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Abstract

In this paper, we present sparse certificates for biconnectivity together
with algorithms for updating these certificates. We thus obtain fully-dynamic
algorithms for biconnectivity in graphs that run@(,/nlognlog[ 1) amor-
tized time per operation, whemais the number of edges ands the number
of nodes in the graph. This improves upon the results in [12], in which algo-
rithms were presented running @(,/mlogn) amortized time, and solves
the open problem to find certificates to speed up biconnectivity, as stated in

[2].

1 Introduction

The field of dynamic graph algorithms has become an important field in algorith-
mic research in recent years. Currently, several results exist for incremental and
fully-dynamic graph problems, like for maintaining spanning trees, the 2-edge- or
the 2-vertex-connected components of a graph, or the planarity of a graph under
the insertions and/or deletions of edges and vertices [3, 4, 5, 7, 8, 9, 10, 11, 12, 14].

In [4, 5, 12], algorithms for maintaining minimum spanning trees and the
connectivity, 2-edge-connectivity and the 2-vertex-connectivity relations in fully-
dynamic graphs were presented that run ig/@®) or O(,/mlogn) time per oper-
ation (amortized time for 2-vertex-connectivity). (In this papes the number of
nodes andn is the number of edges.) In the meantime, in [2], the concept of cer-
tificates and sparsification trees (for definitions, see Section 2) was introduced to
speed up several fully-dynamic graph algorithms. In particular, sparse certificates
could be used for speeding up fully-dynamic algorithms for maintaining minimum
spanning trees and the connectivity and 2-edge-connectivity relations in graphs
[4, 5], to O(/n) time per operation. Basically, these sparse certificates were de-
fined in terms of (successive, minimum) spanning trees, and were maintained by
applying Fredericksons minimum spanning trees data structure [4]. The algorithm
to be speeded up was thus used on the resulting certificate for the whole graph (viz.,
in the root of the sparsification tree).

However, this approach seems not to work for certificates for biconnectiv-
ity. Like for many other problems involving-connectivity, such as designing
static, parallel, incremental, or fully-dynamic algorithms, 2-vertex-connectivity
appears to be substantially harder to deal with than 2-edge-connectivity. An ex-
ample of this can also be observed in [1], considering parallel algorithmis- for
connectivity, where sparstaticcertificates for biconnectivity are defined in terms
of breadth-first trees, whereas those for 2-edge-connectivity can consist of any kind
of spanning trees. Up to now, no efficient fully-dynamic algorithms for maintain-
ing breadth-first trees are known, and it is commonly felt that these trees are hard
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to maintain indeed. So, designing certificates for fully-dynamic biconnectivity and
thus speeding up the fully-dynamic algorithms for it is an appealing open problem
[1,2,12].

In this paper, we present new, sparse certificates for biconnectivity that can
efficiently be maintained under insertion and deletion of edges. We thus obtain
O(y/nlognlogl 1) amortized time algorithms for maintaining the biconnectivity
relation in fully-dynamic graphs, and therefore show that fully-dynamic biconnec-
tivity falls in the same (current) time complexity class as fully-dynamic 2-edge-
connectivity.

We introduce sparse certificates that are determined in a relaxed, history-dependent
way, and that thus are not defined in a more mathematical, “static” way, like in [2].

In particular, the certificates we use are not “stable”, as defined and used through-
out in [2] (see also Definition 2.1). Also, we develop extensions of the algorithms
that must be speeded up themselves [12] as well, to be able to maintain the certifi-
cates. Thus, our approach also appears to be the first combination of certificates
and maintenance algorithms that also uses the algorithm that must be “speeded up”
itself to maintain the certificates, and not just Fredericksons minimum spanning
tree algorithms.

In our solutions, the (on-line) sequence of update operations is split into two
parts, which are treated separately: one concerning deletions and one concerning
insertions. Viz., we typically start with subgraphs of which we only want to main-
tain the certificates in decrementalvay: after any (delete) operation, roughly
either the number of biconnected components increases, or we find some edges to
“repair” the biconnectivity relation in the certificate of the subgraph (with some
additional constraints). Insertions of edges are then temporarily processed outside
the sparsification paradigm, and from time to time handled further in a batch-like
way.

Thus, our relaxation of (non-stable) certificates, usage of sparsification trees,
and the separation of decremental subproblems are new. We conjecture, that our
approach may lead to fast algorithms for various other fully-dynamic graph prob-
lems as well, likek-vertex connectivity fok > 3.

The paper is organized as follows. Section 2 contains the preliminaries, in-
cluding a description of sparsification trees. In Section 3, we define certificates
for biconnectivity, and give algorithms for maintaining them. In Section 4, the re-
placement data structure, used in Section 3, is described. In this extended abstract,
we omit many details and special cases.



2 Preliminaries

For a graphG, two nodesx andy are callecbiconnectedor 2-vertex-connected)
if the deletion of a node fron®G does not separateandy in G (i.e., x andy are
still connected).

For a treeT, we denote byrt (X, y) the (unique) path between nodeandy
inT.

We give some definitions concerning certificates, as occurring in [1, 2]. For
any graph property, and graphG, a certificatefor G is a graphG’ such thatG
has propertyP if and only if G’ has propertyP. A strongcertificate forG is a
graphG’ such that, for any grapH, G U H has property if and only if G’ U H
has propertyP.

A property is said to haveparsecertificates if there is some constansuch
that for every graplG on ann-vertex set, we can find a strong certificate @r
with at mostcn edges.

In [2], some sparse certificates are given keedge-connectivity, minimum
spanning trees, and bipartiteness, all depending on the data structures for mini-
mum spanning trees presented by Frederickson [4, 5]. Also, the concept of stable
certificate is defined, which is important for the use of certificates in sparsification
trees, as follows.

Definition 2.1 Let A be a function mapping graphs to strong certificates. Then A
is stablef it has the following properties:

1. Forany graphsGand H, & U H) = A(A(G) U H).

2. For any graph G and edge e in G (@ — e) differs from AG) by O(1)
edges.

However, for fully-dynamic biconnectivity, this definition seems to be too strict.
Amongst others, it supposes that for each graph, a (unique) certificate can be cho-
sen, which then has to be maintained by the dynamic algorithms with@¢ly
changes (see [2]). We seem to heed a more liberal concept of certification.

2.1 Sparsification tree

We sketch how certificates can be used in sparsification trees [2] to maintain a
propertyP. Our final strategies will be somewhat different, though.
As in [2], maintain a partition of the graph edges|i}] groups, all but one
containing exactlyr edges. The remaining group is called the small group.
Insertion of an edge in the graph is always done in the small group. Deletion
of an edge is performed in the proper group, after which an edge from the small



group is transferred to this group (via a deletion and insertion in these groups,
respectively). If the small group becomes empty, we delete it; if it conteguges
and we want to insert a new edge, we start a new group.

We form and maintain aparsification treewhich is a binary tree of height
O(logr ™), with [ leaves corresponding to tHi&'] groups. Each nodein the
sparsification tree corresponds to a subgi@gk) of G formed by the edges in the
groups at the leaves that are the descendants of thatma@dso, to nodex, a sub-
graphS(x) of G(x) is related, such th&(x) has propertyP iff G(x) has property
P (S(x) is actually a sparse certificate f@r(x)). If x is a leaf, ther5(x) = G(x).

We say that the edges B(x) are theedges related to x Furthermore, a sparse
certificateC(x) (for G(x) or S(x)) is maintained. The subgraf(x) related to
nodex is found by forming the union of the certificat€gy) andC(2) of the two

child nodesy andz. The certificateC(x) is found and maintained i8(x). Thus,

the certificate at the root is the certificate of the whole graph. For further details
and elaboration, we refer to [2].

3 Certificates for biconnectivity

In this section, we present sparse certificates for biconnectivity together with algo-
rithms for updating these certificates, and handling sparsification trees.

3.1 Monotone sparse certificates and their maintenance

Consider a grapks of n nodes. For a spanning tr@eof graphG and a sequence
of (ordered) edgeg (1 <i <), the extension graphT; (0 < j <) consists of
all the edgeg, with 1 <i < j. We call the sequence of edgesatd-on sequence
if forevery j, 0 < j < I, the graphsT U TT; andT U T Tj;, have a different
number of biconnected components. Hence, the number of componénTg,in
is at least one smaller than the number of componentsurr T;.

Lemma 3.1 Let G be a graph, T a spanning tree of G, and S an add-on sequence
for biconnectivity. Then S contains at most i edges.

Proof: TTp = T contains exacthn different biconnected components.
Since any graph contains at least one biconnected component, it follows by
the definition of add-on sequence tt&atontains at most — 1 edges. |

We first describe a certificate and the maintenance of it for some appropriate
graphG.



A dynamic color partitiorof G colors the edges d& from three colors viz.
blue, red, and green.

For convenience in this abstract, we assume in this subsectioB tlatays is
a connected graph (this is not essential, though). Blue and red edges taste a
related to them, which is O for blue edges and which is a natural number otherwise.
No two red edges have the same cost.

At any time, the blue edges form a spanning treeGofand the red edges
are O(n) non-tree edges that form an add-on sequence if ordered according to
their cost. In addition, this add-on sequencenaximal i.e., such thal U T T,
contains the same (number of) biconnected componeni aghe blue and red
edges together form the certificate f6r Hence, this is aparse certificatéor G.

We give algorithms for maintaining the sparse certificat&afnder deletions
and certain insertions of edges. The edge insertions are only allowed if they do not
change the biconnectivity relation. Therefore, the changes in the biconnectivity
relation are monotone for a sequence of these operations, i.e., biconnected compo-
nents are only split up and are never joined. Thus, we call this sparse certificate
a monotone sparse certificat@/ Ve want to point out that the restriction on inser-
tions only applies to maintaining the certificates themselves, and not to the overall
algorithms presented in Subsection 3.2.)

Here and in the sequel, we use (implicitly) an operation that turns a given green
edge into a red edge, while simultaneously labelling this edge with a cost which is
the number of preceding operations.

3.1.1 Initialisation.

We can construct a sparse certificate®as follows. Initially, all edges are @
are green. First, a breadth-first search tre&a$ constructed, and all the edges
in it are made blue. This blue tree is denotedTyy The graphG; consisting
of red edges is then incrementally constructed as follows. First, a breadth-first
search foresB of G \ Ty is made and the edges are enumerated in some way.
A (green) edge oB is converted into a red edge only if it changes the number
of components ofl, U G,. This can be done by maintaining the biconnected
components dynamically [8, 14], thus yielding an add-on sequence indeed. As
was shown in [1], the graph, U B is a certificate for biconnectivity, hence, so is
Tpb UGy . (We do not really need the breadth-first forest, but can do this with all the
existing edges once they are ordered as well.)

The edges i, are given a cost which corresponds to their position in the
add-on sequence.



3.1.2 Insertions and Deletions.

The algorithms for maintaining the certificate processes deletions and insertions as
follows.

Edge insertionsint® are only allowed if they do not change the biconnectivity
relation. The algorithm inserts a new edge as a green edge.

When an edge is deleted, the following may happen to the color of edges. After
the deletion of one red edge, some green edges may become red. After the deletion
of a blue edge, one red edge may become blue and some green edges may become
red. And finally, the deletion of a green edge is done without consequences for
other edges and their colors.

For the deletion of an edge, we have the following more detailed strategy.

Whenever a blue edgsis deleted, it is replaced by the minimum cost red edge
€ which restores a blue spanning tre€fThis is processed by first interchanging
the colors ok ande’, and subsequently deleting the (how) red eelges in the case
below.

Whenever a red edgg, y) is deleted, a noda that now is a new articulation
point for x andy in the current T, U G, is generated. Such a node is called a
potential articulation point. Then, for potential articulation poiaf it is tested
whether it is also an articulation point & If it is, we call it adefinitearticulation
point. Otherwise, (i.e., if not,) a green edge y) is turned red such thatis not an
articulation pointinT,UG, any more, an@; is updated accordingly. Successively,
the next potential articulation point is generated for the current (possibly updated)
Tp U Gy (if any), and the above process is repeated until no unprocessed potential
articulation points fox andy exist.

Lemma 3.2 At any moment, the current red edges (in the order of their costs) form
an add-on sequence for biconnectivity.

Proof: We distinguish the three basic changes with respect to red and blue
edges.

1. Obviously, if a red edge is deleted from the add-on sequence, the
remaining sequence still is an add-one sequence.

2. When ared edge= (X, y) and a blue edgd = (u, v) interchange
colors, therd = (u, v) € n7, (X, y). We show that replacing by d in the
add-on sequence (while interchanging the numbers related to these edges
as well) yields another add-on sequence.

Let S = ey, ..., & be the red add-on sequence before deletiod,of
wheree = g. Let Ty andT, be the two subtrees remaining after deleting
from Ty, and letT] be T U T, U {(X, y)} (the new spanning tree).
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Let the sequenc8& equal S wheree is replaced byd. ThenS is an
add-on sequence fofy, which is seen as follows. Note tha U TT;
equalsTy U TTJ/. Hence,ThLbUTT; = T/UTT/ fori > j, and hence the
graphsT, U TT/ andTy U TT/,; have a different number of biconnected
components, foj <i < k. Furthermore, for < j, an edges must have
both its end points in eithdli, or T, because = g was the minimum cost
edge connecting; andT,. Therefore, sinc&, UT T; andT, U T Tj 1 have
a different number of biconnected components fox 0 < j, and since
Tp andT; equal on their subtre€l andT, and differ only in the edges
andd, it follows that the graph$, U T T/ andT, U T T/, ; have a different
number of biconnected components, fork0 < j.

Hence, the (new) sequence of red edges is an add-on sequeilge for

3. When a green edge = (X, y) is turned red, the thus extended
new sequence of red edges obviously is an add-on sequence again, since
otherwise this edge would not have been added.

Corollary 3.3 During a sequence of d deletions of edges, at mags2d— 2 edges
have been blue or red for some time.

Proof: The total number of blue or red edges that have existed (as blue or
red edge) is at most(@ — 1) (the final number of blue and red edges) plus
d (the number of deleted edges).l

We refer to the above algorithms for maintaining the certificateseasficate
algorithms

3.1.3 Data structures for monotone sparse certificates.

To determine which edges change color, as described above, we use the follow-
ing dynamic data structures, which allow deletions, restricted insertions, and color
changes of edges as described above.

1. We keep the graph, U G, in a dynamic minimum spanning tree data struc-
ture of Frederickson [4] with all blue edges having cost 0. Whenever a blue
edge is deleted, this data structure provides us with the minimum cost red
edge. This edge becomes blue.

2. We keepl, U G, in a dynamic biconnectivity data structure of Rauch [12].
Whenever a blue or red edge is deleted, this data structure provides us with
the new potential articulation points generated one at a time, in time propor-
tional to the number of actually generated potential articulation points.
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3. We keepG in a dynamic biconnectivity data structure of Rauch [12]. This
allows to test for every new potential articulation paarf T, U G, whether
it is also an articulation point d&. If not, some green edge, y) such that
a € n1, (X, y) should become red, as above.

4. We keep aeplacement data structutbat provides such a green edge. Itis
described in the next section.

By [12], the operations on the data structures 1 and 2 can be performed in
O(4/nlogn) time per returned edge or node, singgJ G, hasO(n) edges, and
the operations on data structure 3 can be performed(igmlogn) time, while
the operations on data structure 4 can be performé(ifmlogn) time, by The-
orem 4.2.

In the following, a certificate operation denotes the insertion, deletion or color
change of an edge, the generation of a new potential articulation point or the other
gueries on the data structures as described above.

Lemma 3.4 A certificate operation can be performed in.@mlogn) time.

3.2 The overall algorithms and data structures

We can now combine the above certificate and certificate algorithms with sparsifi-
cation as follows. (For terminology, we refer to Subsection 2.1.)

The edges in the graph are partitioned into yellow and non-yellow. The spar-
sification tree “contains” only non-yellow edges. (A non-yellow edge has (local)
color(s) defined at relevant sparsification nodes.) Each leaf corresponds to a group
of at mostn non-yellow edges. Aéachnodex of the sparsification tree, the above
certificate algorithms are executed locally on the gr&gky), to maintain the cer-
tificate C(x) in S(x). Note that, thusS(x) has a color partition, with just the colors
blue, red, and green, where the colors are defined “locally8(i) (independent
of the actual colors red and blue in e@(y) andC(2) in the childreny andz, if
any), and where thug(x) consists of the blue and red edgesSoX).

Whenever a new edgeis inserted in the graph, keep it as a yellow edge in
the “yellow delay set’Y. If the total number of yellow edges exceeQsn), we
create a new leat with S(x) consisting of these yellow edges, then color these
edges green and run the certificate initialization algorithnsox). Subsequently,
we “build/rebuild” every node on the root path xf

Whenever an edgeis deleted, it is deleted from the proper legfi.e., from
S(x). The deletion fronx might cause that at most— 1 green edges turn red at
X. Lety be the parent af in the sparsification tree. First add all the new red edges
of x as green edges i called “forced insertions”. (Note that forced insertions
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do not change the biconnectivity relation 8fy).) Subsequently, iff containse,
deletee from y (where again, green edges may turn red) and (recursively) repeat
this procedure for the parent of nogeuntil e is not deleted from a tree node any
more or until we reach the root.

Whenever there are more thafi™?] leaves, rebuild the entire sparsification
tree.

Thus, the certificat€(G) for G is given byC(root) U Y, i.e., the certificate
related to the root, joined with the existing yellow edges in the yellow delay set.
This obviously is a sparse certificate again. We run the biconnectivity algorithms
of [12] on this for maintainin@(G) and for computing the queries asked.

Lemma 3.5 Let x be a node of the sparsification tree. At any time during a se-
guence S of operations, the number of edges related to x is atgmost1), and

the number of red and blue edges is at nRist— 1). During sequence S, at most

d 4+ 2n — 2 edges have been blue or red for some time, and at mastd — 4

edges have been related to x, where d is the number of edge deletions in the node
X.

Proof: Follows from the fact that the edges relatedXdaconsist of two
spanning trees and two add-on sequences and from Corollary B.3.

Note that (new) green edges are added to a sparsification node only if they do
not change the biconnectivity relation indeed (at the very moment of their inser-
tion), as mentioned before.

Lemma 3.6 For a sparsification node x, since its last (re)building, the total num-
ber of new, definite articulation points in($) is O(n), and the total number of
certificate operations in &) is at most @n + d), where d is the number of edge
deletions in node x.

Proof: The first statement follows since definite articulation points do not
vanish any more. For the second statement, we charge the cost of obtaining
a potential articulation point that vanishes again by making a green edge
red, to this color change; We observe that color changes only occur from
green to red to blue; and we use Lemma 3.9

Theorem 3.7 There exists a fully-dynamic algorithm for biconnectivity in graphs

such that a sequence of s operations starting from the empty graph takegrdogn log[ 1)
time, while each query takes (D time, and where n is the current number of
nodes. Thus, each operation takes M lognlog[]) amortized time, and each

guery takes Q1) worst-case time.
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Proof: The number of certificate operations in a sparsification noglace

its last (re)building i0(n + d), whered is the number of (local) deletions

in that node. Charge th@(n) operations to the rebuilding (initialisation)
at X, and charge each occurring local deletion for one operation. Thus,
each “global” deletion is charged faD(log™) certificate operations in
total (viz., for the sparsification nodes that all lie on a root path). Fur-
thermore, maintaining the graf@iroot) UY (of O(n) edges) takes time
proportional to maintaining(root) and O(1) amortized certificate oper-
ations per yellow edge. We charge the cost of the former to maintaining
S(root) and the cost of the latter to the insertion of a yellow edge, viz.,
O(2) certificate operations per operation. Finally, each insertion of an edge
is now charged folO(log ™) amortized operations in total, by the delay-
build/rebuild strategy. Each such certificate operation t&kegnlogn),
since the occurring graphs ha@&n) edges, and by [12] and Theorem 4.2.

Adding up the number of certificate operations and using [12], yields
the theorem. |

4 The replacement data structure

In this section, we describe the replacement data structure, as mentioned in Sub-
section 3.1.3.

We are given a grap® of blue, red, and green edges such that the blue edges
form a spanning tre@y, of G (for convenience, we assume tl@atis connected).
We refer to an edge off, just astree edgeand denote the tree patit, (X, y) just
by 7 (X, y).

Let P be a path inTy and letby, a, andb, be three consecutive vertices &n
such thata is an articulation point iffy, U G, that separatels; andb,. We say a
green edge covers aon P iff a does not separatg andb, in T,U G, Ue.

We describe the functionality of the regqgement data structure. On the one
hand, it is able to perform the deletions, restricted insertions, and color changes of
edges as described in Subsection 3.1.3. On the other hand, it can return the appro-
priate green edges as described in Subsection 3.1.3. We describe this operation in
more detail.

Let the red edgéu, v) have to be deleted. The replacement data structure is
given a (newly generated) potential articulation pa@irdf 7 (u, v) on the current
Tp U Gy that isnotan articulation point om (u, v) in G (calledcandidatd. Then
for candidates, it outputs a green edge coveriagn (U, v).

In this section, we assume that each blue or red edge has cost 0 and each green
edge has cost 1.
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Now, first assume we would maintain the following (too costly) data structure,
namely, for each node the minimum spanning treé(x) of G \ x. Note that two
neighbors of are biconnected iff they are connectedHiix). Since the blue and
red edges form a sparse certificatezobefore an edge deletion, all edgedHrare
blue or red. The deletion of a blue or red edge removes at most one edgé& from
and adds at most one, potentially green, edge. This edge is a green edge covering
a, i.e. itis an edge that the replacement data structure is looking for.

However, it is too expensive to maintain for each nadlee minimum spanning
treeF (x) of G\ x. Thus, we decompose the graph into subgraphs, cellsters
which are connected by blue edges, and maintain for each cluster a data structure
similar to the one described above. Since the nodes in a cluster are connected by
a spanning tree containing only blue edges, we have to focus on edges between
clusters.

4.1 Graph decomposition

We expand every node @ with degreed > 3 intod nodes that are connected by
a chain ofd — 1 dashededges. We naturally expag to be a spanning tree of the
expanded grapt’ (where all dashed edges thus ardii

We decomposé&’ as in [12]. Aclusteris a set of vertices that induces a
connected subgraph df. An edge isincidentto a cluster if exactly one of its
endpoints is in the cluster. festricted partition of order kwith respect torl is a
partition of the vertices so that

1. Each set in the partition is a cluster that is incidentt@ tree edges and
contains< k vertices.

2. Acluster thatis incident to 3 tree edges contains exactly one vertex.

3. If a cluster is incident to a dashed edge, then all tree edges incident to the
cluster are incident to the same vertexGf

4. No two adjacent clusters can be combined aiticsatisfy 1 to 3.

The partition splitss into O(m/k) clusters of size< k and is found in timeéO (m+
n) [5]. We denote byC(x) a cluster containing a representative of a verend
say thatC(x) contains x If the representatives of are contained i 1 clusters,
thenx is ashared vertexand all clusters<C(x) are calledx-clustersandshare x
By condition 3 every cluster shares 1 vertex. Since each dashed edge between
two clusters is a tree edge, there &ém/k) shared vertices.
This decomposition induces the followiggaph H; of clusters.Two vertices
C andC’ of H; are connected by an edge (respectively blue edge) if and only if
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there is an edge (respectively blue edge) between a verexaofl a vertex o€C’.
If there is no blue edge between a vertextodndC’, but a red edge, the@ and
C’ are connected by a red edge. If there is neither a blue nor a red, but a green edge
between them, they are connected by a green edge.

We defineH; to consist ofH; with all dashed edges contracted. For a non-
shared vertex, the unique cluste€(x) is represented by a unique nodeldf.
For a shared vertex, all clustersC(x) are represented by a unique vertexHan

Fori = 1,2 we denote b}Hibr the subgraph of; induced by blue and red
edges. The blue edges form a spanning trell;cénd oinbr. Two clusters that
are adjacent in this spanning tree are catted neighbors.

4.2 Outline of the data structure

Fori = 1, 2 we maintainH; andH,”" dynamically in the high-level data structure
of [12] 1. For agraptH’ (with H’ eitherH; or Hibr), the high-level data structure of
[12] maintains for each node in H’ the following graphH’(C): H’(C) contains

a node for each tree neighbor @f There is an edge between two tree neighbors
L, andL, of C iff there is an edge iH’ \ C between the subtree containihg

and the subtree containirhg. The data structure in [12] can be extended to label
an edge(L1, L) in H'(C) with an edge ifH’ \ C connecting the subtree af;
with the subtree of ».

As shownin [12], all graphbi’(C) can be maintained in tim® (k+-(m/k)/logn)
per edge insertion i or edge deletion is. Augmenting the data structure to
label edges oH’(C) with edges ofH’ does not increase the running time. A con-
nectivity query inH’(C) can be answered in constant time. Note that two tree
neighbors ofC are connected i’ (C) iff they are biconnected i .

We use the high-level data structuregbfto

1. testin constanttime if two tree neighbors of a n@dare biconnected ik,

2. output all biconnected tree neighborgihof a nodeC in time linear in their
number and a spanning forest connecting theid i(C),

If there is an edge betwedry andL, in H;(C), but not in Hibr(C), then all
edges irH; \ C between the subtree containibgand the subtree containitg are
green. Thus, using the high-level data structurioind oinbr, we can determine
the minimum cost edge iH; connecting the subtree containibhgand the subtree
containingL,. Given the spanning forests connecting the tree neighbdtsinf

1The full version of this paper is available at hifpyww.research.digital.copBRC\
personalmonika\papers.html
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H;i (C) and Hibr(C), we can compute a minimum spanning forest connecting the
tree neighbors o€ in H;(C) in time linear in the number of tree neighbors. A
query to determine this minimum spanning forest is callediaimum spanning
query for C

As mentioned above, new shared vertices can be created during the sequence
of operations. To distinguish them from the others, we call all shared vertices that
are not newpld. There areO(Kk) vertices in all clusters sharing a new vertex.

In the next subsections, we will describe how we find a green covering edge for
different types of candidates. Again, we have the high-level data structures of [12]
as the base, but we modify and extend it. We will consider a candidatdere
b; andb, are the neighbors ad on (u, v). We distinguish betweea being a
“non-shared vertex”, a “new shared vertex”, or an “old shared vertex.”

4.3 Non-shared candidates or new shared candidates

To cover a non-shared or new shared candidatgth a green edge, we first
build a graphG(a) of size O(k) and then we determineusingG(a). Both steps
take timeO(klogn + m/k). We do this as follows. For a non-shared candidate
let H denoteH, for a new shared candidate let denoteH,. Let C; denote
representing (allC, in H'.

Let C, be incident toj tree edges. The grapgh(a) contains as nodes all the
nodes ofC, and one additional node for each tree neighboof C, in H’, called
cluster-node The graphG(a) contains as edges (1) all the edges between two
nodes ofCy, (2) an edgex, L;) for each edgex, y) incidentto a node € C; if
(X, y) contains the tree edge betwegnandL;, and (3) the edges of a minimum
spanning tree itd’(Cy) (between the tree neighbors©f).

The graphG(a) can be built as follows: The edges of (1) can be found by
inspecting the edges incident to node€gfin time O(k). The edges of (3) can be
found in timeO(1) per edge using a minimum spanning queryGorTo determine
the edges of (2), we first store the spanning tregH6fin a dynamic tree data
structure. Then we scan all edges incident to nod€},ito find every edgéx, y)
with x € C, andy ¢ C,. For each such edge we determine the corresponding tree
neighbor ofC,. This determines in tim&(logn) the edge(x, L) that belongs
to G(a). SinceO(k) edges have at least one endpoinidg the total time is
O(klogn + m/K).

Note thatb; andb; are either contained iG(a) or represented by nodés.
Sincea is a candidateh; andb, or their representatives are disconnected in the
graph induced by the blue and red edge$&6d) \ a, but connected iiG(a) \ a.
Thus, there exists a cut {B(a)\a separatindy; andb, or their representatives that
only contains green edges. Any one edg#® the cut covers in G(a). The cut
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can be found in timeéD (k) by executing a BFS fror, or its representative. ¥
is an edge between two neighbor clusteysandL,, the corresponding “original”
green edge is the label efas given by the high-level data structure.

4.4 Old shared vertices

To cover a candidate that is an old shared vedgewe would like to build the
same grapls(a) as for a non-shared vertex. However, an old shared vertex can
be shared by all clusters and, th@&ga) can consist ofn edges. Thus we cannot
afford to construcG(a) \ a whenever we have to covar but we have to maintain
dynamically a data structure that represénfa) \ a instead.

Let us call a vertex not belonging to any clus@&@) an outsidevertex ofa.
If an outside vertex is adjacent to a vertex in a clu§té), it is called anoutside
neighborof C(a).

In [12] we maintain a grapi&(a) constructed as follows: (1) Remove from
G \ a edges between some outside vertices and (2)aatificial edges between
some outside neighbors such that the following conditions hold:

(a) Every artificial edge connects two vertices that are connect&d\ia.
(b) All outside neighbors that belong to the same cluster are connec@@in

By condition 3 of a restricted partition it follows that all outside neighbors be-
longing to the same node &f, are connected i (a). For each node ofl, that
does not contaia but contains an outside neighbor@fa), call one of its outside
neighbors a&pecialneighbor.

Theaugmented graph @) is built by "combining”G(a) andH»\ C(a): A(a)
consists 0fG(a) with the following additional edges. If two hod€sandC’ of H»,
both contain a special neighbor@fa) and there is an edge betwe€randC’ in
the minimum spanning forest ¢i, \ C(a) then there is an edge (with the same
cost) between the special neighboi®éand the special neighbor @f.

We use the following property oi(a)

Lemma 4.1 Two neighbors of a are connected inaA iff they are connected in
G\ a.

Proof: Every edge imA(a) corresponds to an edge or a pati@Gifa. Thus,
if two neighbors are connected A(a) they are connected iB \ a.

Consider a pathP in G \ a between two neighbors; andb, of a.
Every edge ofP that is incident to a vertex of a clust€ra) also belongs
to G(a). Removing these edges fromforms subpaths, each connecting
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two nodedu; andu, from the set{bs, by, outside neighbors af(a)}. We
show that these two nodes are also connectéddn. The lemma follows.

If u; andu, belong to the same node B, they are connected iA(a)
by the above observation. if; andu, belong to different nodes dfl,,
these nodes are connectedHp\ C(a) and therefore the special neighbors
of these vertices are connectedd(m). Since bothu; andu, are connected
to "their” special neighborsy; andu, are connected il\(a). I

Now we proceed similar to before. Sinaés a candidatdy; andb, are discon-
nected in the subgraph @f(a) induced by blue and red edges but are connected in
A(a). Thus, there exists a cut ia) separatindp; andb, that only contains green
edges. We cannot afford to exhaustively seak¢h) for such a cut.

However every minimum spanning forest Afa) (with green edges having
cost 1 and all others having cost 0) must cross the cut with a green edge. Thus, it
suffices to determine the first green edge on the tree path betweerb, in the
minimum spanning forest dk(a).

We show next how to implement this algorithm efficiently. The data structure
in [12] maintains a spanning forest &(a). It can be extended to maintain a
minimum spanning forest MSF without increase in the asymptotic running time.
Additionally MSF can be stored in a dynamic tree data structure [13] without
running time increase.

A minimum spanning forest ofl; \ C(a) consists of the minimum spanning
forest of Hy(C(a)) combined with the (blue) spanning forekt of H, where all
edges incident t€(a) are removed. This minimum spanning foresthf\ C(a) is
known since the blue edges B, and the minimum spanning forest bi(C(a))
are maintained.

The minimum spanning forest &(a) is a subgraph of the minimum spanning
forest ofG(a) and the minimum spanning forest bt \ C(a).

Thus to cover first "add” the edges of the minimum spanning forestHf\

C(a) to MSF and then determine the first green edge on the path in MSF between
b; andbs.

We describe how to add the edges of the minimum spanning fbkesiC(a)
to MSF. Consider such an edge. If both of its endpoints contain special neighbors,
replace it by an edge between these special neighbors. Otherwise stog’s If
endpoints are not connected in the current MSF, add it to the MSF. Otherwise,
determine the maximum cost edgen the path in MSF connecting its endpoints.

If €'s cost is smaller thag'’s cost, replace’ with e in the MSF. If its cost is not
smaller, do nothing.

Using the dynamic tree data structure of MSF adding an edge take®filogn),
for a total ofO(m/k . logn). The data structure in [12] requires tirdgk logn +
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v/mlogn) to maintain MSF.
In summary, the additional data structure needed is

e the MSF ofG(a), stored in a dynamic tree data structure, and

e aspecial neighbor for each nodetds that contains a neighbor €f(a).

4.5 Complexity and Correctness

We presented a data structure determines in t@gklogn + m/k .logn) an

edge that covers an old shared candidate. It can be updated in amortized time
O(klogn + 4/mlogn) after each update operation@and it can be built in time
O(m). By choosing = ,/m, we obtain the following theorem.

Theorem 4.2 The given data structure determines in tim¢,@nlogn) an edge
that covers a candidate. It can be updated in amortized tinig/@logn) after
each update operation in G and it can be built in timeéng).

5 Conclusion

We have presented certificates for biconnectivity together with algorithms for up-
dating these certificates. We thus obtained fully-dynamic algorithms for biconnec-
tivity in graphs that run inO(/nlognlog ™) amortized time per operation. We
used novel techniques and approaches to handle sparsification.

We conjecture that our liberalization of certificates and their maintenance, and
the usage of monotone subproblems, are important for other dynamization prob-
lems, likek-vertex-connectivity fok > 3.
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