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Abstract

We give short and simple proofs of the following two theorems by Galil
and Yu [3]. Lets andt be two vertices in an-node graplG.
(1) There exisk edge-disjoint-t paths of total lengtl® (nv/k).
(2) If we additionally assume that the minimum degre&a$ at leask, then
there exisk edge-disjoins-t paths, each of lengt®(n/k).

Let G = (V, E) be an undirected-node graph, with no parallel edges, and
let s andt be two vertices o6z such that there existedge-disjoins-t paths. Our
goal is to give short proofs of the following two theorems of Galil and Yu [3].

Theorem 1 There exist k edge-disjoint s-t paths of total lengtnQ@k).

Theorem 2 If we additionally assume that the minimum degree of G is at least k,
then there exist k edge-disjoint s-t paths, each of length/®).

We view G as a directed graph by replacing each undirected edge by two op-
positely oriented directed edges. Our proof of the first theorem is based on a max-
imum flow algorithm of Even and Tarjan [2]; for our purposes, we need only con-
sider its global structure. The algorithm of [2] runs in phases numberad 1. In
phased, a residual graph is maintained as a layered directed graph: the endpoints
of each edge lie either in the same layer or in adjacent layers, and the distance from
stot is equal tod. The algorithm finds augmentirggt paths of lengttd in this
layered graph until there exist no more such paths of length at dpdbe phase
then ends.

Proof of Theorem 1. We analyze the behavior of the Even-Tarjan algorithm for
producing a flow of valud in G. We prove an upper bound on the total length

of all augmenting paths found; this also upper bounds the total length of the flow
paths. We set = 2nk—1/2, We say that an augmenting path is of type 0 if its length

is at most¢, and of type (i > 1) if its length is between'2! . ¢ and 2 - ¢. The

total length of all type 0 paths is at mdst = 2nv/k. To bound the total length of

all typei paths, fori > 1, note that at the start of phase 2. ¢ of the Even-Tarjan
algorithm, there is some pair of adjacent layers in the residual graph whose union
contains at most/(2—2 - ¢) vertices. Between this pair of layers there can be at
mostn?/(22 -2 . ¢?) edges, and hence at most this many augmenting paths can be
produced from phasé2 - ¢ onward. Thus the total length of all typgaths is at
most(n?2-2+2¢=2) . (2'¢) = 4n%¢~127" = 2n/k27', and so the total length of

all augmenting paths is at mogt2k + 2nvk Y., 27" = 4nvk. =

For the proof of the second theorem, we consider the problem of finding a set
of k edge-disjoins-t paths inG whose total length is minimum. Ld®, ..., P
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be such a set of paths; say that an eeligeaflow edgéf it is contained in somé;
and anon-flow edgetherwise. Observe that {fi, v) is a flow edge, then by the
optimality of Py, ..., Pk, (v, u) is not a flow edge. Finding edge-disjoint paths
of minimum total length is a minimum-cost flow problem; if we take its linear
programming dual, we obtain dual variablgs one for eachy € V, which are
integers with the following properties. (See e.g. [1].)

(2) If (u, v) is a flow edge, they, — y, > 1.

(2) If neither(u, v) nor (v, u) is a flow edge, thery, andy, differ by at most

1.

(3) We may assume without loss of generality that= 0, y; > 0, and for
every j in the interval [Q y;], there exists a node with y, = j. We defineX; =
{fv:y, =i}

Proof of Theorem 2. We claim that for each € [0, y; — 3], ‘U}J;?Xj‘ > %k;
the theorem will follow directly from this. By (3), there exist vertioes X1,

v € Xji2, andw € Xj, 3. Now, suppose that at moék flow paths pass through
at least two of them. At leastk3— 3 edges are incident tfu, v, w}; at most
4. Lk +2- 2k = £k of these are flow edges. Hence there are at [gast 3 non-
flow edges incident téu, v, w}; at Ieas%k —1 of these are incident to a single one
of these vertices. By (2), the endpoints of these non-flow edges@}ajﬁ(j , and

hence‘u}jxj‘ > k.
Otherwise, at Iea%k flow paths pass through at least twowpfv, w. Now, by
(1), at most one flow path can pass through ho#mdv or bothv andw; and at

most one can pass directly framto w. Thus (again by (1)), at Ieaék— 3 of these
paths must pass fromnto w via distinct vertices i, ». Hence| X 2| > %k -3,

and so agaivru}jxj‘ > ik m
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