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Abstract

We present fully dynamic algorithms for maintaining the biconnected components in general and
plane graphs.

A fully dynamic algorithm maintains a graph during a sequence of insertions and deletions of edges
or isolated vertices. Let m be the number of edges and n be the number of vertices in a graph. The
time per operation of the previously best deterministic algorithms wereO(min{m2/3, n}) in general
graphs andO(

√
n) in plane graphs for fully dynamic biconnectivity. We improve these running times

to O(
√

m logn) in general graphs andO(log2 n) in plane graphs. Our algorithm for general graphs can
also find the biconnected components of all vertices in timeO(n).

1 Introduction

Many computing activities require the recomputation of a solution after a small modification of the input
data. Thus algorithms are needed that update an old solution in response to a change in the problem instance.
Dynamic graph algorithmsare data structures that, given an input graphG, maintain the solution of a graph
problem inG while G is modifies by insertions and deletions of edges.1 In this paper we study the problem
of maintaining the biconnected components (see below) of a graph.

We say that a vertexx is anarticulation point separatingvertexu and vertexv if the removal ofx
disconnectsu andv. Two vertices arebiconnectedif there is no articulation point separating them. In the
same way, an edgee is abridge separatingvertexu and vertexv if the removal ofe disconnectsu andv.
Two vertices are2-edge connectedif there is no bridge separating them. Abiconnected componentor block
(resp.2-edge connected component) of a graph is the set of all vertices that are biconnected (resp. 2-edge
connected). Note that biconnectivity implies 2-edge connectivity but not vice versa.

Given a graphG = (V, E), a dynamic biconnectivity algorithmis a data structure that executes an
arbitrary sequence of the following operations:

insert(u, v): Insert an edge between nodeu and nodev.

delete(u, v): Delete the edge between nodeu and nodev if it exists.

query(u, v): Returnsyesif u andv are biconnected, andnootherwise.

block-query(u): Return all nodes in the block ofu.

Operationsinsert anddeleteare calledupdates. To compare the asymptotic performance of dynamic
graph algorithms, the time per update, calledupdate time, and the time per query, calledquery time, are com-
pared. Letm be the number of edges andn be the number of vertices in the graph. Previous to this work, the
best update time wasO(min(m2/3, n}) [11, 2] with a constant query time. This paper presents an algorithm
with O(

√
m logn) update time and constant query time. Subsequently, the sparsification technique was ap-

plied to the algorithm in this paper and its running time was improved toO(
√

n logn log(m/n)) [14]. Block
queries were not mentioned in previous work, but can be added to all these data structure such that they take
time linear in the size of their output.

Additionally, we give an algorithm withO(log2 n) update time andO(logn) query time for planar
embedded graphs, under the condition thateach insertion maintains the planarity of the embedding. The
best previous algorithm took timeO(

√
n) per update andO(logn) per query.

1Insertions or deletions of isolated vertices are usually trivial.
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Related work. Frederickson [5] gave the first dynamic graph algorithm for maintaining a minimum
spanning tree and the connected components. His algorithm takes timeO(

√
m) per update andO(1)

per query operation. The first dynamic 2-edge connectivity algorithm by Galil and Italiano [9] took time
O(m2/3) per update and query operation. It was consequently improved toO(

√
m) per update andO(logn)

per query operation [6]. The sparsification technique of Eppstein et al. [3, 2] improves the running time of an
update operation toO(

√
n). Very recently, a deterministic dynamic connectivity algorithm was given with

O(n1/3 logn) update time andO(1) query time [13] and a randomized dynamic connectivity algorithm with
O(log2 n) update andO(logn) query time [12, 15]. Both algorithms can also output all nodes connected to
a given node in time linear in their number.

Note that there is a lower bound on the amortized time per operation of�(logn/ log logn) for all these
problems [7, 19].

The best known dynamic algorithms in plane graphs take timeO(logn) per operation for maintaining
connected components by Eppstein et al. [1],O(log2 n) for maintaining 2-edge connected components by
Hershberger et al. [16, 4], andO(

√
n) for maintaining biconnected components by Eppstein et al. [4].

Outline of the paper. First (Section 2), we study the dynamic biconnectivity problem forgeneral
graphs. Our basic approach is to partition the graphG into small connected subgraphs, calledclusters
(see [5] for a first use of this technique in dynamic graph algorithms). Each biconnectivity query between a
vertexu and a vertexv can be decomposed into a query in the cluster ofu, a query in the clusterv, and a
query between clusters. To test biconnectivity between clusters we use the 2-dimensional topology tree data
structure [5] in a novel way and extend the ambivalent data structure [6]. These data structures were used
before to test connectivity and 2-edge connectivity.

To test biconnectivitywithin a cluster we need to know how the vertices outside the cluster are connected
with each other. Thus, we build two graphs, calledinternal andsharedgraph. Each graph contains all
vertices and edges inside the clusterC and acompressed certificateof G \ C. A compressed certificate is
a graph that has the same connectivity properties asG \ C, but is not necessarily a minor ofG \ C. This
approach is similar to the concept of strong certificates in the sparsification technique: A strong certificate is
not necessarily a subgraph of the given graph. The crux in the analysis of the algorithm is that we can show
that only an amortized constant number of compressed certificates need ”major” updates after an update in
G (see Lemma 2.33).

Second (Section 3), we study the dynamic biconnectivity problem forplanegraphs. We use a topology
tree approach based on [5].

An earlier version of this paper appeared in [20].

2 General graphs

2.1 The graphG′ and the relaxed partition of order k

Let G be an undirected graph withn vertices andm edges. Thesize|G| of a graph is the total number of
its nodes and edges. We assume in the paper thatG is connected, which impliesm ≥ n− 1. If G is not
connected, we build the data structure described below for each connected component and during an update
combine two data structures or split a data structure in timeO(

√
m).

To partitionG into about equally sized subgraphs (see the relaxed partition below), mapG to a degree-
3 graphG′ by expandinga vertexu of degreed ≥ 4 by d − 2 new degree-3 verticesu′1, . . . , u

′
d−2 and

connectingu′i andu′i+1 by adashededge, for 1≤ i ≤ d− 3. Every edge(u, v) is replaced by asolidedge
(u′i , v

′
j ), wherei and j are the appropriate indices of the edge in the adjacency lists foru andv. We say that
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the edge(u′i , u
′
i+1) belongsto u and that everyu′i is a representativeof u. The nodeu of G is called the

origin of the nodeu′i in G′, for 1≤ i ≤ d− 2. We denote nodes ofG′ by variables with prime, likeu′ or u′i
and their origin by variables without prime, likeu. The graphG′ contains at most 2m nodes and at most 3m
edges.

Data structure:The algorithm keeps the following mapping fromG to G′ and vice versa:

(G1) Each vertex ofG stores a list of its representative, ordered by index, and pointers to the beginning and
the end of this list. Each vertex ofG′ keeps a pointer to its position in this list, to its origin, and a list
of incident edges.

(G2) Each dashed edge ofG′ stores a pointer to the vertex ofG that it belongs to, each solid edge ofG′

stores a pointer to the edge ofG that it represents.

Note that there exists a spanning tree ofG′ that contains every dashed edge. The algorithm main-
tains such a spanning tree, denoted byT ′. Let T be the corresponding spanning tree inG. We denote by
πT ′(u′, v′) the path fromu′ to v′ in T ′. If the spanning tree is understood, we useπ(u′, v′). Let u′v denote
the representative ofu with the shortest tree path to a representative ofv. Note that every articulation point
separatingu andv must have a representative that lies onπT ′(u′v, v′u)

Data structure:

(G3) Both T andT ′ are stored in a degree-k ET-tree data structure [13] and in a dynamic tree data struc-
ture [21].

The graphG′ is maintained during insertions and deletions of edges as follows: If an edge(u, v) is
inserted and the degreedeg(u) of u was 3 before the insertion thenu is replaced by 2 verticesu′1 andu′2
connected by a dashed edge. Ifdeg(u) was larger than 3, then one new vertexu′deg(u)−1 is created and
connected by a dashed edge ofu′deg(u)−2. Thus an edge insertion increases the number of vertices inG′

by up to 2 and the number of edges by up to 3. If an edge is deleted, the number of vertices inG′ might
decrease by up to 2, and the number of edges by up to 3.

Let mlogn ≥ k ≥ √m be a parameter to be determined later. Note thatm/k ≤ k. We build a “balanced”
decomposition ofG′ into subgraphs of sizeO(k) and maintain data structures based on this decomposition.
Everym/k update operations the decomposition and data structures are rebuilt from scratch in linear time,
adding an amortized cost ofO(k) to each update. The rebuilds significantly simplify the “rebalancing”
operations needed to maintain the decomposition balanced during updates. The operations between two
rebuilds form aphase.

We next describe the balanced decomposition. Acluster is a set of vertices that induces a connected
subgraph ofT ′. An edge isincidentto a cluster if exactly one of its endpoints is in the cluster. An edge is
internal if both endpoints are in the cluster. Let(x, y) be a tree edge incident to a clusterC and letx ∈ C.
Thenx is called aboundary nodeof C. Thetree degreeof a cluster is the number of tree edges incident to
the cluster.

A relaxed partition of order kwith respect toT ′ is a partition of the vertices into clusters so that

(C1) each cluster contains at mostk+ 2m/k ≤ 3k nodes ofG′;

(C2) each cluster has tree degree at most 3;

(C3) each cluster with tree degree 3 has cardinality 1;
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(C4) if a dashed edge is incident to a cluster, then all boundary nodes of the cluster have the same origin;
and

(C5) there areO(m/k) many clusters.

This definition is an extension of ‘[6]. We denote the cluster containing a nodeu′ of G′ by Cu′ .
If all representatives of a vertexu of G belong to the same clusterC, we denoteC by Cu and say thatC

contains uandu belongs to C. If the representatives of a vertexu are contained in more than one cluster,
u is called ashared vertexand each cluster containing a representative ofu is called a clustersharing uor
u-cluster. We useSu to denote the set of clusters sharingu. Condition (C4) implies thateach cluster shares
at most one vertex. The shared vertex of a clusterC is denoted bysC. Together with Condition (C5) it
follows that there areO(m/k) shared vertices.

Data structure:

(G4) Each cluster keeps (a) a doubly-linked list of all its vertices, (b) a doubly-linked list of all its incident
tree edges, and (c) a pointer to its shared vertex (if it exists).

(G5) Each non-shared vertex ofG′ keeps a pointer to the cluster it belongs to. Each shared vertex keeps a
doubly-linked list of all the clusters that share the vertex.

We make repeatedly use of the following facts.

Fact 2.1 Let G be an n-node graph and let u1, . . . , ua be a set of articulation points that lie on a path in G.
Then

∑
i deg(ui ) ≤ 2n.

To guarantee that condition (C1)–(C4) are maintained within a phase a cluster violating the conditions
is split into two clusters(see Section 2.2). We show below that all these splits create onlyO(m/k) new
clusters, i.e. condition (C5) is always fulfilled.

2.2 Maintaining a relaxed partition of order k

To maintain a relaxed partition during updates, we create a more restricted partition ateach rebuild and let
it gradually “deteriorate” during updates.

A restricted partition of order kwith respect toT ′ is a partition of the vertices into clusters so that

(C1’) each cluster has cardinality at mostk;

(C2’) each cluster has tree degree≤ 3;

(C3’) each cluster with tree degree 3 has cardinality 1;

(C4’) if a dashed edge is incident to a cluster, then all boundary nodes of the cluster have the same origin;
and

(C5’) there areO(m/k) clusters.

Lemma 2.2 A partition fulfilling (C1’) – (C5’) can be found in linear time.
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Proof: The algorithm in [6] shows how to find a partition fulfilling (C1’) – (C3’), and (C5’) in
time O(m + n). Each cluster that does not fulfill (C4’) has tree degree 2. Letx′ and y′ be the
two boundary nodes in the cluster. Sincex′ andy′ represent different shared vertices, the tree path
betweenx′ and y′ contains at least one solid edgee. Splitting the cluster ate creates two clusters
that fulfill Condition (C1’)–(C4’). Each split takes time linear in the size of the cluster. The lemma
follows.

We discuss next how to maintain a relaxed partition during updates. We show that an update does not
violate Condition (C1), (C4), or (C5). Condition (C2) or (C3) might be violated, but can be restored by
splitting a constant number of clusters. Restoring (C3) might lead to a violation of (C4), which can also be
restored with an additional constant number of cluster splits.

We use the followingupdate algorithm for the relaxed partition: If an insert(u, v) operation replacesu
by two nodes, add both toCu. If a new representativeudeg(u)−1 is created, add it to the cluster ofudeg(u)−2.
A deletion does not remove any vertices.

Lemma 2.3 The update algorithm for the relaxed partition does not violate Condition (C1), (C4), or (C5).
Condition (C2) and (C3) might be violated for the clusters containing the endpoints of the newly inserted
edge (in the case of an insertion) or the endpoints of the new tree edge (in the case of a deletion).

Proof: Condition (C1):An update increases the number of nodes in a cluster by at most 2, implying
that at the end of the phase each cluster contains at mostk+ 2m/k nodes. It follows that Condition
(C1) is never violated.

Condition (C4):Every newly added dashed edge has both endpoints in the same cluster, i.e. it isnot
incident to a cluster. Thus, Condition (C4) is not violated.

Condition (C5):A delete(u,v) operation might disconnect the connected component ofCu if Cu =
Cv , leading to one additional cluster. Since there arem/k updates in a phase, there existO(m/k)
clusters during a phase, i.e., Condition (C5) is not violated by the update algorithm.

Condition (C2) and (C3): Deletions:Note first that the deletion of a non-tree edge does not invali-
date Conditions (C2) or (C3) and, thus, does not require any cluster splits. A deletion of a tree edge
might make a (solid) non-tree edge into a tree edge, and, if this edge is an intercluster edge, add one
new incident tree edge to its endpoint clusters. This might lead to a violation of Conditions (C2) and
(C3) for the clusters incident to the new tree edge.Insertions:In the case thatG is disconnected, a
newly inserted edge might become a tree edge, adding one new (solid) tree edge to at most two clus-
ters. As before, this might lead to a violation of Conditions (C2) and (C3) for the clusters incident
to the new tree edge. Additionally, an insertion might increase the number of nodes in a tree-degree
3 cluster to 2, violating Condition (C2).

In conclusion, an update violates Condition (C2) and/or (C3) for at most 2 clusters, namely the
clusters containing the endpoints of the newly inserted edge or of the new tree edge.

The algorithm first restores Condition (C2) and then Condition (C3). However, restoring (C3) might
lead to the violation of Condition (C4). If this happens, Condition (C4) is restored after Condition (C3).

Restoring Condition (C2):If a cluster violates (C2), it has tree degree four and consists of exactly two
tree degree-3 nodes. Splitting it into 2 clusters creates 2 1-node clusters of degree 3, fulfilling Conditions
(C1) – (C4).

6



Restoring Condition (C3):If a clusterC violates Condition (C3), letx′, y′, andz′ be the three boundary
nodes ofC. There exists a tree degree-3 nodew′ that belongs toπ(x′, y′), π(x′, z′), andπ(y′, z′). The
algorithm splitsC atw′ by creating a tree degree-3 cluster forw′ and up to three additional tree degree-2
clusters, namely, ifx′ 6= w′, a cluster containingx′, if y′ 6= w′, a cluster containingy′, and if z′ 6= w′,
a cluster containingz′ . It is possible that (a)w′ was not a shared vertex before the split, but is a shared
vertex after the split, and that (b)C was incident to up to two dashed edges before the update, i.e., shared
a different vertex. If (a) and (b) hold, then one of the new tree degree-2 clusters might violate Condition
(C4). Splitting these cluster in the same way as in the proof of Lemma 2.2 creates at most two additional
tree-degree 2 clusters, each fulfilling Conditions (C2) – (C4).

Thus, restoring Conditions (C1) – (C4) requires creating a constant number of additional clusters after
an update operation. Since there arem/k updates in a phase, Condition (C5) is fulfilled at any point in a
phase.

We summarize this discussion in the following lemma.

Lemma 2.4 • An insertion does not split any cluster, but restoring the relaxed partition after an inser-
tion might require a constant number of cluster splits, namely of the clusters that contain the endpoints
of the inserted edge.

• A deletion of a non-tree edge does not require any cluster splits.

• A deletion of a tree edge might split the cluster containing the endpoints of the deleted edge. Addition-
ally, restoring the relaxed partition after a deletion might require a constant number of cluster splits,
namely of the clusters that contain the endpoints of the new tree edge.

Testing whether a cluster violates (C2) or (C3) takes constant time, splitting a cluster takes time linear in its
size. Thus, it takes timeO(k) to update the relaxed partition of orderk after each update.

2.3 Queries

However, mappingG to G′ causes correctness problems: If two nodesu andv are biconnected inG, they
are also biconnected inG′, but the reverse statement doesnotalways hold (see [11] for an example).

The following lemma (an extension of Lemma 2.2 of [11]) relates the biconnectivity properties ofG and
of G′. To contractan edge(u, v) identify u andv and remove(u, v). To contracta vertex ofG contract all
dashed edges inG′ belonging to the vertex.

Lemma 2.5 Let u andv be two vertices of G.

• Let G1 be the graph that results from G′ by contracting every vertex onπT(u, v) (excluding u andv).
The vertices u andv are biconnected in G if and only if u′v andv′u are biconnected in G1.

• Let y be a node onπT(u, v) that does not separate u andv in G. Let G2 be the graph that results
from G′ by contracting every vertex onπT (u, v), excluding y, u andv. The vertices u andv are
biconnected in G if and only if u′v andv′u are biconnected in G2.

Proof: The graphsG1, resp.G2 can be created fromG by expanding appropriate vertices. Thus, if
u andv are biconnected inG, thenu′v andv′u are biconnected inG1, resp.G2.

For the other direction, assume thatu andv are separated by an articulation pointx in G. Then
x belongs toπT (u, v). It follows thatx is represented by one node inG1, resp.G2. Assume by

7



contradiction thatu′v andv′u are biconnected inG1, resp.G2, i.e., there exists a pathP′ between
them not containingx. The corresponding pathP in G connectsu andv and does not containx
which leads to a contradiction.

Note that the lemma also holds if additional vertices ofG1, respectivelyG2, are contracted.
To test the biconnectivity ofu and v in G we decompose the problem into subproblems, such that

each subproblem is either (a) a biconnectivity query in a graph of sizeO(k + m/k), or (b) a connectivity
query in a graph of sizeO(m). Subproblems of type (a) can be solved efficiently sincek +m/k is chosen
to be “small”. For subproblems of type (b) we use the existing efficient data structures for maintaining
connectivity dynamically. Since no data structure is known that solves both subproblems efficiently, we
maintain two different data structures, calledcluster graphsandshared graphs.

To be precise, for each shared vertexs, ashared graphis maintained. Given a shared vertexs and two of
its tree neighborsx andy, the shared graph ofs is used to test in constant time whethers is an articulation
point separatingx andy. This is equivalent to testing ifx and y are disconnected inG \ s. Thus, we use
the dynamic connectivity data structure [13] to maintain the shared graphs. Two nodes ofG are connected
in G \ s iff any two representatives of the nodes are connected inG′ \ {s1, . . . , sdeg(s)−2}. Thus, graphG′

without any node contractions can be used for testing connectivity.
For each clusterC, let V(C) denote the set of origins inG of the nodes ofG′ that (1) either belong to

C or (2) are connected to a node inC by a solid tree edge2. We maintain forC a cluster graphwhich is
built to test (in constant time) if any two nodes ofV(C) that are not separated bysC are biconnected inG.
In particular, the cluster graph can be used to test whethersC is biconnected with another node inC. To
maintain the cluster graphs we use the data structure of [11]. To test if two nodesx andy are biconnected
in G, the data structure contracts inG′ all vertices onπT (x, y) (and potentially additional vertices).

We describe next how we use these two data structures to answer a biconnectivity query. We use the
following lemma.

Lemma 2.6 Let u andv be nodes of G and let(x(i)
′
, y(i)

′
), for 1 ≤ i ≤ p, denote the solid intercluster tree

edges onπT ′(u′v, v′u), in the order of their occurrence. Then u andv are biconnected in G iff

(Q1) u and y(1) are biconnected in G,

(Q2) x(i) and y(i+1) are biconnected in G, for1≤ i < p, and

(Q3) x(p) andv are biconnected in G.

Proof: If u andv are biconnected then all nodes onπ(u, v) are pairwise biconnected, and thus (Q1)
- (Q3) hold andu andv are separated by an articulation pointz. Sincez belongs toπT (u, v) either
(Q1), (Q2), or (Q3) are violated. Contradiction.

For a query(u, v), let Cu be the cluster ofu′v. If Cu shares a vertex, call itsu. Basically we test
the conditions of the lemma using only a cluster graph if this is possible, and using a cluster graph and a
suitable shared graph otherwise.

Testing Condition (Q1):Condition (Q1) of Lemma 2.6 can be tested using two cluster graphs and the
shared graph ofsu: If su does not lie onπ(u, y(1)), su does not separateu and y(1), and y(1) belongs to
V(Cu). Thus, we use the cluster graph ofCu to test whetheru andy(1) are biconnected.

2The origin of a nodes′ that is connected by a dashed edge to a nodet ′ in C belongs toV(C) since the origin ofs′ equals the
origin of t ′ which belongs toV(C) according to (1). Thus setCT of [11] equalsV(C).
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If su lies onπ(u, y(1)), then letxu andyu be the nodes incident tosu onπ(u, y(1)). Let s′ besu
y(1)

. Note

that su belongs toV(Cu) and thaty(1) belongs toV(Cs′ ). Test in the cluster graph ofCu if u andsu are
biconnected, test in the cluster graph ofCs′ if su andy(1) are biconnected, and test in the shared graph of
su if xu and yu are biconnected. If all tests are successful,u andy(1) are biconnected inG, since the last
test guarantees thatsu does not separateu andy(1) and the first two tests guarantee that no other node of
π(u, y(1)) separatesu andy(1).

Testing Condition (Q2):If y(i)
′
andx(i+1)′ belong to the same clusterCi andCi does not share a vertex,

then both,x(i) andy(i+1), belong toV(Ci ) and are not separated by a shared vertex ofCi . Thus, Condition
(Q2) can be tested using the cluster graph ofCi .

We show that otherwisex(i) andy(i+1) are tree neighbors of a shared vertexsi and the shared graph of
si can be used to test Condition (Q2): Either (a)y(i)

′
andx(i+1)′ belong to the same clusterCi that shares

a vertexsi , or (b) y(i)
′

andx(i+1)′ belong to different clusters. In case (a),Ci is incident to two solid tree
edges and one dashed tree edge, i.e.,Ci has tree degree 3. By Condition (C3) it follows thatCi contains
only one node, i.e.,y(i)

′ = x(i+1)′ , and both are representatives ofsi . It follows thatx(i) andy(i+1) are both
tree neighbors ofsi . In case (b), all intercluster edges between the cluster ofy(i)

′
and the cluster ofx(i+1)′

are dashed. By Condition (C4) of a relaxed partition, all these dashed edges and alsoy(i)
′
andx(i+1)′ belong

to the same shared vertexsi . Thus, also in this casex(i) andy(i+1) are tree neighbors ofsi . It follows that
the shared graph ofsi can be used to test whetherx(i) andy(i+1) are biconnected inG.

Testing Condition (Q3):Condition (Q3) is tested analogous to Condition (Q1).
Since each test takes constant time, this leads to a query algorithm whose running time is linear in the

number of solid intercluster edges onπT ′(u′v, v′u), which isO(m/k). However, we will give in Section 2.11
a data structure that allows all these tests to be executed in constant time.

Our next goal is to describecluster graphsandshared graphsin detail. Maintaining them requires a
third data structure, calledhigh-level graphs, which we describe first.

2.4 Overview of high-level graphs

There are twohigh-level graphs H1 andH2. Basically,H1 is a graph where each cluster is contracted to one
node, andH2 is a copy ofH1 with intercluster dashed edges contracted as well.

To be precise, the graphH1 contains a node for each cluster ofG′. Two nodesC andC′ of H1 are
connected by an edge inH1 if and only if there is an edge between a vertex ofC and a vertex ofC′ . We call
C′ theneighborof C. The nodeC andC′ are connected by a dashed edge if and only if there is a dashed
edge between a vertex ofC and a vertex ofC′.

The graphH2 is the graphH1 with all dashed edges ofH1 contracted.
We call vertices ofH1 or H2 nodesand refer to vertices ofG asvertices.
Note that each node ofH1 represents exactly one cluster. We will use the termsnode of H1 andcluster

interchangeably. Each node ofH2 representsat least one cluster and the nodes in these clusters. Note that
each vertex ofG is represented by a unique node ofH2, while this does not hold forH1: a shared vertex
belongs to more than one node ofH1.

The spanning treeT ′ of G′ induces a spanning treeT1 on H1 andT2 on H2. We sayC′ is atree neighbor
of C if there is a tree edge betweenC′ andC in H1. OtherwiseC′ is anon-tree neighbor.

We need the high-level graphs to define and maintaining the cluster graphs and the shared graphs.
Roughly speaking, a cluster graph tests (under certain conditions) whether two nodes represented by the
same node ofH1 are biconnected inG and a shared graph tests whether (some of the) two nodes represented
by the same node ofH2 are biconnected inG.
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When maintaining cluster and shared graphs we make use of the following data structures. Details of
some of these data structures are delayed until Section 2.7. Leti = 1, 2.

(HL1) We store for each node ofHi all the vertices ofG′ belonging to the node,3 and we store at each
vertex ofG′ the node ofHi to which the vertex belongs.

(HL2) We keep the following adjacency list representation forHi (of sizeO((m/k)2) = O(m)): For each
node ofHi we keep the list of all incident neighbors, and a list of all its positions in the lists of its
neighbors.
Thus, in constant time an edge between two nodes can be removed from this representation.

(HL3) We maintain a data structure that given a nodeC and its non-tree neighborC′ returns the tree
neighborC′′ of C such thatC′′ lies onπTi (C,C

′). For H1 this takes constant time, forH2 it takes time
O(logn).

(HL4) We store a data structure that implements the following query operations inHi :

• biconnected?(C,C’,C”):Given that nodesC′ andC′′ are both tree neighbors of a nodeC test
whetherC′ andC′′ are biconnected inHi .

• blockid?(C,C’):Given thatC andC′ are tree neighbors inTi , output the name of the biconnected
component ofHi that contains bothC andC′.
• components?(C):Output the tree neighbors ofC in Hi grouped into biconnected components.

Operationsbiconnected?andblockid? take constant time, andcomponents?takes time linear in the
size of the output.

(HL5) We keep amapping hfrom H1 to H2 and a mappingh−1 from H2 to H1. For each node ofH2 we
keep a list of pointers to all the nodes ofH1 whose contraction formedH1, and for each node ofH1

we keep a pointer back to the corresponding node ofH2.

(HL6) We keep an empty array of sizeO(m/k) at each node inHi (needed for various bucket sorts – see
Section 2.5 and 2.6).

Next we define anancestorfor each node inH1 or H2. For simplicity we start withH2. Let A be a
node ofH2 at the beginning of the current phase. ThenA is theancestorof each nodeC of H2 such thatC
represents a node ofG that is also represented byA. Since clusters are only split, never joined, all nodes
represented byC are represented byA, i.e., each node ofH2 has a unique ancestor.

To define ancestors for nodes inH1, we pick at the beginning of a phase for each shared vertexs an
arbitrary but fixeds-cluster and call itCs. Let A be a node ofH1 created at the beginning of the current
phase. We callA theancestorof each nodeC of H1 such that (1)C contains the representative of a vertex
and that representative or the (unexpanded) origin of the representative also belonged toA; or (2)C contains
only representatives of the shared vertexs of A, all these representatives were created after the last rebuild
andA = Cs.

Since clusters are only split, never merged, and non-extended vertices can become expanded, but not
vice versa, this uniquely assigns an ancestor to each cluster. It is possible that a cluster is its own ancestor.

Let e= (C, D) be an edge ofHi . Theancestor edgeof e at C is e itself if eithere (a) existed during a
rebuild, (b) was inserted intoHi after the creation ofC andD or, (c) C was created afterD by a split ofC′

3For H1 this is already part of (G4) and, of course, does not need to be stored twice.
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ande existed at the creation ofC. If D was created by a split ofD′ after the creationC ande existed at the
split, the ancestor edge ofe is the ancestor edge of(C, D′).

We also define the ancestor edge ofe at the ancestora(C) of C, even thougha(C) might not exist in
the current graph. Theancestor edgeof e at a(C) is e itself if eithere (a) existed during a rebuild, (b) was
inserted intoHi after the creation ofD. If D was created by a split ofD′ after the rebuild ande existed at
the split, the ancestor edge ofe is the ancestor edge of(C, D′).

Note that if inHi , the ancestor edge of(C, D) and of(C, D′) are identical, thenD andD′ have the same
ancestor inHi .

Data structure:

(HL7) We store at each node ofHi its ancestor and at each edge ofHi its ancestor edge at its both endpoints
and at the ancestors of the endpoints .

(HL8) We number the edges ofHi in the order in which they were added toHi with the edges added during
a rebuild in arbitrary order.

Recall that at the beginning of each phase a cluster contains at mostk vertices ofG′. This enables us to
prove the following lemma

Lemma 2.7 The total number of vertices of G′ in all clusters with the same ancestor is k+ 2m/k.

Proof: Let A be a cluster at the beginning of a phase. All nodes of a cluster with ancestorA (in G′)
that existed at the time of the last rebuild belonged toA at the beginning of the phase. Thus, there
are at mostk of them. Every other node was created by one of them/k update operations. Since
each update creates at most 2 new vertices, the bound follows.

2.5 Cluster graphs

Let C be a cluster. Thecluster graph I(C) of C is used to test if two verticesu andv of V(C) that are not
separated bysC are biconnected inG. This leads to a first requirement forI (C):

(IC1) If sC does not separate u andv, then u andv are biconnected in I(C) iff they are biconnected in G.

As we see below, an amortized constant number of cluster graphs is rebuilt during each update operation.
This leads to a second requirements forI (C):

(IC2) The graph I(C) has size O(|V(C)|).
Recall thatV(C) denotes the set of origins inG of the nodes ofG′ that (1) either belong toC or (2) are
connected to a node inC by a solid tree edge. Thus,V(C) and, hence,I (C), has sizeO(k).

We next motivate our definition ofI (C) and explain why it can only be used ifsC does not separate the
two nodes. Obviously,I (C) has to contain all nodes ofV(C) and all edges between the nodes ofV(C).
Since two nodes ofV(C) can be connected by a path inV(C) and additionally by a path that contains nodes
of a non-tree neighbor ofC, we represent each non-tree neighborC′ of C by a node inI (C) (called either
b-nodeor c-node) and we add toI (C) all edges incident toC.

However, three questions remain: (1) IfC shares a vertexsC, let C′ be one of the neighbors ofC
connected toC by a dashed tree edge (belonging tosC). ShouldI (C) also contain a node representingC′,
i.e. shouldsC andC′ be represented by the same or different nodes inI (C)? (2) How is the set of b- and
c-nodes connected by edges? (3) How can the graph efficiently be maintained when a neighbor ofC is split?
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We describe next our solution to these questions. (1) IfsC andC′ are represented by the same node
then two nodes ofV(C) that are biconnected inG might not be biconnected inI (C). See Figure 1 for an
example. On the other side, ifI (C) contains a node forsC and a separate node forC′, then two verticesu
andv of V(C) that are not biconnected inG can be biconnected inI (C). See Figure 2 for an example.

u

v

I(C)G’

CC’
u

v

Figure 1: The graphG′ and a potential graphI (C). The graphG′ consists of clusterC andC′ (represented
by circles), both sharing vertexs (represented by two nodes and the dashed line between them). Tree edges
are bold or dashed. InI (C), C′ ands are collapsed to one node.

I(C)

u

v

G’

CC’
u

v

Figure 2: The graphG′ and a potential graphI (C). The graphG′ consists of clusterC andC′ (represented
by circles), both sharing vertexs (represented by two nodes and the dashed line between them). Tree edges
are bold or dashed. InI (C), C′ ands are represented by two different nodes.

However, by Lemma 2.5 and the fact that in the latter approach all nodes onπT (u, v) except forsC are
contracted, it follows that the latter situation can only happen ifsC separatesu andv in G. Since this case
is excluded by(IC1), we representsC andC′ be separate nodes inI (C).

(2) Let d be the number of neighbors ofC. There are at mostd b- or c-nodes inI (C). SinceG′ is a
graph of degree at most 3,d = O(|V(C)|). To guarantee thatI (C) has sizeO(|V(C)|), I (C) will contain
at mostd− 1 many edges between b- or c-nodes. These edges will be colored and will fulfill the condition
that that two b- or c-nodes are connected by a path of colored edges iff they are connected inH1 \C.

(3) We will split a node representing a neighborC′ of C only if the two clusters resulting from the split
of C′ are disconnected inH1 \ C. Otherwise, both resulting clusters will be represented by the same node
in I (C), i.e., a node in the cluster graph might represent not just one cluster, but a set of clusters. This leads
to the following invariant:Two clusters are represented by the same node in I(C) or are connected by a
colored path if and only if they are connected in H1 \C.

Let us now give the exact definition of acluster graph I(C) for a clusterC: Let A be the ancestor ofC.
The cluster graph contains as nodes
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• a node, calleda-node, for each vertex with a representative inC,

• one node, calledb-node, for each neighborC′ of C with the same ancestorA,

• one node, calledc-node, for each maximal setX of clusters such that (a) every clusterC′ in the set
is a neighbor ofC, and all edges(C,C′) have the same ancestor edge atC, (b) all clusters in the set
have the same ancestor6= A, and (c) all clusters in the set have been connected inH1 \ C at all time
and every previous set of clusters containing the vertices of the clusters inX was connected inH1\C
at all times.

Note that for each neighborC′ of C there exists a unique node inI (C) representingC′ (and potentially
other clusters). Note further that each node ofG is represented by at most one node inI (C), except forsC,
which can be represented by an a-node and up to two b- or c-nodes, namely the neighbors ofC that share
sC.

The graphI (C) contains the following edges:

• All edges between two vertices ofG represented by an a-node belong toI (C).

• For each edge(u, v)whereu is represented by an a-node andv is not, and(u′, v′) is the corresponding
edge inG′, there is an edge(u, d) in I (C), whered is the b- or c-node representingCv′ .

• For each pairC1 andC2 of tree neighbors ofC there is arededge(d1, d2) if C1 andC2 are biconnected
in H1, wheredi is the b- or c-node representingCi .

• For each non-tree neighborC1 of C with representatived1
4 I (C) contains ablueedge(d1, d2), where

d2 represents the tree neighbor ofC that lies onπT1(C,C1), if C is an articulation point inH1, and a
blueedge(d1, d3), whered3 represents an arbitrary tree neighbor ofC, otherwise5.

Note thatI (C) can contain parallel edges. They can be discarded without affecting the correctness.
We show next that the cluster graphs fulfill(IC1) and(IC2).

Lemma 2.8 Let C be a cluster and let u andv be two nodes of V(C). If sC does not separate u andv in G,
then u andv are biconnected in I(C) iff they are biconnected in G.

Proof: Assume first thatu andv are biconnected inI (C), but are separated by a nodex in G. Thus,
x must be represented by at least two nodes inI (C). However, each node ofG is represented by at
most one node inI (C), except forsC. Thus,x = sC, which leads to a contradiction.

Assume next thatu andv are biconnected inG, but are separated by a nodey in I (C). Sinceu andv
are connected by a tree path whose (internal) nodes all belong toC, no b-node or c-node can separate
u andv in I (C). Thus,y must be an a-node. Note that any two neighbors ofC are connected by
colored edges ofI (C) iff they are connected inH1 \C.

Consider the pathP betweenu andv in G that does not containy. Let P̃ be the path created
from P by (1) extendingP to a path inG′, (2) contracting all intra-cluster edges ofP except for
non-dashed intra-cluster edges ofC, and (3) by labeling the resulting nodes ofP̃ by clusters ofG′.
Any two neighborsC1 andC2 of C that are connected by a subpath ofP̃ containing no neighbors of
C and no nodes ofC are connected inH1 \C and, thus, are connected by a path of colored edges in
I (C). Thus,P̃ induces a path withouty in I (C) connectingu andv. Contradiction.

4If C has a non-tree neighbor thenC has tree degree at most 2.
5Note thatC1 andC are biconnected inH1. Thus this is equivalent to requiring that for each non-tree neighborC1 of C there

exists a blue edge(d1,d2), whered2 represents a tree neighbor ofC that is biconnected toC1 in H1 andd1 representsC1.
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Lemma 2.9 For each cluster C,
|I (C)| = O(|V(C)|).

Proof: Obviously, there areO(|V(C)|) a-nodes and edges incident to them inI (C). Each b-node
or c-node inI (C) can be charged to one of the edges that connects the b-node or c-node to a node
in C. Thus, there areO(|V(C)|) b- or c-nodes. Since the number of colored edges is linear in the
number of b- and c-nodes, it follows that|I (C)| = O(|V(C)|).

We will need the following fact when bounding the time of updates:

Lemma 2.10 Let C1, . . . ,Cl be a set of clusters with the same ancestor. Then

l∑
i=1

|I (Ci )| = O(k).

Proof: Note first that
l∑

i=1

|I (Ci )| =
l∑

i=1

O(|V(Ci )|) =
l∑

i=1

O(|Ci |).

Let A be the ancestor of the clustersC1, . . . ,Cl . Recall that eachCi either (1) contains the rep-
resentative of a vertex and that representative or the (unexpanded) origin of the representative also
belonged toA; or (2)C contains only representatives of the shared vertexs of A, all these represen-
tatives were created after the last rebuild, andA = Cs.

The number of clusters fulfilling (1) is bounded by the number of nodes ofG′ in A. The total number
of clusters fulfilling (2) is bounded by number of updates since the last rebuild, which ism/k.

Thus,
l∑

i=1

O(|Ci |) ≤ O(|{v, v is a node ofG′ in A}| +m/k) = O(k).

In [11] 6 acluster data structurefor I (C) is given so that
• building the data structure takes timeO(|V(C)|), provided that the b-nodes, the c-nodes, and the red

and blue edges are given,
• changing one or all of the colored edges takes time linear in their total number, provided the new

colored edges are given,7

• testing whether two vertices ofV(C) that are not separated bysC are biconnected inI (C) takes
constant time.

We keep as data structure

6Lemma 4.6 of [11] states the result, Section 4.1.2. describes the data structure. In the notation of [11],G3(C) is identical to
I (C) except that a non-tree neighborC1 of C alwayshas a blue edge(C1,C2) to the tree neighborC2 of C that lies onπT1 (C,C1),
even ifC is not an articulation point. Furthermore,G2(C) = G3(C) \ {red edges}, CT = V(C), and theartificial edgesof [11] are
identical to the colored edges ofI (C).

7In [11] changing a red edge actually takes no time during an update: The existence of a red edge is not recorded during an
update, but checked during queries (by asking a biconnectivity query inH1). This is possible, since only one red edge exists in a
cluster graph. Since we will use the same data structure also for (a special case of) shared graphs, we treat red edges as blue edges
in the data structure of [11].
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(CG1) for each clusterC acluster data structurefor I (C);

(CG2) for each clusterC the adjacency lists of the graphI (C) with the two occurrences of an edge pointing
at each other;

(CG3) for each clusterC and neighborC′ of C, a pointer to the b- or c-node inI (C) representingC′; for
each b-node inI (C) a pointer back toC′ and for each c-node inI (C) a set of pointers to the clusters
represented by the c-node;

Note that given the b-nodes and c-nodes ofI (C), the red and blue edges ofI (C) can be determined in
time linear in their number using the data structure (HL3) and (HL4) forH1. This leads to the following
lemma.

Lemma 2.11 Let C be a cluster. There exists a cluster data structure for I(C) such that

1. building the data structure takes time O(|V (C)|), provided that the b-nodes and the c-nodes are given,

2. changing one or all of the colored edges takes time linear in their total number, given the b-nodes and
c-nodes,

3. testing whether two vertices of V(C) that are not separated by sC are biconnected in I(C) takes
constant time.

Note: We will use the same data structure and the same update algorithm in Section 2.6 for (a special case
of) shared graphs. There the same problem has to be solved inH2 instead ofH1. Since nodes inH2 are not
guaranteed to have bounded tree degree, we will not make use of this property ofH1 in our update algorithm.

2.5.1 Updates

We show in this section that it takes amortized timeO(k) to update the data structures for all cluster graphs
after an edge insertion or deletion inG. The major difficulty is to maintain the b-nodes and c-nodes of each
cluster graph. Once it has been determined how they change, it will be quite straightforward to update data
structures (CG1)–(CG3). Since at mostO(m/k) new clusters are created in a phase, an amortized constant
number of (CG4) arrays is created, contributing an amortized cost ofO(k).

While we describe how to determine the changes in the b-nodes, we defer determining the changes in
the c-nodes to Section 2.8. In Section 2.9 we show that after each deletion only anamortized constant
number of c-nodes is split.

Note first that after a split of a cluster the c-nodes in the cluster graph of each resulting cluster represent
only 1 cluster since they now all have a different ancestor edge. Thus, it is straightforward to build the
resulting cluster graphs in timeO(k).

Insertion
Let u′ andv′ be the (potentially newly added) representatives that are incident to the newly inserted edge
(u, v). By Lemma 2.4 onlyCu′ andCv′ might be split. LetC′ ∈ {Cu′ ,Cv′ }.

Determining the new b-nodes:Let C be a neighbor ofC′ with the same ancestor asC′. The split ofC′

might cause the b-node representingC′ in I (C) to be split as well. No other b-nodes can change.
We describe next how the new b-nodes are determined. (a) Any cluster created by a split “inherits”, i.e.

copies the set of old b-nodes from the split cluster. (b) For each split clusterC′ execute the follow steps:
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Bucket sort the edges incident to the split cluster in lexicographic order of its two endpoints in the updated
graphH1 (using the empty arrays stored at each cluster). (c) Each neighbor ofC′ with the same ancestor
asC′ that is incident to edges fromd > 1 different buckets (i.e. new clusters) of its array receivesd new
b-nodes representing these new clusters, discards the b-node ofC′ , and keeps all the other old b-nodes.
SinceO(k) edges are incident to a split cluster, it takes timeO(k) to determine the new b-nodes.

Determining the new c-nodes:In the case of an insertion, no existing c-nodes in the cluster graphs of
non-split clusters change since clusters created by a split can be represented by the c-node of the split cluster
for the following reason: LetSbe the set of clusters represented by the c-node ofC′ in I (C) for some cluster
C. All clusters replacingC′ have the same ancestor asC′, the edges from them toC have the same ancestor
edge as(C,C′) atC, and all are connected inH1\C with each other and with the clusters inS\ {C′}. Thus,
the clusters inS\ {C′} ∪ {C′′,C′′ created by the split ofC′} fulfill Conditions (a)-(c) of a c-node, i.e. can
be represented by the same c-node. However, if(Cu′ ,Cv′ ) did not exist before the current operation, then a
new c-node representing onlyCv′ has to be added toI (Cu′ ) and a new c-node representing onlyCu′ has to
be added toI (Cv′ ). For a split cluster, as discussed before, each neighbor with different ancestor becomes
its own c-node.

Updating data structures (CG1)–(CG3):It suffices to discuss how much each cluster graph changes.
Using Lemma 2.11 and the simplicity of (CG2)–(CG3) it will follow that all updates take timeO(k). (1)
The cluster graphs ofCu′ andCv′ are rebuilt from scratch since a new edge is added to them and potentially
the clusters are split. (2) The cluster graphs whose b-nodes changes are rebuilt from scratch. As described
above, these are the cluster graphs of neighbors of a split cluster with the same ancestor as a split cluster.
(3) A red edge is added to the cluster graph of each cluster that was an articulation point onπT1(Cu′ ,Cv′ )
separatingCu′ andCv′ before the insertion.

Next we describe how to execute these steps in amortized timeO(k) each, given the (new) b-nodes and
c-nodes. In Steps (1), (2), and (4), we rebuild cluster graphs which takes time linear in their size for (CG1)
(see Lemma 2.11), (CG2), and (CG3). By Lemma 2.10, the sum of the sizes of all rebuilt cluster graphs is
O(k).

In Step (3) the articulation points onπT1(Cu′ ,Cv′ ) are found by testing in constant time each of the
clusters onπT1(Cu′ ,Cv′ ) using data structure(HL4) for H1 (before the update). Lemma 2.11 shows that a
red edge can be added to the (CG1) and (CG2) data structure of each articulation in time linear in the number
of colored edges, which equals the degree of the articulation point inH1. By Fact 2.1, theH1-degree of all
articulation points onπT1(Cu′ ,Cv′ ) sums toO(m/k).

Deletion of a non-tree edge
The deletion of a non-tree edge does not change the spanning tree and does not split a cluster (Lemma 2.4).
Thus, no b-node changes. However, an amortized constant number of c-nodes is split (as we will show in
Lemma 2.33). Additionally, if the deletion removes the edge(Cu′ ,Cv′ ) from H1, the c-node ofCu′ might be
removed fromI (Cu′ ) and the c-node ofCu′ might be removed fromI (Cu′ ).

Updating data structures (CG1)–(CG3):Let u′ andv′ be the representatives that are incident to the
deleted edge(u, v). (1) If (Cu′ ,Cv′ ) is removed fromH1, removeCv′ in the cluster graph ofCu′ from the
list of its c-node. If the resulting list is empty, remove the c-node. Proceed in the same way withCu′ in
the cluster graph ofCv′ . Then rebuild the cluster graph forCu′ , and forCv′ from scratch. (2) A red edge is
removed and the blue edges are updated in the cluster graph of each new articulation point onπT1(Cu′ ,Cv′ )
in the updatedH1. (3) The c-structure (see Section 2.8) returns an amortized constant number of c-nodes
that are split. Their cluster graphs are rebuilt from scratch.

Next we describe how to execute these steps in amortized timeO(k) each. By the same argument as
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for insertions, Steps (1) and (3) take amortized timeO(k). Step (2) is implemented very similar to the case
of insertions, namely the articulation points onπT1(Cu′ ,Cv′ ) are determined byO(m/k) queries in the data
structure for theupdatedhigh-level graphH1. Finding them takes timeO(m/k). By Lemma 2.11, replacing
all blue and red edges in the cluster graphs of the new articulation points takes time linear in their total
number, which isO(k) by Lemma 2.1.

Deletion of a tree edge
Let u′ and v′ be the representatives that are incident to the deleted edge(u, v) and letx′ and y′ be the
representatives that are incident to the new tree edge(x, y), if it exists. By Lemma 2.4,Cu′ , Cv′ , Cx′ andCy′

are the only clusters that might be split.
Determining the new b-nodes:The new b-nodes are determined in timeO(k) in the same way as for

insertions.
Determining the new c-nodes:The c-structure returns the clusters in which a c-node was split and the

new c-nodes.
Updating data structures (CG1)–(CG3):We describe which cluster graphs have to be updated. (1) The

cluster graphs ofCu′ , Cv′ , Cx′ andCy′ are rebuilt from scratch. (2) Each cluster graph in which a c-node or
b-node was split has to be rebuilt from scratch. (3) A red edge is removed and the blue edges are updated in
the cluster graph of each new articulation point onπT1(Cx′ ,Cy′ ) in the updated graphH1 if (x,y) exists. As
discussed for insertions and for non-tree edge deletion, each of these steps take amortized timeO(k).

We summarize the section with the following theorem.

Theorem 2.12 Let C be a cluster. There exists a data structure I(C)

• that tests in constant time whether two vertices u andv of V(C) that are not separated by sC are
biconnected in G, and

• that can be updated in amortized time O(k) after each update in G.

The data structures I(C) for all clusters C can be built in time O(m).

2.6 Shared Graphs

We maintain a shared graphG(s) for every shared vertexs. Given a shared vertexs and two of its tree
neighborsx andy, the shared graph ofs is used to test in constant time whethers is an articulation point
separatingx andy.

Let Cs be the node ofH2 representings, i.e., it represents the nodes in alls-clusters. LetV(Cs) =
{v; v ∈ G, andv is represented byCs}, and letN (Cs) = {C′;C′ is node ofH2 and is a neighbor ofCs in
H2}. Shared graphs are used to test whether a pair of two special vertices ofG that either are represented
by or are incident to the same node ofH2 (to be precise, two tree neighbors ofs) are biconnected inG.
Note that cluster graphs solve this problem inH1: A cluster graph tests whether two vertices ofG that are
represented by or are incident to the same node ofH1 are biconnected inG, under the additional condition
that no dashed edge is incident to this node ofH1. (For nodes ofH1 that are incident to a dashed edge
only a restricted version of the problem is solved.) Since there are no dashed edges inH2, we simply can
define shared graphs analogous to cluster graphs and use the data structure for cluster graphs also for shared
graphs. However, it is possible that|V(Cs)| = 2(m) and, thus, rebuilding the data structure from scratch
can take time2(m).
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This leads to the following definition. Let us call a shared vertexs newif s became shared by a cluster
split after the last rebuild, and let it be calledold otherwise (i.e. if it became a shared vertex during the
last rebuild). Note that ifs is new, then|V(Cs)| = O(k) by Lemma 2.7, and, thus, a solution analogous to
cluster graphs is efficient.

For old shared vertices we use a new technique, which exploits the fact that the tree neighborsx and
y of s are biconnected iffx and y are connected inG \ s. Thus, we maintain a “compressed” version of
G \ s in which we askconnectivityqueries. The shared graph will be stored in a dynamic connectivity data
structure. Currently in ann-node graph the fastest such data structure takes deterministic timeO(n1/3 logn)
per edge update andO(1) per query [13] or randomized timeO(log2 n) andO(logn) per query [17].

Note that there areO(m/k) = O(k) many shared vertices, which implies we have to maintainO(k)
many shared graphs.

2.6.1 Shared graphs for new shared vertices

Let s be a new shared vertex represented by nodeCs in H2, and letAs be the ancestor ofCs. Theshared
graph G(s) contains as nodes

• a node, calleda-node, for each vertex inV(Cs),

• one node, calledb-node, for each cluster inN (Cs) with ancestorAs,

• one node, calledc-node, for each maximal set of nodes ofH2 such that (a) every nodeC′ in the set
belongs toN (Cs), and all edges(C′,Cs) of H2 have the same ancestor edge, (b) all nodes in the set
have the same ancestor6= As, and (c) all clusters in the set have been connected inH2\Cs at all times
and any previous set of clusters containing the vertices of the clusters inX was connected inH2 \ Cs

at all times.

Note that for each neighborC′ ∈ N (Cs) there exists a unique node inG(s) representingC′ and potentially
other clusters.

The graphG(s) contains the following edges.

• All edges between two vertices ofV(Cs) belong toG(s).

• For each edge(u, v) whereu belongs toV(Cs), v does not belong toV(Cs), and(u′, v′) is the corre-
sponding edge inG, there is an edge(u, d), whered is the b- or c-node representingCv′ in G(s).

• All b- or c-nodes representing tree neighbors ofC that are biconnected inH2 are connected by a tree
of rededges.

• For each non-tree neighborC1 of C, G(s) contains ablueedge(d1, d2), whered2 represents a tree
neighbor ofC that is biconnected toC1 in H2, andd1 representsC1.

Note that for each non-tree neighborC1 of C there always exists a tree neighbor ofC that is biconnected to
C1 in H2 — the tree neighbor ofC that lies onπT2(C,C1) always is biconnected toC1.

Since all clusters sharings have the same ancestor, Lemma 2.7 shows that|G(s)| = O(k).
A tree neighbor ofs either belongs toV(Cs) and is represented by an a-node, or does not belong of

V(Cs) and is represented by a b- or c- node. We need to show the following lemma.

Lemma 2.13 Let u andv be two tree neighbors of a new shared vertex s. Then (the representative of) u
andv are biconnected in G(s) iff u andv are biconnected in G.
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Proof: Note thatG(s) can be created by contracting edges inG. Thus, biconnectivity inG(s)
implies biconnectivity inG.

Verticesu andv are connected by a tree path(u, s), (s, v). Contracting edges not incident tos
cannot makes into an articulation point separatingu andv. Hence, biconnectivity inG implies
biconnectivity inG(s). Thuss is the only node that could be an articulation point separatingu and
v.

We use the same data structure as for cluster graphs to store shared graphs for new shared vertices.
Given the b- and c-nodes the red edges can be found in time linear in their number using the data structure
(HL4) for H2. We determine the blue edges ofG(s) by connecting each non-tree neighborC1 of a nodeC
to the tree neighbor ofC onπT2(C,C1). Using the data structure (HL3) forH2 this takes time linear in the
number of blue edges timesO(logn). Using the data structure of [11], results in the following lemma.

Lemma 2.14 Let s be a shared vertex represented by the node C of H2. Then there exists a data structure
for the shared graph of s, such that

1. building the data structure takes time O(|V(Cs)| + (m/k) logn), provided that the b-nodes and the
c-nodes are given,

2. changing one or all of the colored edges in the data structure takes time linear in their total number
times O(logn), given the b-nodes and c-nodes,

3. testing whether two vertices ofV(Cs) are biconnected in G(s) takes constant time.

These data structures are updated in amortized timeO(k+(m/k) log n) per operation with the algorithm
of Section 2.5.1 withH1 replaced byH2.

2.6.2 Shared graphs for old shared vertices

Let s be an old shared vertex and letCs be the node ofH2 representings. We cannot use the data structure
of the previous section for the shared graph ofs since rebuilding the data structure from scratch would take
time�(|V(s)|), which might be2(m). Still we use an approach similar to the one in the previous section
but avoid rebuilds from scratch.

The data structure for new shared vertices is rebuilt from scratch if (a) an edge is added to or removed
from a node ofV(Cs), or (b) a b- or c-node is split. We want to handle both situations with a small number of
edge insertions or deletions in the shared graph ofs. Obviously, Case (a) requiresO(1) 3 edge insertions or
deletions (ignoring the fact that ans-cluster might be split). For Case (b) we handle b-nodes differently from
c-nodes: we add all vertices ofG represented by b-nodes toG(s) (i.e., we treat them like nodes inV(Cs) –
see below), and we expand each c-node into a tree of bold edges. Note also that a c-node here represents a
node ofH1, not of H2: we need the fact that at mostO(k) edges can be incident to a node represented by
c-node. We describe here the intuition behind the tree for a c-node, by giving a simplification of the exact
definition. LetNeighbor(X) be the set of vertices ofG that belong to a cluster of the c-nodeX and are
neighbors of a vertex inV(Cs). Consider the subtree ofT created by all tree paths between two nodes of
Neighbor(X). Let the vertex setV(X) consist ofX and each node of degree at least 3 in this subtree. The
c-nodeX is represented inG(s) by V(X), i.e. all nodes ofV(X) belong toG(s) and the bold tree is the
above subtree with all degree-2 vertices not belonging toNeighbor(X) and their incident edges replaced
by one edge. Note that every edge insertion or deletion inT , in particular every split of a c-node, leads to
O(1) edge insertions or deletions in the bold tree. Below we need to relax our definition of the bold tree, but
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we still are able to show that every edge insertion or deletion inT leads toO(1) edge insertions or deletions
in the bold tree of a small number of shared graphs and to potentially many edge insertions and deletions in
small shared graphs, i.e., there are to a few “expensive” and many “cheap” edge insertions or deletions.

Since both Case (a) and (b) can be replaced by edge insertions and deletions, we just need to store the
shared graph in an efficient dynamic biconnectivity data structure. But this is exactly the problem we want
to solve and recursion cannot be applied sinceV(Cs) might contain all nodes inG. However, two tree
neighborsu andv of s are biconnected inG iff they are connected inG \ s. Thus, we store the shared graph
in a dynamic connectivity data structure, in which an update takes timeO(n1/3 logn).

Still there are two problems that we have ignored so far: (a) a split of ans-cluster, and (b) updating
colored edges. Problem (a) might lead to a significant decrease in the number of nodes inV(Cs), but it
would be expensive to implement in a dynamic connectivity data structure. Therefore we do not remove
these nodes, i.e., the nodes in a shared graph of an old shared vertex are the nodes that belonged toV(Cs) at
the beginning of the phase. Since the setsV(Cs) for different old shared vertices are disjoint at the beginning
of the phase, they will stay disjoint throughout the phase. Note that this would not necessarily hold fornew
shared vertices, i.e., we exploit the fact that in this section we only deal withold shared vertices. Said
differently, we will storeV(As) instead ofV(Cs), whereAs is the ancestor ofCs in H2.

To deal with Problem (b) we build a second shared graphG̃(s) of size linear in the degree of (the clusters
containing the vertices of)As in H1. We rebuild it from scratch whenever the colored edges change. Using
Fact 2.1 as in the analysis of cluster graphs shows that the cost of updating all graphsG̃(s) after an update
in G takes timeO(m/k).

Even though neitherG(s) nor G̃(s) can be used by itself to answer biconnectivity queries, together they
can answer biconnectivity queries since they fulfill the following invariant:

Two neighbors u andv of s are biconnected in G iff u andv are connected in G(s) or the representative
of u and the representative ofv are connected iñG(s).

The graphsG(s)
LetA(s) = {A, A is the ancestor of ans-cluster inH1} and letC(s) = {C,C is a node ofH2 and all

vertices ofC belonged toAs}.
We call a setX = {C1, ...,Cf } of nodes ofH1 ac-set of sif X is a maximal set of nodes ofH1 such that

(a) every nodeC′ in X contains a vertex that is incident to a vertex inV(As), and all edges(h(C′), As) have
the same ancestor edge inH2 at As,

(b) all nodes inX have the same ancestorA such thath(A) 6= As, and

(c) all nodesh(Cj ), 1≤ j ≤ f , have been connected inH2 \Cs at all times and for every previous setY of
nodes ofH1 containing the vertices of the nodes inX all nodes ing(D) with D ∈ Y were connected
in H2 \ Cs at all times.8

We denote the vertices ofG contained in the nodes of a c-setX asV(X). A shared vertex can belong to
more than one such setV(X) while a non-shared vertex belongs to at most one. Note that c-sets correspond
to c-nodes in the cluster graph. “B-sets” are not needed, sinceG(s) will “contain” all nodes of neighbors of
Cs with ancestorAs.

Let s be an old shared vertex, letCs be the node representings in H2, and letAs be the ancestor ofCs

in H2. Theshared graph G(s) contains as nodes

8We sayc-setinstead ofc-set of swhens is clear from the context.
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• a node, calleda-node, for each vertex inV(As) \ {s},
• a node, calledd-node, for each neighbor of a vertex inV(As), and

• a node, callede-node, for some of the vertices inV(X), whereX is a c-set ofs.

The graphG(s) contains the following edges.

• Every edge incident to a vertex ofV(As) \ {s} belongs toG(s).

• For every c-setX the vertices inV(X) ∩G(s) are connected by a tree ofboldedges.

We call the subtree generated by the tree paths inT between all vertices that are d-nodes thesubtree gener-
ated by the d-nodes. We sometimes identify a d- or e-node with its vertex inG.

For efficiency we need to require that the bold edges fulfill the followingbold-tree invariant:

(I1) Each e-node is incident to at least three bold edges.

(I2) At each point in time a bold edge either

– represents an edge that used to be in T but has since been deleted exclusive or

– represents (we saycovers) the tree path in (the current) T between its endpoints

such that each edge in T is covered by at most 1 bold edge in G(s) at each point in time and each
deleted edge is represented by at most 1 bold edge in G(s) during the whole phase.

Invariant (I1) guarantees that there are fewer e-node than d-nodes. The crucial observation for efficiency is:
If a bold edgee represents a deleted edgee′ and its endpoints are disconnected inG \ {x, x ∈ Cs} then we
can afford to removee from G(s). As we show below the removal ofe from G(s) can be charged to the
deletion ofe′. However we cannot afford to discard of the remaining bold edges that represent a deleted
edge.Data structure:

(S1) We storeG(s) in a fully dynamic connectivity data structure. This data structure allows to execute the
following operations:

• insert(u,v)/delete(u,v):Insert or delete the edge(u, v) in time O(m′1/3 logn), wherem′ is the
number of edges inG(s).

• connected?(u,v):Test whetheru andv are connected in constant time.

• component?(u):Return the connected component ofu in constant time.

(S2) We also keep a list of c-sets ofG(s) and store at each c-set the corresponding ancestor edge. For
each c-set, i.e., each bold tree, we keep a degree-m′1/3 ET-tree data structure whose leaves form an
ET-traversal of the bold tree, wherem′ is the number of edges inG(s). We store at the root of the
ET-tree the name of the c-set. Splitting or joining an degree-m′1/3 tree takes timeO(m′1/3), traversing
a path from a leaf to the root takes constant time[18].

(S3) For each clusterA that existed at the beginning of the phase we keep a list of pointers to all (S2) data
structures representing a c-set with ancestorA. For each c-set we keep a pointer back to its entry in
the list and to the clusterA.
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(S4) For each bold edge we keep a bitoutdated?that is set to true iff the edge represents a deleted edge.

(S5) For each connected component ofG(s) we keep a d-node or e-node belonging to the component.

The data structure (S5) is needed to determine for each nodex of V(As) \ {s} a c-set connected tox in
G(s) (if such a c-set exists), called therepresentativeof x. Together with (S1) and (S2) the representative
of x can be found in constant time.

The number of nodes and edges in a graphG(s) is linear in the degree of the vertices contained inV(As).
Thus, the total space for (S1) – (S5) for all old shared graphs isO(m).

The graphsG̃(s)
The graphG̃(s) contains as nodes

• ac-nodefor each c-set inG(s).

• All c-nodes that are connected inG(s) are connected by a tree ofyellowedges inG̃(s).

• All c-nodes of c-sets whose elements are connected inH1 \ C(s) are connected by a tree ofgreen
edges inG̃(s).

Data structure:

(S6) We storeG̃(s) in an adjacency list representation and label each node with its connected component.

(S7) We keep one empty array of sizen to guarantee that various bucketsorts can be executed in time linear
in the number of sorted elements.

The next lemma shows how to useG(s) andG̃(s) to test whether two neighbors ofs are biconnected in
G.

Lemma 2.15 Two tree neighbors u andv of s are biconnected in G iff u andv are connected in G(s) or the
representative of u and the representative ofv are connected iñG(s).

Proof: Each edge inG(s) or G̃(s) corresponds to a path inG that does not contains, and each
vertexu ∈ V(As)\ {s} is connected to its representative by a path inG that does not contains. Since
connectivity ofu andv in G \ {s} implies biconnectivity inG, the claim follows.

To show the other direction consider a pathP in G that connectsu andv and does not contains.
PartitionP into subpaths such that each subpath is a maximal path either (a) consisting only of edges
incident to nodes ofV(As)\{s}, or (b) containing only edges whose (both) endpoints are represented
by the same c-node of̃G(s), or (c) not fulfilling (a) or (b).

Note that the endpointsof each subpath fulfilling (a) or (b) are also connected inG(s). In remains
to be shown that the representatives of the endpoints of each subpathP̃ fulfilling (c) are connected
in G̃(s). Note thatP̃ connects two vertices represented by the c-nodesd1 andd2 and that it does not
contain a vertex of ans-cluster. Thus, the nodes ofH1 represented byd1 andd2 are connected in
H1 \ C(s). Thus, they are connected iñG(s).
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Note that (S1), (S2), (S5), and (S6) allow us to execute these tests in constant time.

Updates inG(s)
We need to show thatG(s) can be built in time linear in its size and that updating all graphsG(s) takes

amortized timeO(k logn+√m logn) per edge insertion or deletion intoG.
Given a spanning treeT , an ET-traversal of Tis a sequence of vertices ofT , in the order in which

they are encountered by a depth-first traversal ofT . Each vertexv occurs deg(v) times. Given a setX of
vertices ofT , anET-traversal of X in Tis the restriction of the ET-traversal ofT to the vertices inX with
consecutive multiple copies at the same vertex removed. AnET-pathof X in T is a set of edges connecting
every consecutive pair of vertices of the ET-traversal ofX in T . During updates we make use of the fact that
an ET-path ofX can be computed in timeO(|X|).

We first describe how to (re)buildG(s) in time linear in its size timesO(logn). The a-nodes and their
incident edges are given by (G1) and (G3). We describe how to find the d-nodes and bold edges for a c-set
X. Note that at the beginning of a phaseX consists of exactly one nodeA of H1. Determine all edges
betweenA and As as follows: Bucket sort all edges incident to a cluster inA(s) according to the node of
H1 \ A(s) to which their non-A(s) endpoint belongs. The set of endpoints of the edges in the bucket ofA
are the d-nodes inV(X).

Each endpoint, i.e. vertex inG, is represented by at least one leaf in the ET-tree ofT in (G3). For each
vertex inV(X) pick an arbitrary such leaf and label it with the vertex. Then traverse the ET-tree ofT from
each chosen leaf to the root and label each internal node of the ET-tree with the concatenation of the labels
of its children in left-to-right order. The label of the root gives an ET-path ofV(X) in T .

We use the ET-path to determine the initial bold edges: The first edge of the ET-path becomes the first
bold edgee1. Let {e1, ..., ej−1} be the bold edges already determined. Using the dynamic tree of (G3) we
marked every edge onπ(xl , yl ) with el for every edgeel = (xl , yl ) with 1 ≤ l ≤ j − 1. We maintain the
invariant that the marked edges form a subtree ofT . Let e= (x, y) be the next edge on the ET-path such that
x belongs to the marked subtree. Note thatπ(x, y) consists of a (possibly empty) sequence of marked edges
followed by a (possibly empty) sequence of unmarked edges. Letz be the vertex at which the edges switch
from marked to unmarked if such a vertex exists orz = y otherwise. We findz by rooting the dynamic
tree atx and determining the first nodez incident to a marked edge onπ(y, x). If z = y, we test whether
the edge incident toy onπ(y, x) is marked with an edge ending aty. If not, let (z1, z2) be the marking.
Remove the bold edge(z1, z2) and add the bold edges(z1, y), (y, z2). Then continue with the next edge on
th ET-path. Otherwise, i.e.,z 6= y, if z is a d-node or e-node, add the bold edgeej = (z, y) and mark its
path. Ifz is not a d-node or e-node, it is incident to two tree edges, marked with the same bold edge(z1, z2).
Remove the bold edge(z1, z2), add the bold edges(z1, z), (z, z2), (z, y), mark the corresponding paths, and
makez an e-node andy a d-node. Then continue with the next edge on the ET-path. Finding the bold edges
takes time linear in the number of d-nodes. Thus,G(s) and (S1) and (S2) can be built in time linear in the
size ofG(s) timesO(logn).

While buildingG(s) give each clusterA represented by a c-set a pointer to this c-set and store at the
c-set a pointer back to its position in the (S3)-list ofA and toA.

All outdated?-bits are set to false.
To build (S5) ask acomponent?(u)-query for each d- or e-node inG(s) and store the node at the

component if no node is stored there yet.
Obviously, building (S3) – (S5) takes time linear in the size ofG(s).

Next we describe how to update theG(s) after an update inG. Let m′ denote the size ofG(s). Note that
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one non-bold edge is inserted or deleted in at most two graphsG(s), taking timeO(m′1/3 logn) = O(k)
each. We are left with discussing how the bold edges change. There are three cases to consider: (A) a d-
nodex is no longer connected to a node inV(As), and it and potentially one e-node has to be removed from
G(s); (B) a vertexx that is not yet a d-node becomes connected to a node inV(As) and it and potentially
one e-node has to be added toG(s); (C) a tree edge covered by a bold edge in a c-setX is deleted without
splitting X; or (D) a c-set has to be split since its corresponding nodes inH2 are no longer connected in
H2 \Cs.

(A) If the d-nodex is incident to at least three bold edges, it simply becomes an e-node. If it is incident to
two bold edges(z1, x) and(x, z2), these edges are removed and(z1, z2) is added toG(s). Theoutdated?-bit
of (z1, z2) is set to the logical-or of theoutdated?-bit of the two deleted edges. Ifx is incident to one bold
edge, this edge is deleted and if this creates an e-node of degree 2, this node is deleted as described for the
degree-2 case ofx. Note that the bold-tree invariant is not violated. If a c-set becomes empty, it is removed
from the corresponding (S3) list. Before removingx we test one node in each other c-set to determine
whether it is connected tox. If so, it is stored at the connected component ofx. Updating (S1)-(S5) takes
time O(m′1/3 logn+m/k).

(B) Let x′ be the node ofG′ incident to the new edge and letC′ = Cx′ be a node inH1. If no other
vertex ofC′ is incident to a vertex ofV(As), the new edge is its own ancestor edge. A new 1-element c-set
is formed and a (S2) and (S3) data structure is created. Finally we determine the connected component ofx
and storex as d-node in the corresponding (S5) data structure.

Otherwise, we determine the ancestor edgee′ of (h(C′), As) using (HL7) and search for the c-setX
with ancestor edgee′. For each bold edgee′ = (w, z) of X whoseoutdated?-bit is not set, mark in the
dynamic tree ofT using (G3) all edges onπ(w, z). Let y be the endpoint of a bold edge ofx. To update the
bold edges, use (one iteration of) the algorithm for determining bold edges during a rebuild to process the
addition of the edge(x, y) to the marked subtree. Theoutdated?-bit of all new edges is set tofalse. Each
operation in the dynamic tree takes timeO(logn). Findinge′ and X takes timeO(m/k). Updating (S1),
(S2), and (S4) takes timeO(k logn+m′1/3 logn), (S3) and (S5) are unchanged.

(C) The bold edgee representing the path containing the deleted edgee′ in X now represents the deleted
edgee′. Thus, only (S4), i.e. theoutdated?-bit of e, has to be updated. LetA be the ancestor of the cluster
containinge. Using (S3) find all bold edges whoseoutdated?-bit is f alse of a c-set ofA in any shared
graph and test them to determine to ones that represent a path containinge′. Set theiroutdated?-bit to true.
To test an edge first split the ET-tree ofT in (G3) ate′, resulting in two ET-trees, one foreach subtree of
T \ e′. Test whether the endpoints of the edge belong to different ET-trees by traversing the paths from a
leaf representing each endpoint to the root.

By Lemma 2.7 there areO(k) bold edges to test, for a total time ofO(k).

(D) In the fourth case, the split of a c-set, the c-structure in Section 2.8 returns (an amortized constant
number of) old shared graphsG(s) such that one of the c-sets ofs is split by the update. Additionally, it
gives for each split c-setX the resulting new c-setsX1 and X2. The split of the c-setX of s may lead to
deletions and insertions of bold edges incident to the nodes ofV(X). We describe first how to find these
edges and how to update (S1), (S2), and (S4) accordingly. Afterwards, we describe how to update (S3) and
(S5). LetA be theH1-ancestor of all nodes inX.

(1) Remove the bold edges connecting X1 and X2. A bold edge has to be deleted if its endpoints belong to
different connected components ofH2 \Cs. For this test map both endpoints to their nodes inH2 and
test whether they are biconnected using (HL3) and (HL4).
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Determine all existing bold edges incident to the vertices ofV(X) by traversing the leaves of the ET-
tree ofX. Test each bold edge. LetB be the set of bold edges to be deleted. DeleteB by removing
the edges from (S1) and splitting the ET-trees (S2) suitably. This results in various ET-subtrees. Note
that both endpoints of each remaining bold edge belong to the same ET-subtree. Finally, if a resulting
bold tree contains an e-node with degree less than 3, then remove the node and update its incident
edges as described using (HL3) and (HL4).

(2) Reconnect the resulting pieces into two bold trees such that the bold-tree invariant holds.Let X1 and
X2 be the resulting c-sets. Fori = 1, 2 our goal is to reconnect the different ET-trees representingXi .
However, the remaining bold edges whoseoutdated?-bit is true complicate the process: two vertices
may belong to the same ET-tree but some edges on the tree path between them may not be covered.
Thus it is possible that the vertices of the same ET-tree do not belong to the same subtree of covered
edges, but are partitioned into various vertex-disjoint subtrees of covered edges.

This leads to the following algorithm. Fori = 1, 2 find an ET-path ofV(Xi ) in T . Wlog the path
starts in the first ET-tree. Process the edge on the ET-path in order. Lete = (x, y) be the next edge
to process. Ifx andy belong to the same ET-tree, do nothing. Otherwise, assumex belongs to the
current ET-tree andy belongs to thep-th ET-tree. Determine the subtree of covered edges of the
current ET-tree closest toy onπ(x, y) and an e- or d-nodez′ in this subtree. Determine the vertexz
of this subtree closest toy onπ(z′, y). Determine the vertexw closest toz onπ(z, y) that belongs
to a different subtree of covered edges. This subtree must belong to theq-th ET-tree. Addz andw
as e-nodes toG(s) and update the bold edge covering their two incident covered edges suitably, ifz
andw do not already belong toG(s). Add the bold edge(z, w) and join the current andq-th ET-tree.
Repeat withx replaced byw until the current and thep-th ET-tree have been joined.

We implement this algorithm as follows: We keep two different costs, i.e. markings, of the dynamic
tree ofT in (G3). Cost1 is set to 1 for each e-node or d-node belonging to the current ET-tree.Cost2
is set to 1 for an edge iff the edge is covered by any bold tree edge ofX. We usecost1to determinez′

andcost2 to determinez andw. When joining two ET-trees,cost1 of the d- and e-nodes in theq-th
ET-tree is set to 1. Theoutdated?-bit of all new bold edges is set tofalse.

Lemma 2.16 The update algorithm maintains the bold-tree invariant.

Proof: The invariant obviously holds after each rebuild. If a d-node is no longer connected to or
starts to be connected to a vertex ofV(As) \ {s} we update the bold tree to maintain (I1) without
violating (I2), since the path(x, z) is uncovered before the update.

WheneverT changes without splitting a c-set, then a tree edgeemust have been deleted. Bold edges
not containinge in the tree path between their endpoints continue to represent their tree path. The at
most one bold edge whose tree path containsenow represents the deleted edgee. Thus, the invariant
continues to hold.

WheneverT changes and a c-setX is split, we update (I2) without violating (I1): we remove
some bold edges representing deleted edges and e-nodes incident to fewer than three bold edges, ifz
and /orw do not yet belong toG(s), we add them and update the bold edges covering their incident
marked edges suitably, and we add edges(z, w) covering a previously uncovered path. Thus, the
bold-tree invariant continues to hold.

To update (S5) we determine a vertex ofXi and storeXi at the component of the vertex fori = 1, 2.
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Running Time Analysis of Case (D):
In the data structure (S1) and (S2) it takes timeO(m′1/3 logn) to add or delete a bold edge, for a total of

O(|B|m′1/3 logn). As we show below, (a) we spend timeO(k logn+ |B|m′1/3 logn) per old shared graph
to determine which edges to add and delete. We chargeO(k logn) time to the current update operation in
G.

We also show (b) that using the bold-tree invariant, the cost ofO(|B|m′1/3 logn) can be charged to either
the current or|B| previous edge deletions inG such that the total cost ever charged to an edge deletion in
G by all old shared graphs isO(

√
m logn). It follows that the total cost of updatingG(s) can be amortized

over|B| + 1 edge deletions inG, adding only an amortized cost ofO(k logn+√m logn) to each deletion.
We are left with proving (a) and (b).

To prove (a) we analyze the time for an update. We repeatedly use the fact that there areO(k)bold
edges, d-nodes, and e-nodes representing a c-set, and alsoO(k) non-bold edges incident to d-nodes of a
c-set. In Step (1) testing a bold edge takes timeO(logn) for a total ofO(k logn). Removing the edges in
B decreases the degree of the e-nodes by at most 2|B| and, thus, leads to the removal ofO(|B|) e-nodes.
Thus,O(|B|) edges are removed and added to (S1) and (S2), for a total time ofO(|B|m′1/3 logn). Thus,
Step (1) takes timeO(k logn+ |B|m′1/3 logn) altogether.

The cost of the operations in Step (2) are: Building an ET-path forV(Xi ) takes timeO(|V(Xi )| =
O(k) since the ET-tree in (S2) has constant depth. We spend timeO(logn) for each new bold edge, for
a total of O(|B| logn). Additionally each of theO(k) d-and e-nodes has itscost1 set to 1, for a total of
O(k/ logn). Finally, there areO(|B|) edge insertions and deletions inG(s). Thus, the total time for Step
(2) is O(k logn+ |B|m′1/3 logn).

The time to update (S3) and (S5) is constant. Since the number of bold edges in all c-sets ofA is linear
in the number of nodes ofA, the time for updating (S4) isO(k). Thus, the total time spent inG(s) after an
update inG is O(k logn+ |B|m′1/3 logn).

As described before, we chargeO(k logn) to the current update inG. Next we have to account for the
remainingO(|B|m′1/3 logn) cost. If m′ < m3/4 and the number of edges between a vertex in ans-cluster
and a vertex inA is at mostk/m1/4 throughout the phase, then

O(|B|m′1/3 logn) = O((k/m1/4)m1/4 logn) = O(k logn).

Thus, we charge this cost to the current update inG as well. Otherwise we charge the cost ofO(|B|m′1/3 logn)
to |B| (specific) previous edge deletions inG. To show (b) we need to prove that the total cost ever charged
to an edge deletion inG by all old shared graphs isO(

√
m logn).

Note that each deleted bold edgee must represent a deleted edgee′ of G, since its endpoints are no
longer connected inG \ {x, x belong to ans-cluster}. We charge the cost of deletinge to e′. By the bold-
tree invariant, at most one bold edge inG(s) ever represent each deleted edgee. Thus at most one deletion
in G(s) is ever charged toe′.

How much cost is charged toe′ during the whole phase byall old shared graphs? Number the old shared
graphs that have a deletion charging toe′ and letJ be the set of these indices. Letm′i be the size of thei -th
old shared graph. For eachi ∈ J either (i)m′i ≥ m3/4 or (ii) mi ≤ m3/4 andbi ≥ k/m1/4 at some point(s)
in the phase, wherebi is the number of bold edges of the c-setX in the i -th old shared graph such that a
deletion inX is charging toe′.

Let J1 be the set of indices of old shared graphs in case (i) and letJ2 = J \ J1. Since
∑

i m′i = O(m),
|J1| = O(m1/4). The cost of all old shared graphs contributing to (i) is

O(
∑
i∈J1

m′1/3i logn) = O(
√

m logn).
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Since throughout the phase there areO(k) + m/k = O(k) edges incident to the vertices represented by a
c-set,|J2| = O(m1/4). Additionally, for i ∈ J2, m′1/3i = O(m1/4). Thus, the cost of all old shared graphs
contributing to (ii) is

O(
∑
i∈J2

m′1/3i logn) = O(m1/4m1/4 logn) = O(
√

m logn).

We summarize the result in the following lemma.

Lemma 2.17 The data structures for all shared graphs G(s) can be built in time O(m logn) and can be
updated in amortized time O(k logn+√m logn) after each rebuild. They can test in constant time whether
two nodes are connected in a given graph G(s).

Updates inG̃(s)
We show how to buildG̃(s) in time linear in its size and how to update all graphsG̃(s) in time O(k)

after an update inG.
The nodes of̃G(s) are given by (S2). The yellow edges are determined as follows: Using (S2) determine

for each c-setX an arbitrary d-node or e-nodevX representing it inG(s). Bucketsort the nodesvX according
to their connected components using (S7). For each bucket connect all c-sets in the bucket by a chain of
yellow edges.

To determine the green edges determine a vertex ofc for each c-set and map it to a node ofH2 using
(HL1), and map each node ofH2 to a tree neighbor ofCs using (HL3). Finally bucketsort the c-nodes
according to the biconnected component of the tree neighbor inH2 to which they were mapped usingblock-
id?-queries in (HL4) forH2. For each bucket, connect all c-sets in the bucket by a chain of green edges.

The rebuild takes time linear in the number of c-nodes and the number of nodes inH1 for a total of
O(m) for all old shared graphs.

Next we describe the insertion or deletion of an edge inG. Using the above rebuild algorithmG(s) can
be updated in timeO(m/k) if a yellow edge or a c-set changes and in time linear in the number of c-nodes if
a green edge changes. We argue next that a yellow edge or a c-set changes in an amortized constant number
of old shared graphs and that a green edge changes in clusters that are articulations on a path inH2 (either
before or after the update) plus a constant additional number of clusters. By Fact 2.1, the total time spent is
O(m/k).

Consider an update of edge(u, v) in G. The yellow edges or a c-node of an old shared graphG̃(s)
have to be modified if a change in the corresponding graphG(s) occurred. Recall that this happens only
in an amortized constant number of graphs. Thus, yellow edges and c-nodes have to be updated only in an
amortized constant number of graphs.

Let Du be the node ofH2 containingu. The green and yellow edges are completely recomputed for
G̃(s) such thatu or v is contained in ans-cluster. Additionally, the green edges of an old shared graph
G̃(s) have to be modified if the connected component ofH1 \ C(s) change which happens iff the connected
components ofH2 \ Cs change. The latter happens (a) after the deletions of an edge(u, v) iff Cs becomes
an articulation point onπT2(Du, Dv), and (b) after the insertion of an edge(u, v) iff Cs was an articulation
point onπT2(Du, Dv) before the insertion and is no longer an articulation point after the insertion.

It follows that the green edges only have to be updated for shared graphs of old shared nodess such
thatCs is an articulation point onπT2(Du, Dv) either before or after the update plus at most 2 additional old
shared graphs.

This leads to the following lemma.
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Lemma 2.18 The data structures for all graphs̃G(s) can be built in time O(m) and can be updated in
amortized time O(k) after each rebuild. They can test in constant time whether two nodes are connected in
a given graphG̃(s).

We summarize the section with the following theorem.

Theorem 2.19 Let s be a shared vertex. There exists a data structure

• tests in constant time whether two tree neighbors u andv of s are biconnected in G, and

• that can be updated in amortized time O(k logn+√m logn) after each update in G.

The data structures for all shared vertices can be built in time O(m logn).

2.7 The high-level graphs

In this section we give the details of the high-level graph data structures and explain how they are updated.
For (HL1), (HL2), (HL5), (HL6), and (HL7) the details are given in section 2.4 and it is obvious how to
update them in constant time per update inG, provided the change in the cluster partition is known. The
description in Section 2.2 gives anO(k)-time algorithm to update the cluster partition. Thus, we concentrate
in this section on the details of (HL3) and (HL4).

2.7.1 The data structure (HL3)

Given the nodeC and its non-tree neighborC′ we use (HL3) to find the tree neighbor ofC onπTi (C,C
′).

For H2 (HL3) consists of a dynamic tree data structure ofT2. To find the tree neighbor rootT2 at C′ and
return the parent ofC. Update (HL3) by executing link and cut operations wheneverT2 changes. It takes
time O(logn) to test or update (HL3).

For H1, (HL3) consists of a degree-k ET-tree data structure ofT1. To find the tree neighbor proceed as
follows: For the nodeC, C′, and the tree neighbors ofC, label one of the leaves representing the node with
the name of the node. Then traverse the ET-tree from all labeled leaves in lockstep, labeling each internal
node with the concatenation of the label of its left child and the label of its right child. The label incident to
C′’s label is the desired tree neighbor. To update the ET-tree wheneverT1 changes split and join the ET-tree
accordingly. Since the ET-tree hasO(1) depth andC hasO(1) tree neighbors, a test takesO(1) time. Each
update takes timeO(k).

2.7.2 The data structure (HL4)

Recall that (HL4) implements the following query operations inHi :

• biconnected?(C,C’,C”):Given that nodesC′ andC′′ are both tree neighbors of a nodeC test whether
C′ andC′′ are biconnected inHi .

• blockid?(C,C’): Given thatC andC′ are tree neighbors inTi , output the name of the biconnected
component ofHi that contains bothC andC′.

• components?(C):Output the tree neighbors ofC in Hi grouped into biconnected components.
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As we show below,biconnected?andblockid? takes constant time, andcomponents?takes time linear in
the size of the output.

We say a nodeC of Hi is avoidable on the tree path Piff C and two of its tree neighbors, calledD and
D′, belong toP and there is an edge inHi \ C between the subtree ofTi \ C containingD and the subtree
containingD′.

To implement (HL4) we build a compressed graphHi (C) of Hi \C for each nodeC in H2. Let C be a
node inHi . The graphHi (C) contains a node for each tree neighbor ofC in Hi . There is an edge between
two tree neighborsD andD′ of C iff C is avoidable onπTi (D, D′).

We keep the following data structures. The latter is needed to efficiently maintain theHi (C).

(HL4-1) For i = 1, 2, and for each nodeC we storeHi (C) in a dynamic connectivity data structure.

(HL4-2) A 2-dimensional topology tree [5] ofT and one ambivalent data structure [6] are maintained. They
implement the following operations in timeO((m/k) logn):

– insert&returnavoidable(u,v):Return all nodes onπ(Cu,Cv) that become avoidable onπ(Cu,Cv)
by the insertion of edge(u, v), whereCu andCv are the endpoints inHi of the newly inserted
edge.

– delete&returnunavoidable(u,v):Return all nodes onπ(Cu,Cv) that become unavoidable on
π(Cu,Cv) by the deletion of edge(u, v), whereCu andCv are the endpoints inHi of the newly
deleted edge.

We show how to implement the operations of (HL4) using (HL4-1).

• biconnected?(C,C’,C”): Returnconnected?(C′,C′′) in Hi (C).

• blockid?(C,C’): Returncomponent?(C′) in Hi (C).

• components?: Return all connected component ofHi (C), and for each connected component output
all its nodes.

The correctness of this implementation is shown by the following lemma.

Lemma 2.20 Two tree neighbors D and D′ of C in Hi are biconnected in Hi iff they are connected in
Hi (C).

Proof: If D and D′ are connected inHi (C), then every edge on the path connectingD and D′

corresponds to a path inHi \C. Thus they are biconnected inHi . If D andD′ are biconnected inHi ,
they are connected by a path inHi \ C. Every edge on this path either lies in a subtree ofTi \C or
connects two subtrees. The sequence of edges connecting two subtrees gives a path inHi (C).

Updates in Hi (C)
Consider an insertion of edge(u, v) in G and letCu andCv be the nodes inHi incident to the edge. The

graphHi (C) has to be modified only for the nodes that become avoidable onπ(Cu,Cv). These nodes can
be found with oneinsert&return avoidableoperation in (HL4-2). LetC be such a node. Note that exactly
one edge is added toHi (C), namely the edge between the tree neighbors ofC onπ(Cu,Cv).

An edge deletion inG is handled analogously.
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To analyze the running time recall that the operation in (HL4-2) takes timeO((m/k) logn). The update
in a graphHi (C) takes timeO((degT(C))1/3 logdegT(C)), wheredegT(C) is the degree ofC in Ti . Since∑

C degT(C) = O(k), the cost for updating allHi (C) is O(k). This shows the following theorem.

Theorem 2.21 There exists a data structure that implements the operations biconnected?, blockid?, and
components? in time linear in their output. The data structure can be updated in time O(k + (m/k) logn)
after each update operation in G.

2.7.3 The data structure (HL4-2)

We present now a data structure that implementsinsert&return avoidableanddelete&returnunavoidable
in time O((m/k) logn).

We will actually show a slightly more general result: we give a data structure that can be updated in
time O(m/k) after each update inG and that can return all avoidable nodes on a tree pathP in Hi in
time O((m/k) logn). Obviously this data structure can be used to execute the above operations in time
O((m/k) logn).

In this section we assume thatT1 is rooted at a nodeR.
The data structure consists of two parts: (1) a2-dimensional topology treeand (2) anextended ambiva-

lent data structure. Both are slight variations of data structures defined in [5, 6].
Let e = (D,C) be an edge ofT1. We denote byST(D,C) the subtree ofT1 \ e that containsD.

Obviously a nodeC of H1 is avoidable on a tree pathP iff there exists an edge betweenST(D,C) and
ST(D′,C), whereD andD′ are the neighbors ofC on P. We call a node onP that is not an endpoint ofP
an internalnode ofP.

The 2-dimensional topology tree and the extended ambivalent data structure are based onH1, not H2.
Thus, to test avoidability inH2 we need to reduce it to testing avoidability inH1. For each pathP in T2,
let PT1 denote the corresponding path inT1 starting, resp., ending at an arbitrary nodes ofH1 that maps to
the start node, resp., end node ofP. Recall that each nodeC of H2 is created by a set ofH1-nodes that
are connected by a path of dashed edges. For an internal nodeC on P, let C(PT1) andC(PT1)

′ denote the
extreme-most nodes of that dashed path onPT1. We use the following lemma.

Lemma 2.22 Let C be a node of H2 on a tree path P in T2. Let D respectively D′ be the neighbor of C(PT1)

respectively C(PT1)
′, on PT1 and not onπT1(C(PT1),C(PT1)

′). Then C is avoidable on P iff there is an edge
between ST(D,C(PT1)) and ST(D′,C(PT1)

′).

Proof: Note that the edges incident to subtree containingh(D), respectivelyh(D′), in H2 \ C are
identical to the edges incident toST(D,C(PT1)), respectivelyST(D′,C(PT1)

′).

As we show below the 2-dimensional topology tree can test in timeO(m/k) whether there is an edge
betweenST(D,C(PT1)) andST(D′,C(PT1)

′). We extend the ambivalent data structure of [6] such that it
can test in timeO(m/k)

• for all but O(logn) nodesC of H2 on a pathP of T2 whether there is an edge betweenST(D,C(PT1))

andST(D′,C(PT1)
′); and

• for all but O(logn) nodesC of H1 on a pathP of T1 whether there is an edge betweenST(D,C) and
ST(D′,C).
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Thus, to test the avoidability on a pathP we use the ambivalent data structure to get the avoidability in-
formation for all butO(logn) nodes ofP and we use the 2-dimensional topology tree for the remaining
nodes.

Note that the termtree edgerefers to an edge inT , T ′, or Ti , never to an edge in a topology tree.

The 2-dimensional topology tree
Given a restricted partition of orderk we call each cluster of the partition a level-0 clusteror basic

cluster.A level-i clusteris

1. the union of two level-(i −1) clusters that are connected by a tree edge such that one of them has tree
degree 1 or both have tree degree 2, or

2. one level-(i − 1) cluster if the previous rule does not apply.

A topology tree T Tis a tree such that each nodeC at level i corresponds to a level-i cluster. IfC is
the union of two clustersC1 andC2 at leveli − 1, thenC1 andC2 are the children ofC and the tree edge
(C1,C2) is stored atC. If C consists of one level-(i − 1) clustersC at leveli , thenC1 is the only child of
C in the topology tree. Arooted topology tree T Tis a topology tree with the additional condition thatR is
only unioned when no other unions are possible.9

A 2-dimensional topology tree2T T for T T is a tree that contains a nodeC× D at leveli for every pair
(C, D) of level-i clusters inT T. A level-(i − 1) nodeC1× D1 is a child of a level-i nodeC× D iff C1 is a
child of C andD1 is a child ofD. We call each node in a topology tree or a 2-dimensional topology tree a
topology node.

We keepT T and 2T T. We store at every nodeC × D of 2T T with C 6= D a bit that is set to 1 iff there
is a non-tree edge between clusterC and clusterD.

We show next how to use 2T T to test whether an edge exists betweenST(D,C) andST(D′,C′). Let
(D,C) be a tree edge inT1. The topology nodesrepresenting ST(D,C) are the nodes ofT T that (1) are
not ancestors ofC, but are children of ancestors ofC, and (2) whose leaf descendants inT T belong to
ST(D,C). SinceT T has depthO(logn) [5], ST(D,C) is represented byO(logn) topology nodes.

Lemma 2.23 Let (D,C) and (D′,C′) be edges of T1 such that D and D′ do not belong toπT1(C,C
′).

Let X1, . . . , Xp be the topology nodes representing ST(D,C) and let Y1, . . . ,Yq be the topology nodes
representing ST(D′,C′) such that Xi and Yi are level-i topology nodes.
There is a non-tree edge between ST(D′,C′) and ST(D,C) iff a bit is set to 1 at a node X× Y of2T T
such that either

(1) X = Xi for 1≤ i ≤ p and Y is a level-i descendant of a node Yj for 1≤ j ≤ q or

(2) Y = Yj for 1 ≤ j ≤ q and X is a level- j descendant of a node Xi for 1≤ i ≤ p.

Proof: Note thatST(D,C) andST(D′,C′) are disjoint. It follows that the subtrees ofT T rooted
at X1, X2, . . . , Xp are disjoint from the subtrees rooted atY1,Y2, . . . ,Yq.

Let (A, B) be the non-tree edge betweenST(D,C) andST(D′,C′) with A ∈ ST(D,C) and
B ∈ ST(D′,C′). Let Xi (Yj ) be the lowest ancestor ofA (B) in T T that is a topology node repre-
sentingST(D,C) (ST(D′,C′)). If i ≤ j , there exists a level-i clusterY which is a descendant of

9We will exploit the rootedness in the next section.
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Yj such thatY 6= Xi and there is an edge betweenXi andY. It follows that the bit stored atXi × Y
is set to 1. If j > i , a symmetric argument applies.

If a bit is set to 1 at a nodeX × Y of 2T T such that either (1)X = Xi for 1 ≤ i ≤ p andY is
a level-i descendant of a nodeYj for 1 ≤ j ≤ q or (2) Y = Yj for 1 ≤ j ≤ q andX is a level-j
descendant of a nodeXi for 1 ≤ i ≤ p, then there is an edge betweenX andY and, thus, between
ST(D,C) andST(D′,C′).

Let Xi andYj be defined as in the lemma. LetYi = {Y,Y is a level-i descendant of a topology nodeYj

with 1 ≤ j ≤ q} and letXj be defined symmetrically. Note that the subtree in 2T T induced by the set of
nodes{Xi × Y, for all 1 ≤ i ≤ p, and allY ∈ Yi } is isomorphic to a subtree ofT T. The same holds with
the roles ofX andY reversed. Thus, Lemma 2.22 shows how to check the avoidability ofC on a pathP
by checking the bits ofO(m/k) nodes in 2T T. Finding the topology nodesXi andYi for all i takes time
O(logn). As was shown in [5], 2T T can be maintained in timeO(k+m/k) after each update operation in
G.

Lemma 2.24 A 2-dimensional topology tree can test in time O(m/k) whether a node C is avoidable on a
path P in a high-level graph Hi . It can be updated in time O(k).

The extended ambivalent data structure
To determine the avoidability of all but one node on a pathP in Hi , for i = 1, 2, we simply extend

T T and 2T T with additional labels to construct theextended ambivalent data structure. We will use two
types of avoidability information, one forH1 and one forH2. Our approach is to partitionTi into complete
paths and to keep avoidability information foreach complete path. Then we show that each pathP consists
of subpaths ofO(logn) complete paths. Thus,P’s avoidability can be determined from the avoidability
information of these complete paths. To be precise letP = πTi (A, B) in Hi . Let P1 = P if i = 1, and let
P1 = PT1 if i = 2. We partitionP1 at the least common ancestorLC A of its endpointsA1 andB1 into the
pathsPA = πT1(A1, LC A) andPB = πT1(B1, LC A). Note that both paths areincreasing, i.e., they consist
of a directed path towards the root. We show below how to test the avoidability of all butO(logn) nodes of
an increasing path by breaking it intoO(logn) complete paths.

Recall thatT1 is rooted at a nodeR and stored in a rooted topology treeT T. Note thatT1 induces
a rooted spanning treeT Tj of the nodes at each levelj of T T whose root isR. Note further that when
givenT T, R and also the least common ancestor between any two basic clusters can be determined in time
O(m/k).

We now give the necessary definitions. For a basic clusterX1 let the graphG(X1) be (1) the graph
induced by the vertices ofX1, if the tree degree ofX1 is 1 or 3, and (2) the graph induced by the vertices of
X1 with all vertices between the two boundary nodes contracted to one vertex, otherwise.

To construct complete paths we first need to introduce partial paths. We define thepartial pathof a basic
clusterX1 to be the (unique) endpointx(X1) in G(X1) of the tree edges incident toX1. In the following we
often identifyX1 andx(X1). Note that ifX1 shares a vertexs, then the partial path ofX1 consists ofs. The
partial pathof a level-i clusterX1 with i > 0 consists of

• Case A:the partial path ofX2, if X1 consists of one level–(i − 1) clusterX2,

• Case B:the concatenation of the partial path ofX2 and ofX3, if X1 is the union ofX2 andX3, and
neitherX2 nor X3 has tree degree 3.
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• Case C:the node ofX3 and the two tree edges incident to it that are not incident toX2 if X1 is the
union ofX2 andX3, andX2 has tree degree 1 andX3 has tree degree 3. In this case thecomplete path
of X1 consists of the partial path ofX2 and the vertex ofX3. In all previous cases, the complete path
of X1 is not defined. Note thatX3 is the parent ofX2 in T Tj .

• Case D:an empty path ifX1 is the union ofX2 and X3, and X2 has tree degree 1 andX3 has tree
degree 1. In this case thecomplete pathof X1 consists of the partial path ofX2 and the partial path of
X3.

For every complete path not stored at the root ofT T note that one endpoint has tree degree 1, and one
has tree degree 3 (namely the vertex ofX3). The endpoints of the complete path stored at the root ofT T
either both have tree degree 1 or one has tree degree 1 and one has tree degree 3. We call the endpoint with
tree degree 1 thetail and the endpoint with tree degree 3 theheadof the complete path. A tree-degree 3
node actually belongs to two complete paths, in one it is an internal node and in one it is a head. All other
nodes belong to exactly one complete path.

If x(X1), . . . , x(Xp) is the sequence of nodes on a partial or complete pathPc in the order in which they
occur as leaves ofPc in the search tree, then eitherX1, . . . , Xp is an increasing path inT1 or X1, . . . , Xj

andXp, Xp−1, . . . , Xj are increasing paths, for some 1< j < p.
We show next thatPA and alsoPB consist ofO(logn) increasing subpaths of complete paths. Thus,

we can use the avoidability information for the complete paths to test the avoidability ofPA andPB except
for the nodes that are heads in the complete paths. Recall thatPA and PB are increasing paths inT1. It
follows that the intersection ofPA (PB) and a complete pathPc forms a continuous subpath ofPA (PB).
Let Pc

1 , Pc
2 , . . . , Pc

l be the complete paths whose intersection withPA is non-empty such that the head of
Pc

j belongs toPc
j+1. Let Xj be the topology node inT T corresponding toPc

j . Note that all topology nodes
whose partial path contains a vertex ofPc

j are true descendants ofXj in T T. Note further that the head of
Pc

j which is the partial path ofXj belongs toPc
j+1. Thus,Xj is a true descendant ofXj+1. SinceT T has

depthO(logn) it follows that PA is contained in the union ofO(logn) complete paths, i.e.,l = O(logn).
The same holds forPB.

We use the algorithm described in the previous section to test the avoidability ofLC A on PA andPB and
for the heads of the complete paths. For all remaining nodes onPA andPB we use the extended ambivalent
data structure. It consists of further labels for the 2-dimensional topology tree 2T T and search trees for
the partial and complete paths. The labels and search trees will be oblivious of the rooting ofT1, which is
important for the efficiency of rebuilds.

Every nodeA × B with A 6= B is labeled with two additional labelsmaxcov andshared that are
explained later. Each nodeA× A of 2T T is labeled with a pointer to the partial path and complete path (if
it exists) ofA. The partial and complete paths are stored in shared search trees as follows:

• The partial path of a level-0 clusterX is represented by one nodex(X).

• In Case A, the search tree of partial path ofX1 is identical to the search tree of the partial path ofX2.

• In Case B, the partial path ofX1 consists of a (root) node pointing to the roots of the search trees of
the partial paths ofX2 andX3.

• In Case C, the partial path ofX1 consists one node. The complete path ofX1 consists of a (root) node
pointing to the roots of the search trees of the partial paths ofX2 andX3.
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• In Case D, the partial path ofX1 is empty. The complete path ofX1 consists of a (root) node pointing
to the roots of the search trees of the partial paths ofX2 andX3.

Since the topology tree has depthO(logn), every search tree has depthO(logn). A vertexv in the balanced
search tree of a partial or complete path is labeled with two bitssomecovi (v) for i = 1, 2.

Let C be an internal node on the increasing pathQ in Hi whose avoidability we have to test. LetD and
D′ be the neighbors ofC on Q such thatD is the child andD′ is the parent ofC in Ti . Lemma 2.30 below
shows that

• for i = 1, let Pc be the complete path to whichx(D′), x(C) andx(D) belong. Thensomecov1(v) is
set to 1 for an ancestorv of x(C) in Pc iff C is avoidable onQ; and

• for i = 2, letC1, ..., Cl form an increasing subpath ofQT1 with C1 = C(QT1) andCl = C(QT1)
′, and

let Pc denote the complete path to whichx(D′), x(D) andx(Cq) for 1 ≤ q ≤ l belong. Then for all
Cq in Pc, somecov2(vq) is set to 1 for an ancestorvq of x(Cq) in Pc iff C is avoidable onQ.

Note thatPc is the lowest ancestor of the least common ancestor ofC (respC1) and D in T T that has a
complete path. It can be found in timeO(logn).

Thus, if l nodes of an increasing path ofH1 lie on a complete path, we can test their avoidability except
for the head of the complete path in timeO(l + logn). Since the nodes ofPA and PB are contained in
O(logn) complete paths, we can test the avoidability of all nodes onPA or PB excludingLC A and the
heads in timeO(m/k + log2 n) = O(m/k) for k ≤ m/ log2 n.

Lemma 2.25 Given a path P in Hi the extended ambivalent data structure can test the avoidability of all
but one node on P in time O(m/k).

Let us now definesomecov, maxcov, andsharedand prove Lemma 2.30. For a clusterA theprojection
of a non-tree edge(u, v) with u ∈ A andv 6∈ A onto the partial or complete pathPc of A is the nodex on
Pc such that the tree path fromu to x in G(A) does not contain any other node onPc.

Recall that every nodeA× B with A 6= B is labeled with two labels: (1)maxcov(A, B, e) which is the
node with maximum distance frome on the partial path ofA that is avoidable because of a non-tree edge
betweenA andB, assuming that the tree edgee incident toA lies on the tree path betweenA andB and (2)
shared(A, B, s) which is a bit that is set to 1 iffA sharess and there is an edge betweenA andB whose
projections onto the partial path ofA and ofB are not nodes belonging tos.

Note that for each subpath of a complete pathPc of there existO(log n) nodes in the search tree ofPc

whose leaf descendants form exactly a subpath ofPc. We say weset the somecovi bits of a subpathwhen
we set thesomecovi bits of theseO(log n) nodes, excluding the nodes representing the endpoints.

The somecovi -bits in the partial and complete paths are defined bottom-up. No basic cluster has a
complete path and the partial path of every basic cluster consists of one node whosesomecov bit is set to
0. The partial and complete path of a level-(j +1) clusterX1 is computed with the help of themaxcov
andsharedlabels at the nodes of 2T T as follows. If X1 has two children lete = (x, y) be the tree edge
connecting them.

• In Case A, the partial path ofX1 is identical to the partial path of this child.

• In Case B, the partial path ofX1 is built by adding a node pointing to the balanced search trees ofX2

andX3. Thesomecovi bits of this node are unset.
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We set thesomecov1 bit to 1 for the pathp betweenmaxcov(X2, X3, e) andmaxcov(X3, X2, e).

Removing fromp all dashed edges belonging to the shared vertex ofe if existent or the shared vertex
of the endpoints ofp splitsp into at most two subpaths. We set thesomecov2 bits for these subpaths.
If e is dashed and belongs to the shared vertexs, andshared(X2, X3, s) is 1, we also set thesomecov2

bits of the subpath ofp containing the dashed edges ofs.

• In Case C, the partial path ofX1 consists of a tree of one node whosesomecovi bits are set to 0.

The complete path ofX1 consists of the partial path ofX2 unioned with the partial path ofX3 which
consists only of the nodex(X3). We describe next whichsomecovi bits of this complete path are
set. We set thesomecov1 bits of the subpathp betweenx(X3) andmaxcov(X2,Y, e) for any level-j
clusterY in T Tj \ X2.

Removing fromp all dashed edges belonging to the shared vertices of the endpoints ofp results in at
most one subpath ofp. We set thesomecov2 bits for this subpath.

• In Case D, the partial path ofX1 is empty.

The complete path ofX1 consists of the partial path ofX2 unioned with the partial path ofX3. We set
thesomecov1 bits of the subpathp betweenmaxcov(X2, X3, e) andmaxcov(X3, X2, e). Removing
from p all dashed edges belonging to the shared vertex ofe or the shared vertices of the endpoints of
p results in at most two subpaths ofp. We set thesomecov2 bits for these subpaths. Ife is dashed
and belongs to the shared vertexs, andshared(X2, X3, s) is 1, we also set thesomecov2 bits of the
subpath ofp containing the dashed edges ofs.

Given themaxcov andshared labels, the above description also is an algorithm to build the partial
paths ofX1 from the partial paths of the children ofX1 in time O(logn) and the complete path of a level-j
cluster in time linear in the number of level-j nodes inT T.

We show next how to use thesomecovi bits to test the avoidability of a nodee. We start with the
somecov1 bits.

Lemma 2.26 Let Pc be a complete path and let D, D′, and C be basic clusters such that(x(C), x(D)) and
(x(C), x(D′)) are edges on Pc. Then somecov1(v) is set for an ancestorv of x(C) in Pc iff there exists a
non-tree edge between ST(C, D) and ST(C, D′).

Proof: Consider the lowest levelj +1 at which asomecov1 bit is set for an ancestorv of x(C). Let
X1 be the level-(j + 1) cluster whose partial or complete pathPx containsx(C). ThenX1 has two
childrenX2 andX3 in T T, connected by an edgee in T Tj . Wlog x(C) is a node of the partial path
of X2. Thus,somecov1(v) is set becausex(C) is an internal node of the subpath ofPx between
maxcov(X2, X3, e) and the first node ofX3 on Px. By the definition ofmaxcov there exists an
edge betweenST(C, D) andST(C, D′).

Assume next that an edge exists betweenST(C, D) andST(C, D′). Let X1 be the least common
ancestor ofD and D′ and letX2 andX3 be its two children. Wlog the partial path ofX2 contains
x(C) andx(D). Since there exists a non-tree edge betweenX2 andX3 whose projection isx(D),
x(C) lies betweenmaxcov(X2, X3, e) and the first node ofX3 on the partial or complete pathPx of
X1. Thus thesomecov1 bit is set for an ancestor ofx(C) in the partial or complete path ofX1 and,
hence, also inPc.
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We discuss next under which conditionssomecov2(v) is set for an ancestorv of x(C).

Lemma 2.27 Let C be a basic cluster and let Pc be a complete path containing C. If C is not incident to a
dashed edge of Pc, then somecov2(v) is set for an ancestorv of x(C) in Pc iff somecov1(v) is set.

Proof: The lemma follows immediately from the definition ofsomecov2.

Lemma 2.28 Let Pc be a complete path and let C1, ...,Cl be basic clusters such that x(C1), ..., x(Cl ) forms
a maximal subpath of dashed edges of Pc belonging to the shared vertex s. Let j be the lowest level such that
the somecov2 bits are set for an ancestor for every node x(C1), ..., x(Cl ). Then all nodes x(C1), ..., x(Cl )

belong to the partial or complete path of the same cluster at level j .

Proof: Let Pc be stored at a levelj ∗ node. The claim obviously holds for levelj ∗. Assume it
does not hold for a levelj < j ∗. Then there exists at least one nodex(Cq) that is incident to an
intercluster dashed edge on levelj and in the partial path containingx(Cq) there exists an ancestor
whosesomecov2 bit is set. Note thatx(Cq) was the endpoint of the partial path of every level≤ j
and that the ancestors of the endpoints of a partial path always have thesomecov2-bit set to 0. Thus
at level j , thesomecov2 bit is not set for any ancestor ofx(Cq). Contradiction.

Lemma 2.29 Let Pc be a complete path and let D, D′, and C1,C2, ...,Cl be basic clusters such that
x(C1), x(C2), ..., x(Cl ) forms a maximal subpath of dashed edges of Pc and(x(D), x(C1)) and(x(Cl ), x(D′))
are solid edges on Pc. Then, for all1 ≤ q ≤ l, somecov2(v) is set for an ancestorv of x(Cq) in Pc iff there
exists a non-tree edge between ST(C1, D) and ST(Cl , D′).

Proof: Let s be the shared vertex to which the dashed edges incident toCq belong. Consider the
lowest levelj + 1 at which, for all 1≤ q ≤ l , somecov2(vq) is set for an ancestorvq of x(Cq). By
Lemma 2.28, allx(Cq) belong to the partial or complete pathPx of the same level-( j + 1) cluster
X1. Then X1 has two childrenX2 and X3 connected by an edgee in T Tj . Note that one of the
somecov2(vq) bits was set while constructingPx.

If neither X2 nor X3 have tree degree 3, asomecov2(x(Cq)) bit was set when constructing of
the path forX1 because either (1)x(D), x(D′), and all nodesx(Cq) are nodes on the path between
maxcov(X2, X3, e) andmaxcov(X3, X2, e), ande does not belong tos, or (2) there exists an edge
betweenX2 andX3 whose projections do not belong tos. In either case there exists a non-tree edge
betweenST(D,C1) andST(Cl , D′).

If X2 has tree degree 1 andX3 has tree degree 3, asomecov2(x(Cq)) bit is set while constructing
the path forX1 only if all nodesx(Cq) are internal nodes on the path betweenmaxcov(X2,Y, e) and
x(X3) for a level-j clusterY in T Tj \X2. It follows that there is a non-tree edge betweenST(C1, D)
andST(Cl , D′).

Assume next that an edge exists betweenST(C1, D) andST(Cl , D′). Let X1 be the least com-
mon ancestor ofD and D′ and letX2 and X3 be its two children. If neitherX2 nor X3 has tree
degree 3, we consider two cases. If the tree edgee betweenX2 and X3 does not belong tos, the
somecov2 bits of the subpathx(C1), ..., x(Cl ) are set because it lies betweenmaxcov(X2, X3, e)
and maxcov(X3, X2, e). If e belongs tos, the somecov2 bits of the subpath are set because
shared(X2, X3, s) is 1.

If X2 has tree degree 1 andX3 has tree degree 3, thenx(X3) = x(D′) or x(X3) = x(D), i.e. e
is solid. The subpathx(C1), ..., x(Cl ) is internal to the path betweenmaxcov(X2,Y, e) andx(X3)
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for some level-j clusterY in T Tj \ X2. Thus, thesomecov2 bits of the subpathx(C1), ..., x(Cl ) are
set.

Lemma 2.30 Let C be an internal node on the increasing path Q in Ti and let D and D′ be the neighbors
of C on Q such that D is the child and D′ is the parent of C.

For i = 1, let Pc be the complete path to which x(D′), x(C) and x(D) belong. Then somecov1(v) is set to
1 for an ancestorv of x(C) in Pc iff C is avoidable on Q.

For i = 2, let C1, ..., Cl form an increasing subpath of QT1 with C1 = C(QT1) and Cl = C(QT1)
′, and let

Pc denote the complete path containing x(D′), x(D) and x(Cq) for 1 ≤ q ≤ l. Then for all Cq in Pc

somecov2(vq) is set to 1 for an ancestorvq of x(Cq) iff C is avoidable on Q.

Proof: Let Pc be C’s complete path. We discuss first the casei = 1. Lemma 2.26 shows
that somecov1 is set for an ancestor ofx(C) iff there is a non-tree edge betweenST(C, D) and
ST(C, D′). By the definition of avoidability, the latter holds iffC is avoidable onQ.

We discuss next the casei = 2. Lemma 2.27 shows the claim ifl = 1. If l > 1, thenC
represents at least two clusters inH1. Lemma 2.29 shows that for allCq in Pc somecov2(vq) is set
to 1 for an ancestorvq of x(Cq) iff there exists a non-tree edge betweenST(C1, D) andST(Cl , D′).
The latter holds iffC is avoidable onQ.

Updates
We show next how to maintain themaxcov andsharedvalues, and the partial and complete paths in

time O(k) after each update operation inG. First, we discuss themaxcov andsharedvalues. An update
(u, v) operation affects only themaxcov(X,Y, e) andshared(X,Y, s) values iff eitherX or Y contains
eitheru, v, x, or y, where(x, y) is the new tree edge. Since the clusters at all levels that containu, v, x, or y
form a structure which is isomorphic to two copies ofT T, the total number of affectedmaxcov andshared
values isO(m/k). As was shown in [6] for themaxcov values and as we show below for thesharedvalues
each such value at an internal node of 2T T can be computed in constant time from the values of its children
and in timeO(k) for a basic cluster. Thus, updating allmaxcov and allsharedvalues takes timeO(k).

Lemma 2.31 shows that the only clusters whose partial or complete paths are affected by updates are the
ones that are ancestors inT T of the basic cluster containingu, v, x, or y. Thus, the partial and complete
paths of at most 2 clusters at each level have to be updated. The partial path of a clusterC can be computed
in time O(logn) from the partial paths of the children ofC and thesharedandmaxcover values. The
complete path of a clusterC at level j can be computed in time linear in the number of levelj nodes in
T T from the partial path of the child ofC with tree degree 1 and from thesharedandmaxcover values.
(We discuss below how to restore the partial and complete paths of the clusters that are children of clusters
containingu, v, x, or y). SinceT T has depthO(logn) and sizeO(m/k), all affected partial and complete
paths can be updated in timeO(m/k + log2 n) = O(m/k) for k ≤ m/log2 n.

Whenever we build the partial or complete path we keep aback logthat stores for each nodeX1 of 2T T
all the operations that were executed to build the partial or complete path ofX1 from the partial or complete
path of its children. Whenever we execute an update operation, we walk top down inT T and restore the
path of the suitable clusters and their children. The partial and complete path of the root ofT T are given.
Assume inductively the partial and complete path of a nodeX at level j are restored. Undo the operations in
the back log ofX to restore the partial and complete paths of the children ofX. Then recurse on the suitable
child(ren) ofX. Note that this takes time proportional to building the back log, which isO(m/k). Note also
that modifications in the back log of one child does not affect the back log of its sibling.
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Lemma 2.31 An insert(u, v) and a delete(u, v) operation only modifies the balanced tree of partial or
complete paths of clusters containing u,v, x , or y, where(x, y) is a new tree edge.

Proof: Note first that asomecov bit is set in the balanced tree representing the partial path of a
clusterC only if there exists an edge internal toC that covers the corresponding nodes. For a cluster
not containingu, v, x, or y neither the partial path nor the non-tree edges internal to the cluster have
changed. Thus, the balanced search tree of its partial path does not have to be updated.

Next we discuss complete paths. If a clusterC which has a complete path does not containu,
v, x, or y, then the partial path of its childC′ with tree degree 1 and the non-tree edges incident to
C′ are not affected by the above argument. The modifications to this partial path that create the data
structure for the complete path ofC depend only on the projection of edges incident toC′ onto the
partial path ofC′ . Since the partial path ofC′ and the non-tree edges incident toC′ did not change,
the balanced search tree of the complete path ofC is not affected by the operation.

We are left with showing how to computeshared(A1, B1, s) from thesharedvalues of the children of
A1 andB1 in constant time. Recall that for each pair of clusters at the same levelshared(A1, B1, s) is 1 iff
A1 sharess and there is an edge betweenA1 andB1 whose projection onto the partial path ofA1 and onto
the partial path ofB1 is nots. If A1 does not share a vertexs, thenshared(A1, B1, s) is not defined. Since
each basic cluster and each cluster with tree degree 1 or 3 shares at most one vertex and each cluster with
tree degree 2 shares at most two vertices, at most 4shared(A1, B1, .) values are defined for every pair of
clustersA1 andB1. We distinguish cases depending on the number of children ofA1 and ofB1 under the
assumption thatA1 shares the vertexs.

Case 1:A1 andB1 are basic clusters.
Thenshared(A1, B1, s) = 0, since every edge incident toA1 is projected ontos when it is projected

onto the partial path ofA1.

Case 2:A1 andB1 are clusters at levelj > 0.
Case 2.1:A1 has one childA2 andB1 has one childB2.

Thenshared(A1, B1, s) = shared(A2, B2, s).
Case 2.2:A1 has one childA2 andB1 has two childrenB2 andB3.

Thenshared(A1, B1, s) = shared(A2, B2, s) or shared(A2, B3, s).

Case 2.3:A1 has two childrenA2 andA3, A3 sharess, andB1 has one childB2.

Note thatA3 has tree degree at least 2, sinceA3 is adjacent toA2 and A3 is incident to the tree edge
incident toA1. If the tree degree ofA3 is 3, thenshared(A1, B1, s) = 0, since every edge incident toA1 is
projected ontos when it is projected onto the partial path ofA1.

If the tree degree ofA3 is 2, then we distinguish the case thatA2 sharess and thatA2 does not shares.
If A2 sharess, then

shared(A1, B1, s) = shared(A2, B2, s),

since the projection of every edge incident toA3 onto the partial path ofA1 is s.
If A2 does not shares, then we distinguish between the case thatB2 sharess and thatB2 does not share

s. If B2 sharess, then

shared(A1, B1, s) = shared(A3, B2, s)or shared(B2, A2, s).

(Note thatshared(A2, B2, s) is not defined in this case, butshared(B2, A2, s) is defined.)
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If B2 does not shares, then

shared(A1, B1, s) = shared(A3, B2, s)or edge(A2, B2),

whereedge(A2, B2) = 1 iff there exists an edge betweenA2 and B2 iff maxcov(A2, B2, e) (for any tree
edgee incident toA2) is defined.

Case 2.4:A1 has two childrenA2 andA3, A3 sharess, andB1 has two childrenB2 andB3.

Note thatA3 has tree degree at least 2, sinceA3 is adjacent toA2 and A3 is incident to the tree edge
incident to A1. If the tree degree ofA3 is 3, thenshared(A1, B1, s) = 0, since the projection of every
non-tree edge incident toA1 onto the partial path ofA1 is s.

If the tree degree ofA3 is 2, then we distinguish the case thatA2 sharess and thatA2 does not shares.
If A2 sharess, then

shared(A1, B1, s) = shared(A2, B2, s)or shared(A2, B3, s),

since the projection of every non-tree edge incident toA3 onto the partial path ofA1 is s.
If A2 does not shares, then we distinguish between the case that (1)B2 sharess andB3 does not share

s, that (2)B3 sharess andB2 does not shares, that (3) both shares, and that (4) both do not shares.
In case (1) (B2 sharess andB3 does not shares)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or shared(B2, A2, s)or edge(A2, B3).

(Note thatshared(A2, B2, s) is not defined in this case, butshared(B2, A2, s) is defined.) The case (2) is
symmetric to case (1).
In case (3) (B2 andB3 shares)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or shared(B2, A2, s)or shared(B3, A2, s).

In case (4) (B2 andB3 do not shares)

shared(A1, B1, s) = shared(A3, B2, s)or shared(A3, B3, s)or edge(A2, B2)or edge(A2, B3).

This shows that theshared(A1, B1, .) bit can be computed in constant time from thesharedand
maxcov values of the children ofA1 andB1 and finishes the proof of the following lemma.

Lemma 2.32 The extended ambivalent data structure can determine the avoidability of all but one node on
a path P in H in time O(m/k). It can be updated in time O(k).

2.8 The c-structure

In this section we address the following problem. Given the c-nodes of a cluster graph (see Section 2.5),
the c-nodes of a shared graphG(s) for a new shared vertexs (see Section 2.6.1), or the c-sets for an old
shared vertexs (see Section 2.6.2) determine which c-nodes or c-sets are split by an update operation. For
this problem we give a data structure, calledc-structureand show that each update splits only an amortized
constant number of c-nodes or c-sets. We first recall the definitions of c-nodes and c-sets and then exactly
define the operations of the c-structure.

Given a nodeC in H with ancestorA a c-node of the cluster graphI (C) represents a maximal setX
of nodes ofH1 such that (a) every nodeC′ in X is a neighbor ofC, and all edges(C,C′) have the same
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ancestor edge inH1 at C, (b) all nodes inX have the same ancestor6= A, and (c) all nodes have been
connected inH1 \C at all times and every previous set of clusters containing the vertices of the clusters in
X was connected inH1 \C at all times.

The definition for a c-node of the shared graphG(s) of a new shared vertexs is identical withH1

replaced byH2.
A c-set of an old shared vertexs is a setX of nodes ofH1 such that (a) every nodeC′ in X contains a

vertex that is incident to a vertex inV(As) and all edges(h(C′), As) have the same ancestor edge inH2 at
As, (b) all nodes inX have the same ancestorA such thath(A) 6= As, and (c) all nodesh(C′) with C′ ∈ X
have been connected inH2 \ Cs at all times and for every previous setY of nodes ofH1 containing the
vertices of the nodes inX all nodes ing(C”) with C” ∈ Y were connected inH2 \Cs at all times.

We generalize all three definitions. LetH and H ′ be high-level graphs such that eitherH = H ′ or
H = H1 andH ′ = H2. Let g be the identity function ifH = H ′ and letg = h otherwise.

Let C be a node ofH ′ and letA be the ancestor ofC in H ′. Let a be the identity function ifH = H ′

and leta be the mapping from a node ofH ′ to its ancestor otherwise.
A c-set is maximal setX of nodes ofH such that

(a) every nodeC′ in X contains a vertex that is incident to a vertex ina(C) and all edges(g(C′), a(C))
have the same ancestor edge inH ′ ata(C);

(b) all nodes inX have the same ancestorA′ such thatg(A′) 6= A; and

(c) all nodes ing(C′) with C′ ∈ X have been connected inH ′ \ C at all times and for every previous
setY of nodes ofH containing the vertices of the nodes inX all nodes ing(C”) with C” ∈ Y were
connected inH ′ \ C at all times.

We call(g(C′), a(C)) theancestor edge of the c-set.
Note that any two different c-sets are disjoint. Given a high-level graphH , a setC of nodesa(C) for the

nodesC of H ′ and the data structures forH andH ′, the c-structure executes the following operations.

• split(C,C1,C2, u, v) whereC is a node ofH ′ split by thedelete(u, v) or insert(u, v) operation,C1

andC2 are the two nodes ofH created by the split. Return a (possibly empty) list of split c-sets and
for each split c-set return the element list of the two resulting c-sets.

• add(C1,C2) whereC1 and C2 are nodes ofH . Add one edge betweenC1 and C2 and return a
(possibly empty) list of modified c-sets and for each modified c-set return its new element list.

• remove(C1,C2) whereC1 andC2 are nodes ofH . Remove the edge betweenC1 andC2 and return a
(possibly empty) list of modified c-sets and for each modified c-set return its new element list.

We show below that each operation can be executed in timeO((m/k) logn). Note that a split operation
is called whenever a node inH ′ is partitioned by adelete(u, v) or insert(u, v) operation. As shown in
Section 2.2 a constant number of nodes ofH ′ are split after each update inG. Additionally either anadd
or aremove is executed in the c-structure. Thus maintaining and using the c-structure increases the cost per
update inG only by a constant factor.

We use the following data structure for the c-structure, which usesO((m/k)2) space.

(T1) For each node ofC we keep a list of its c-sets. For each c-set we keep a list of its nodes ofH , and for
each node inH we keep a pointer back to its position in the list for all its c-sets.
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At the beginning of a phase each c-set consists of one node: every neighbor of a node inC forms its own
c-set.

We implement the operations as follows:split(C,C1,C2, u, v): Determine all articulation points on
π(Cu,Cv) in (the updated)H ′. For each articulation pointD search all c-sets incident toa(D) to determine
whetherC is contained in one. If not, go to the next articulation point. IfC is contained in a c-setX and
bothC1 andC2 are incident toD, replaceC by C1 andC2 in X. Otherwise, only one ofC1 or C2 is incident
to D andC replaced by it inX. Note that all nodes inX still fulfill (a) and (b). Using (HL3) determine for
each nodeC′ in X the tree neighbor ofD onπ(g(C′), D) and bucketsort the node according to the blockid
of “its” tree neighbor using (HL4). This results in either 1 or 2 non-empty buckets. In the latter case, split
the list of X accordingly and returnX and the two resulting lists. For all other c-set containingC, i.e., the
ones at a nodea(D) such thatD is not an articulation point onπ(Cu,Cv) replaceC by eitherC1 or C2 or
both, depending on which of the new nodes are incident toD.

If a(g(C)) is replaced bya(g(C1)) anda(g(C2)) in C, copy the c-sets ofa(g(C)); remove all the nodes
of H that are not incident to a node ofa(g(Ci )), and then test each c-set whether it has to be split as above.

add(C1,C2): If the ancestor ofg(C1) equals the ancestor ofg(C2) stop. Otherwise, search the c-sets of
a(g(C1)) to determine whetherC2 belongs to one of them. If not, create a new c-set consisting only ofC2.
Repeat with the roles ofC1 andC2 exchanged.

remove(C1,C2): If the ancestor ofg(C1) equals the ancestor ofg(C2), stop. Otherwise determine the c-
set ofa(g(C1)) to whichC2 belongs and removeC2 from it. Repeat with the roles ofC1 andC2 exchanged.
Finally determine all articulation pointsD onπ(g(C1), g(C2)) in (the updated)H ′. Test all c-sets for each
of them whether they have to be split.

Since c-sets are disjoint, the time spent by anadd is linear in the number of nodesC of H incident to a
vertex inC1 with h(C) 6= C1 and the number of nodesC of H incident to a vertex ofC2 with h(C) 6= C2.
This is O(m/k).

The time spent insplit or remove per nodeD in H ′ is O(logn) times the number of nodesC in H
incident to a vertex inD with h(C) 6= D. Since the nodesD are articulation points inH ′, each node ofH
is counted at most twice. Additionally the operation spends timeO((m/k) logn) for a(C1) anda(C2) and
split takes timeO(m/k) to removeC from all its c-set and to replace it byC1 and/orC2. Thus, the total
time spent isO((m/k) logn).

2.9 The amortization lemma

We show next that during a sequence ofl updates after a rebuildO(l) c-sets are split forl ≥ m/k.
A similar lemma was shown in [11]. However, the previous lemma only applies to c-nodes. The lemma

presented in this section applies to c-sets, which are a generalization of c-nodes.

Lemma 2.33 During l updates in G after a rebuild at most11l+O(m/k) splits of a c-set occur for l≥ m/k.

Proof: Let H , H ′, g, anda be defined as above. We construct a bipartite graphK consisting initially
of O(m/k) blue nodes,O(m/k) red nodes, andO(m/k) edges between red and blue nodes. A red
node is incident to at least one blue node. We show that during a sequence ofl updates inG the
number of blue nodes inK increases by at most 11l , each split of a c-set increases the number
of connected components ofK by at least one and no other operation decreases the number of
components. Thus, there are at mostO(m/k) + 11l splits of c-sets duringl updates inG.

Recall that an edge ofH ′ consists of a set of edges ofG′. An edge ofH ′ is callednew if all
edges ofG′ in its set are new, i.e., have been inserted after the last rebuild. All other edges ofH ′
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areold. We ”treat” new edges in a special way to guarantee that edge insertions do not decrease the
number of connected components ofK . Note that there are at mostl new edges inH ′ at each point
in time.

We next defineK .

• For each nodea(C) in C and each c-setX ata(C), K contains a red node(a(C), X).

• For each nodeD in H , K contains a blue nodeD.

• For each nodeD in a c-setX at a(C) such that(g(D), a(C)) is new there exists a blue node
(D, X). These nodes are calledspecial.

• Let D be in the c-setX at a(C). If both a red node(a(C), X) and a blue node(D, X) exist,
there exists an edge between(a(C), X) and(D, X). If (D, X) is not a blue node, there is an
edge between(a(C), X) andD.

Note that every edge inK corresponds to an edge ofH ′. Thus, connectivity inK implies
connectivity inH ′.

There are four events that modifyK : (A) a split operation, (B) anadd operation in the c-
structure, (C) aremove operation in the c-structure, and (D) the change of an edge from old to
new.

Next we describe each event in detail:

(A) A split(C,C1,C2, u, v) operation. (1) The blue nodeC and all blue nodes(C, X) are split into
two nodes and connected to the appropriate neighbors of the split nodes. (2) Every red node
(a(g(C)), X) is replaced by a set of red nodes(a(g(C)), {D}), one for each nodeD ∈ X, and
if the blue node(D, X) exists, it is replaced by a blue node(D, {D}). The new red node is
connected to(D, {D}) if it exists and toD otherwise. Thus each new red node has degree 1.
(3) For each split c-setX′ of an articulation pointD onπ(Cu,Cv) in H ′ replace the red node
(a(D), X′) by two red nodes, one for each new c-set.

(B) An add(C1,C2) operation. It might add a new red node at(a(g(C1)), {C2}), a new blue node
(C2, {C2}), and connect them by an edge. It might do the same with the roles ofC1 andC2

reversed.

(C) A remove(C1,C2) operation. LetX be the c-set ata(g(C1)) containingC2. Remove the edge
between(a(g(C1)), X) and the corresponding node representingC2. If (C2, X) exists, remove
it. If X = {C2} also remove(a(g(C1)), X). It removes the c-setX at a(g(C1)), if it only
containsC2. Proceed in the same way with the roles ofC1 andC2 reversed. Finally for each
articulation point onπ(g(C1), g(C2)) proceed as in step (A3).

(D) An old edge(D,C) of H becomes new. IfD belongs to the c-setX ata(g(C)), then add a new
blue node(D, X) with edge to(a(g(C)), X) and remove the edge fromD to (a(g(C)), X).
Then proceed in the same way with the roles ofD andC reversed.

We first show that the split of a c-setX at a nodea(C′) of C increases the number of connected
components by at least 1. A c-set is split (a) duringsplit operations and (b) duringremove opera-
tions. (a) Since in steps (A1) - (A3) repeatedly a node is replaced by a set of nodes that are connected
to a subset of the neighbors of the original node, the number of connected component ofK does not
decrease.
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Let A = a(g(C)). We show next that depending on whethera(C′) = A or not, either (A2) or
(A3) actually increases the number of connected components by 1. Ifa(C′) = A, then letD1 and
D2 be in X, but belonging to different c-sets ofA after the split. Note that after step (A1) a blue
node representingD1 is connected inK to a blue node representingD2 since they both belong toX,
i.e., are both connected to the red node(A, X). Furthermore,g(C) is an articulation point separating
g(D1) from g(D2) in H ′. Since connectivity inK implies connectivity inH ′, every path between
a blue node representingD1 and a blue node representingD2 in K contains a red node(A, X′) for
someX′.

In step (A2) all of these red nodes(A, X′) are replaced by degree-1 nodes. This implies that
every path between a blue node representingg(D1) and a blue node representingg(D2) is split at
the node(A, X′). Hence no blue node representingD1 is connected to any blue node representing
D2 after the split, i.e., the number of connected components ofK increases by at least one.

If a(C′) 6= A, thenC belongs to the c-setX of a(C′) and the split ofC into C1 andC2 partitions
X. ThusC′ is an articulation point inH ′ separatingC1 andC2. Wlog let C1 andC2 be the blue
nodes incident to(a(C′), X). We show below in Claim 2.37 that in this case after step (A1) all paths
in K connectingC1 andC2 contain the red node(a(C′), X). In step (A3)(a(C′), X) is replaced
by two nodes, one representing each new c-set. All neighbors of(a(C′), X) belonging to the same
connected component ofK \ (a(C′), X) are connected to the same new red node and the connected
components ofC1 andC2 are connected to different new red nodes. This disconnectsC1 andC2 and
thus the number of connected components inK is increased by 1.

(b) If the removal of edge(C1,C2) splits X at a(C′) then letD1 andD2 be two elements ofX
such thatg(D1) andg(D2) are the tree neighbors ofa(C′) onπ(g(C1), g(C2)) and wlog letD1 and
D2 be the blue nodes incident to the red node(a(C′), X) in K . (The case that either(D1, X) or
(D2, X) are incident to(a(C′), X) works in the same way). As we show in Claim 2.37 every path
in K betweenD1 andD2 contains the red node(a(C′), X). The same argument as above shows that
updatingK as in step (A3) disconnectsD1 and D2 and, thus, increases the number of connected
components ofK as above.

We are left with proving Claim 2.37 and showing that the number of connected components of
K does never decrease.

Claim 2.34 Every blue node(D, X) has degree 1 in K .

Proof: We show the claim by induction onl . For l = 0 the claim holds since no blue nodes
(D, X) exist. Assume the claim holds forl = i and consider updatei + 1. Let(a(C), X) be
the unique red node incident to a blue node(D, X) before the update. If updatei+1 does not
split a(C) or D the claim holds also for(D, X) after the update. If it splitsa(C), thena is
the identity function and thusb′ = (C, D) is its own ancestor edge after the split. It follows
that (D, X) is replaced inK by (D, X′) which in turn has degree 1 inK . If updatei + 1
splitsD into D1 andD2 then(D, X) is replaced by at most two nodes(D1, X) and(D2, X),
each of which is adjacent only to(a(C), X). If the update inserts the new edgeb = (C, D)
then the blue nodes(D, X) and(C, X′), the red nodes(a(D), X′) and(a(C), X) and the
edges((D, X), (a(C), X)) and((C, X ′), (a(D), X′)) are added toK . Thus the claim holds
in either case.
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Claim 2.35 For every node C in H′ each blue node representing a node D in H is incident to at
most one red node(a(C), X), and X is the c-set to which D belongs at a(C).

Proof: Follows from the construction ofK since each nodeD belongs to at most one c-set
ata(C).

Claim 2.36 If two blue nodes are connected in K , then they represent nodes with the same ancestor.

Proof: If there is a path inK between the two blue nodesY andY′, then letB1, . . . , Bj be
the blue nodes on this path withY = B1 andY′ = Bj . SinceBi andBi+1 are adjacent to
the same red node, it follows from the construction ofK that Bi and Bi+1 have the same
ancestor edge at the red node, and thus ancestor. By the transitivity of the ancestor relation
the claim follows.

We show next the crucial property ofK while processing the split of a c-set.

Claim 2.37 While processing the split of a c-set at a(C′), let C′ be an articulation point in H′

separating g(C1) from g(C2). Let Y1 be a blue node representing C1 and let Y2 be a blue node
representing C2. If Y1 and Y2 are adjacent to a red node(a(C′), X), then every path in K between
Y1 and Y2 contains(a(C′), X).

Proof: The claim obviously holds if either(g(C1), a(C′)) or (g(C2), a(C′)) is new.

Assume next that both edges are old, i.e.Y1 = C1 andY2 = C2 and consider a pathP
between them. Since connectivity inK implies connectivity inH , P must contain a red
vertex(a(C′), X′). We are left with showing that it also contains(a(C′), X).

Assume otherwise and letDi and D′i be the two nodes incident to thei th red node
(a(C′), Xi ) for some c-setXi on P. ThenDi andD′i both belong toXi 6= X. Since a split
operation splits at most one c-set ata(C′), Xi is not split, i.e.,g(Di ) andg(D′i ) are connected
in H ′ \C′ .

By Claim 2.36 the nodes ofH represented by the blue nodes ofP all have the same
ancestor. Since the ancestor ofC1 andC2 differ from the ancestor of any node ing−1(C′),
the blue node of any node ing−1(C′) does not belong toP. Thus the subpaths ofP from
Y1 to D1, from D′i to Di+1 for 1 ≤ i < p, and fromD′p to Y2 contains no node representing
any node ing−1(C′) and, hence, correspond to a path inH ′ \C′. It follows thatP induces a
path inH ′ betweeng(C1) andg(C2) not containingC′, which is a contradiction.

Claim 2.38 The number of connected components of K never decreases.

Proof: As discussed above, a split of a c-set does not decrease the number of connected
components ofK . A remove operation either removes c-sets or elements of c-set and thus
removes nodes and edges ofK or it splits c-sets. Thus it does not decrease the number of
connected components ofK .

An add(C1,C2) operation might add a new blue node(C2, X), a new red node(a(g(C1)), X),
an edge between them, and the same with the roles ofC1 andC2 reversed. Since they do
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not connect to the rest ofK , anadd operation does not decrease the number of connected
components inK either.

Note that an old edge ofH ′ can become new, but not vice-versa. If this happens a new
blue node is added for each element in the c-set and connected to the red node representing
the c-set. Thus the number of connected components does not decrease.

Claim 2.39 After l update operations at most11l + O(m/k) blue nodes exist.

Proof: Initially there areO(m/k) many blue nodes. A sequence ofl update operations in
G leads to at most 7l split operations,l add operations, andl remove operations. Anadd
increases the number of blue nodes by at most 2, aremove does not increase the number of
blue nodes. Asplit increases the number of non-special blue nodes by at most 1. At each
point there are at most 2l special blue nodes. Thus there are at most 11l + O(m/k) blue
nodes inK .

Each red node is connected to a blue node and, by Claim 2.39,K contains at most 11l+O(m/k)
blue nodes. Thus,K contains at most 11l + O(m/k) connected components inK after l update
operations. Since none of the operations inG decreases the number of connected components ofK
and each split of a c-set increases the number of connected components ofK by one, there can be at
most 11l + O(m/k) splits of a c-set duringl update operations.

2.10 Complete block queries

A complete block query determines all the blocks to which a vertex belongs by computing for each tree
edge the block to which it belongs. A vertex belongs to exactly the blocks to which the tree edges adjacent
to the vertex belong. We can find the blocks inI (C) for every tree edge in or incident to the clusterC in
time O(k) whenever we recomputeI (C). To compute the blocks ofG, we have to determine which blocks
of different cluster graphs form the same block ofG.

Let C andC′ be two clusters that are connected by a tree edgee= (x, y) with x ∈ C andy ∈ C′ and
let b andb′ be the blocks ofC andC′ to whiche belongs. Ife is a solid edge, thenx andy, and thusb and
b′ belong to the same block ofG.

If e is a dashed edge belonging to a vertexs, then bothx and y represents. If either b or b′ consists
of only e, then no vertex ofC is biconnected with a vertex ofC′. Thus no blocks ofC andC′ belong to
the same block ofG. If b andb′ consist of more than one edges, letu resp.u′ be a vertex ofG adjacent to
s belonging tob resp.b′ (any such vertex can be used). According to Lemmata 2.13 and 2.15, the blocks
b andb′ belong to the same block ofG if and only if s does not separateu andu′, i.e., if and only if (the
representative of)u andu′ are connected inG(s) or if the representative ofu and the representative ofu′ are
connected inG̃(s).

This shows that usingI (C) and the shared graphs, we can test inO(1) time for any pair of adjacent
clusters whether two of their blocks should be joined. Thus, all these tests take timeO(m/k) = O(n).

During a depth-first traversal of the spanning tree ofH1 we compute lists of the blocks of different
clusters that have to be joined. Then we mark all the edges of blocks in the same list as belonging to the
same block ofG. Thus the total cost is proportional to the number of tree edges inT ′, which isn− 1.

Theorem 2.40 A complete block query in a graph of n vertices can be answered in time O(n).

45



2.11 Biconnectivity queries

Given aquery(u, v) operation, letx(i) andy(i) be defined as in Lemma 2.6. The lemma shows thatu andv
are biconnected inG iff

(Q1) u andy(1) are biconnected inG,

(Q2) x(i) andy(i+1) are biconnected inG, for 1≤ i < p, and

(Q3) x(p) andv are biconnected inG.

Condition (Q2) holds iffei = (x(i), y(i)) andei+1 = (x(i+1), y(i+1)) belong to the same block ofG.
Note that the nodesx(i) andy(i) are the endpoints of the tree edges on theT2-path between the nodeCu

in H2 and the nodeCv in H2. To find these nodes efficiently we keep the following data structure.

(HL7) We store a least-common ancestor data structure [8] forT2 rooted at a leafR, such that least common
ancestor queries between any two nodes ofH2 can be answered in constant time. IfC is the least
common ancestor ofC and D, then the data structure also returns in constant time the tree edge,
incident toC onπ(C, D). We also keep at each node ofH2 the tree edge to its parent.

(HL8) We store at each solid intercluster tree edge, i.e., each edge ofT2, its block inG.

Both data structures are recomputed from scratch after each update inG. The computation of (HL8) pro-
ceeds in the same way as a complete block query that ignores internal edges. Both updates take time
O(m/k).

We first use (HL7) to determine the least-common ancestor ofCu and Cv in H2. If Cu is the least
common ancestor, the data structure returns the tree edge incident toCu onπ(Cu,Cv). This is edgee1, the
edge fromCv to its parent is the edgeep. If the least common ancestor ofCu andCv is a third node, thene1

is the edge fromCv to its parent andep is the edge fromCu to its parent. This also providesy(1) andx(p).
We use them to test Conditions (Q1) and (Q3) in constant time as described in Section 2.3.

Testing Condition (Q2):Condition (Q2) holds for all 1≤ i < p iff each pair(ei , ei+1) belongs to the
same block ofG, i.e., if they all belong to the same block. This holds iffe1 andep belong to the same block.
Testing the latter condition takes constant time.

Theorem 2.41 The given data structure can answer a biconnectivity query in constant time.

The total update cost is

• time O(k) for restoring the relaxed partition,

• amortized itemO(k) to update all cluster graphs,

• amortized timeO(k logn+√m logn) to update all shared graphs,

• time O(k+ (m/k) logn) to update all data structures for high-level graphs (HL1) – (HL8), and

• time O((m/k) logn) to update all c-structures.

Thus choosingk = √m gives the following update time.

Theorem 2.42 The given data structure can be updated in amortized time O(
√

m logn) after an edge in-
sertion or deletion.
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3 Plane graphs

In this section we present an algorithm for fully dynamic biconnectivity in plane graphs withO(logn) query
time andO(log2 n) update time. We modify the extended topology tree data structure of [16] and prove that
this data structure dynamically maintains biconnectivity information.

3.1 Definitions

As in general graphs (see Section 2) we transform a given graphG into a degree-3 graphG′ by replacing
every vertexx of degreed > 3 with a chain ofd − 1 dashededges(x1, x2), . . . , (xd−1, xd). We say each
xi is a representativeof x andx is theoriginal nodeof everyxi . Then we find an embedding ofG′ and a
spanning treeT ′ of G′. A topology treeof G′ based onT ′ is a hierarchical representation ofG′ introduced
by Frederickson [5]. On each level of the hierarchy it partitions the vertices ofG′ into connected subsets
calledclusters. An edge isincidentto a cluster if exactly one endpoint of the edge is contained in the cluster.
Theexternal degreeof a cluster is the number of tree edges that are incident to the cluster. Each vertex of
G′ is a level-0 cluster. Two clusters at leveli > 0 are formed by either

1. the union of two clusters of leveli − 1 that are joined by an edge in the spanning tree and either both
of external degree 2 or one of them has external degree 1, or

2. one cluster of leveli − 1, if the previous rule does not apply.

Each cluster at leveli is a node of heighti in the topology tree. If a clusterC at level i is formed by two
clustersA andB of level i − 1, thenA andB are the children ofC in the topology tree. IfC is formed by
one clusterA of level i − 1, thenA is the only child ofC in the topology tree. The topology tree has depth
D = O(logn) [5]. In the followingnodedenotes a vertex of the topology tree.

In [16] the topology tree data structure is extended to maintain non-tree edges ofG′ and additional
connectivity information at each node, calledrecipe. We use the same technique to maintain dynamic 2-
vertex connectivity.

Every insert(u,v), delete (u,v), or query(u,v) operation requires that the topology tree isexpandedat
an (arbitrary) representative ofu and ofv: We mark all clusters containing the two representatives in the
topology tree. Note that all these clusters lie on a constant number of paths to the root. Then we build the
graph which consists of the two representatives and a compressed representation of all the clusters that are
unmarked children of a marked node in the topology tree. This creates a compressed version ofG, called
G(u, v), of sizeO(logn). This graph is used to answer queries. In the case of update operations, the edge
is added to or deleted fromG(u, v). Afterwards the topology tree ismerged togetheragain, i.e., a topology
tree representation is created for the (possibly modified) graphG(u, v).

To add non-tree edges to the topology tree data structure we define a bundle between two clustersC and
C′ as follows: If neitherC is an ancestor ofC′ nor vice verse, lete(C,C′) be the set of all edges between
C andC′. Otherwise, assume wlog thatC′ is the ancestor ofC. We definee(C,C′) to be the set of all
edges incident toC whose least common ancestor in the topology tree isC′. Since we are considering an
embedded graph, the edges incident to a clusterC are embedded atC in a fixed circular order. Abundle
between a clusterC andC′ is a subset ofe(C,C′) that forms a maximal continuous subsequence in the
circular order atC andC′. Note that this definition is independent of the level of the clusters and planarity
guarantees that there are at most three edges ofH between two clusters [16]. The first and last edge of a
bundle in this order are called theextremeedges of the bundle. In the topology tree a bundle betweenC
andC′ is represented by two edges ofH , one fromC to the least common ancestor ofC andC′ (called the
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LCA-bundle of C) and one fromC′ to the least common ancestor. Whenever the topology tree is expanded
and the graphG(u, v) is created, we convert these two edges ofH back into one.

An edge(u, v) with u, v ∈ C is called aninternal edgeof the clusterC. Assume all dashed internal
edges ofC are contracted. Theprojectionof an edge(x, y) onto a tree pathP is the pathπ(x, y)∩ P. Note
that, by definition, the vertices of each cluster are connected by a subtree ofT ′. In the following we define
the projection edge of an edge, the projection pathp(C), the coverage graph ofC which consists of small
and big supernodes ofC. All these definitions are independent of the level of the cluster.

• If C has external degree 1, theprojection path p(C) of C consists of the endpointz of the (unique)
tree edge incident toC. This endpoint is asmall supernode. Thecoverage graphof C consists of this
supernode and of all LCA-bundles ofC. For each edgee incident toC wherey is the endpoint inC,
theprojection edgeof e is e if y = z and otherwise the tree edge incident toz that lies onπ(y, z).

• If C has external degree 3, it consists of only one vertexz. Both, theprojection path p(C) and the
coverage graphconsist of only this one vertex which is asmall supernode.

• If the external degree of a clusterC is 2, there is a unique simple tree path between the tree edges that
are incident toC. This path is theprojection path p(C) of C. Theprojection p(x) of a vertexx in
C is the vertex closest tox on the projection path. Theprojection edgeof a vertexx is the edge on
π(x, p(x)) incident top(x). If x = p(x), the projection edge ofx is undefined. Theprojection edge
of an edge(x, y) with one endpointx in C is the projection edge ofx, if it is defined and it is(x, y)
otherwise. Theprojection edgesof an edge(x, y) with x, y ∈ C are the projection edge ofx if it is
defined and(x, y) otherwise and also the projection edge ofy if it is defined and(x, y) otherwise.

If (x, y) is an internal edge ofC, then the subpathπ(x, y)∩ p(C) is theprojectionof (x, y) on p(C),
p(x) and p(y) are theextreme verticesof the projection, and all vertices on the subpath except for
p(x) andp(y) are theinternal verticesof the projection.

Let (w, z) and(x, y) be the extreme edges of a LCA-bundle between a clusterC and a clusterC′ with
w, x ∈ C andz, y ∈ C′. The pathπ(w, x) ∩ p(C) is called theprojectionof the edge bundle on
p(C), p(w) and p(x) are called theextreme verticesof the projection and all vertices on the subpath
exceptp(w) andp(x) areinternal verticesof the projection. Theprojection edgesof a bundle are the
projection edges of the extreme edges of the bundle.

Thecoverage graphof C is built by compressingp(C) as follows:

1. Letu1, u2, . . . , up be a maximal subpath ofp(C) such that

– π(u1, up) intersects the projection of a LCA-bundle onp(C),

– u1 is the extreme vertex of the projection of a LCA-bundle or an internal edge,
– up is the extreme vertex of the projection of a LCA-bundle or an internal edge, and

– every vertexui for 1 < i < p is an internal vertex of the projection of a bundle or an
internal edge or
there exist two projections with projection nodeui and the same projection edge atui such
that ui anduj with j < i are the extreme vertices of one projection andui anduk with
k > i are the extreme vertices of the other projection.

If p > 2, we contract the pathu2, . . . , up−1 to one vertexu, calledbig supernode, and we say
u2, . . .up−1 arereplacedby the big supernode. The verticesu1 andup are calledsmall supern-
odesand the edges(u1, u) and(u, up) are calledsuperedges. All edges incident tou2, . . . , up−1
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are now incident tou. This splits a bundle that is incident tou1 and/orup and alsoui with
1 < i < p into up to threesubbundles, one incident tou and the other(s) incident tou1 and/or
up. If the edge(u1, u2) (resp. (up−1, up)) is dashed, then the edge(u1, u) (resp. (u, up)) is
dashed.

If p ≤ 2 then no nodes are compressed.

2. After replacing all subpaths that fulfill condition 1, letv1, v2, . . . , vq be a subpath ofp(C) such
thatv1 andvq are two small supernodes and no vertexvi with 1 < i < q is a supernode. We
contract the pathv2, . . . , vq−1 to onesuperedge(v1, vq) and we sayv2, . . . , vq−1 are replaced
by the superedge. If all edges(v1, v2), . . . , (vq−1, vq) are dashed, then the superedge is dashed,
otherwise it is solid.

Thecoverage graphof C consists of this compressed representation ofp(C) and all LCA-bundles
grouped into sets according to their projection edges.

Note that our definition of a supernode replaces a supernode of [16] by two small and one big supernode and
each bundle is split into at most threesubbundles, one incident to each small supernode and one incident to
the big supernode.

When expanding the topology tree, we build the coverage graph for each node that was marked and each
child of a marked node. For each subbundle that is incident to a supernode in a coverage graph we maintain
its projection edges implicitly as described below.

The coverage graph of a clusterC is maintained as a doubly linked path of supernodes. Each supernode
stores up to two doubly linked lists of projection edges incident to it (calledprojection list), one list for each
side of the tree pathp(C). Each projection edgee stores a double linked list of the subbundles such thate is
the projection edge of the subbundle. IfC has external degree 1, there is only one supernode, and only one
list of projection edges. IfC has external degree 3, it consists of only one supernode without any projection
edges or subbundles. The projection edges and the subbundles are listed in the counterclockwise order of
their embedding. Only the first and last subbundles in a list have direct access to the projection edge and
only the first and last projection edge in a list have direct access to the supernode to which they are incident.
The data structure lets us coalesce two adjacent supernodes or two projection lists into one in constant time;
we can also split a supernode or a projection edge list into two in constant time if we are given pointers
that tell where to split the lists. Note that each subbundle can be contained in at most two lists and if it is
contained in two lists, it is the first element of the one and the last element of the other list.

3.2 Recipes

Each node in the topology tree is enhanced by arecipethat describes how the coverage graph of the children
of the node can be created from the coverage graph of the node. The only difference in the algorithm of [16]
and this biconnectivity algorithm is in the contents of the recipes. We describe our recipes in the following.
A recipe contains four kinds of instructions:

1. Split a subbundle.Replace a subbundle ofm edges that have the same target by up to four adjacent
subbundles that have that target and whose (specified) sizes sum tom.

2. Split a projection edge.Split the subbundle list at specified locations and replace the old subbundle
list at the supernode by the new subbundle lists.
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3. Split a supernode.Split the two projection lists on either side of the supernode into two pieces at
specified locations. Replace the old supernode by two new ones linked by a superedge, and give the
appropriate piece of each projection list to each of the new supernodes.

4. Create a new subbundle.Create a subbundle with a specified target and number of edges, and insert
it at a specified place in a subbundle list of at most two projection edges.

Using these instructions the coverage graphs of the children of a clusterC can be transformed into a coverage
graph ofC. The sequence of instructions together with the appropriate parameters (e.g. which subbundle
list has to be split at which location) is called arecipeand is stored at the node in the topology tree that
representsC. These parameters are either a record of a subbundle (consisting of the number of edges in the
subbundle and its target), a record of a projection edge (consisting of the edge), or a pointer, calledlocation
descriptor. A location descriptor consists of a pointer to a subbundle and an offset into the subbundle (in
terms of number of edges) or a pointer into a projection list. It takes constant time to follow a location
descriptor.

Whenever we expand the topology tree, we use the recipes to create the coverage graphs along the
expanded path. Whenever we merge the topology tree, we first determine how to combine the coverage
graphs of two clusters to create the coverage graph of their parent, and then we remember how to undo this
operation in a recipe. We now describe the instructions in the recipe ofC, depending on the number of
children ofC and their external degrees. In the followingsubbundlestands for LCA-subbundle.

Case 1: C has only one child.

In this case the coverage graph ofC is identical to the coverage graph of its child. The recipe is
therefore empty.

Case 2: C has two children with external degrees 3 and 1.

Let Y be the child with external degree 3 and letZ be the child with external degree 1. The coverage
graph ofY and ofZ consists of one supernode. We build the coverage graph ofC by as follows:

If the tree edge betweenY andZ is dashed, we simply contract it by making the projection list ofZ
the projection list of one side of the path ofC. The projection list of the other side is empty. The
projection edges of the bundles do not change and, thus, the subbundle lists do not change.

If the edge(Y, Z) is not dashed, then the supernode ofC has only one projection edge, namely the
tree edge betweenY and Z. Thus, the supernode ofC has one projection list (the projection list of
the other side is empty) containing one projection edge. The subbundle list of this projection edge
consists of the concatenation of all subbundle lists ofZ. In the recipe we use location descriptors to
point to the locations of the concatenation. The number of location descriptors is proportional to the
number of removed projection edges.

Case 3: C has two children, both with external degree 1.

In this caseC is the root of the topology tree. Its coverage graph is empty. The coverage graphs of the
children contain one supernode and at most one subbundle apiece, corresponding to the set of non-tree
edges linking the children. Since each subbundle is contained in at most 2 projection lists, there are at
most 4 projection lists. The recipe stores these projection lists (i.e., whether a bundle is contained in
1 or 2 lists) and subbundles (i.e., the number of non-tree edges linking the children).
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Case 4: C has two children with external degrees 2 and 1.

Let Y be the child of degree 2 andZ be the child of degree 1. We collapse all supernodes ofY to one
supernodes to build the coverage graph ofC from the coverage graph ofY as follows: On each side
of the tree edge betweenY andZ there may be a subbundle that connectsY andZ. We remove these
subbundles and make all remaining subbundles incident tos.

If the edge(Y, Z) is dashed, then the projection edge of the subbundles incident toY does not change.
Thus we concatenate the two projection lists ofY and the projection list ofZ (in the order of the
embedding). This creates a single supernode with a single projection list.

If the edge(Y, Z) is solid, then this edge becomes the projection edge for all subbundles incident to
Y. Thus we concatenate all bundle lists of all projection edges ofY to create the bundle list for(Y, Z).
Then we concatenate the two projection lists ofY and the projection list ofZ (in the order of the
embedding). This creates a single supernode with a single projection list.

In both cases, if two newly adjacent subbundles have the same target, we merge them into one sub-
bundle and update the subbundle and projection lists appropriately.

In the recipe we need a location descriptor to point to each subbundle where we concatenated projec-
tion lists or subbundle lists or merged subbundles. We also have to store any subbundles that connect
Y and Z and all projection edges that we removed. The number of location descriptors we store is
proportional to the number of supernodes ofY plus the number of removed projection edges.

Case 5: C has two children, both with external degree 2.

Let Y andZ be the children ofC. To join the coverage graphs ofY andZ we consider two cases: If
the tree edge betweenY andZ is dashed, we join the 2 coverage graphs by identifying the appropriate
small supernodes ( that are terminating the coverage graphs) and concatenating their projection lists.
If the tree edge betweenY andZ is not dashed, we connect the 2 coverage graphs by an edge.

In both cases we remove then all subbundles betweenY and Z. If one of the supernode that was
incident to a removed subbundle is no longer incident to a bundle, we replace it by a superedge.
Afterwards we coalesce all the supernodes between the(Y, Z)-subbundle endpoints into three supern-
odes as follows: If the pathP between their endpoints contains only one supernode other than the
endpoints, nothing has to be done. Otherwise, we replace these (at least 2) supernodes by one supern-
ode by concatenating their projection lists. We also merge newly adjacent subbundles into a single
subbundle if they have the same target.

The recipe contains a location descriptor pointing to each subbundle where we coalesced supern-
odes and concatenated projection lists (and possibly merged adjacent subbundles). We also store the
subbundles that were merged together or deleted. If there is a subbundle that loops around the tree,
we need two more location descriptors to mark its endpoints. The number of location descriptors is
proportional to the number of coalesced supernodes inY andZ.

New subbundles may be created during recipe evaluation. For each new subbundle, the recipe stores
a bundle record, preloaded with the count of bundle edges, and a location descriptor pointing to the place
in the old subbundle list where the new subbundle is to be inserted. The target field of the subbundle is
easy to set: the least common ancestor of the bundled edges is exactly the node at which the recipe is being
evaluated. In a way similar to [16] we can show the following lemma.
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Lemma 3.1 If the topology tree is expanded at a constant number of vertices and recipes are evaluated at
the expanded clusters, the total number of edge bundles, supernodes, and superedges created is O(logn).
The expansion takes O(logn) time.

Proof: Since the topology tree has depthO(logn), there areO(logn) marked nodes andO(logn)
children of marked nodes. Thus, the cluster graph consists of the coverage graph ofO(logn) clus-
ters. Planarity guarantees that these clusters are connected byO(logn) bundles, each bundle is
split into up to three subbundles. Thus there areO(logn) subbundles. Since each supernode in a
cluster with more than one supernode is incident to a subbundles, there areO(logn) supernodes.
Because the supernodes and superedges form a tree, the number of superedges is alsoO(logn).
Each subbundles has two projection edges. Thus the total number of projection edges isO(logn).

Evaluating a recipe takes time proportional to the number of supernodes or projection edges created
by the recipe plus constant ‘overhead’ time. Thus the total expansion time isO(logn).

3.2.1 Queries

To answer a query(u, v), we mark all the clusters containingu andv in the topology tree. Then we create
the graphG(u, v) in the following steps:

1. We build the cluster graph by expanding the topology tree at a representative ofu and ofv.

2. Let e1, e2, . . . , ep with p > 1 be all the subbundles whose extreme edges have the same projection
edge(x, y) in a clusterC with x ∈ p(C). We add a small supernodey and connect all these extreme
edges toy.

3. We contract all dashed edges. When contracting a dashed edge between two supernodes, the resulting
supernode is a small supernode.

Since the cluster graph consists ofO(logn) supernodes, subbundles, and superedges and can be computed
in time O(logn), the graphG(u, v) resulting from these 3 steps containsO(logn) supernodes, subbundles,
and superedges and can be computed in timeO(logn).

The following lemmata show that two verticesu andv are not biconnected inG if and only if there is
an articulation point inG(u, v) separatingu andv that is not a big supernode. Since the cluster graph has
sizeO(logn) this can be tested in timeO(logn).

Lemma 3.2 Let u andv be two vertices of G2 and of G1 and let G2 be a graph created from G1 by

• contracting connected subgraphs into one vertex,

• replacing the only two edges(a, b) and(b, c) incident to a vertex b by the edge(a, c),

• replacing parallel edges, and

• removing self-loops.

Let x be a vertex of G1 that is not contained in the contracted subgraphs and not a removed degree-2 vertex.
Then x is an articulation point in G1 separating u andv if and only if x is an articulation point separating
u andv in G2.
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Proof: Consider first the case thatx separatesu andv in G1. To achieve thatu andv are not
separated byx in G2 a cycle has to be created that containsu, x, andv. Contracting pieces ofG1

that do not containx or removing degree-2 vertices (other thatx) cannot create new cycles. Thusx
is also an articulation point separatingu andv in G2.

If x separatesu andv in G2, then expanding vertices (other thanx) of G2 to connected subgraphs,
replacing one edge by two edges and a degree-2 vertex or adding parallel edges to edges not on
π(u, v) and self-loops does not create a cycle that containsx, u, andv. Thusx separatesu andv
also inG1.

Lemma 3.3 Let u andv be two vertices of G. The graph G(u, v) is created from G by

• contracting connected subgraphs into one vertex,

• replacing the only two edges(a, b) and(b, c) incident to a degree-2 vertex b by the edge(a, c),

• collapsing parallel edges, and

• removing self-loops.

No small supernode onπ(u, v) (except for u andv itself) in G(u, v) is contained in a contracted subgraph
of any of these operations.

Proof: The graphG(u, v) can be created fromG by the three operation given in the lemma using
the following steps. Note thatG(u, v) does not contain dashed edges and every small supernode of
G(u, v) represents a unique vertexx of G.

1. Mark all the nodes that are small supernodes ofG(u, v) red.

2. Collapse all nodes on the tree path between two red nodes to one blue node.

3. Contract every blue node and all the subtrees whose root is uncolored and connected to the
blue node by a tree edge to a green node.
Now we are left with red, green, and uncolored nodes and every green node is connected by
tree edges to two red nodes.

4. Replace all parallel edges by one edge and remove all self-loops.

5. Replace every degree-2 green node by a superedge. (All remaining green nodes correspond to
big supernodes.)

6. If a red nodex lies onπG(u, v) and does not lie onπ(u, v), shrink all subtrees whose root is
uncolored and connected by a tree edge tox to a yellow node. Otherwise contract all subtrees
whose root is uncolored and connected tox by a tree edge to the nodex.

7. Replace all parallel edges by one edge and remove all self-loops.

The resulting graph isG(u, v). Note thatu andv are small supernodes inG(u, v) and then marked
red. Hence, if a small supernodex lies onπ(u, v), it is not replaced by step 6. No small supernodes
are contained in a connected subgraph that is contracted in step 1-5. The lemma follows.
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