

For example, to derive, o,r',0’, S IF selects,t,f) = v, wherev € dom9),
one must establisky, selecto’,r,f) = x, where Sv) = x (I will often write simply
Ho Selecto’, r,f) = S(v)). Here, | assumed that none of, r, or f is in the domain
of S.

Definition of <. A store pair (o, 1) is said to becontinued bya store pair
(o', 1), written (o, u) < (o’, u'), when

CO for everyh € H, selecto, h, alloc) = true = selecto’, h, alloc) = true, and
Cl p=<u

Condition CO says that any object allocatetbinremains allocated i’ , and C1 says
that ©' contains the same type information and method implementations dses
for those objects irdom(w) , but ' may also contain information about objects not in

dom(u) .
Note that< is reflexive and transitive.

Definition of has-type. For any environmeng, store pair(o, 1), valuer, and
type T, the judgement

Eooulbr:T
says thatT is a type inE and thatr is allocated and has typ& in (o, x). The
judgement is derived using the following rules:

E l_const C T

HO
E,ooulkc:T

19

Eloy T selecto, r, alloc) = true u(r)(type) =T
E,ooulFr:T
E,ooul-r:uU EFU<:T
E,ooulFr:T

H1

H2

Note that the judgemerE, o, i IF r : T is monotonic in(o, 1) with respect to the
=< ordering: fromE,o,u IFr : T and (o, n) < (o', '), it follows that E, o/, " I
r : T. The judgement is also monotonic ih with respect to the<: ordering: from
E,o,ulFr: TandEFT <: U, itfollowsthatE, o, u -1 :U.

Observe that any derivation &, o, u I r : T consists of exactly one application
of HO or H1, followed by some number of applications of H2. For any object type
rule H1 (not HO) is applied whemn € H, since H does not contaimil . We arrive at
the following lemma, which will show to be useful in the proof:

Lemma about has-typéf E oy T, E;o,n IF 1 2 T, andr € H, then
selecto, r, alloc) = true and E + w(r)(type) <: T.

Definition of matching. For any environmenE and store pailo, 1) , the judge-
ment E I+ o, u says that(o, ©) matchesnvironmentE. The matching judgement
holds when all of the following hold:

MO for everyh € H, selecto, h,alloc) =true = h e domu)
M1 for everyh e dom(u), w(h)(type is defined

M2 forall h, f, T, U, such thath € H, selecto, h, alloc) = true, and f.T — U €
Fields(u(h)(type), E) ,

E, o, u IF selecto, h,f) : U

M3 forall h, m, T, U, R, such thath € H, selecto, h, alloc) = true, and mT —
U : R € Methodsu(h)(type), E),

E0Fubhy(m: T—-U:R
Rule MO states that the objects allocateinare the objects about whicha contains

information, and M1 states that contains type information for each of those objects.
Rule M2 says that every declared field of an allocated object has the appropriate type.

20

Rule M3 says that every declared method of an allocated object has an implementation
in u that satisfies the declared method specification.

Definition of well-typed stack. The definition of a well-typed stack uses a func-
tion ids. For V a list of local variable declarations (like T), ids(V) denotes the set
of identifiers (that is,v) of those declarations.

For any environmentE, V), store pair(o, 1), and stackS, the judgementg, V,

o, u IF S says thatS is well-typedwith respect toV . The judgement holds when

SO0 domS) = ids(V), and
S1 E,o, n IF Sv) : T holds for everyv: T pairin V.

Note that, because has-type is monotoni¢anu) , so is the well-typed stack judge-
ment.

A.1 Proof

This subsection gives the proof of the main soundness theorem. The proof is by in-
duction on the lexicographic paid, e) , whered is the derivation of the operational-
semantics judgement about commaagdand e is the axiomatic-semantics derivation

of the judgement abowd. The proof is a case study of the last rule applied in derivation
e.

Subsumption. We're given

E VFka:Tp— T3:R ro,u,Ska~r,o’, u
E,o,ulbr:Ty ElFo,u E,V,o,ulFS

Since this case considers subsumption, we are given that the first of these formulas has
been derived from

E.VFkFa: T1—T,:R
EFTo<: Ty EFT, <: T3 Ho R = R E,VFea R

We attempt to invoke the induction hypothesis withU, R := T;, T, R. To do so, we
must first establish

E,ooulbr:T; ,

which follows fromE, o, u Ik r : To, EF Tp <: Ty, and the monotonicity of has-type.
By the induction hypothesis, we then have

r,o,r',o/,SIFR (o,) X (o', 1) E,o',ulFr T, ElFo’, 1 .

21

Now for our proof obligations:

e r,o,r',0/,SIF R. Follows fromr,o,r',6’,SIF R, g R = R, and the
monotonicity of holds.

e (o,1) < (o',). Follows directly from induction hypothesis.

e E,o/, i IF 1 : T3. Follows fromE,o’,u/ IF 1" : T,, E+ T, <: Tz, and the
monotonicity of has-type.

e E o', i . Follows directly from induction hypothesis.

Constant. In this case and all remaining cases, the axiomatic semantics rule consid-
ered in the case determines the shape of the command, which in turn determines which
kind of operational semantics rule has been applied.

We're given

EEVEFc:U—->T:f=cAo=0 r,o,iu,SkHc~c,o,u
E,o,ulFr:uU ElFo,u E,V,o,ulFS ,

derived from
E.VEo E FeonstC: T EFype U
We prove:
° r,o,c,o,SIFf=c A o=c¢

= { definition of holds }

N

Ho (f =C A 0 =06)[l,0,f,6 :=r1,0,C0][Y
= { substitution }
FHoiC=C A 0 =0)

which is a tautology.
o (o,) < (o,n). < isreflexive.

e E,o,ul-c:T. Follows fromE FconstC: T and HO of the definition of has-type.

e ElFo, . Given.

22

Local variable. We're given

EVEFv:U=>T:f=vVAoc =0

ro,iu,SEv~r1,o,u
E,o,ulFr:uU ElFo,u

E,V,o,ulFS ,

where the axiomatic-semantics judgement has been derived from

E, V l_var V T E l_type U

and the operational-semantics judgement has been derived from

"= SVv)
We prove:
° r,o,r',o,SlkFf=vAo=0¢
= { definition of holds }
Ho (F =V A 0 =0)[t,0,f,0 :=r1,0,1',0][Y

= { substitution }
FHoI'=SV) A o0 =0

which follows fromr’ = S(v).

o (o,) < (o,n). < isreflexive.

e E,o,ulFr" :T. Follows fromr = Sv), E,V ky V: T, and the definition of
E,V,o,ulFS.

e ElFo, . Given.

Conditional. There are two subcases, because the operational-semantics judgement

can be derived from one of two rules. | show the proof for talse-rule; thetrue-rule
is similar. We're given

E,VFay< a :Boolean— T: (f =false = Ry A (I =true = Ry)
falsgo, u,Skagwa,~ 1,0, i

E, o, 1 I false: Boolean BF o, u E,V,o,ulFS

9

derived from

E,VIF a:Boolean— T: Ry E,VIFa :Boolean— T:R;

23

and
falsg o, u, SFag~r',o’, 1
By the induction hypothesis applied &g, we have:

false o, ', 0',SIF Ry (o,) < (o, 1)
E,o',ul-r:T ElFo’, i

We prove:

° falsg o,r’,0’,SIF (t =false = R) A (t =true = R))
= { definition of holds }
Ho (T =false = Ry) A (f =true = Ry))
[t,0,f,0 :=falseo,r',o'][Y
= { substitution }
Ho (false=false = Ry[f,o0,f, 0 :=falseo,r',d'][§) A
(false=true = Ry[t,o0,f,0 :=falseo,r',o'][F)
= { propositional calculus, using axiom (1false## true
Hol Ro[f,0,f,0 :=falseo,r',o'][Y
= { definition of holds }
false o,r',0’,SIF Ry ,

which comes directly from the induction hypothesis.

—

e (o,1) =< (o,). Directly from induction hypothesis.
e E, o/, k1" :T. Directly from induction hypothesis.

e EIFo’, i . Directly from induction hypothesis.

Composition. We're given

E.Vkay; a1:To— To: (3F,0 1 Ry[f,0 :=F,6] ARyff,0 :=F,5])
ro,u Ska; aa~r", 0", u
E,o,ulkr:Ty ElFo,u E,V,o,ulFS ,

derived from

E,Vl‘&oZTo—)Tl:Ro E,Vl—al:T1—>T2:R1
f ands do not occur free iRy or Ry

24

and
r,o,u,Skag~r,o’, u r'yo',u',Ska;~ 1", 0", u”
Applying the induction hypothesis oa, , we get:

r,o,r',o’,SIFRy (o,) X (o', 1)
E,o',ulFr T, ElFo’,

We wish to invoke the induction hypothesis also an. This requires that we first
establish

E.o,ulFr: T, ElFo',u E,V,o',u'IFS

The first two of these judgements come directly from the application of the induction
hypothesis onag; the third follows fromE, V, o, u IF'S, (o, n) < (o', '), and the
monotonicity of well-typed stacks. By the induction hypothesis appliea; tove now
have:

r/’ U/, r//’ U//, SH_ Rl (U/, M/) 5 (U//, M//)
Eo’,u' Ikt :T, Elo’u

Now for the proof obligations:

° r,o,t”,0”,SIF (3F,0 1 R[f,6 :=F, 0] A Ry[t,0 :==F,5])
= { definition of holds }
ol (37,0 = Ro[f,0 :=F,6] A Ryff,0 :=F,5])
[t,o0,f,0 :=r1,0,1",0"][Y
= { Iinstantiatef,c :=r', 0’, since substitution is monotoni¢
o (Ro[f, 0 :=F,6] A R[l,o :=F,c)[f,o :=1",0]
[t,o,f,0 :=r1,0,1",0"][Y
= { substitution, sincé, and R, are free off ands }
Hol Ro[f,o,f, 0 :=r1,0,r",d'][§ A Ri[l,0,f,¢:=r,0,1",¢"][Y
= { satisfiability distributes over A}
Fol Ro[f', 5’, f, o= r,o,r, O’/][S
Hol Ru[f,0,f, 0 :=1",0,1",0¢"][Y
= { definition of holds, twice }
r,o,r',o’,SIFRy
r',o',r", 0", SIFRy :

which come directly from the induction hypotheses.

25

e (o/,1) < (", ") . Follows from (o, n) < (¢/, ') and (¢’, ') < (", "),
and transitivity of <.

e E,o”, 1 IF 1" : T,. Follows directly from the induction hypothesis applied to
aj .

e ElFo”, 1. Follows directly from the induction hypothesis appliedap.

Binding. We're given

E,.VEwithvTdoa: T - U:Rv:=t]
r,o,u,SEwithv.Tdoa~ 1,0, 1
Eooulbr:T ElFo,u E,V,o,ulFS ,

derived from
E,(V,vT)rFa. T—-U:R
and
ro,u,S(Vi=>r)Fa~r o', u

We'd like to apply the induction hypothesis on commamgdransition relationR, com-
mand environmentE, (V, v: T)), and stackS.(v+ r) . In order to do so, we must first
establish

E,\V,v.T),o,ulFS(Vrr) ,

which follows fromE,V, o, u IF S, E,o, u IF (S(vi— 1))(v) : T, and the definition
of well-typed stacks, sincéS.(v — r))(v) = r and we’re givenE,o, u -1 : T.
Invoking the induction hypothesis as planned, we obtain:

ro,r',o,S(vi=rlFR (o,u) < (o', 1)
E,o',ul-r:uU ElFo’, u

Now:

° r,o,r',o’,SIFRVv:=T]
= { definition of holds }
Ho RV:=T1][t,0,f,6 :=r1,0,1,0[Y
= { v does notoccur free ilR[v:=F][f,0,F,d :=r1,0,1',0'], the
argumentto § }

Ho RV:=T1][t,0,F,6 :=r1,0,1r,0][S(V> 1]
= { substitution is weakening and monotonie
Ho R[F,0,f,0 :=r,0,I,0'][S(Vi>)]
= { definition of holds }
r,o,r',o’,S(vi>r)IFR ,

which comes directly from the induction hypothesis.
e (o,1) < (o,). Directly from induction hypothesis.
e E, o/, k1 :U. Directly from induction hypothesis.

e EIFo’, i . Directly from induction hypothesis.

Object construction. We're given

EVE[T:fi=c¢'®', m=3g1¥]:U->T:

f £ nil A selecto, f, alloc) = false A

¢ = storg- - - (storg(o, ¥, alloc, true), f,f;,) '€
ro,mu, SH[T: fi=¢'e, m = quJ] ~ h,o',
E,o,ulFr:uU ElFo,u E,V,o,ulFS ,

derived from

EVko EbyeU EboyT
fi: Ti —> U; ' are the elements fieldS(T, E)
m: T, — U, : R ¥ are the elements dflethodsT, E)
E FconstGi: U ! EdFg:T—U: Rje‘]

and

he#H selecto, h, alloc) = false _
o' = storg- - - (storgo, h, alloc, true), h, f;, ¢;) '
W = u.(h> (type> T, m > g ')

We prove:

° r,o,h,o’,SIF f #nil A selecto, ¥, alloc) = false A _
& = storg(- - - (storg(s, [, alloc, true), ¥, f;, c) '
= { definition of holds }

26

27

o (F # nil A selecto, f, alloc) = false A
6 = storg- - - (storg(s, ¥, alloc, true), f,f;, c) ')
[t,0,f,0 :==r1,0,h d'][§
= { substitution }
Ho h #£ nil A selecto, h, alloc) = false A
o’ = storg- - - (storg(o, h, alloc, true), h, f;, ¢) '€ ,

which follows directly fromnil ¢ H and the way the hypothesis is derived.

e (o,u) < (6/,). Re CO: For anyk € H, selecto, k, alloc) differs from
selecto’, k, alloc) only for k = h, and we're givenselecto, h, alloc) = false.
Re C1: To proveu < u', it suffices to showh ¢ domw), which follows from
selecto, h, alloc) = false and MO in the definition of the given judgemetl-
o, .

e E o/, IFh:T. Follows from the fact€E o, T, selecto’, h, alloc) = true,
w' (h)(type) = T, and H1 in the definition of has-type.

e EIF o/, . Follows fromE IF o, u and the following observations. Re MO:
We haveselecto’, h, alloc) = true and h € dom(i’) . Re M1: u/(h)(type is
defined. Re M2: For each appropriate We haveselecto’, h, fi) = ¢, so we
need to showk, o', 1’ IF ¢ : Ui, which follows from HO andE Fconst Gi: Uj .
Re M3: For each appropriatej mwe have n'(h)(m) = g, and we're given
EVdFa: T—U:R.

Field selection. We’'re given

EVEf:T—>U:t #nil = f=selecto,i,f) Ao =0
ro,u,Skf~r,o,u
E,ooulbr:T ElFo,u E,V,o,ulFS

derived from

E.VEo Eregf: T— U
and

reH r' = selecto,r, f)

Now:

28

° r,o,r',o,SIkt #nil = f=selecto,r,f) A 6 =¢
= { definition of holds }
o (T Z#nil = f =selecto,t,f) A 0 =0)[t,0,f,0 :=r1,0,I',0][Y
= { substitution }
Foi I #Z nil = 1’ =selecto,r,f) A 0 =0 ,

which holds because € H, nil € H, andr’ = selecto,r,) .
o (o,) < (o,n). < isreflexive.

e E,o,nu IF 1 U. From the wayE teq f: T — U was derived, we have
E Foo T. Thus, fromE, o, n IFr : T, r € H, and the lemma about has-type,
we haveselecto, r, alloc) = true and E F n(r)(type) <: T. Thus by M2 in the
definition of the givenE IF o, 1, we haveE, o, 1 I+ selecto, r,f) : U. Since
' = selecto, r, f) , the proof obligation follows.

e ElFo, . Given.

Field update. We're given

EVEf:=v:Ti > Tt #nil = t=f A ¢ =storgo,T,f,V)
ro,u,Skf:=v~r,o',u
E,ooulbr:T; ElFo,u E,V,o,ulFS ,

derived from

El—ﬁe|d f: To — Uo E+ Tl <. To
E,VHFua ViU EFU; <:Ug

and
reH o’ = stordo, 1, f, S(v))
Now:
° r,o,r,o’,SIkt#nil = t=f A ¢ =stordo,I,f,V)

= { definition of holds }

Ho (F #nil = t =f A ¢ =storgo,T,f,v)[l,o0,F,0:=r,0,1,0'][Y
= { substitution }

o r Znill = r=r A o =stordo,r,f, YV)) ,

which follows from the way the hypothesis is derived.

29

o (o,u) < (0, n). Follows from the fact that, for alh, selecto, h, alloc) =
selecto’, h, alloc) .

e E,o/,ulFr:Ty. Follows fromE,o,u Ik r : Ty, (o,u) < (¢/,n), and the
monotonicity of has-type.

e EIF o/, u. Because ofE I o, u and the observation above that no alloc field
has changed between and o', it suffices to showk, o', u I selecto’, f, f) :
Uo, which we do by the following calculation that starts from two givens:

E,V,O—,MH—S Evl_varvul
{ definition of well-typed stack }
E,o,ulkSv) :U;

= { EI—U1<:anndH2}
E,o,ulkSVv) : U
= { (o,n) < (¢,) and monotonicity of has-type}

E,o/, ulFSv) : U
= { select/ store axiom (0) }
E, o/, u IF selectstorgo, r, f, S(v)), r,f) : Ug

= { o’ =stordo,r,f,S(v)) }
E, o/, u I selecto’,r,f) : Ug

Method invocation. We're given

EVEM:T—>U:t#nl =R rho,u,SkEm-~sr, o',
Eooulbr:T ElFo,u E,V,o,ulFS ,

derived from
E.VEo E Fmethosm: T — U I R
and
reH a= u(ry(m rouw,dra~r, o, u

We wish to apply the induction hypothesis on commandelationR, and withV, S:=
@, ¥ . This requires that we first establigh @, o, « I- @, which holds trivially, and

30

EdFHa: T—-U:R
&= { a=ur)(m),and M3 ofEl-o,u }
selecto, r, alloc) = true reH
m: T — U : R € Methods$u(r)(type), E),
= { EFmethoam: T — U : R and definition ofMethods }
selecto, r, alloc) = true reH
EF ur)(type) <: T
= { lemma about has-type}
E,O’,[LH’I’ZT El—objT ret

The first of these is given, the second follows from the vEay methoam: T — U : R iS
derived, and the third follows from the way the given operational-semantics judgement
is derived.

We now apply the induction hypothesis as planned, and get:

r,o,r',o’,0IFR (o,) < (o', 1) E,o/,u'lFr:U ElFo’, i
Now for the proof obligations:

° r,o,r',o/,SIFt #nil = R

= { definition of holds }
Ho (T #nil = R)[f,0,f,0 :=r1,0,I',0'][Y

&= { substitution is monotonic}
Fol R[I\', 5’, f, o= r,o,r, O’/][S

{ the substitution functiong is monotonic in the domain 0§ }

Hol RF,0,F,0 :=r1,0,1",0'][0]

= { definition of holds }
r,o,r',o/,0IFR ,

which comes directly from the induction hypothesis.
e (o,1) < (o,). Directly from induction hypothesis.
e E, o/, IF1 :U. Directly from induction hypothesis.
e EIFo’, i . Directly from induction hypothesis.

And that completes all cases of the proof.

31

References

[0] Martin Abadi and Luca CardelliA theory of objectsSpringer-Verlag, 1996.

[1] Martin Abadi and K. Rustan M. Leino. A logic of object-oriented programs.
In Theory and Practice of Software Development: Proceedings / TAPSOFT '97,
7th International Joint ConferenceAAP/FASE volume 1214 of_ecture Notes in
Computer Scienggages 682—696. Springer, April 1997.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive tyg&€sM Transac-
tions on Programming Languages and Systelb$4):575-631, September 1993.

[3] Pierre America and Frank de Boer. Reasoning about dynamically evolving process
structuresFormal Aspects of Computing(3):269-316, 1994.

[4] Craig Chambers. The Cecil language: Specification & rationale, version 2.1,
March 7, 1997. Available fromhttp://www.cs.washington.edu/re
search/projects/cecil/lwww/Papers/cecil-spec.html , 1997.

[5] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. Technical Report TR #95-20c, lowa State Uni-
versity, Department of Computer Science, 1997.

[6] Edsger W. Dijkstra. A Discipline of Programming Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[7] James Gosling, Bill Joy, and Guy Steel&@he JavdM Language Specification
Addison-Wesley, 1996.

[8] C. A. R. Hoare. An axiomatic basis for computer programmi@gmmunications
of the ACM 12(10):576-580,583, October 1969.

[9] Kevin Lano and Howard HaughtorObject-Oriented Specification Case Studies
Prentice Hall, New York, 1994.

[10] Gary Todd LeavensVerifying Object-Oriented Programs that Use Subtypge&isD
thesis, MIT Laboratory for Computer Science, February 1989. Available as Tech-
nical Report MIT/LCS/TR-439.

[11] K. Rustan M. Leino.Toward Reliable Modular Programd$?hD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

32

[12] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. lithe Fourth International Workshop on Founda-
tions of Object-Oriented Language3anuary 1997. Proceedings available from
http://www.cs.indiana.edu/hyplan/pierce/fool/

[13] K. Rustan M. Leino and Greg Nelson. Object-oriented guarded commands. In-
ternal manuscript KRML 50, Digital Equipment Corporation Systems Research
Center, March 1995.

[14] Greg Nelson, editorSystems Programming with Modula-Series in Innovative
Technology. Prentice-Hall, Englewood Cliffs, NJ, 1991.

