SRC Technical Note
1997 -020
September 8, 1997

Improved Data Structures for Fully Dynamic Biconnectivity

Monika Rauch Henzinger

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright© Digital Equipment Corporation 1997. All rights reserved

Abstract

We present fully dynamic algorithms for maintaining the biconnected components in general and
plane graphs.

A fully dynamic algorithm maintains a graph during a sequence of insertions and deletions of edges
or isolated vertices. Let m be the number of edges and n be the number of vertices in a graph. The
time per operation of the previously best deterministic algorithms v@min{m?3, n}) in general
graphs andD(,/n) in plane graphs for fully dynamic biconnectivity. We improve these running times
to O(,/mlogn) in general graphs an@(log?n) in plane graphs. Our algorithm for general graphs can
also find the biconnected components of all vertices in tie).

1 Introduction

Many computing activities require the recomputation of a solution after a small modification of the input
data. Thus algorithms are needed that update an old solution in response to a change in the problem instance.
Dynamic graph algorithmare data structures that, given an input gr&ptmaintain the solution of a graph
problem inG while G is modifies by insertions and deletions of edgés this paper we study the problem

of maintaining the biconnected components (see below) of a graph.

We say that a vertex is anarticulation point separatingertexu and vertexv if the removal ofx
disconnectsl andv. Two vertices ardiconnectedf there is no articulation point separating them. In the
same way, an edgeis abridge separatingertexu and vertexv if the removal ofe disconnectsi andwv.

Two vertices ar@-edge connectdflithere is no bridge separating them biconnected componeat block
(resp.2-edge connected compongof a graph is the set of all vertices that are biconnected (resp. 2-edge
connected). Note that biconnectivity implies 2-edge connectivity but not vice versa.

Given a graphG = (V, E), adynamic biconnectivity algorithns a data structure that executes an
arbitrary sequence of the following operations:

insert(u, v): Insert an edge between nodand nodev.

deletgu, v): Delete the edge between nagend node if it exists.
query(u, v): Returnsyesif u andv are biconnected, antb otherwise.
block-query(u): Return all nodes in the block of

Operationsnsert anddeleteare calledupdates To compare the asymptotic performance of dynamic
graph algorithms, the time per update, calipdiate timeand the time per query, callegiery time are com-
pared. Leim be the number of edges andbe the number of vertices in the graph. Previous to this work, the
best update time wa® (min(m?/3, n}) [11, 2] with a constant query time. This paper presents an algorithm
with O(y/mlogn) update time and constant query time. Subsequently, the sparsification technique was ap-
plied to the algorithm in this paper and its running time was improve@tg'n lognlog(m/n)) [14]. Block
gueries were not mentioned in previous work, but can be added to all these data structure such that they take
time linear in the size of their output.

Additionally, we give an algorithm wittD(log? n) update time andD(logn) query time for planar
embedded graphs, under the condition #math insertion maintains the planarity of the embedding. The
best previous algorithm took tim@(,/n) per update an@®(logn) per query.

insertions or deletions of isolated vertices are usually trivial.

Related work. Frederickson [5] gave the first dynamic graph algorithm for maintaining a minimum
spanning tree and the connected components. His algorithm takeQtigfen) per update andD(1)
per query operation. The first dynamic 2-edge connectivity algorithm by Galil and Italiano [9] took time
O(m?/3) per update and query operation. It was consequently improvedyan) per update an@®(logn)
per query operation [6]. The sparsification technique of Eppstein et al. [3, 2] improves the running time of an
update operation t®(,/n). Very recently, a deterministic dynamic connectivity algorithm was given with
O(n*3logn) update time an@®(1) query time [13] and a randomized dynamic connectivity algorithm with
O(log? n) update andD(logn) query time [12, 15]. Both algorithms can also output all nodes connected to
a given node in time linear in their number.

Note that there is a lower bound on the amortized time per operati@rilogn/loglogn) for all these
problems [7, 19].

The best known dynamic algorithms in plane graphs take @egn) per operation for maintaining
connected components by Eppstein et al. f2{log? n) for maintaining 2-edge connected components by
Hershberger et al. [16, 4], ar@d(,/n) for maintaining biconnected components by Eppstein et al. [4].

Outline of the paper. First (Section 2), we study the dynamic biconnectivity problemdeneral
graphs. Our basic approach is to partition the gr&mto small connected subgraphs, callddsters
(see [5] for a first use of this technique in dynamic graph algorithms). Each biconnectivity query between a
vertexu and a vertex» can be decomposed into a query in the clustar,ad query in the cluster, and a
query between clusters. To test biconnectivity between clusters we use the 2-dimensional topology tree data
structure [5] in a novel way and extend the ambivalent data structure [6]. These data structures were used
before to test connectivity and 2-edge connectivity.

To test biconnectivity within a cluster we need to know how the vertices outside the cluster are connected
with each other. Thus, we build two graphs, calleternal and sharedgraph. Each graph contains all
vertices and edges inside the clusteand acompressed certificatef G \ C. A compressed certificate is
a graph that has the same connectivity propertieG §<C, but is not necessarily a minor & \ C. This
approach is similar to the concept of strong certificates in the sparsification technique: A strong certificate is
not necessarily a subgraph of the given graph. The crux in the analysis of the algorithm is that we can show
that only an amortized constant number of compressed certificates need "major” updates after an update in
G (see Lemma 2.33).

Second (Section 3), we study the dynamic biconnectivity problemléoregraphs. We use a topology
tree approach based on [5].

An earlier version of this paper appeared in [20].

2 General graphs

2.1 The graphG’ and the relaxed partition of order k

Let G be an undirected graph withvertices andn edges. Theize|G| of a graph is the total number of
its nodes and edges. We assume in the papei@hatconnected, which implies > n — 1. If G is not
connected, we build the data structure described below for each connected component and during an update
combine two data structures or split a data structure in @g/m).

To partitionG into about equally sized subgraphs (see the relaxed partition below)Gr@ap degree-
3 graphG’ by expandinga vertexu of degreed > 4 byd — 2 new degree-3 verticas,, ..., u;_, and
connectingy andu;, , by adashededge, for 1< i < d — 3. Every edgéu, v) is replaced by &olidedge

i+1

(u, vj/), wherei andj are the appropriate indices of the edge in the adjacency listsdodv. We say that

the edge(u;, u; ;) belongsto u and that every; is arepresentativedf u. The nodeu of G is called the
origin of the nodeu; in G’, for 1 <i < d — 2. We denote nodes @' by variables with prime, like’ or u;
and their origin by variables without prime, like The graphG’ contains at mostr nodes and at mosn3
edges.

Data structure:The algorithm keeps the following mapping fra&to G’ and vice versa:

(G1) Each vertex of5 stores a list of its representative, ordered by index, and pointers to the beginning and
the end of this list. Each vertex @&’ keeps a pointer to its position in this list, to its origin, and a list
of incident edges.

(G2) Each dashed edge @ stores a pointer to the vertex &f that it belongs to, each solid edge Gf
stores a pointer to the edge @fthat it represents.

Note that there exists a spanning treeGifthat contains every dashed edge. The algorithm main-
tains such a spanning tree, denotedidy Let T be the corresponding spanning treedn We denote by
z1(U, v') the path fromu’ to v” in T'. If the spanning tree is understood, we uge’, v’). Letu/ denote
the representative af with the shortest tree path to a representative. dfiote that every articulation point
separatingl andv must have a representative that liesan(u,, v,)

Data structure:

(G3) Both T andT’ are stored in a degrdeET-tree data structure [13] and in a dynamic tree data struc-
ture [21].

The graphG’ is maintained during insertions and deletions of edges as follows: If an @dge is
inserted and the degrekeg(u) of u was 3 before the insertion thenis replaced by 2 vertices; andu,
connected by a dashed edge.dBg(u) was larger than 3, then one new vertn{;gg(u)_l is created and
connected by a dashed edgewyf,,, ,. Thus an edge insertion increases the number of vertic& in
by up to 2 and the number of edges by up to 3. If an edge is deleted, the number of ver&anight
decrease by up to 2, and the number of edges by up to 3.

Letmlog" > k > ,/mbe a parameter to be determined later. Noterttydt < k. We build a “balanced”
decomposition o5’ into subgraphs of siz&(k) and maintain data structures based on this decomposition.
Everym/k update operations the decomposition and data structures are rebuilt from scratch in linear time,
adding an amortized cost @ (k) to each update. The rebuilds significantly simplify the “rebalancing”
operations needed to maintain the decomposition balanced during updates. The operations between two
rebuilds form gphase

We next describe the balanced decompositiorclusteris a set of vertices that induces a connected
subgraph ofT’. An edge isncidentto a cluster if exactly one of its endpoints is in the cluster. An edge is
internalif both endpoints are in the cluster. Lgt, y) be a tree edge incident to a clus@rand letx € C.

Thenx is called aboundary nod@f C. Thetree degreef a cluster is the number of tree edges incident to
the cluster.

A relaxed partition of order kwith respect tol’ is a partition of the vertices into clusters so that

(C1) each cluster contains at mést 2m/k < 3k nodes ofG’;
(C2) each cluster has tree degree at most 3;

(C3) each cluster with tree degree 3 has caliting;

(C4) ifadashed edgeisincidentto a cluster, then all boundary nodes of the cluster have the same origin;
and

(C5) there aré@d(m/k) many clusters.

This definition is an extension of ‘[6]. We denote the cluster containing a nooeG’ by C .

If all representatives of a vertexof G belong to the same clust€r, we denoteC by C, and say tha€
contains uandu belongs to C If the representatives of a vertexare contained in more than one cluster,
u is called ashared vertexand each cluster containing a representative isfcalled a clustesharing uor
u-cluster We useS, to denote the set of clusters sharingCondition (C4) implies thagach cluster shares
at most one vertex. The shared vertex of a cluétes denoted bysc. Together with Condition (C5) it
follows that there ar®©(m/k) shared vertices.

Data structure:

(G4) Each cluster keeps (a) a doubly-linked list of all its vertices, (b) a doubly-linked list of all its incident
tree edges, and (c) a pointer to its shared vertex (if it exists).

(G5) Each non-shared vertex & keeps a pointer to the cluster it belongs to. Each shared vertex keeps a
doubly-linked list of all the clusters that share the vertex.

We make repeatedly use of the following facts.

Fact 2.1 Let G be an n-node graph and let,u. ., u, be a set of articulation points that lie on a path in G.
Then)_; deglu;) < 2n.

To guarantee that condition (C1)—(C4) are maintained within a phase a cluster violating the conditions
is split into two clusters(see Section 2.2). We show below that all these splits creat© mjk) new
clusters, i.e. condition (C5) is always fulfilled.

2.2 Maintaining a relaxed partition of order k

To maintain a relaxed partition during updates, we create a more restricted partii@ehatebuild and let
it gradually “deteriorate” during updates.
A restricted partition of order kwith respect tor’ is a partition of the vertices into clusters so that

(C1) each cluster has cardilityg at mostk;
(C2) each cluster has tree degrees;
(C3) each cluster with tree degree 3 has carlitiypa;

(C4) ifadashed edge isincidentto a cluster, then all boundary nodes of the cluster have the same origin;
and

(C5) there areO(m/k) clusters.

Lemma 2.2 A partition fulfilling (C1’) — (C5’) can be found in linear time.

Proof: The algorithm in [6] shows how to find a partition fulfilling (C1’) — (C3’), and (C5’) in
time O(m + n). Each cluster that does not fulfill (C4’) has tree degree 2. X .eindy’ be the

two boundary nodes in the cluster. Sinceandy’ represent different shared vertices, the tree path
betweenx’ andy’ contains at least one solid edge Splitting the cluster aé creates two clusters
that fulfill Condition (C1')—(C4’). Each split takes time linear in the size of the cluster. The lemma
follows. |1

We discuss next how to maintain a relaxed partition during updates. We show that an update does not
violate Condition (C1), (C4), or (C5). Condition (C2) or (C3) might be violated, but can be restored by
splitting a constant number of clusters. Restoring (C3) might lead to a violation of (C4), which can also be
restored with an additional constant number of cluster splits.

We use the followingipdate algorithm for the relaxed partitioff an insertu, v) operation replaces
by two nodes, add both 1G,. If a new representatiiégequ)—1 is created, add it to the cluster 0fequ)—2.

A deletion does not remove any vertices.

Lemma 2.3 The update algorithm for the relaxed partition does not violate Condition (C1), (C4), or (C5).
Condition (C2) and (C3) might be violated for the clusters containing the endpoints of the newly inserted
edge (in the case of an insertion) or the endpoints of the new tree edge (in the case of a deletion).

Proof: Condition (C1):An update increases the number of nodes in a cluster by at most 2, implying
that at the end of the phase each cluster contains atkmp&m/k nodes. It follows that Condition
(C1) is never violated.

Condition (C4):Every newly added dashed edge has both endpoints in the same cluster, het it is
incident to a cluster. Thus, Condition (C4) is not violated.

Condition (C5): A delete(1,v) operation might disconnect the connected compone6},of C, =
C,, leading to one additional cluster. Since thererayk updates in a phase, there ex@tm/ k)
clusters during a phase, i.e., Condition (C5) is not violated by the update algorithm.

Condition (C2) and (C3): Deletions\ote first that the deletion of a hon-tree edge does not invali-
date Conditions (C2) or (C3) and, thus, does not require any cluster splits. A deletion of a tree edge
might make a (solid) non-tree edge into a tree edge, and, if this edge is an intercluster edge, add one
new incident tree edge to its endpoint clusters. This might lead to a violation of Conditions (C2) and
(C3) for the clusters incident to the new tree edigesertions:In the case tha® is disconnected, a

newly inserted edge might become a tree edge, adding one new (solid) tree edge to at most two clus-
ters. As before, this might lead to a violation of Conditions (C2) and (C3) for the clusters incident
to the new tree edge. Additionally, an insertion might increase the number of nodes in a tree-degree
3 cluster to 2, violating Condition (C2).

In conclusion, an update violates Condition (C2) and/or (C3) for at most 2 clusters, namely the
clusters containing the endpoints of the newly inserted edge or of the new tree ellge.

The algorithm first restores Condition (C2) and then Condition (C3). However, restoring (C3) might
lead to the violation of Condition (C4). If this happens, Condition (C4) is restored after Condition (C3).

Restoring Condition (C2)If a cluster violates (C2), it has tree degree four and consists of exactly two
tree degree-3 nodes. Splitting it into 2 clusters creates 2 1-node clusters of degree 3, fulfilling Conditions
(C1) - (C4).

Restoring Condition (C3)tf a clusterC violates Condition (C3), let’, y’, andZ be the three boundary
nodes ofC. There exists a tree degree-3 nadethat belongs tor (X', y), 7(X’, Z), andz(y’, Z). The
algorithm splitsC at w’ by creating a tree degree-3 cluster forand up to three additional tree degree-2
clusters, namely, ik’ # w’, a cluster containing’, if y’ # w’, a cluster containing’, and ifZ # w’,

a cluster containing’. It is possible that (ajv’ was not a shared vertex before the split, but is a shared
vertex after the split, and that (&) was incident to up to two dashed edges before the update, i.e., shared
a different vertex. If (&) and (b) hold, then one of the new tree degree-2 clusters might violate Condition
(C4). Splitting these cluster in the same way as in the proof of Lemma 2.2 creates at most two additional
tree-degree 2 clusters, each filitig Conditions (C2) — (C4).

Thus, restoring Conditions (C1) — (C4) requires creating a constant number of additional clusters after
an update operation. Since there argk updates in a phase, Condition (C5) is fulfilled at any pointin a
phase.

We summarize this discussion in the following lemma.

Lemma2.4 e Aninsertion does not split any cluster, but restoring the relaxed partition after an inser-
tion might require a constant number of cluster splits, namely of the clusters that contain the endpoints
of the inserted edge.

¢ A deletion of a non-tree edge does not require any cluster splits.

e Adeletion of a tree edge might split the cluster containing the endpoints of the deleted edge. Addition-
ally, restoring the relaxed partition after a deletion might require a constant number of cluster splits,
namely of the clusters that contain the endpoints of the new tree edge.

Testing whether a cluster violates (C2) or (C3) takes constant time, splitting a cluster takes time linear in its
size. Thus, it takes tim® (k) to update the relaxed partition of ordeafter each update.

2.3 Queries

However, mappings to G’ causes correctness problems: If two nodesdv are biconnected is, they
are also biconnected i@', but the reverse statement doex always hold (see [11] for an example).

The following lemma (an extension of Lemma 2.2 of [11]) relates the biconnectivity propertard
of G’. To contractan edggu, v) identify u andv and removeu, v). To contracta vertex ofG contract all
dashed edges B’ belonging to the vertex.

Lemma 2.5 Let u andv be two vertices of G.

e Let G; be the graph that results from’®y contracting every vertex oy (u, v) (excluding u and).
The vertices u and are biconnected in G if and only if Landv;, are biconnected in G

e Let y be a node omrr(u, v) that does not separate u andin G. Let G, be the graph that results
from G' by contracting every vertex amr (U, v), excluding y, u and. The vertices u and are
biconnected in G if and only if uandv;, are biconnected in @

Proof: The graph<51, resp.G» can be created fror® by expanding appropriate vertices. Thus, if
u andv are biconnected is, thenu!, andv;, are biconnected i1, resp.Go.

For the other direction, assume thatndv are separated by an articulation poinin G. Then
x belongs torrt (U, v). It follows thatx is represented by one node @y, resp.G,. Assume by

7

contradiction that, andv/, are biconnected i1, resp.Go, i.e., there exists a patR’ between
them not containing. The corresponding patR in G connectau andv and does not contair
which leads to a contradiction. |

Note that the lemma also holds if additional vertice€af respectivel\G,, are contracted.

To test the biconnectivity ofi and v in G we decompose the problem into subproblems, such that
each subproblem is either (a) a biconnectivity query in a graph ofGike+ m/k), or (b) a connectivity
guery in a graph of siz&(m). Subproblems of type (a) can be solved efficiently sikgem/k is chosen
to be “small”. For subproblems of type (b) we use the existing efficient data structures for maintaining
connectivity dynamically. Since no data structure is known that solves both subproblems efficiently, we
maintain two different data structures, calleddster graphsandshared graphs

To be precise, for each shared verseashared graphs maintained. Given a shared verteand two of
its tree neighborg andy, the shared graph afis used to test in constant time whetlsas an articulation
point separating andy. This is equivalent to testing ¥ andy are disconnected i® \ s. Thus, we use
the dynamic connectivity data structure [13] to maintain the shared graphs. Two nd@es®itonnected
in G\ siff any two representatives of the nodes are connectesl in{sy, ..., Syegs)—2}. Thus, graplG’
without any node contractions can be used for testing connectivity.

For each cluste€, let V (C) denote the set of origins i of the nodes of5’ that (1) either belong to
C or (2) are connected to a node@by a solid tree edge We maintain forC a cluster graphwhich is
built to test (in constant time) if any two nodes\WtC) that are not separated By are biconnected is.

In particular, the cluster graph can be used to test whethés biconnected with another node @ To
maintain the cluster graphs we use the data structure of [11]. To test if two radeby are biconnected
in G, the data structure contracts@i all vertices onrt (X, y) (and potentially additional vertices).

We describe next how we use these two data structures to answer a biconnectivity query. We use the
following lemma.

Lemma 2.6 Let u andv be nodes of G and lek @', y®'), for 1 <i < p, denote the solid intercluster tree
edges o/ (U), v,), in the order of their occurrence. Then u andre biconnected in G iff

(Q1) u and y are biconnected in G,
(Q2) x® and yi*D are biconnected in G, fot <i < p, and
(Q3) x® andv are biconnected in G.

Proof: If uandv are biconnected then all nodeso(u, v) are pairwise biconnected, and thus (Q1)
- (Q3) hold andu andv are separated by an articulation paintSincez belongs tart (U, v) either
(Q1), (Q2), or (Q3) are violated. Contradiction.}

For a queryu, v), let CY be the cluster oli. If C" shares a vertex, call 8. Basically we test
the conditions of the lemma using only a cluster graph if this is possible, and using a cluster graph and a
suitable shared graph otherwise.

Testing Condition (Q1)Condition (Q1) of Lemma 2.6 can be tested using two cluster graphs and the
shared graph of,: If s, does not lie ont(u, y?), s, does not separate andy?, andy® belongs to
V (CY). Thus, we use the cluster graph@f to test whetheu andy™® are biconnected.

2The origin of a node’ that is connected by a dashed edge to a ribateC belongs toV (C) since the origin of' equals the
origin oft” which belongs to/ (C) according to (1). Thus s€; of [11] equalsV (C).

8

If s, lies onz(u, y®), then letx, andy, be the nodes incident & on(u, yV). Lets’ bes;(l). Note

thats, belongs toV (C") and thaty™ belongs toV (Cy). Test in the cluster graph @V if u ands, are
biconnected, test in the cluster graphQaf if s, andy® are biconnected, and test in the shared graph of
sy if x, andy, are biconnected. If all tests are succesgiuandy™® are biconnected i, since the last
test guarantees thaj does not separateandy™® and the first two tests guarantee that no other node of
7(u, yV) separates andy?.

Testing Condition (Q2)if y®" andx @+’ belong to the same clust€r andC; does not share a vertex,
then bothx® andy(+ belong toV (C;) and are not separated by a shared verte®; ofThus, Condition
(Q2) can be tested using the cluster grapkiof

We show that otherwise®) andy‘+1 are tree neighbors of a shared versg;and the shared graph of
s can be used to test Condition (Q2): Either yd) andx(*D’ belong to the same clust€ that shares
a vertexs;, or (b) y©" andx(*D" belong to different clusters. In case (&), is incident to two solid tree
edges and one dashed tree edge, Cehas tree degree 3. By Condition (C3) it follows ti@tcontains
only one node, i.ey® = x(+1D’ and both are representativessoflt follows thatx® andy@+? are both
tree neighbors of. In case (b), all intercluster edges between the clustgfbfand the cluster ok 1+’
are dashed. By Condition (C4) of a relaxed partition, all these dashed edges ap# adsuix 1+ belong
to the same shared vertex Thus, also in this casel’ andy*? are tree neighbors of. It follows that
the shared graph f can be used to test whethel andy+D are biconnected ifs.

Testing Condition (Q3)Condition (Q3) is tested analogous to Condition (Q1).

Since each test takes constant time, this leads to a query algorithm whose running time is linear in the
number of solid intercluster edges o# (U), v,), which isO(m/k). However, we will give in Section 2.11
a data structure that allows all these tests to be executed in constant time.

Our next goal is to describeuster graphsandshared graphsn detail. Maintaining them requires a
third data structure, calleaigh-level graphswhich we describe first.

2.4 Overview of high-level graphs

There are twdnigh-level graphs HandH,. Basically,H; is a graph where each cluster is contracted to one
node, ancH; is a copy ofH; with intercluster dashed edges contracted as well.

To be precise, the grapH; contains a node for each cluster@f. Two nodesC andC’ of H; are
connected by an edge iy if and only if there is an edge between a vertexCodind a vertex o€’. We call
C’ theneighborof C. The nodeC andC’ are connected by a dashed edge if and only if there is a dashed
edge between a vertex 6fand a vertex o€C’.

The graphH; is the graphH; with all dashed edges &1, contracted.

We call vertices oH; or H, nodesand refer to vertices db asvertices

Note that each node ¢, represents exactly one cluster. We will use the temote of H andcluster
interchangeably. Each node Bf representst least one cluster and the nodes in these clusters. Note that
each vertex ofG is represented by a unique nodehdf, while this does not hold foH;: a shared vertex
belongs to more than one nodetdi.

The spanning treg’ of G’ induces a spanning trée on H; and T, on H,. We sayC’ is atree neighbor
of C if there is a tree edge betwe&andC in H;. OtherwiseC’ is anon-tree neighbar

We need the high-level graphs to define and maintaining the cluster graphs and the shared graphs.
Roughly speaking, a cluster graph tests (under certain conditions) whether two nodes represented by the
same node off; are biconnected is and a shared graph tests whether (some of the) two nodes represented
by the same node dfl, are biconnected ifs.

When maintaining cluster and shared graphs we make use of the following data structures. Details of
some of these data structures are delayed until Section 2.7 =L &t 2.

(HL1) We store for each node ¢4; all the vertices ofG’ belonging to the nod&,and we store at each
vertex of G’ the node ofH; to which the vertex belongs.

(HL2) We keep the following adjacency list representationHipi(of size O((m/k)?) = O(m)): For each
node ofH; we keep the list of all incident neighbors, and a list of all its positions in the lists of its
neighbors.

Thus, in constant time an edge between two nodes can be removed from this representation.

(HL3) We maintain a data structure that given a n@land its non-tree neighbd®’ returns the tree
neighbotC” of C such thatC” lies onxt, (C, C’). For Hj this takes constant time, féf; it takes time
O(logn).

(HL4) We store a data structure that implements the following query operatidths in

e biconnected?(C,C’,C")Given that node€” andC” are both tree neighbors of a noGetest
whetherC’ andC” are biconnected iif;.

e blockid?(C,C’):Given thatC andC’ are tree neighbors ify, output the name of the biconnected
component oH; that contains botlE andC'.

e components?(Cutput the tree neighbors @fin H; grouped into biconnected components.

Operationdiconnectedandblockid? take constant time, antbmponents?akes time linear in the
size of the output.

(HL5) We keep amapping hfrom H; to H, and a mapping—* from H, to Hy. For each node ofil, we
keep a list of pointers to all the nodesldi whose contraction formeH;, and for each node dfl;
we keep a pointer back to the corresponding noddnof

(HL6) We keep an empty array of sif&(m/k) at each node ifd; (needed for various bucket sorts — see
Section 2.5 and 2.6).

Next we define arancestorfor each node irH; or H,. For simplicity we start withH,. Let A be a
node ofH, at the beginning of the current phase. Thieis theancestornf each nod€ of H, such thaC
represents a node @ that is also represented By Since clusters are only split, never joined, all nodes
represented b are represented b#, i.e., each node dfl; has a unigque ancestor.

To define ancestors for nodes iy, we pick at the beginning of a phase for each shared vertax
arbitrary but fixeds-cluster and call iCs. Let A be a node oH; created at the beginning of the current
phase. We calA theancestorof each nodeC of Hy such that (1)C contains the representative of a vertex
and that representative or the (unexpanded) origin of the representative also beloAiged(®) C contains
only representatives of the shared versexf A, all these representatives were created after the last rebuild
andA = Cs.

Since clusters are only split, never merged, and non-extended vertices can become expanded, but not
vice versa, this uniquely assigns an ancestor to each cluster. It is possible that a cluster is its own ancestor.

Lete = (C, D) be an edge oH;. Theancestor edgef e atC is eitself if eithere (a) existed during a
rebuild, (b) was inserted intHd; after the creation o€ andD or, (c) C was created afted by a split ofC’

3For H, this is already part of (G4) and, of course, does not need to be stored twice.

10

ande existed at the creation &. If D was created by a split d’ after the creatiol€ ande existed at the
split, the ancestor edge efs the ancestor edge ¢, D).

We also define the ancestor edgeeddt the ancestoa(C) of C, even thougla(C) might not exist in
the current graph. Thancestor edgef e ata(C) is eitself if eithere (a) existed during a rebuild, (b) was
inserted intoH; after the creation ob. If D was created by a split d’ after the rebuild ane existed at
the split, the ancestor edge®fs the ancestor edge ¢€, D').

Note that if inH;, the ancestor edge ¢€, D) and of(C, D’) are identical, the andD’ have the same
ancestor irH;.

Data structure:

(HL7) We store at each node bf; its ancestor and at each edgeHgfits ancestor edge at its both endpoints
and at the ancestors of the endpoints .

(HL8) We number the edges &f; in the order in which they were added ki with the edges added during
arebuild in arbitrary order.

Recall that at the beginning of each phase a cluster contains akmextices ofG’. This enables us to
prove the following lemma

Lemma 2.7 The total number of vertices of’ @ all clusters with the same ancestor isH2m/Kk.

Proof: Let A be a cluster at the beginning of a phase. All nodes of a cluster with andeéinG’)
that existed at the time of the last rebuild belongedtat the beginning of the phase. Thus, there
are at mosk of them. Every other node was created by one ofrthié& update operations. Since
each update creates at most 2 new vertices, the bound folloWs.

2.5 Cluster graphs

Let C be a cluster. Theluster graph KC) of C is used to test if two verticas andv of V (C) that are not
separated by are biconnected iG. This leads to a first requirement fb¢C):

(IC1) If sc does not separate u and then u and are biconnected in (C) iff they are biconnected in G.

As we see below, an amortized constant number of cluster graphs is rebuilt during each update operation.
This leads to a second requirementsifgC):

(IC2) The graph (C) has size @[V (C))).

Recall thatV (C) denotes the set of origins @ of the nodes of5’ that (1) either belong t€ or (2) are
connected to a node @ by a solid tree edge. Thug,(C) and, hencel (C), has sizeD(k).

We next motivate our definition df(C) and explain why it can only be usedsf does not separate the
two nodes. Obviously, (C) has to contain all nodes &f(C) and all edges between the nodesvafC).
Since two nodes df (C) can be connected by a path\r(C) and additionally by a path that contains nodes
of a non-tree neighbor d&, we represent each non-tree neighGoif C by a node inl (C) (called either
b-nodeor c-nodg and we add td (C) all edges incident t€.

However, three questions remain: (1)Qf shares a vertesc, let C' be one of the neighbors &
connected t& by a dashed tree edge (belongingt). Shouldl (C) also contain a node representi@g
i.e. shouldsc andC’ be represented by the same or different noddg@)? (2) How is the set of b- and
c-nodes connected by edges? (3) How can the graph efficiently be maintained when a neiGhbbapdit?

11

We describe next our solution to these questions. (& landC’ are represented by the same node
then two nodes oY/ (C) that are biconnected i@ might not be biconnected in(C). See Figure 1 for an
example. On the other side, lifC) contains a node fasc and a separate node fGf, then two vertices
andv of V(C) that are not biconnected @& can be biconnected in(C). See Figure 2 for an example.

G 1(C)

Figure 1: The grapl&’ and a potential graph(C). The graphG’ consists of cluste€ andC’ (represented
by circles), both sharing vertex(represented by two nodes and the dashed line between them). Tree edges
are bold or dashed. In(C), C’ ands are collapsed to one node.

Figure 2: The grapi&’ and a potential graph(C). The graphG’ consists of cluste€ andC’ (represented
by circles), both sharing vertex(represented by two nodes and the dashed line between them). Tree edges
are bold or dashed. In(C), C’ ands are represented by two different nodes.

However, by Lemma 2.5 and the fact that in the latter approach all nodes @ v) except forsc are
contracted, it follows that the latter situation can only happeg eparates andv in G. Since this case
is excluded by{IC1), we represendc andC’ be separate nodes irfC).

(2) Letd be the number of neighbors @f. There are at most b- or c-nodes in (C). SinceG’ is a
graph of degree at most 8,= O(]V(C)|). To guarantee thdt(C) has sizeO(]V (C)|), | (C) will contain
at mostd — 1 many edges between b- or c-nodes. These edges will be colored and will fulfill the condition
that that two b- or c-nodes are connected by a path of colored edges iff they are connétt&din

(3) We will split a node representing a neight@rof C only if the two clusters resulting from the split
of C’ are disconnected ikl; \ C. Otherwise, both resulting clusters will be represented by the same node
in I (C), i.e., anode in the cluster graph might represent not just one cluster, but a set of clusters. This leads
to the following invariant:Two clusters are represented by the same nodg@®) lor are connected by a
colored path if and only if they are connected in HC.

Let us now give the exact definition ofcduster graph C) for a clusteIC: Let A be the ancestor @2.
The cluster graph contains as nodes

12

e anode, calleéd-node for each vertex with a representativeGn
e one node, calleb-node for each neighbo€’ of C with the same ancestdy,

e one node, called-node for each maximal seX of clusters such that (a) every clustérin the set
is a neighbor ofC, and all edgesC, C') have the same ancestor edg€atb) all clusters in the set
have the same ancestgrA, and (c) all clusters in the set have been connectéthil C at all time
and every previous set of clusters containing the vertices of the clustér&zas connected ifl; \ C
at all times.

Note that for each neighb@’ of C there exists a unique node ifC) representing>’ (and potentially
other clusters). Note further that each nod€at represented by at most one node (), except forsc,
which can be represented by an a-node and up to two b- or c-nodes, namely the neiglibtrataghare

sc.
The graphl (C) contains the following edges:

o All edges between two vertices &f represented by an a-node belond (€).

e For each edgéu, v) whereu is represented by an a-node anid not, andu’, v’) is the corresponding
edge inG’, there is an edgeu, d) in | (C), whered is the b- or c-node representi@y .

e For each pai€; andC; of tree neighbors of there is aededge(d;, d) if C; andC;, are biconnected
in Hy, whered; is the b- or c-node representiy.

e For each non-tree neighb@x of C with representative;* | (C) contains @lueedge(ds, d,), where
d, represents the tree neighbor®tfthat lies onzt, (C, Cy), if C is an articulation pointirH;, and a
blueedge(d,, d3), whereds represents an arbitrary tree neighbogfotherwise’.

Note thatl (C) can contain parallel edges. They can be discarded without affecting the correctness.
We show next that the cluster graphs fulfitC1) and(I1C2).

Lemma 2.8 Let C be a cluster and let u andbe two nodes of YC). If sc does not separate u andin G,
then u andv are biconnected in (C) iff they are biconnected in G.

Proof: Assume first thati andv are biconnected ih(C), but are separated by a noxén G. Thus,
X must be represented by at least two nodels@). However, each node @ is represented by at
most one node ih (C), except forsc. Thus,x = s¢, which leads to a contradiction.

Assume next that andv are biconnected i, but are separated by a noglén | (C). Sinceu andv

are connected by a tree path whose (internal) nodes all bel@\giomb-node or c-node can separate
uandv in 1 (C). Thus,y must be an a-node. Note that any two neighbor€ @re connected by
colored edges df (C) iff they are connected i1 \ C.

Consider the patl? betweenu andv in G that does not contaig. Let P be the path created
from P by (1) extendingP to a path inG’, (2) contracting all intra-cluster edges Bfexcept for
non-dashed intra-cluster edges@fand (3) by labeling the resulting nodes®fy clusters ofG'.

Any two neighbors<C; andC, of C that are connected by a subpattPo€ontaining no neighbors of
C and no nodes df are connected ikl; \ C and, thus, are connected by a path of colored edges in
| (C). Thus,P induces a path withoutin | (C) connectings andv. Contradiction. [

4If C has a non-tree neighbor thénhas tree degree at most 2.
SNote thatC, andC are biconnected itd,. Thus this is equivalent to requiring that for each non-tree neigBpaf C there
exists a blue edge;, d,), whered, represents a tree neighbor®@fthat is biconnected t€; in H; andd; represent&;.

13

Lemma 2.9 For each cluster C,
[1(C)] =0V (C)).

Proof: Obviously, there ar®©(|V (C)|) a-nodes and edges incident to themn {(€). Each b-node

or c-node inl (C) can be charged to one of the edges that connects the b-node or ¢c-node to a node
in C. Thus, there ar®©(|V (C)|) b- or c-nodes. Since the number of colored edges is linear in the
number of b- and c-nodes, it follows tha{C)| = O(IV(O)]). 1

We will need the following fact when bounding the time of updates:

Lemma 2.10 Let G, ..., C be a set of clusters with the same ancestor. Then

|
> G = 0K).

i=1
Proof: Note first that | | |
> (€)=Y 0(V(C)D =D O(GiD.
i=1 i=1 i=1

Let A be the ancestor of the clustels, ..., C,. Recall that eaclC; either (1) contains the rep-
resentative of a vertex and that representative or the (unexpanded) origin of the representative also
belonged taA; or (2) C contains only representatives of the shared vestaikA, all these represen-
tatives were created after the last rebuild, @#net Cs.

The number of clusters fulfilling (1) is bounded by the number of nod€s wf A. The total number
of clusters fulfilling (2) is bounded by number of updates since the last rebuild, whichkis

Thus,

[
> 0(Gil) < O(l{v, visanode o5 in A}| + m/k) = O(K).
i=1

In [11] ® acluster data structuréor | (C) is given so that

e building the data structure takes tindg|V (C)|), provided that the b-nodes, the c-nodes, and the red
and blue edges are given,

e changing one or all of the colored edges takes time linear in their total number, provided the new
colored edges are giveh,

e testing whether two vertices &f (C) that are not separated Is¢ are biconnected it (C) takes
constant time.

We keep as data structure

SLemma 4.6 of [11] states the result, Section 4.1.2. describes the data structure. In the notation@f([@1]s identical to
I (C) except that a non-tree neighli®y of C alwayshas a blue edgéC,, C,) to the tree neighbdE, of C that lies oney, (C, Cy),
even ifC is not an articulation point. Furthermoi®;(C) = G3(C) \ {red edgefs Cr = V(C), and theartificial edgesf [11] are
identical to the colored edges bfC).

“In [11] changing a red edge actually takes no time during an update: The existence of a red edge is not recorded during an
update, but checked during queries (by asking a biconnectivity quetly)inThis is possible, since only one red edge exists in a
cluster graph. Since we will use the same data structure also for (a special case of) shared graphs, we treat red edges as blue edges
in the data structure of [11].

14

(CG1) for each cluste€ acluster data structuréor | (C);

(CG2) for each cluste€ the adjacency lists of the grapkiC) with the two occurrences of an edge pointing
at each other;

(CG3) for each cluste€ and neighboC’ of C, a pointer to the b- or c-node iIn(C) representin@’; for
each b-node i (C) a pointer back t&’ and for each c-node ih(C) a set of pointers to the clusters
represented by the c-node;

Note that given the b-nodes and c-node$ @), the red and blue edges bfC) can be determined in
time linear in their number using the data structure (HL3) and (HL4Hwgr This leads to the following
lemma.

Lemma 2.11 Let C be a cluster. There exists a cluster data structure {@)Isuch that

1. buildingthe data structure takes time|® (C)|), provided that the b-nodes and the c-nodes are given,

2. changing one or all of the colored edges takes time linear in their total number, given the b-nodes and
c-nodes,

3. testing whether two vertices of(€) that are not separated by-sare biconnected in (C) takes
constant time.

Note: We will use the same data structure and the same update algorithm in Section 2.6 for (a special case
of) shared graphs. There the same problem has to be solgiitstead ofH;. Since nodes i, are not
guaranteed to have bounded tree degree, we will not make use of this propeitinafur update algorithm.

2.5.1 Updates

We show in this section that it takes amortized tidé&k) to update the data structures for all cluster graphs
after an edge insertion or deletion@ The major difficulty is to maintain the b-nodes and c-nodes of each
cluster graph. Once it has been determined how they change, it will be quite straightforward to update data
structures (CG1)—(CG3). Since at m&tm/k) new clusters are created in a phase, an amortized constant
number of (CG4) arrays is created, contributing an amortized cd3tlof.

While we describe how to determine the changes in the b-nodes, we defer determining the changes in
the c-nodes to Section 2.8. In Section 2.9 we show that after each deletion oafgaatized constant
number of c-nodes is split.

Note first that after a split of a cluster the c-nodes in the cluster graph of eadtingsluster represent
only 1 cluster since they now all have a different ancestor edge. Thus, it is straightforward to build the
resulting cluster graphs in tim@ (k).

Insertion
Let u” andv’ be the (potentially newly added) representatives that are incident to the newly inserted edge
(u, v). By Lemma 2.4 onlyC,y andC, might be split. LetC’' € {Cy, Cy}.

Determining the new b-nodeket C be a neighbor o€’ with the same ancestor &3. The split ofC’
might cause the b-node represent@ign | (C) to be split as well. No other b-nodes can change.

We describe next how the new b-nodes are determined. (a) Any cluster created by a split “inherits”, i.e.
copies the set of old b-nodes from the split cluster. (b) For each split clg5&xecute the follow steps:

15

Bucket sort the edges incident to the split cluster in lexicographic order of its two endpoints in the updated
graphH; (using the empty arrays stored at each cluster). (c) Each neighi@neith the same ancestor

asC’ that is incident to edges fromh > 1 different buckets (i.e. new clusters) of its array recenesw
b-nodes representing these new clusters, discards the b-ndtie aid keeps all the other old b-nodes.
SinceO(Kk) edges are incident to a split cluster, it takes tidg) to determine the new b-nodes.

Determining the new c-node#n the case of an insertion, no existing c-nodes in the cluster graphs of
non-split clusters change since clusters created by a split can be represented by the c-node of the split cluster
for the following reason: LeEbe the set of clusters represented by the c-nod® of | (C) for some cluster
C. All clusters replacing’ have the same ancestor@s the edges from them 16 have the same ancestor
edge agC, C’) atC, and all are connected i, \ C with each other and with the clusters$h {C’}. Thus,
the clusters irS\ {C'} U {C", C” created by the split o'} fulfill Conditions (a)-(c) of a c-node, i.e. can
be represented by the same c-node. HoweVvég,if, C,) did not exist before the current operation, then a
new c-node representing onGy has to be added tb(Cy) and a new c-node representing ofly has to
be added td (C,/). For a split cluster, as discussed before, each neighbor with different ancestor becomes
its own c-node.

Updating data structures (CG1)—(CG3lIt suffices to discuss how much each cluster graph changes.
Using Lemma 2.11 and the simplicity of (CG2)—(CG3) it will follow that all updates take txie). (1)

The cluster graphs &, andC, are rebuilt from scratch since a new edge is added to them and potentially
the clusters are split. (2) The cluster graphs whose b-nodes changes are rebuilt from scratch. As described
above, these are the cluster graphs of neighbors of a split cluster with the same ancestor as a split cluster.
(3) A red edge is added to the cluster graph of each cluster that was an articulation peint@n, C,/)
separatingC, andC, before the insertion.

Next we describe how to execute these steps in amortized@itkeeach, given the (new) b-nodes and
c-nodes. In Steps (1), (2), and (4), we rebuild cluster graphs which takes time linear in their size for (CG1)
(see Lemma 2.11), (CG2), and (CG3). By Lemma 2.10, the sum of the sizes of all rebuilt cluster graphs is
O(k).

In Step (3) the articulation points amr, (Cy, C,) are found by testing in constant time each of the
clusters onr1,(Cy, Cy) using data structur@HL4) for H; (before the update). Lemma 2.11 shows that a
red edge can be added to the (CG1) and (CG2) data structure of each articulation in time linear in the number
of colored edges, which equals the degree of the articulation pohif.ilBy Fact 2.1, theH;-degree of all
articulation points o, (Cy, C,) sums toO(m/Kk).

Deletion of a non-tree edge
The deletion of a non-tree edge does not change the spanning tree and does not split a cluster (Lemma 2.4).
Thus, no b-node changes. However, an amortized constant number of c-nodes is split (as we will show in
Lemma 2.33). Additionally, if the deletion removes the ed@g, C,/) from Hq, the c-node oC, might be
removed froml (Cy) and the c-node of, might be removed fronh (Cy).

Updating data structures (CG1)—(CG3ket U and v’ be the representatives that are incident to the
deleted edgéu, v). (1) If (Cy, Cy) is removed fromH;, removeC, in the cluster graph o€, from the
list of its c-node. If the resulting list is empty, remove the c-node.c@ed in the same way wit@, in
the cluster graph of,,. Then rebuild the cluster graph f&;, and forC,, from scratch. (2) A red edge is
removed and the blue edges are updated in the cluster graph of each new articulation pgi(€enC,)
in the updatedH;. (3) The c-structure (see Section 2.8) returns an amortized constant number of c-nodes
that are split. Their cluster graphs are rebuilt from scratch.

Next we describe how to execute these steps in amortizedQ@itke each. By the same argument as

16

for insertions, Steps (1) and (3) take amortized tidg). Step (2) is implemented very similar to the case

of insertions, namely the articulation pointsef (Cy, C,/) are determined b (m/k) queries in the data
structure for theipdatechigh-level grapt;. Finding them takes tim®(m/k). By Lemma 2.11, replacing

all blue and red edges in the cluster graphs of the new articulation points takes time linear in their total
number, which iO(k) by Lemma 2.1.

Deletion of a tree edge

Let u" andv’ be the representatives that are incident to the deleted @dge and letx’ andy’ be the
representatives that are incident to the new tree éxigg), if it exists. By Lemma 2.4Cy, C,/, Cy andCy
are the only clusters that might be split.

Determining the new b-node3he new b-nodes are determined in ti@¢k) in the same way as for
insertions.

Determining the new c-nodehe c-structure returns the clusters in which a c-node was split and the
new c-nodes.

Updating data structures (CG1)—(CG3)Ve describe which cluster graphs have to be updated. (1) The
cluster graphs o€y, C,/, Cx andCy are rebuilt from scratch. (2) Each cluster graph in which a c-node or
b-node was split has to be rebuilt from scratch. (3) A red edge is removed and the blue edges are updated in
the cluster graph of each new articulation pointai(Cy, Cy) in the updated grapHi; if (X,y) exists. As
discussed for insertions and for non-tree edge deletion, each of these steps take amorti@g)time

We summarize the section with the following theorem.

Theorem 2.12 Let C be a cluster. There exists a data structu¢€)

e that tests in constant time whether two vertices u araf V(C) that are not separated by-sare
biconnected in G, and

e that can be updated in amortized timgk) after each update in G.

The data structures(IC) for all clusters C can be built in time @n).

2.6 Shared Graphs

We maintain a shared gragh(s) for every shared verteg. Given a shared vertex and two of its tree
neighborsx andy, the shared graph &fis used to test in constant time whetlsdés an articulation point
separating andy.

Let Cs be the node oH, representing, i.e., it represents the nodes in altlusters. LetV(Cs) =
{v; v € G, andv is represented b€}, and let\'(Cs) = {C’; C’ is node ofH; and is a neighbor ofs in
H,}. Shared graphs are used to test whether a pair of two special vertiGethat either are represented
by or are incident to the same nodeld$ (to be precise, two tree neighborsg)fare biconnected irG.
Note that cluster graphs solve this problenHix A cluster graph tests whether two vertices®that are
represented by or are incident to the same nodé;adire biconnected ifs, under the additional condition
that no dashed edge is incident to this nodeHaf (For nodes ofH; that are incident to a dashed edge
only a restricted version of the problem is solved.) Since there are no dashed eégesvim simply can
define shared graphs analogous to cluster graphs and use the data structure for cluster graphs also for shared
graphs. However, it is possible that(Cs)| = ®(m) and, thus, rebuilding the data structure from scratch
can take time(m).

17

This leads to the following definition. Let us call a shared veg@ewif s became shared by a cluster
split after the last rebuild, and let it be callett otherwise (i.e. if it became a shared vertex during the
last rebuild). Note that i§ is new, thenV(Cs)| = O(k) by Lemma 2.7, and, thus, a solution analogous to
cluster graphs is efficient.

For old shared vertices we use a new technique, which exploits the fact that the tree neigabdrs
y of s are biconnected ifk andy are connected is \ s. Thus, we maintain a “compressed” version of
G\ sin which we askconnectivityqueries. The shared graph will be stored in a dynamic connectivity data
structure. Currently in an-node graph the fastest such data structure takes deterministiOGmé® logn)
per edge update ar@(1) per query [13] or randomized tim@(log? n) andO(logn) per query [17].

Note that there ar®©(m/k) = O(k) many shared vertices, which implies we have to main@{k)
many shared graphs.

2.6.1 Shared graphs for new shared vertices

Let s be a new shared vertex represented by nogdam H,, and letAs be the ancestor afs. Theshared
graph G(s) contains as nodes

e anode, calleé-node for each vertex iV (Cs),
e one node, calleb-node for each cluster itk (Cs) with ancestorAs,

e one node, called-node for each maximal set of nodes bl, such that (a) every nodg’ in the set
belongs taV (Cs), and all edgesC’, Cs) of H, have the same ancestor edge, (b) all nodes in the set
have the same ancestgrAs, and (c) all clusters in the set have been connectétyinCs at all times
and any previous set of clusters containing the vertices of the clust¥rsvilss connected ifi, \ Cs
at all times.

Note that for each neighb@’ € N'(Cs) there exists a unique node @xs) representingC’ and potentially
other clusters.
The graphG(s) contains the following edges.

e All edges between two vertices bf(Cs) belong toG(s).

e For each edgéu, v) whereu belongs taV(Cs), v does not belong t¥’(Cs), and (U, v') is the corre-
sponding edge i, there is an edgeu, d), whered is the b- or c-node representi@y in G(s).

e All b- or c-nodes representing tree neighbor&ahat are biconnected iH, are connected by a tree
of red edges.

e For each non-tree neighb@ of C, G(s) contains alue edge(d;, do), whered, represents a tree
neighbor ofC that is biconnected t€@; in H,, andd; represent£;.

Note that for each non-tree neighty of C there always exists a tree neighboifthat is biconnected to
C1 in Hy — the tree neighbor of that lies onrr, (C, Cq) always is biconnected t0;.

Since all clusters sharirghave the same ancestor, Lemma 2.7 shows|@ét)| = O(k).

A tree neighbor ok either belongs td’(Cs) and is represented by an a-node, or does not belong of
V(Cs) and is represented by a b- or c- node. We need to show the following lemma.

Lemma 2.13 Let u andv be two tree neighbors of a new shared vertex s. Then (the representative of) u
andv are biconnected in &) iff u andv are biconnected in G.

18

Proof: Note thatG(s) can be created by contracting edges@n Thus, biconnectivity inG(s)
implies biconnectivity inG.

Verticesu andv are connected by a tree path, s), (s, v). Contracting edges not incident $o
cannot makes into an articulation point separatingandv. Hence, biconnectivity irG implies
biconnectivity inG(s). Thuss is the only node that could be an articulation point separatingd

v. 1

We use the same data structure as for cluster graphs to store shared graphs for new shared vertices.
Given the b- and c-nodes the red edges can be found in time linear in their number using the data structure
(HL4) for H,. We determine the blue edges®ts) by connecting each non-tree neighl@rof a nodeC
to the tree neighbor & on T, (C, C;). Using the data structure (HL3) fot, this takes time linear in the
number of blue edges tim&3(logn). Using the data structure of [11], results in the following lemma.

Lemma 2.14 Let s be a shared vertex represented by the node C,0fTHen there exists a data structure
for the shared graph of s, such that

1. building the data structure takes time(|®¥(Cs)| + (m/K) logn), provided that the b-nodes and the
c-nodes are given,

2. changing one or all of the colored edges in the data structure takes time linear in their total number
times Qlogn), given the b-nodes and c-nodes,

3. testing whether two vertices B{Cs) are biconnected in &) takes constant time.

These data structures are updated in amortized®@uhe- (m/ k) log n) per operation with the algorithm
of Section 2.5.1 witlH; replaced byH,.

2.6.2 Shared graphs for old shared vertices

Let s be an old shared vertex and fef be the node ofH; representing. We cannot use the data structure
of the previous section for the shared grapls eince rebuilding the data structure from scratch would take
time Q(|V(s)]), which might be®(m). Still we use an approach similar to the one in the previous section
but avoid rebuilds from scratch.

The data structure for new shared vertices is rebuilt from scratch if (a) an edge is added to or removed
from a node o}/ (Cy), or (b) a b- or c-node is split. We want to handle both situations with a small number of
edge insertions or deletions in the shared graph @bviously, Case (a) requir€3(1) 3 edge insertions or
deletions (ignoring the fact that arcluster might be split). For Case (b) we handle b-nodes differently from
c-nodes: we add all vertices &f represented by b-nodes®s) (i.e., we treat them like nodes W(Cs) —
see below), and we expand each c-node into a tree of bold edges. Note also that a c-node here represents a
node ofH;, notof Hy: we need the fact that at moSt(k) edges can be incident to a node represented by
c-node. We describe here the intuition behind the tree for a c-node, by giving a simplification of the exact
definition. LetNeighborX) be the set of vertices db that belong to a cluster of the c-nodeand are
neighbors of a vertex i¥(Cs). Consider the subtree df created by all tree paths between two nodes of
Neighbor(X). Let the vertex se¥(X) consist ofX and each node of degree at least 3 in this subtree. The
c-nodeX is represented i (s) by V(X), i.e. all nodes oV (X) belong toG(s) and the bold tree is the
above subtree with all degree-2 vertices not belonginy éagghborX) and their incident edges replaced
by one edge. Note that every edge insertion or deletidh,iim particular every split of a c-node, leads to
O(1) edge insertions or deletions in the bold tree. Below we need to relax our definition of the bold tree, but

19

we still are able to show that every edge insertion or deletidnleads toO (1) edge insertions or deletions
in the bold tree of a small number of shared graphs and to potentially many edge insertions and deletions in
small shared graphs, i.e., there are to a few “expensive” and many “cheap” edge insertions or deletions.

Since both Case (a) and (b) can be replaced by edge insertions and deletions, we just need to store the
shared graph in an efficient dynamic biconnectivity data structure. But this is exactly the problem we want
to solve and recursion cannot be applied siW¢€s) might contain all nodes its. However, two tree
neighborai andv of s are biconnected i iff they are connected i \ s. Thus, we store the shared graph
in a dynamic connectivity data structure, in which an update takes@meé’3logn).

Still there are two problems that we have ignored so far: (a) a split af@uaster, and (b) updating
colored edges. Problem (a) might lead to a significant decrease in the number of nd4€&g)inbut it
would be expensive to implement in a dynamic connectivity data structure. Therefore we do not remove
these nodes, i.e., the nodes in a shared graph of an old shared vertex are the nodes that bélo@gealtto
the beginning of the phas8ince the set¥ (Cs) for different old shared vertices are disjoint at the beginning
of the phase, they will stay disjoint throughout the phase. Note that this would not necessarily mae for
shared vertices, i.e., we exploit the fact that in this section we only dealoldtBhared vertices. Said
differently, we will storeV (Ag) instead of)’(Cs), whereAs is the ancestor dfs in Ho.

To deal with Problem (b) we build a second shared gi@ps) of size linear in the degree of (the clusters
containing the vertices of)s in Hy. We rebuild it from scratch whenever the colored edges change. Using
Fact 2.1 as in the analysis of cluster graphs shows that the cost of updating all Gi@plaster an update
in G takes timeO(m/K).

Even though neithe®(s) nor G(s) can be used by itself to answer biconnectivity queries, together they
can answer biconnectivity queries since they fulfill the following invariant:

Two neighbors u and of s are biconnected in G iff u andare connected in (&) or the representative
of u and the representative ofare connected i15(S).

The graphs G(s)

Let A(s) = {A, A is the ancestor of as-cluster inH;} and letC(s) = {C, C is a node ofH, and all
vertices ofC belonged toAg}.

We call aseX = {C;, ..., C¢} of nodes ofH; ac-set of §f X is a maximal set of nodes ¢f; such that

(a) every nodeC’ in X contains a vertex that is incident to a vertexi(As), and all edgegh(C’), As) have
the same ancestor edgeh; at As,

(b) all nodes inX have the same ancestarsuch thah(A) # Ag, and

(c) allnoded(Cj), 1 < j < f, have been connected i \ Cs at all times and for every previous sébf
nodes ofH; containing the vertices of the nodesXnall nodes ing(D) with D € Y were connected
in Hy \ Cs at all times 2

We denote the vertices @ contained in the nodes of a c-s¢tasV(X). A shared vertex can belong to
more than one such si{X) while a non-shared vertex belongs to at most one. Note that c-sets correspond
to c-nodes in the cluster graph. “B-sets” are not needed, siisewill “contain” all nodes of neighbors of
Cs with ancestorAs.

Let s be an old shared vertex, I€ be the node representisgn H,, and letAs be the ancestor dfs
in H,. Theshared graph Gs) contains as nodes

8We sayc-setinstead ofc-set of swhens is clear from the context.

20

e anode, calle@d-node for each vertex iV (As) \ {s},
e anode, called-node for each neighbor of a vertex W(As), and
e anode, calle@-node for some of the vertices iW(X), whereX is a c-set 0.
The graphG(s) contains the following edges.
e Every edge incidentto a vertex ¥f{As) \ {s} belongs taG(s).
e For every c-seK the vertices i/ (X) N G(s) are connected by a tree bbldedges.

We call the subtree generated by the tree patfisltween all vertices that are d-nodesshibtree gener-
ated by the d-node$Ve sometimes identify a d- or e-node with its vertexan
For efficiency we need to require that the bold edges fulfill the folloviiolgl-tree invariant

(I11) Each e-node isincident to at least three bold edges.
(12) Ateach pointintime a bold edge either

— represents an edge that used to be in T but has since been deleted exclusive or
— represents (we sagoverg the tree path in (the current) T between its endpoints

such that each edge in T is covered by at most 1 bold edggsi & each point in time and each
deleted edge is represented by at most 1 bold edge & @uring the whole phase.

Invariant (I11) guarantees that there are fewer e-node than d-nodes. The crucial observation for efficiency is:
If a bold edgee represents a deleted edgieandits endpoints are disconnected@n\ {x, x € Cs} then we

can afford to remove from G(s). As we show below the removal effrom G(s) can be charged to the
deletion ofe’. However we cannot afford to discard of the remaining bold edges that represent a deleted
edge.Data structure:

(S1) We storeG(s) in a fully dynamic connectivity data structure. This data structure allows to execute the
following operations:

e insert(u,v)/delete(u,v)insert or delete the edge, v) in time O(m'Y/3logn), wherem is the
number of edges i (S).

e connected?(u,v)Test whetheu andv are connected in constant time.
e component?(u)Return the connected componenuah constant time.

(S2) We also keep a list of c-sets @(s) and store at each c-set the corresponding ancestor edge. For
each c-set, i.e., each bold tree, we keep a deqr¥&é-ET-tree data structure whose leaves form an
ET-traversal of the bold tree, wherd is the number of edges iB(s). We store at the root of the
ET-tree the name of the c-set. Splitting or joining an degndé? tree takes timé (m'Y/3), traversing
a path from a leaf to the root takes constant time[18].

(S3) For each clusteA that existed at the beginning of the phase we keep a list of pointers to all (S2) data
structures representing a c-set with ancegtoFor each c-set we keep a pointer back to its entry in
the list and to the clustei.

21

(S4) For each bold edge we keep a bittdated?hat is set to true iff the edge represents a deleted edge.
(S5) For each connected component@fs) we keep a d-node or e-node belonging to the component.

The data structure (S5) is needed to determine for eachmoll®’ (As) \ {s} a c-set connected toin
G(s) (if such a c-set exists), called thepresentativef x. Together with (S1) and (S2) the representative
of x can be found in constant time.

The number of nodes and edges in a grégh) is linear in the degree of the vertices containel ().
Thus, the total space for (S1) — (S5) for all old shared grap@xis).

The graphs G(s)
The graphG(s) contains as nodes

e ac-nodefor each c-setirG(s).

e All c-nodes that are connected @xs) are connected by a tree péllowedges inG(s).

e All c-nodes of c-sets whose elements are connected; iy C(s) are connected by a tree gfeen
edges inG(s).

Data structure:
(S6) We storeG(s) in an adjacency list representation and label each node with its connected component.

(S7) We keep one empty array of sindo guarantee that various bucketsorts can be executed in time linear
in the number of sorted elements.

The next lemma shows how to u€gs) andG(s) to test whether two neighbors sfare biconnected in
G.

Lemma 2.15 Two tree neighbors u andof s are biconnectedjn G iff u andare connected in @) or the
representative of u and the representative @ire connected i (s).

Proof: Each edge irG(s) or G(s) corresponds to a path i@ that does not contais, and each
vertexu € V(As) \ {s} is connected to its representative by a patGithat does not contaim Since
connectivity ofu andv in G \ {s} implies biconnectivity inG, the claim follows.

To show the other direction consider a p&hin G that connectsi andv and does not contais
PartitionP into subpaths such that each subpath is a maximal path either (a) consisting only of edges
incident to nodes of (Ag) \ {s}, or (b) containing only edges whose (both) endpoints are represented
by the same c-node @& (s), or (c) not fulfilling (a) or (b).

Note that the endpoints of each subpath lifij (a) or (b) are also connected®xs). In remains
to be shown that the representatives of the endpoints of each subfalfilling (c) are connected
in G(s). Note thatP connects two vertices represented by the c-ndgesmdd, and that it does not
contain a vertex of as-cluster. Thus, the nodes &f; represented by; andd, are connected in
H1\ C(s). Thus, they are connected@®(s). 1

22

Note that (S1), (S2), (S5), and (S6) allow us to execute these tests in constant time.

Updates inG(s)

We need to show tha&(s) can be built in time linear in its size and that updating all grapl® takes
amortized timeD(k logn + /mlogn) per edge insertion or deletion in@.

Given a spanning tre&, an ET-traversal of Tis a sequence of vertices @f, in the order in which
they are encountered by a depth-first traversal oEach vertex» occurs deg() times. Given a seX of
vertices ofT, anET-traversal of X in Tis the restriction of the ET-traversal @f to the vertices inX with
consecutive multiple copies at the same vertex removed=Ppathof X in T is a set of edges connecting
every consecutive pair of vertices of the ET-traversaXaoh T. During updates we make use of the fact that
an ET-path ofX can be computed in tim@®(| X|).

We first describe how to (re)buil@(s) in time linear in its size time®(logn). The a-nodes and their
incident edges are given by (G1) and (G3). We describe how to find the d-nodes and bold edges for a c-set
X. Note that at the beginning of a phaXeconsists of exactly one nod& of H;. Determine all edges
betweenA and Ag as follows: Bucket sort all edges incident to a clusterifs) according to the node of
Hj \ A(s) to which their nonA(s) endpoint belongs. The set of endpoints of the edges in the bucket of
are the d-nodes iW (X).

Each endpoint, i.e. vertex i@, is represented by at least one leaf in the ET-tre€ of (G3). For each
vertex inV(X) pick an arbitrary such leaf and label it with the vertex. Then traverse the ET-tiedrom
each chosen leaf to the root and label each internal node of the ET-tree with the concatenation of the labels
of its children in left-to-right order. The label of the root gives an ET-patiOf) in T.

We use the ET-path to determine the initial bold edges: The first edge of the ET-path becomes the first
bold edgee;. Let{ey, ..., _1} be the bold edges already determined. Using the dynamic tree of (G3) we
marked every edge an(x, yi) with for every edges = (X, i) with1 <1 < j — 1. We maintain the
invariant that the marked edges form a subtrek.dfete = (x, y) be the next edge on the ET-path such that
x belongs to the marked subtree. Note thét, y) consists of a (possibly empty) sequence of marked edges
followed by a (possibly empty) sequence of unmarked edgesz hetthe vertex at which the edges switch
from marked to unmarked if such a vertex existzoe y otherwise. We findz by rooting the dynamic
tree atx and determining the first nodeincident to a marked edge on'y, x). If z =y, we test whether
the edge incident tgy on w(y, X) is marked with an edge ending wt If not, let (z;, z») be the marking.
Remove the bold edge:,) and add the bold edgé€g,, y), (Y, z»). Then continue with the next edge on
th ET-path. Otherwise, i.ez # vy, if zis a d-node or e-node, add the bold eége= (z, y) and mark its
path. Ifzis not a d-node or e-node, itis incident to two tree edges, marked with the same boldedge
Remove the bold edge;, z), add the bold edgeg;, 2), (z,), (z, y), mark the corresponding paths, and
makez an e-node ang a d-node. Then continue with the next edge on the ET-path. Finding the bold edges
takes time linear in the number of d-nodes. THass) and (S1) and (S2) can be built in time linear in the
size of G(s) timesO(logn).

While building G(s) give each clusteA represented by a c-set a pointer to this c-set and store at the
c-set a pointer back to its position in the (S3)-listofind toA.

All outdated?bits are set to false.

To build (S5) ask a&componen®(u)-query for each d- or e-node iB(s) and store the node at the
component if no node is stored there yet.

Obviously, building (S3) — (S5) takes time linear in the siz&xg).

Next we describe how to update tBés) after an update iG. Letm’ denote the size d&(s). Note that

23

one non-bold edge is inserted or deleted in at most two grébk} taking timeO(m/3logn) = O(k)

each. We are left with discussing how the bold edges change. There are three cases to consider: (A) a d-
nodex is no longer connected to a nodeliiAs), and it and potentially one e-node has to be removed from
G(s); (B) a vertexx that is not yet a d-node becomes connected to a notféAg) and it and potentially

one e-node has to be addedG¢s); (C) a tree edge covered by a bold edge in a cXset deleted without

splitting X; or (D) a c-set has to be split since its corresponding nodés,iare no longer connected in

H, \ Cs.

(A) If the d-nodex is incident to at least three bold edges, it simply becomes an e-node. If itisincident to
two bold edgesz;, x) and(x, z,), these edges are removed drgd z,) is added td5(s). Theoutdated?bit
of (z1, z) is set to the logicabr of the outdated?bit of the two deleted edges. Xis incident to one bold
edge, this edge is deleted and if this creates an e-node of degree 2, this node is deleted as described for the
degree-2 case of. Note that the bold-tree invariant is not violated. If a c-set becomes empty, it is removed
from the corresponding (S3) list. Before removirgve test one node in each other c-set to determine
whether it is connected . If so, it is stored at the connected componenk ofJpdating (S1)-(S5) takes
time O(m*3logn + m/k).

(B) Let x” be the node of5” incident to the new edge and I&t = C, be a node irH;. If no other
vertex ofC’ is incident to a vertex o¥ (As), the new edge is its own ancestor edge. A new 1-element c-set
is formed and a (S2) and (S3) data structure is created. Finally we determine the connected component of
and storex as d-node in the corresponding (S5) data structure.

Otherwise, we determine the ancestor edgef (h(C’), As) using (HL7) and search for the c-s¥t
with ancestor edge’. For each bold edge€ = (w, z) of X whoseoutdated?bit is not set, mark in the
dynamic tree off using (G3) all edges om(w, 2). Lety be the endpoint of a bold edge f To update the
bold edges, use (one iteration of) the algorithm for determining bold edges during a rebuild to process the
addition of the edgéx, y) to the marked subtree. Theitdated?bit of all new edges is set tialse Each
operation in the dynamic tree takes ti®@logn). Findinge’ and X takes timeO(m/k). Updating (S1),
(S2), and (S4) takes tim@(k logn + m*/3logn), (S3) and (S5) are unchanged.

(C) The bold edge representing the path containing the deleted elgeX now represents the deleted
edge€. Thus, only (S4), i.e. theutdated?bit of e, has to be updated. L&t be the ancestor of the cluster
containinge. Using (S3) find all bold edges whoseitdated?bit is falseof a c-set ofA in any shared
graph and test them to determine to ones that represent a path congailsiagtheiroutdated#bittotrue.

To test an edge first split the ET-tree Bfin (G3) at€/, resulting in two ET-trees, one feach subtree of
T \ €. Test whether the endpoints of the edge belong to different ET-trees by traversing the paths from a
leaf representing each endpoint to the root.

By Lemma 2.7 there ar®(k) bold edges to test, for a total time 6f(k).

(D) In the fourth case, the split of a c-set, the c-structure in Section 2.8 returns (an amortized constant
number of) old shared grapl@(s) such that one of the c-sets gfis split by the update. Additionally, it
gives for each split c-seX the resulting new c-setX; and X,. The split of the c-seX of s may lead to
deletions and insertions of bold edges incident to the nodé4Xf. We describe first how to find these
edges and how to update (S1), (S2), and (S4) accordingly. Afterwards, we describe how to update (S3) and
(S5). LetA be theHi-ancestor of all nodes iX.

(1) Remove the bold edges connectingaXd X,. A bold edge has to be deleted if its endpoints belong to
different connected componentsid$ \ Cs. For this test map both endpoints to their nodekljrand
test whether they are biconnected using (HL3) and (HL4).

24

Determine all existing bold edges incident to the vertice¥ Of) by traversing the leaves of the ET-

tree of X. Test each bold edge. L& be the set of bold edges to be deleted. Dektey removing

the edges from (S1) and splitting the ET-trees (S2) suitably. This results in various ET-subtrees. Note
that both endpoints of each remaining bold edge belong to the same ET-subtree. Finally,lifregresu

bold tree contains an e-node with degree less than 3, then remove the node and update its incident
edges as described using (HL3) and (HL4).

(2) Reconnect the resultinggxes into two bold trees such that the bold-tree invariant haleés$.X; and
X5 be the resulting c-sets. Foe= 1, 2 our goal is to reconnect the different ET-trees represening
However, the remaining bold edges whasgdated?bit is true complicate the process: two vertices
may belong to the same ET-tree but some edges on the tree path between them may not be covered.
Thus it is possible that the vertices of the same ET-tree do not belong to the same subtree of covered
edges, but are partitioned into various vertex-disjoint subtrees of covered edges.

This leads to the following algorithm. For= 1, 2 find an ET-path ol’(X;) in T. Wlog the path
starts in the first ET-tree. Process the edge on the ET-path in ordee. &k, y) be the next edge

to process. Ik andy belong to the same ET-tree, do nothing. Otherwise, assulbr@ongs to the
current ET-tree ang belongs to thep-th ET-tree. Determine the subtree of covered edges of the
current ET-tree closest tpon (X, y) and an e- or d-nod2 in this subtree. Determine the vertex

of this subtree closest tpon = (Z, y). Determine the verteyw closest toz onz(z, y) that belongs

to a different subtree of covered edges. This subtree must belong ¢getthET-tree. Addz andw

as e-nodes t&(s) and update the bold edge covering their two incident covered edges suitably, if
andw do not already belong tG(s). Add the bold edgéz, w) and join the current ang-th ET-tree.
Repeat withx replaced byw until the current and the-th ET-tree have been joined.

We implement this algorithm as follows: We keep two different costs, i.e. markings, of the dynamic
tree of T in (G3). Cost is set to 1 for each e-node or d-node belonging to the current ETGes:

is set to 1 for an edge iff the edge is covered by any bold tree edj§e Wfe usecostto determine
andcost to determinez andw. When joining two ET-treeg;ost of the d- and e-nodes in thgeth
ET-tree is set to 1. Theutdated?bit of all new bold edges is set false

Lemma 2.16 The update algorithm maintains the bold-tree invariant.

Proof: The invariant obviously holds after each rebuild. If a d-node is no longer connected to or
starts to be connected to a vertexWfAs) \ {s} we update the bold tree to maintain (11) without
violating (12), since the patfx, 2) is uncovered before the update.

WheneveilT changes without splitting a c-set, then a tree eglgrist have been deleted. Bold edges

not containinge in the tree path between their endpoints continue to represent their tree path. The at
most one bold edge whose tree path contaimsw represents the deleted edgdhus, the invariant
continues to hold.

WheneverT changes and a c-s&t is split, we update (12) without violating (11): we remove
some bold edges representing deleted edges and e-nodes incident to fewer than three boldedges, if
and /orw do not yet belong t&(s), we add them and update the bold edges covering their incident
marked edges suitably, and we add ed@es) covering a previously uncovered path. Thus, the
bold-tree invariant continues to hold. il

To update (S5) we determine a vertexXqfand storeX; at the component of the vertex foe 1, 2.

25

Running Time Analysis of Case (D):

In the data structure (S1) and (S2) it takes ti®en''/ logn) to add or delete a bold edge, for a total of
O(|B|m*/3logn). As we show below, (a) we spend tinGk logn + |B|m'*/3logn) per old shared graph
to determine which edges to add and delete. We ch@rgidogn) time to the current update operation in
G.

We also show (b) that using the bold-tree invariant, the co®t(@B|m'*/3logn) can be charged to either
the current ol B| previous edge deletions i@ such that the total cost ever charged to an edge deletion in
G by all old shared graphs ®(,/mlogn). It follows that the total cost of updatir@(s) can be amortized
over|B| + 1 edge deletions ifs, adding only an amortized cost 6f(k logn + /mlogn) to each deletion.
We are left with proving (a) and (b).

To prove (a) we analyze the time for an update. We repeatedly use the fact that the€ré&dreld
edges, d-nodes, and e-nodes representing a c-set, an@@&smon-bold edges incident to d-nodes of a
c-set. In Step (1) testing a bold edge takes tid@ogn) for a total of O(klogn). Removing the edges in
B decreases the degree of the e-nodes by at m&stahd, thus, leads to the removal ©f|B|) e-nodes.
Thus, O(|B|) edges are removed and added to (S1) and (S2), for a total tir®&|&|m'*/3logn). Thus,
Step (1) takes tim®(k logn + |B|m'Y/3logn) altogether.

The cost of the operations in Step (2) are: Building an ET-path/iof;) takes timeO(|V(Xj)| =
O(k) since the ET-tree in (S2) has constant depth. We spend@igheg n) for each new bold edge, for
a total of O(|B|logn). Additionally each of theD(k) d-and e-nodes has itost set to 1, for a total of
O(k/logn). Finally, there areD(|B|) edge insertions and deletions@1s). Thus, the total time for Step
(2)is O(klogn + |B|m*/3logn).

The time to update (S3) and (S5) is constant. Since the number of bold edges in all cAetdioear
in the number of nodes d&, the time for updating (S4) i©(k). Thus, the total time spent i@(s) after an
update inG is O(k logn + |B|m*/3logn).

As described before, we char@gklogn) to the current update iG. Next we have to account for the
remainingO(|B|mY3logn) cost. Ifm < m¥# and the number of edges between a vertex is-ahuster
and a vertex inA is at mostk/m!/# throughout the phase, then

O(|BIm*3logn) = O((k/mY*)m*logn) = O(klogn).

Thus, we charge this cost to the current updat@ as well. Otherwise we charge the costf| B|m'Y/3 logn)
to | B| (specific) previous edge deletions@ To show (b) we need to prove that the total cost ever charged
to an edge deletion i by all old shared graphs i®(/mlogn).

Note that each deleted bold edgenust represent a deleted edgeof G, since its endpoints are no
longer connected i \ {X, x belong to ars-cluster}. We charge the cost of deletirgo €. By the bold-
tree invariant, at most one bold edgeGiis) ever represent each deleted edg@&hus at most one deletion
in G(s) is ever charged tg'.

How much cost is charged & during the whole phase all old shared graphs? Number the old shared
graphs that have a deletion charginget@and letJ be the set of these indices. Lret be the size of thé-th
old shared graph. For eacte J either (i))m/ > m¥* or (i) m < m¥* andb; > k/m'/# at some point(s)
in the phase, wherb, is the number of bold edges of the c-3€in thei-th old shared graph such that a
deletion inX is charging tce'.

Let J; be the set of indices of old shared graphs in case (i) andblet J \ J;. Since) ; mi = O(m),
|J1| = O(mY/4). The cost of all old shared graphs contributing to (i) is

O(Z m*%logn) = O(/mlogn).

iEJl

26

Since throughout the phase there &) + m/k = O(k) edges incident to the vertices represented by a
c-set,|Jo| = O(mY/%). Additionally, fori e J, mi/l/3 = O(mY*). Thus, the cost of all old shared graphs
contributing to (ii) is

O(Z m*3logn) = O(MY*m‘*logn) = O(y/mlogn).

iEJz
We summarize the result in the following lemma.

Lemma 2.17 The data structures for all shared graphg<} can be built in time @mlogn) and can be
updated in amortized time ®logn + /mlogn) after each rebuild. They can test in constant time whether
two nodes are connected in a given grapltstz

Updates inG(s)

We show how to build5(s) in time linear in its size and how to update all graghs) in time O(k)
after an update iG.

The nodes 06 (s) are given by (S2). The yellow edges are determined as follows: Using (S2) determine
for each c-seX an arbitrary d-node or e-nodeg representing it irG(s). Bucketsort the nodas; according
to their connected components using (S7). For each bucket connect all c-sets in the bucket by a chain of
yellow edges.

To determine the green edges determine a vertexfof each c-set and map it to a nodelé$ using
(HL1), and map each node &f, to a tree neighbor o€s using (HL3). Finally bucketsort the c-nodes
according to the biconnected component of the tree neighldgs to which they were mapped usibépck-
id?-queries in (HL4) forH,. For each bucket, connect all c-sets in the bucket by a chain of green edges.

The rebuild takes time linear in the number of c-nodes and the number of nottgsfar a total of
O(m) for all old shared graphs.

Next we describe the insertion or deletion of an edgé irtJsing the above rebuild algorith@(s) can
be updated in tim®(m/K) if a yellow edge or a c-set changes and in time linear in the number of c-nodes if
a green edge changes. We argue next that a yellow edge or a c-set changes in an amortized constant number
of old shared graphs and that a green edge changes in clusters that are articulations on H-pgdithar
before or after the update) plus a constant additional number of clusters. By Fact 2.1, the total time spent is
Oo(m/k).

Consider an update of edga, v) in G. The yellow edges or a c-node of an old shared grG@ps)
have to be modified if a change in the corresponding gfagd) occurred. Recall that this happens only
in an amortized constant number of graphs. Thus, yellow edges and c-nodes have to be updated only in an
amortized constant number of graphs.

Let D, be the node oH, containingu. The green and yellow edges are completely recomputed for
G(s) such thatu or v is contained in ars-cluster. Additionally, the green edges of an old shared graph
G(s) have to be modified if the connected componeritgfi C(s) change which happens iff the connected
components ofH; \ Cs change. The latter happens (a) after the deletions of an @dae iff Cs becomes
an articulation point om,(Dy, D,), and (b) after the insertion of an edge v) iff Cs was an articulation
point onx1,(Dy, D,) before the insertion and is no longer an articulation point after the insertion.

It follows that the green edges only have to be updated for shared graphs of old shared sodes
thatCs is an articulation point omr1,(Dy, D,) either before or after the update plus at most 2 additional old
shared graphs.

This leads to the following lemma.

27

Lemma 2.18 The data structures for all graph&(s) can be built in time @m) and can be updated in
amortized timg @) after each rebuild. They can test in constant time whether two nodes are connected in
a given graph(s).

We summarize the section with the following theorem.

Theorem 2.19 Let s be a shared vertex. There exists a data structure
e tests in constant time whether two tree neighbors u@nfls are biconnected in G, and
e that can be updated in amortized timgkdogn + /mlogn) after each update in G.

The data structures for all shared vertices can be built in tim@n@Gogn).

2.7 The high-level graphs

In this section we give the details of the high-level graph data structures and explain how they are updated.
For (HL1), (HL2), (HL5), (HL6), and (HL7) the details are given in section 2.4 and it is obvious how to
update them in constant time per updatésinprovided the change in the cluster partition is known. The
description in Section 2.2 gives &(k)-time algorithm to update the cluster partition. Thus, we concentrate

in this section on the details of (HL3) and (HL4).

2.7.1 The data structure (HL3)

Given the nodeC and its non-tree neighb@’ we use (HL3) to find the tree neighbor 6fon 1, (C, C').
For H, (HL3) consists of a dynamic tree data structurel'af To find the tree neighbor rodb at C’' and
return the parent o€. Update (HL3) by executing link and cut operations whendyethanges. It takes
time O(logn) to test or update (HL3).

For Hy, (HL3) consists of a degrdeET-tree data structure dh. To find the tree neighbor proceed as
follows: For the nodé&, C’, and the tree neighbors &f label one of the leaves representing the node with
the name of the node. Then traverse the ET-tree from all labeled leaves in lockstep, labeling each internal
node with the concatenation of the label of its left child and the label of its right child. The label incident to
C’’s label is the desired tree neighbor. To update the ET-tree whemgebianges split and join the ET-tree
accordingly. Since the ET-tree h@g1) depth andC hasO(1) tree neighbors, a test tak€g1) time. Each
update takes tim&® (k).

2.7.2 The data structure (HL4)

Recall that (HL4) implements the following query operationsiin

e biconnected?(C,C’,C")Given that node€’ andC” are both tree neighbors of a no@dest whether
C’ andC” are biconnected ifl;.

e blockid?(C,C’): Given thatC andC’ are tree neighbors iffj, output the name of the biconnected
component oH; that contains bot andC'.

e components?(Cutput the tree neighbors @f in H; grouped into biconnected components.

28

As we show belowbiconnected?andblockid? takes constant time, armbmponents?akes time linear in
the size of the output.

We say a nod€ of H; is avoidable on the tree path B C and two of its tree neighbors, call&and
D’, belong toP and there is an edge i; \ C between the subtree @f \ C containingD and the subtree
containingD’.

To implement (HL4) we build a compressed graghC) of H; \ C for each node& in H,. LetC be a
node inH;. The graphH; (C) contains a node for each tree neighboCoin H;. There is an edge between
two tree neighbor® andD’ of C iff C is avoidable onrt, (D, D').

We keep the following data structures. The latter is needed to efficiently maintalit (6.

(HL4-1) Fori =1, 2, and for each nodé we storeH; (C) in a dynamic connectivity data structure.

(HL4-2) A 2-dimensional topology tree [5] oF and one ambivalent data structure [6] are maintained. They
implement the following operations in tinf@((m/k) log n):

— insert&returnavoidable(u,v)Return all nodes on (C,, C,) that become avoidable an(C,, C,)
by the insertion of edgéu, v), whereC, andC, are the endpoints if; of the newly inserted
edge.

— delete&returnunavoidable(u,v):Return all nodes omr (Cy, C,) that become unavoidable on
w(Cy, C,) by the deletion of edgéu, v), whereC, andC, are the endpoints ill; of the newly
deleted edge.

We show how to implement the operations of (HL4) using (HL4-1).

e biconnected?(C,C’,C")Returnconnected?(C C”) in H;(C).
e blockid?(C,C’) Returncomponent?(G in H;(C).

e components?Return all connected componentldf(C), and for each connected component output
all its nodes.

The correctness of this implementation is shown by the following lemma.

Lemma 2.20 Two tree neighbors D and 'Dof C in H are biconnected in Hiff they are connected in
Hi (C).

Proof: If D and D’ are connected itd; (C), then every edge on the path connectbgand D’
corresponds to a path i; \ C. Thus they are biconnectedit. If D andD’ are biconnected if;,
they are connected by a pathh \ C. Every edge on this path either lies in a subtre&;of C or
connects two subtrees. The sequence of edges connecting two subtrees gives algéth in |l

Updates inH; (C)

Consider an insertion of edga, v) in G and letC, andC, be the nodes il; incident to the edge. The
graphH; (C) has to be modified only for the nodes that become avoidable(Gp, C,). These nodes can
be found with onénsert&returnavoidableoperation in (HL4-2). LeCC be such a node. Note that exactly
one edge is added td; (C), namely the edge between the tree neighbofs of 7 (Cy, C,).

An edge deletion i is handled analogously.

29

To analyze the running time recall that the operation in (HL4-2) takes @ti{en/ k) logn). The update
in a graphH; (C) takes timeO((degr (C))Y3logdegr (C)), wheredegr (C) is the degree of in T;. Since
> cdegr(C) = O(Kk), the cost for updating al; (C) is O(k). This shows the following theorem.

Theorem 2.21 There exists a data structure that implements the operations biconnected?, blockid?, and
components? in time linear in their output. The data structure can be updated in tikne- Qn/k) log n)
after each update operation in.G

2.7.3 The data structure (HL4-2)

We present now a data structure that implemémsrt&return avoidableanddelete&returnunavoidable
in time O((M/k) logn).

We will actually show a slightly more general result: we give a data structure that can be updated in
time O(m/Kk) after each update i and that can return all avoidable nodes on a tree path H; in
time O((m/k) logn). Obviously this data structure can be used to execute the above operations in time
O((m/Kk) logn).

In this section we assume thit is rooted at a nod®&.

The data structure consists of two parts: (Brdimensional topology treend (2) arextended ambiva-
lent data structureBoth are slight variations of data structures defined in [5, 6].

Lete = (D, C) be an edge off;. We denote byST(D, C) the subtree off; \ e that containsD.
Obviously a nodeC of H; is avoidable on a tree path iff there exists an edge betwe&(D, C) and
ST(D’, C), whereD andD’ are the neighbors & on P. We call a node ot that is not an endpoint d®
aninternalnode ofP.

The 2-dimensional topology tree and the extended ambivalent data structure are bakechoiH,.

Thus, to test avoidability itH, we need to reduce it to testing avoidabilitylify. For each pathP in Ty,
let Py, denote the corresponding pathTinstarting, resp., ending at an arbitrary nodesigfthat maps to
the start node, resp., end nodeff Recall that each nodé of H; is created by a set dfi;-nodes that
are connected by a path of dashed edges. For an internalGhodeP, let C(Py,) andC(Pr,)’ denote the
extreme-most nodes of that dashed pathPgn We use the following lemma.

Lemma 2.22 Let C be a node of fon atree path P in 7. Let D respectively Dbe the neighbor of CPr,)
respectively CPy,)’, on P, and not onrt, (C(Pr,), C(Pr,)’). Then C is avoidable on P iff there is an edge
between STD, C(Py,)) and ST(D’, C(Py,)").

Proof: Note that the edges incident to subtree contaitifig), respectivelyh(D’), in H, \ C are
identical to the edges incident ®T(D, C(Pr,)), respectivelyST(D’, C(Pr))"). |

As we show below the 2-dimensional topology tree can test in @tm/k) whether there is an edge
betweenST(D, C(Pr,)) andST(D’, C(Pr,)"). We extend the ambivalent data structure of [6] such that it
can test in timed(m/ k)

e forall but O(logn) nodesC of Hy on a pathP of T, whether there is an edge betwegm(D, C(Pr,))
andST(D’, C(Py,)"); and

o for all but O(logn) nodesC of Hy on a pathP of T; whether there is an edge betwegm(D, C) and
ST(D/, C).

30

Thus, to test the avoidability on a pathwe use the ambivalent data structure to get the avoidability in-
formation for all butO(logn) nodes ofP and we use the 2-dimensional topology tree for the remaining
nodes.

Note that the terntree edgeefers to an edge i, T', or T;, never to an edge in a topology tree.

The 2-dimensional topology tree
Given a restricted partition of orddsr we call each cluster of the géron a level-O clusteror basic
cluster.A level-i clusteris

1. the union of two leveli — 1) clusters that are connected by a tree edge such that one of them has tree
degree 1 or both have tree degree 2, or

2. one leveléi — 1) cluster if the previous rule does not apply.

A topology tree T Tis a tree such that each no@eat leveli corresponds to a levéleluster. IfC is
the union of two cluster€; andC; at leveli — 1, thenC; andC, are the children o€ and the tree edge
(C1, Cy) is stored aC. If C consists of one levdli — 1) clustersC at leveli, thenC; is the only child of
C in the topology tree. Aooted topology tree T Ts a topology tree with the additional condition thais
only unioned when no other unions are possible.

A 2-dimensional topology tre&T T for T T is a tree that contains a no@ex D at leveli for every pair
(C, D) oflevelH clustersinT T. Alevel-(i — 1) nodeC; x D1 is a child of a level-nodeC x D iff C; isa
child of C and D1 is a child ofD. We call each node in a topology tree or a 2-dimensional topology tree a
topology node

We keepT T and 2I' T. We store at every node x D of 2T T with C £ D a bit that is set to 1 iff there
is a non-tree edge between clusteand clusteD.

We show next how to useTZT to test whether an edge exists betw&HRD, C) andST(D’, C'). Let
(D, C) be atree edge ifi;. The topology nodeeepresenting STD, C) are the nodes of T that (1) are
not ancestors o€, but are children of ancestors &f and (2) whose leaf descendantsTiit belong to
ST(D, C). SinceT T has deptlO(logn) [5], ST(D, C) is represented b@(logn) topology nodes.

Lemma 2.23 Let (D, C) and (D', C’) be edges of such that D and Ddo not belong torr, (C, C').
Let Xy, ..., X, be the topology nodes representing @T C) and let Y, ..., Yy be the topology nodes
representing STD’, C’) such that X and Y are level-i topology nodes.

There is a non-tree edge between(®T, C") and ST(D, C) iff a bitis setto 1 at a node X% Y of2TT
such that either

(1) X=Xjforl<i <pandY isalevel-i descendant of anodeof 1 < j < q or

(2) Y=Y forl <] <gand X isalevel-j descendant of a nodefar 1 <i < p.

Proof: Note thatST(D, C) andST(D’, C’) are disjoint. It follows that the subtrees BfT rooted
at Xy, Xo, ..., Xp are disjoint from the subtrees rootedvat Yo, ..., Yg.

Let (A, B) be the non-tree edge betwe8d (D, C) andST(D’, C’) with A € ST(D, C) and
B € ST(D', C). Let X; (Y;) be the lowest ancestor & (B) in T T that is a topology node repre-
sentingST(D, C) (ST(D’, C')). If i < j, there exists a levalclusterY which is a descendant of

SWe will exploit the rootedness in the next section.

31

Y; such thaty # X; and there is an edge betwe¥nandyY. It follows that the bit stored aX; x Y
issetto 1. Ifj > i, a symmetric argument applies.

If a bitis setto 1 at a nod¥ x Y of 2T T such that either (1X = X; for1 <i < pandY is
aleveli descendantofanod¢ forl < j <qor(2)Y =Y, forl <j <qgandXisa levely
descendant of a nod¢; for 1 < i < p, then there is an edge betwe¥randY and, thus, between
ST(D,C) andST(D’,C). 1

Let X; andY; be defined as in the lemma. L¥t = {Y, Y is a leveli descendant of a topology nodp
with 1 < j < g} and let] be defined symmetrically. Note that the subtreeTrir2nduced by the set of
nodes{X; x Y, forall1 <i < p, and allY €)i} is isomorphic to a subtree @i T. The same holds with
the roles ofX andY reversed. Thus, Lemma 2.22 shows how to check the avoidabili®yaf a pathP
by checking the bits 0O(m/k) nodes in I T. Finding the topology nodeX; andY; for all i takes time
O(logn). As was shown in [5], ZT can be maintained in tim@(k + m/Kk) after each update operation in
G.

Lemma 2.24 A 2-dimensional topology tree can test in timén@ k) whether a node C is avoidable on a
path P in a high-level graph HIt can be updated in time @&).

The extended ambivalent data structure

To determine the avoidability of all but one node on a pBtin H;, fori = 1, 2, we simply extend
TT and 2ZI' T with additional labels to construct tlextended ambivalent data structuné/e will use two
types of avoidability information, one fdf; and one forH,. Our approach is to partitiofy into complete
paths and to keep avoidability information feach complete path. Then we show that each patbnsists
of subpaths ofO(logn) complete paths. Thu$’s avoidability can be determined from the avoidability
information of these complete paths. To be precisé®let =1 (A, B) in H;. Let P, = P if i = 1, and let
P1 = Py, if i = 2. We partitionP; at the least common ancesto€ A of its endpointsA; and By into the
pathsPa = n1,(A1, LCA) andPg = 71,(B1, LCA). Note that both paths aracreasingi.e., they consist
of a directed path towards the root. We show below how to test the avoidability of all thogn) nodes of
an increasing path by breaking it in@(logn) complete paths.

Recall thatT; is rooted at a hod® and stored in a rooted topology tr@€el. Note thatT; induces
a rooted spanning tregT; of the nodes at each levglof TT whose root isR. Note further that when
givenT T, Rand also the least common ancestor between any two basic clusters can be determined in time
Oo(m/k).

We now give the necessary definitions. For a basic clusielet the graphG(X1) be (1) the graph
induced by the vertices of, if the tree degree oX; is 1 or 3, and (2) the graph induced by the vertices of
X1 with all vertices between the two boundary nodes contracted to one vertex, otherwise.

To construct complete paths we first need to introduce partial paths. We defjpartiaépathof a basic
clusterX; to be the (unique) endpoir(X1) in G(X;) of the tree edges incident ¥y. In the following we
often identify X1 andx(X3). Note that ifX; shares a vertes, then the partial path oX; consists ok. The
partial pathof a leveli clusterX; withi > 0 consists of

e Case Athe partial path o, if X; consists of one leveli-— 1) clusterXy,

e Case B:the concatenation of the partial pathX$ and of X3, if X3 is the union ofX, and X3, and
neitherX, nor X3 has tree degree 3.

32

e Case C:the node ofX3 and the two tree edges incident to it that are not inciden{adf X, is the
union of X, and X3, and X, has tree degree 1 an¢k has tree degree 3. In this case toenplete path
of X1 consists of the partial path &, and the vertex oKs. In all previous cases, the complete path
of Xy is not defined. Note thafs is the parent oK in T T;.

e Case D:an empty path ifX; is the union ofX, and X3, and X, has tree degree 1 arXi has tree
degree 1. In this case tlkemplete pattof X4 consists of the partial path &, and the partial path of
X3.

For every complete path not stored at the root df note that one endpoint has tree degree 1, and one
has tree degree 3 (namely the vertexX@). The endpoints of the complete path stored at the rodt Bf
either both have tree degree 1 or one has tree degree 1 and one has tree degree 3. We call the endpoint with
tree degree 1 th&il and the endpoint with tree degree 3 theadof the complete path. A tree-degree 3
node actually belongs to two complete paths, in one it is an internal node and in one it is a head. All other
nodes belong to exactly one complete path.

If X(X1), ..., X(Xp) is the sequence of nodes on a partial or complete B&ih the order in which they
occur as leaves dP® in the search tree, then eith¥, ..., X, is an increasing path ifiy or X4, ..., X;
andXp, Xp_1, ..., Xj are increasing paths, for some<lj < p.

We show next thaPa and alsoPg consist ofO(logn) increasing subpaths of complete paths. Thus,
we can use the avoidability information for the complete paths to test the avoidabifty ahd Pg except
for the nodes that are heads in the complete paths. RecalPghahd Pg are increasing paths ify. It
follows that the intersection dPa (Pg) and a complete patR® forms a continuous subpath & (Pg).
Let P7, Py, ..., P be the complete paths whose intersection viighis non-empty such that the head of
ch belongs ton°+1. Let X; be the topology node ifi T corresponding tchC. Note that all topology nodes
whose partial path contains a vertexl%ff are true descendants ¥f in TT. Note further that the head of
P which is the partial path oK; belongs toP*, ;. Thus,X; is a true descendant ofj;. SinceTT has
depthO(logn) it follows that Pp is contained in the union dd (logn) complete paths, i.el,= O(logn).
The same holds foPg.

We use the algorithm described in the previous section to test the avoidablli§/Afon P, andPg and
for the heads of the complete paths. For all remaining nodd3and Pg we use the extended ambivalent
data structure. It consists of further labels for the 2-dimensional topology Trdeadd search trees for
the partial and complete paths. The labels and search trees will be oblivious of the roctingvbich is
important for the efficiency of rebuilds.

Every nodeA x B with A # B is labeled with two additional labelmaxca andsharedthat are
explained later. Each node x A of 2T T is labeled with a pointer to the partial path and complete path (if
it exists) of A. The partial and complete paths are stored in shared search trees as follows:

e The partial path of a level-0 clustétis represented by one nogéX).
e In Case A, the search tree of partial path<afis identical to the search tree of the partial pattXef

e In Case B, the partial path of; consists of a (root) node pointing to the roots of the search trees of
the partial paths oK, and X 3.

e In Case C, the partial path &f; consists one node. The complete patiXettonsists of a (root) node
pointing to the roots of the search trees of the partial patis@ind Xs.

33

e In Case D, the partial path of; is empty. The complete path &f; consists of a (root) node pointing
to the roots of the search trees of the partial paths.08nd Xs.

Since the topology tree has defitilogn), every search tree has defilogn). A vertexv in the balanced
search tree of a partial or complete path is labeled with twosltiteeco; (v) fori = 1, 2.

Let C be an internal node on the increasing p@im H; whose avoidability we have to test. LBtand
D’ be the neighbors d on Q such thatD is the child andD’ is the parent o€ in T;. Lemma 2.30 below
shows that

o fori =1, let P be the complete path to whict{D’), x(C) andx(D) belong. Thersomeco;(v) is
set to 1 for an ancesterof x(C) in P€iff C is avoidable orQ; and

e fori =2, letCy, ...,G form an increasing subpath @, with C; = C(Qr,) andC = C(Qr,)’, and
let P¢ denote the complete path to whighD’), x(D) andx(Cq) for 1 < q < | belong. Then for all
Cq in P¢, someco,(vq) is set to 1 for an ancestog of x(Cq) in PCiff C is avoidable orQ.

Note thatP¢ is the lowest ancestor of the least common ancest@ (@espC;) andD in TT that has a
complete path. It can be found in tin@(logn).

Thus, ifl nodes of an increasing path Hf lie on a complete path, we can test their avoidability except
for the head of the complete path in tingxl + logn). Since the nodes oP, and Pg are contained in
O(logn) complete paths, we can test the avoidability of all nodedPgror Pg excludingLC A and the
heads in timeD(m/k + log?n) = O(m/k) fork < m/log?n.

Lemma 2.25 Given a path P in Hthe extended ambivalent data structure can test the avoidability of all
but one node on P in time @/ k).

Letus now defineomeco, maxca, andsharedand prove Lemma 2.30. For a clustetheprojection
of a non-tree edgéu, v) with u € A andv ¢ A onto the partial or complete paff of A is the nodex on
P¢ such that the tree path fromto x in G(A) does not contain any other node BA.

Recall that every nod& x B with A # B is labeled with two labels: (Ihaxca (A, B, e) which is the
node with maximum distance fromon the partial path oA that is avoidable because of a non-tree edge
betweenA andB, assuming that the tree edg@cident toA lies on the tree path betwednandB and (2)
shared A, B, s) which is a bit that is set to 1 ifA sharess and there is an edge betwe@rand B whose
projections onto the partial path éfand of B are not nodes belonging o

Note that for each subpath of a complete pathof there existO(log n) nodes in the search tree Bf
whose leaf descendants form exactly a subpath®f\We say weset the someag bits of a subpathwhen
we set thesomeco; bits of theseD(log n) nodes, excluding the nodes representing the endpoints.

The someco; -bits in the partial and complete paths are defined bottom-up. No basic cluster has a
complete path and the partial path of every basic cluster consists of one nodesshtsen bit is set to
0. The partial and complete path of a levgl#1) clusterX; is computed with the help of themaxcw
andsharedlabels at the nodes ofT2ZT as follows. If X; has two children leé = (x, y) be the tree edge
connecting them.

e In Case A, the partial path of; is identical to the partial path of this child.

e In Case B, the partial path of; is built by adding a hode pointing to the balanced search tre&s of
and Xs. Thesomeco; bits of this node are unset.

34

We set thesomeco; bit to 1 for the pathp betweermaxca (X2, X3, €) andmaxca (X3, Xz, €).

Removing fromp all dashed edges belonging to the shared verteifagxistent or the shared vertex
of the endpoints op splits p into at most two subpaths. We set themeco, bits for these subpaths.
If eis dashed and belongs to the shared vestexdshared X, X3, s) is 1, we also set theomeco,
bits of the subpath op containing the dashed edgessof

e In Case C, the partial path &f; consists of a tree of one node whasemeco; bits are set to 0.

The complete path oK consists of the partial path &€, unioned with the partial path of3 which
consists only of the node(X3). We describe next whickomeco; bits of this complete path are
set. We set theomeco; bits of the subpatip betweerx(X3) andmaxcaw (X, Y, e) for any level§
clusterY in TT \ Xa.

Removing fromp all dashed edges belonging to the shared vertices of the endpoimtesiilts in at
most one subpath qf. We set thesomeco, bits for this subpath.

e In Case D, the partial path of; is empty.

The complete path oK1 consists of the partial path &f, unioned with the partial path of3. We set
thesomeco; bits of the subpatip betweermaxca (X2, X3, €) andmaxca (X3, X, €). Removing
from p all dashed edges belonging to the shared vertexoofthe shared vertices of the endpoints of
p results in at most two subpaths pf We set thesomeco, bits for these subpaths. ¢fis dashed
and belongs to the shared vergxandshared X,, X3, s) is 1, we also set theomeco; bits of the
subpath ofp containing the dashed edgessof

Given themaxca andsharedlabels, the above description also is an algorithm to build the partial
paths ofX; from the partial paths of the children &f; in time O(logn) and the complete path of a levgl-
cluster in time linear in the number of levglhodes inT T.

We show next how to use theomeco; bits to test the avoidability of a node We start with the
someco bits.

Lemma 2.26 Let P° be a complete path and let,D’, and C be basic clusters such thHaiC), x(D)) and
(x(C), x(D")) are edges on P Then someaq (v) is set for an ancestor of x(C) in P¢ iff there exists a
non-tree edge between 83, D) and ST(C, D).

Proof: Consider the lowest levgl+ 1 at which asomeco; bit is set for an ancestarof x(C). Let
X1 be the level-{ + 1) cluster whose partial or complete pa&h containsx(C). ThenX; has two
childrenX; and X3 in T T, connected by an edgein TT;. Wlog x(C) is a node of the partial path
of X,. Thus,someco;(v) is set becausg(C) is an internal node of the subpath Bf between
maxca(Xy, X3, €) and the first node 0K3 on P*. By the definition ofmaxca there exists an
edge betweeS T(C, D) andST(C, D').

Assume next that an edge exists betw8diiC, D) andST(C, D’). Let X; be the least common
ancestor oD and D’ and letX, and X3 be its two children. Wlog the partial path && contains
X(C) andx (D). Since there exists a hon-tree edge betwk¥gmnd X3 whose projection ix(D),
X(C) lies betweemaxca (X2, X3, €) and the first node aX3 on the partial or complete pa* of
X1. Thus thesomeco; bit is set for an ancestor af(C) in the partial or complete path of; and,
hence, also iP®. 1

35

We discuss next under which conditi@meco,(v) is set for an ancestarof x(C).

Lemma 2.27 Let C be a basic cluster and let®®e a complete path containing C. If C is not incident to a
dashed edge of Rthen somecg (v) is set for an ancestar of X(C) in P iff somecwo;(v) is set.

Proof: The lemma follows immediately from the definition®@dmeco,. |

Lemma 2.28 Let P¢ be a complete path and letC..., C; be basic clusters such that®,), ..., x(C;) forms

a maximal subpath of dashed edges 6bRlonging to the shared vertex s. Let j be the lowest level such that
the somecw, bits are set for an ancestor for every nodéx), ..., Xx(C). Then all nodes ¢C;), ..., X(G)
belong to the partial or complete path of the same cluster at level j.

Proof: Let P° be stored at a level* node. The claim obviously holds for levgf. Assume it
does not hold for a leve] < j*. Then there exists at least one nod€y) that is incident to an
intercluster dashed edge on leyednd in the partial path containingC,) there exists an ancestor
whosesomeco; bit is set. Note thak(Cy) was the endpoint of the partial path of every lexej
and that the ancestors of the endpoints of a partial path always hasertteco,-bit set to 0. Thus
at level j, thesomeco bit is not set for any ancestor &Cg). Contradiction. |

Lemma 2.29 Let P° be a complete path and let,d’, and G, C,, ..., G, be basic clusters such that
X(Cy), X(Cy), ..., Xx(C)) forms a maximal subpath of dashed edgescafd(x(D), x(Cz)) and(x(C;), x(D"))
are solid edges on ® Then, for alll < g < |, somecwz(v) is set for an ancestar of x(Cy) in P€ iff there
exists a non-tree edge between(€T, D) and STC;, D).

Proof: Let s be the shared vertex to which the dashed edges incidedy twelong. Consider the
lowest levelj + 1 at which, for all 1< q < |, somecoz(vq) is set for an ancestay, of x(Cq). By
Lemma 2.28, alk(Cqy) belong to the partial or complete pafi of the same level{ + 1) cluster
X1. ThenX; has two childrenX; and X3 connected by an edgein TT,. Note that one of the
somecoy(vq) bits was set while constructirig.

If neither X, nor X3 have tree degree 3,sbmeco(x(Cy)) bit was set when constructing of
the path forX, because either (®(D), x(D’), and all nodex(Cy) are nodes on the path between
maxca(Xz, X3, €) andmaxca(Xs, Xz, €), ande does not belong te, or (2) there exists an edge
betweenX, and X3 whose projections do not belonggoln either case there exists a non-tree edge
betweenST(D, C,) andST(C, D).

If X has tree degree 1 an has tree degree 3smmeco(X(Cqy)) bit is set while constructing
the path forX1 only if all nodesx(Cq) are internal nodes on the path betwegaxca (X», Y, €) and
X(X3) for alevelq clusterY in TT; \ Xa. It follows that there is a non-tree edge betw&¥(C,, D)
andST(C, D).

Assume next that an edge exists betw8arC,, D) andST(C;, D’). Let X; be the least com-
mon ancestor oD and D’ and let X, and X3 be its two children. If neitheX, nor X3 has tree
degree 3, we consider two cases. If the tree ezlgetweenX, and X3 does not belong ts, the
someco; bits of the subpatk(Cy), ..., X(C)) are set because it lies betwemaxca (X,, X3, €)
and maxcw (X3, X2, €). If e belongs tos, the someco, bits of the subpath are set because
shared Xy, X3, 8)is 1.

If X, has tree degree 1 antk has tree degree 3, thaiiXs) = x(D’) or x(X3) = x(D), i.e. e
is solid. The subpatk(Cy), ..., X(C) is internal to the path betweegnaxca (X, Y, €) andx(X3)

36

for some level; clusterY in TT; \ X,. Thus, thesomeco, bits of the subpatik(Cy), ..., x(G) are
set. 1

Lemma 2.30 Let C be an internal node on the increasing path Q jraiid let D and D be the neighbors
of C on Q such that D is the child and' ¥ the parent of C.

Fori = 1, let P° be the complete path to whichR’), x(C) and x(D) belong. Then someeg(v) is set to
1 for an ancestop of x(C) in PCiff C is avoidable on Q.

Fori =2, let Cy, ..., G form an increasing subpath of Qwith C; = C(Qr,) and G = C(QT,)’, and let
P¢ denote the complete path containingX), x(D) and x(Cq) for 1 < q < |. Then for all G, in P°
somecoz(vq) is setto 1 for an ancestayy of x(Cy) iff C is avoidable on Q.

Proof: Let P® be C's complete path. We discuss first the case= 1. Lemma 2.26 shows
thatsomeco; is set for an ancestor of(C) iff there is a non-tree edge betwe&T(C, D) and
ST(C, D). By the definition of avoidability, the latter holds iff is avoidable orQ.

We discuss next the case= 2. Lemma 2.27 shows the claimlif= 1. If| > 1, thenC
represents at least two clustersHa. Lemma 2.29 shows that for all, in P® somecoy(vg) is set
to 1 for an ancestary of x(Cy) iff there exists a non-tree edge betwegN(C,, D) andST(C, D).
The latter holds ifiC is avoidable orQ. 1

Updates

We show next how to maintain theaxca andsharedvalues, and the partial and complete paths in
time O(k) after each update operation@ First, we discuss thmaxca andsharedvalues. An update
(u, v) operation affects only thmaxca (X, Y, e) andsharedX, Y, s) values iff eitherX or Y contains
eitheru, v, X, ory, where(x, y) is the new tree edge. Since the clusters at all levels that camtajrx, or y
form a structure which is isomorphic to two copiesIorf, the total number of affectattaxca andshared
values isO(m/k). As was shown in [6] for thenaxca values and as we show below for thiearedvalues
each such value at an internal node @fl2can be computed in constant time from the values of its children
and in timeO(k) for a basic cluster. Thus, updating ailaxca and allsharedvalues takes tim® (k).

Lemma 2.31 shows that the only clusters whose partial or complete paths are affected by updates are the
ones that are ancestorsTiT of the basic cluster containing v, x, ory. Thus, the partial and complete
paths of at most 2 clusters at each level have to be updated. The partial path of aZkestdse computed
in time O(logn) from the partial paths of the children 6f and thesharedandmaxcaer values. The
complete path of a clusté® at level j can be computed in time linear in the number of leyelodes in
TT from the partial path of the child & with tree degree 1 and from tlsdaredandmaxcaer values.
(We discuss below how to restore the partial and complete paths of the clusters that are children of clusters
containingu, v, X, ory). SinceT T has deptfO(logn) and sizeO(m/k), all affected partial and complete
paths can be updated in tin@m/k + log®n) = O(m/k) for k < m/log?n.

Whenever we build the partial or complete path we kebpek logthat stores for each nodé, of 2T T
all the operations that were executed to build the partial or complete pathfodm the partial or complete
path of its children. Whenever we execute an update operation, we walk top dowh &md restore the
path of the suitable clusters and their children. The partial and complete path of the odtave given.
Assume inductively the partial and complete path of a néd level j are restored. Undo the operationsiin
the back log ofX to restore the partial and complete paths of the childred.dfhen recurse on the suitable
child(ren) ofX. Note that this takes time proportional to building the back log, whidb(s/ k). Note also
that modifications in the back log of one child does not affect the back log of its sibling.

37

Lemma 2.31 An insertu, v) and a deletéu, v) operation only modifies the balanced tree of partial or
complete paths of clusters containingwl x, or y, where(x, y) is a new tree edge.

Proof: Note first that asomeceo bit is set in the balanced tree representing the partial path of a
clusterC only if there exists an edge internal@ithat covers the corresponding nodes. For a cluster
not containingy, v, X, or y neither the partial path nor the non-tree edges internal to the cluster have
changed. Thus, the balanced search tree of its partial path does not have to be updated.

Next we discuss complete paths. If a clusfewhich has a complete path does not contgin
v, X, ory, then the partial path of its chil@” with tree degree 1 and the non-tree edges incident to
C’ are not affected by the above argument. The modifications to this partial path that create the data
structure for the complete path Gfdepend only on the projection of edges incidenttmnto the
partial path ofC’. Since the partial path &2’ and the non-tree edges incident@odid not change,
the balanced search tree of the complete path isfnot affected by the operation. i

We are left with showing how to compusdhared A;, B;, s) from thesharedvalues of the children of
A; andB; in constant time. Recall that for each pair of clusters at the samedbegked Ay, By, S) is 1 iff
A; sharess and there is an edge betweAn and B; whose projection onto the partial path &f and onto
the partial path oBs is nots. If A; does not share a vertaxthenshared A, B, S) is not defined. Since
each basic cluster and each cluster with tree degree 1 or 3 shares at most one vertex and each cluster with
tree degree 2 shares at most two vertices, at mastated A;, By, .) values are defined for every pair of
clustersA; and B;. We distinguish cases depending on the number of childrefy afnd of B; under the
assumption tha#\; shares the vertex
Case 1:A; andB; are basic clusters.

Thenshared A1, B1, s) = 0, since every edge incident #y is projected ont® when it is projected
onto the partial path of;.

Case 2:A; andB; are clusters at levgl > 0.
Case 2.1:A; has one childd; andB; has one childs,.

Thenshared Aq, By, s) = shared Ay, By,).

Case 2.2:A; has one childd, andB; has two childrerB, andBs.

Thenshared As, By, s) = shared Ay, By, s) or shared Ay, Bs, S).

Case 2.3:A; has two childrem,; and Az, A3 sharess, andB; has one childB,.

Note thatAz has tree degree at least 2, sinkgis adjacent toA, and Az is incident to the tree edge
incident toA;. If the tree degree oz is 3, thenshared Az, By, s) = 0, since every edge incident #, is
projected ontes when it is projected onto the partial path Af.

If the tree degree ofz is 2, then we distinguish the case thfgt sharess and thatA, does not shars.

If A, sharess, then
shared Ay, By, s) = shared Ay, By, s),

since the projection of every edge incident&gonto the partial path of; iss.
If A, does not shars, then we distinguish between the case Bashares and thatB, does not share
s. If B, sharess, then

shared Ay, By, s) = shared Az, By, s)or sharedB,, A, S).

(Note thatshared Az, By, s) is not defined in this case, bsihared B, Ay, s) is defined.)

38

If B, does not shars, then
shared A, B1, s) = shared Ag, By, s)oredge A, B>),

whereedgd Ay, By) = 1 iff there exists an edge betwedn and B; iff maxca (A, By, e) (for any tree
edgee incident toAy) is defined.

Case 2.4:A; has two childrem,; and A3, Az sharess, andB; has two childrerB,; andBs.

Note thatAz has tree degree at least 2, sinkgis adjacent toA, and Az is incident to the tree edge
incident toA;. If the tree degree of\; is 3, thenshared A, B1,s) = 0, since the projection of every
non-tree edge incident t&; onto the partial path of; is s.

If the tree degree ofz is 2, then we distinguish the case thfgt sharess and thatA, does not shars.

If A, sharess, then

shared Ay, By, s) = shared Az, By, s)or shared Az, Bs, s),

since the projection of every non-tree edge incidemdjmnto the partial path of; iss.

If A, does not shars, then we distinguish between the case thatB1¥hares and B3 does not share
s, that (2) B3 sharess and B, does not sharg, that (3) both share, and that (4) both do not shase
In case (1) B, shares and B3 does not shars)

shared A, B1, Ss) = shared As, By, s)or shared Az, Bs, s)or shared By, Ay, s)or edgd Ay, Bs).

(Note thatshared Az, By, s) is not defined in this case, bshared B,, A, s) is defined.) The case (2) is
symmetric to case (1).
In case (3) B, and Bz shares)

shared Ay, By, s) = shared Az, By, s)or shared Az, Bs, s)or shared By, Ay, s)or shared Bs, Ay, S).
In case (4) B, and Bz do not share)
shared A, B1, s) = shared Ag, By, s)or shared As, Bz, s)or edgd Ay, By)or edgd Ay, Bs).

This shows that theshared A, B;,.) bit can be computed in constant time from thlearedand
maxca values of the children of\; andB; and finishes the proof of the following lemma.

Lemma 2.32 The extended ambivalent data structure can determine the avoidability of all but one node on
a path P in H in time @m/K). It can be updated in time @®).

2.8 The c-structure

In this section we address the following problem. Given the c-nodes of a cluster graph (see Section 2.5),
the c-nodes of a shared gra@is) for a new shared vertex (see Section 2.6.1), or the c-sets for an old
shared vertes (see Section 2.6.2) determine which c-nodes or c-sets are split by an update operation. For
this problem we give a data structure, caltedtructureand show that each updatditponly an amortized
constant number of c-nodes or c-sets. We first recall theitlefis of c-nodes and c-sets and then exactly
define the operations of the c-structure.

Given a nodeC in H with ancestorA a c-node of the cluster gragi{C) represents a maximal sit
of nodes ofH; such that (a) every node in X is a neighbor ofC, and all edgesC, C’) have the same

39

ancestor edge itl; at C, (b) all nodes inX have the same ancestgr A, and (c) all nodes have been
connected irH; \ C at all times and every previous set of clusters containing the vertices of the clusters in
X was connected ii; \ C at all times.

The definition for a c-node of the shared graplis) of a new shared vertes is identical with H;
replaced byH,.

A c-set of an old shared vertesis a setX of nodes ofH; such that (a) every nodg’ in X contains a
vertex that is incident to a vertex W(As) and all edgesh(C’), As) have the same ancestor edgdHpat
As, (b) all nodes inX have the same ancestarsuch thah(A) # A, and (c) all nodeb(C’) withC’ € X
have been connected H; \ Cs at all times and for every previous sétof nodes ofH; containing the
vertices of the nodes iX all nodes ing(C") with C” € Y were connected i, \ Cs at all times.

We generalize all three definitions. Lkt and H’ be high-level graphs such that eithidr = H’ or
H = Hy andH’ = H,. Letg be the identity function iH = H’ and letg = h otherwise.

Let C be a node oH’ and letA be the ancestor d€ in H'. Leta be the identity function iH = H’
and leta be the mapping from a node &f’ to its ancestor otherwise.

A c-set is maximal seX of nodes ofH such that

(a) every nodeC’ in X contains a vertex that is incident to a vertexafC) and all edgegg(C’), a(C))
have the same ancestor edgaHihata(C);

(b) all nodes inX have the same ancestrsuch thag(A') # A; and

(c) all nodes ing(C’) with C' € X have been connected k'’ \ C at all times and for every previous
setY of nodes ofH containing the vertices of the nodesXnall nodes ing(C”) with C” € Y were
connected irH” \ C at all times.

We call(g(C’), a(C)) theancestor edge of the c-set
Note that any two different c-sets are disjoint. Given a high-level gkhpaisetC of nodesa(C) for the
nodesC of H' and the data structures fef andH’, the c-structure executes the following operations.

e split(C, Cq, Cy, u, v) whereC is a node oH’ split by thedeletd&u, v) orinsert(u, v) operationC;
andC; are the two nodes dfl created by the split. Return a (possibly empty) list of split c-sets and
for each split c-set return the element list of the two hixsg c-sets.

e add(Cq, Cy) whereC; and C, are nodes oH. Add one edge betwee@; and C, and return a
(possibly empty) list of modified c-sets and for each modified c-set return its new element list.

e remwe(Cy, Cy) whereC, andC; are nodes oH. Remove the edge betwe€a andC, and return a
(possibly empty) list of modified c-sets and for each modified c-set return its new element list.

We show below that each operation can be executed in@iim/ k) logn). Note that a split operation
is called whenever a node i’ is partitioned by alelet&u, v) or insert(u, v) operation. As shown in
Section 2.2 a constant number of nodegdHdfare split after each update . Additionally either aradd
or aremave is executed in the c-structure. Thus maintaining and using the c-structure increases the cost per
update inG only by a constant factor.

We use the following data structure for the c-structure, which Ggeés/ k)?) space.

(T1) For each node af we keep a list of its c-sets. For each c-set we keep a list of its nodégs anid for
each node irH we keep a pointer back to its position in the list for all its c-sets.

40

At the beginning of a phase each c-set consists of one node: every neighbor of a@daieria its own
c-set.

We implement the operations as followsplit(C, Cq, Cy, U, v): Determine all articulation points on
7(Cy, Cy) in (the updatedH’. For each articulation poiri? search all c-sets incident&gD) to determine
whetherC is contained in one. If not, go to the next articulation pointClfs contained in a c-seX and
bothC; andC; are incident td, replaceC by C; andC; in X. Otherwise, only one df; or C; is incident
to D andC replaced by it inX. Note that all nodes iX still fulfill (a) and (b). Using (HL3) determine for
each nod&’ in X the tree neighbor db onz(g(C’), D) and bucketsort the node according to the blockid
of “its” tree neighbor using (HL4). This results in either 1 or 2 non-empty buckets. In the latter case, split
the list of X accordingly and returiX and the two resulting lists. For all other c-set containihg.e., the
ones at a noda(D) such thatD is not an articulation point on (C,, C,) replaceC by eitherC; or C, or
both, depending on which of the new nodes are incideit.to

If a(g(C)) is replaced by (g(Cy)) anda(g(Cy)) in C, copy the c-sets ai(g(C)); remove all the nodes
of H that are not incident to a node afg(C;)), and then test each c-set whether it has to be split as above.

add(C,, Cy): If the ancestor 0of)(Cy) equals the ancestor gfC,) stop. Otherwise, search the c-sets of
a(g(C,)) to determine whethet, belongs to one of them. If not, create a new c-set consisting or@y.of
Repeat with the roles aZ; andC, exchanged.

remae(Cy, Cy): If the ancestor of)(C;) equals the ancestor gfC,), stop. Otherwise determine the c-
set ofa(g(Cy)) to whichC, belongs and remov€; from it. Repeat with the roles @; andC, exchanged.
Finally determine all articulation poinf® on(g(Cz), g(Cy)) in (the updatedH’. Test all c-sets for each
of them whether they have to be split.

Since c-sets are disjoint, the time spent byaall is linear in the number of nodé&s of H incidentto a
vertex inC; with h(C) # C; and the number of nodé€3 of H incident to a vertex o€, with h(C) # C,.
This isO(m/Kk).

The time spent irsplit or remave per nodeD in H’ is O(logn) times the number of nodés in H
incident to a vertex irD with h(C) # D. Since the nodeP are articulation points itd’, each node oH
is counted at most twice. Additionally the operation spends thien/ k) logn) for a(C;) anda(C,) and
split takes timeO(m/k) to removeC from all its c-set and to replace it i§; and/orC,. Thus, the total
time spentiO((m/k) logn).

2.9 The amortization lemma

We show next that during a sequencé apdates after a rebuil®(l) c-sets are split for > m/k.
A similar lemma was shown in [11]. However, the previous lemma only applies to c-nodes. The lemma
presented in this section applies to c-sets, which are a generalization of c-nodes.

Lemma 2.33 Duringl updates in G after a rebuild at mo¥1l + O(m/ k) splits of a c-set occur fork m/k.

Proof: LetH, H’, g, anda be defined as above. We construct a bipartite gta@onsisting initially

of O(m/k) blue nodesO(m/Kk) red nodes, an®(m/k) edges between red and blue nodes. A red
node is incident to at least one blue node. We show that during a sequenopdsdtes inG the
number of blue nodes i increases by at most I, leach split of a c-set increases the number
of connected components &f by at least one and no other operation decreases the number of
components. Thus, there are at mogtn/k) + 111 splits of c-sets duringupdates irs.

Recall that an edge dfi’ consists of a set of edges &. An edge ofH’ is callednewif all
edges ofG’ in its set are new, i.e., have been inserted after the last rebuild. All other edgEs of

41

areold. We "treat” new edges in a special way to guarantee that edge insertions do not decrease the
number of connected componentskof Note that there are at mdshew edges irH’ at each point
in time.

We next defineK.

e For each noda(C) in C and each c-seX ata(C), K contains a red nod@(C), X).
e Foreach nod® in H, K contains a blue nodp.

e For each nod® in a c-setX ata(C) such thatg(D), a(C)) is new there exists a blue node
(D, X). These nodes are callsgecial

e Let D be in the c-seX ata(C). If both a red nod€a(C), X) and a blue nodéD, X) exist,
there exists an edge betwe@i(C), X) and(D, X). If (D, X) is not a blue node, there is an
edge betwee@a(C), X) andD.

Note that every edge ilK corresponds to an edge 6f. Thus, connectivity inK implies
connectivity inH’.

There are four events that modi®: (A) a split operation, (B) aradd operation in the c-
structure, (C) aemave operation in the c-structure, and (D) the change of an edge from old to
new.

Next we describe each event in detail:

(A) A split(C, Cq1, Cp, u, v) operation. (1) The blue nodgand all blue node€C, X) are splitinto
two nodes and connected to the appropriate neighbors of the split nodes. (2) Every red node
(a(g(C)), X) is replaced by a set of red nodggg(C)), {D}), one for each nodB® € X, and
if the blue nodeg(D, X) exists, it is replaced by a blue nod@P, {D}). The new red node is
connected t@D, {D}) if it exists and toD otherwise. Thus each new red node has degree 1.
(3) For each split c-seX’ of an articulation poinD onn(C,, C,) in H' replace the red node
(a(D), X’) by two red nodes, one for each new c-set.

(B) An add(Cy, Cy) operation. It might add a new red node(atg(Cy)), {Cz}), a new blue node
(Cy, {C2}), and connect them by an edge. It might do the same with the rol€s ahd C,
reversed.

(C) Aremae(Cy, Cy) operation. LetX be the c-set a(g(Cy)) containingC,. Remove the edge
betweena(g(C;)), X) and the corresponding node represen@aglf (C,, X) exists, remove
it. If X = {C,} also removea(g(C,)), X). It removes the c-seX at a(g(C,)), if it only
containsC,. Proceed in the same way with the rolesfandC, reversed. Finally for each
articulation point ont(g(Cz), g(C,)) proceed as in step (A3).

(D) An old edge(D, C) of H becomes new. ID belongs to the c-set ata(g(C)), then add a new
blue node(D, X) with edge to(a(g(C)), X) and remove the edge frol to (a(g(C)), X).
Then proceed in the same way with the roleoandC reversed.

We first show that the split of a c-s¥tat a nodea(C’) of C increases the number of connected
components by at least 1. A c-set is split (a) dusipdit operations and (b) duringgmave opera-
tions. (a) Since in steps (Al) - (A3) repeatedly a node is replaced by a set of nodes that are connected
to a subset of the neighbors of the original node, the number of connected compoKetbes$ not
decrease.

42

Let A = a(g(C)). We show next that depending on whethé€’) = A or not, either (A2) or
(A3) actually increases the number of connected components byalC1f = A, then letD; and
D, be in X, but belonging to different c-sets &f after the split. Note that after step (Al) a blue
node representind; is connected irK to a blue node representiip since they both belong 4,
i.e., are both connected to the red ngde X). Furthermoreg(C) is an articulation point separating
g(D1) from g(D>) in H’. Since connectivity irK implies connectivity inH’, every path between
a blue node representiigy and a blue node representiBg in K contains a red nod@A, X') for
someX’.

In step (A2) all of these red nodé#, X’) are replaced by degree-1 nodes. This implies that
every path between a blue node represengii;) and a blue node representiggD) is split at
the node(A, X’). Hence no blue node representiDg is connected to any blue node representing
D, after the split, i.e., the number of connected componenks imfcreases by at least one.

If a(C’) # A, thenC belongs to the c-set of a(C’) and the split ofC into C; andC; partitions
X. ThusC' is an articulation point irH” separatingC; andC,. Wlog let C; andC, be the blue
nodes incident téa(C’), X). We show below in Claim 2.37 that in this case after step (A1) all paths
in K connectingC; andC, contain the red nodé(C’), X). In step (A3)(a(C’), X) is replaced
by two nodes, one representing each new c-set. All neighbdia6f), X) belonging to the same
connected component & \ (a(C’), X) are connected to the same new red node and the connected
components o€; andC, are connected to different new red nodes. This discon@asdC, and
thus the number of connected componentK iis increased by 1.

(b) If the removal of edgéCs, Cy) splits X ata(C’) then letD; and D, be two elements oK
such thag(D;) andg(D5) are the tree neighbors afC’) onz(g(C;), g(Cy)) and wlog letD; and
D, be the blue nodes incident to the red ngdéC’), X) in K. (The case that eithgiD1, X) or
(D32, X) are incident taqa(C’), X) works in the same way). As we show in Claim 2.37 every path
in K betweerD; andD, contains the red noda(C’), X). The same argument as above shows that
updatingK as in step (A3) disconneci®; and D, and, thus, increases the number of connected
components oK as above.

We are left with proving Claim 2.37 and showing that the number of connected components of
K does never decrease.

Claim 2.34 Every blue nodéD, X) has degree 1 in K.

Proof: We show the claim by induction dn Forl = 0 the claim holds since no blue nodes
(D, X) exist. Assume the claim holds fbe= i and consider updatet 1. Let(a(C), X) be
the unique red node incident to a blue née X) before the update. If updaite- 1 does not
splita(C) or D the claim holds also fofD, X) after the update. If it splita(C), thena is
the identity function and thus' = (C, D) is its own ancestor edge after the split. It follows
that (D, X) is replaced inK by (D, X’) which in turn has degree 1 iK. If updatei + 1
splits D into D; andD» then(D, X) is replaced by at most two nodé®1, X) and(D», X),
each of which is adjacent only {@(C), X). If the update inserts the new edge- (C, D)
then the blue node@, X) and (C, X’), the red nodesa(D), X') and (a(C), X) and the
edgeq((D, X), (a(C), X)) and((C, X, (a(D), X)) are added td . Thus the claim holds
in either case. 1

43

Claim 2.35 For every node C in Heach blue node representing a node D in H is incident to at
most one red nod@(C), X), and X is the c-set to which D belongs &33.

Proof: Follows from the construction d since each nod® belongs to at most one c-set
ata(C). 1

Claim 2.36 If two blue nodes are connected in K, then they represent nodes with the same ancestor.

Proof: If there is a path irK between the two blue nod&sandY’, then letB;, ..., Bj be

the blue nodes on this path with = B; andY’ = B;. SinceB; andB;; are adjacent to

the same red node, it follows from the constructiorkothat B; and B;, ;1 have the same
ancestor edge at the red node, and thus ancestor. By the transitivity of the ancestor relation
the claim follows. |

We show next the crucial property &f while processing the split of a c-set.

Claim 2.37 While processing the split of a c-set atGl), let C' be an articulation point in H
separating gC;) from g(Cy). Let Y; be a blue node representing @nd let % be a blue node
representing @. If Y; and ¥, are adjacent to a red nod@(C’), X), then every path in K between
Y1 and ¥ contains(a(C’), X).

Proof: The claim obviously holds if eithgig(Cy), a(C’)) or (g(Cy), a(C’)) is new.
Assume next that both edges are old, . = C; andY, = C, and consider a patR
between them. Since connectivity i implies connectivity inH, P must contain a red
vertex(a(C’), X'). We are left with showing that it also contaiteC’), X).

Assume otherwise and |dd; and D] be the two nodes incident to théh red node
(a(C’), X;) for some c-seX; on P. ThenD; andD; both belong taX; # X. Since a split
operation splits at most one c-set&C’), X; is not split, i.e.g(D;) andg(D;) are connected
inH"\ C.

By Claim 2.36 the nodes dfl represented by the blue nodesmfall have the same
ancestor. Since the ancestor@f andC, differ from the ancestor of any node g71(C"),
the blue node of any node o 1(C’) does not belong t®. Thus the subpaths ¢ from
Y1 to Dy, from D/ to Dj;q forl <i < p, and fromD{O to Y, contains no node representing
any node ing~1(C’) and, hence, correspond to a patiHn\ C'. It follows thatP induces a
path inH’ betweerng(C;) andg(C,) not containingC’, which is a contradiction. |

Claim 2.38 The number of connected components of K never decreases.

Proof: As discussed above, a split of a c-set does not decrease the number of connected
components oK. A remave operation either removes c-sets or elements of c-set and thus
removes nodes and edgeskofor it splits c-sets. Thus it does not decrease the number of
connected components Kf.

Anadd(Cy, C,) operation might add a new blue nod®, X), a new red nodéa(g(Cy)), X),

an edge between them, and the same with the rol€; @ndC, reversed. Since they do

44

not connect to the rest ¢€, anadd operation does not decrease the number of connected
components irK either.

Note that an old edge dfi’ can become new, but not vice-versa. If this happens a new
blue node is added for each element in the c-set and connected to the red node representing
the c-set. Thus the number of connected components does not decrdiase.

Claim 2.39 After | update operations at mo$tl + O(m/k) blue nodes exist.

Proof: Initially there areO(m/k) many blue nodes. A sequencelaipdate operations in

G leads to at mostl&plit operations| add operations, antdremaove operations. Aradd
increases the number of blue nodes by at most2nawe does not increase the number of
blue nodes. Asplit increases the number of non-special blue nodes by at most 1. At each
point there are at most Zpecial blue nodes. Thus there are at mo$t2D(m/k) blue
nodesink. 1

Each red node is connected to a blue node and, by Claim R.86ntains at most 1% O(m/Kk)
blue nodes. Thus contains at most 114+ O(m/k) connected components K afterl update
operations. Since none of the operationSidecreases the number of connected componerks of
and each split of a c-set increases the number of connected componknty @ine, there can be at
most 11 + O(m/k) splits of a c-set durinfupdate operations. |

2.10 Complete block queries

A complete block query determines all the blocks to which a vertex belongs by computing for each tree
edge the block to which it belongs. A vertex belongs to exactly the blocks to which the tree edges adjacent
to the vertex belong. We can find the blockdlifC) for every tree edge in or incident to the clus&in
time O(k) whenever we recomputgC). To compute the blocks d&, we have to determine which blocks
of different cluster graphs form the same blockXf

Let C andC’ be two clusters that are connected by a tree edge(x, y) with x € C andy € C’' and
let b andb’ be the blocks o€ andC’ to whiche belongs. Ifeis a solid edge, ther andy, and thus and
b’ belong to the same block &.

If eis a dashed edge belonging to a versexhen bothx andy represens. If eitherb or b’ consists
of only e, then no vertex o€ is biconnected with a vertex @&’. Thus no blocks o€ andC’ belong to
the same block o6. If b andb’ consist of more than one edges, Uetesp.u’ be a vertex ofs adjacent to
s belonging tob resp.b’ (any such vertex can be used). According to Lemmata 2.13 and 2.15, the blocks
b andb’ belong to the same block @ if and only if s does not separateandu’, i.e., if and only if (the
representative of) andu’ are connected it (s) or if the representative af and the representative ofare
connected irG(s).

This shows that using(C) and the shared graphs, we can tesOi(l) time for any pair of adjacent
clusters whether two of their blocks should be joined. Thus, all these tests tak® {myk) = O(n).

During a depth-first traversal of the spanning treeHafwe compute lists of the blocks of different
clusters that have to be joined. Then we mark all the edges of blocks in the same list as belonging to the
same block ofs. Thus the total cost is proportional to the number of tree edg@&s, which isn — 1.

Theorem 2.40 A complete block query in a graph of n vertices can be answered in titng O

45

2.11 Biconnectivity queries

Given aquery(u, v) operation, lex® andy® be defined as in Lemma 2.6. The lemma showstratdv
are biconnected i iff

(Q1) uandy® are biconnected ifs,
(Q2) x andyi+D are biconnected is, for1 <i < p, and
(Q3) x® andv are biconnected ifs.

Condition (Q2) holds ifig = (x©, y©) ande 1 = (x**, y¢*D) belong to the same block &.
Note that the nodes!’ andy() are the endpoints of the tree edges onTh@ath between the nodg,
in H, and the nod€, in Hy. To find these nodes efficiently we keep the following data structure.

(HL7) We store a least-common ancestor data structure [pfoyoted at a leaR, such that least common
ancestor queries between any two nodesigfcan be answered in constant time.dfis the least
common ancestor of and D, then the data structure also returns in constant time the tree edge,
incident toC onx (C, D). We also keep at each nodeld$ the tree edge to its parent.

(HL8) We store at each solid intercluster tree edge, i.e., each edigeitd block inG.

Both data structures are recomputed from scratch after each updateTihe computation of (HL8) pro-
ceeds in the same way as a complete block query that ignores internal edges. Both updates take time
Oo(m/k).

We first use (HL7) to determine the least-common ancestd,0dnd C, in H,. If C, is the least
common ancestor, the data structure returns the tree edge incidgnotor (C,, C,). This is edges;, the
edge fromC, to its parent is the edgg. If the least common ancestor Gf andC, is a third node, thes,
is the edge fron€, to its parent ana, is the edge fron€, to its parent. This also provides? andx(P.
We use them to test Conditions (Q1) and (Q3) in constant time as described in Section 2.3.

Testing Condition (Q2)Condition (Q2) holds for all 1< i < p iff each pair(g, 1) belongs to the
same block ofG, i.e., if they all belong to the same block. This holdsiffande, belong to the same block.
Testing the latter condition takes constant time.

Theorem 2.41 The given data structure can answer a biconnectivity query in constant time.
The total update cost is
e time O(K) for restoring the relaxed partition,
e amortized itenO (k) to update all cluster graphs,
e amortized timeO(k logn + ./mlogn) to update all shared graphs,
e time O(k + (m/k) logn) to update all data structures for high-level graphs (HL1) — (HL8), and
e time O((m/Kk) logn) to update all c-structures.
Thus choosinds = ,/m gives the following update time.
Theorem 2.42 The given data structure can be updated in amortized tinig/il®logn) after an edge in-

sertion or deletion.

46

3 Plane graphs

In this section we present an algorithm for fully dynamic biconnectivity in plane graph<3witgn) query
time andO(log? n) update time. We modify the extended topology tree data structure of [16] and prove that
this data structure dynamically maintains biconnectivity information.

3.1 Definitions

As in general graphs (see Section 2) we transform a given deajpito a degree-3 grap®’ by replacing
every vertexx of degreed > 3 with a chain ofd — 1 dashededges(x1, X2), ..., (X4_1, X4). We say each
X; is arepresentativef x andx is theoriginal nodeof everyx;. Then we find an embedding & and a
spanning tred’ of G'. A topology treeof G’ based oT’ is a hierarchical representation @f introduced
by Frederickson [5]. On each level of the hierarchy ittjians the vertices o5’ into connected subsets
calledclusters An edge isncidentto a cluster if exactly one endpoint of the edge is contained in the cluster.
The external degre®f a cluster is the number of tree edges that are incident to the cluster. Each vertex of
G’ is alevel-0 cluster. Two clusters at level 0 are formed by either

1. the union of two clusters of level- 1 that are joined by an edge in the spanning tree and either both

of external degree 2 or one of them has external degree 1, or

2. one cluster of leval — 1, if the previous rule does not apply.

Each cluster at levelis a node of heighit in the topology tree. If a clustet at leveli is formed by two
clustersA andB of leveli — 1, thenA andB are the children o€ in the topology tree. IC is formed by
one clusterA of leveli — 1, thenA is the only child ofC in the topology tree. The topology tree has depth
D = O(ogn) [5]. In the followingnodedenotes a vertex of the topology tree.

In [16] the topology tree data structure is extended to maintain non-tree edg&saoid additional
connectivity information at each node, callegtipe We use the same technique to maintain dynamic 2-
vertex connectivity.

Every insert(,v), delete Q,v), or query(,v) operation requires that the topology treesigpandecht
an (arbitrary) representative afand ofv: We mark all clusters containing the two representatives in the
topology tree. Note that all these clusters lie on a constant number of paths to the root. Then we build the
graph which consists of the two representatives and a compressed representation of all the clusters that are
unmarked children of a marked node in the topology tree. This creates a compressed ve@sicalkEHd
G(u, v), of sizeO(logn). This graph is used to answer queries. In the case of update operations, the edge
is added to or deleted fro@(u, v). Afterwards the topology tree imerged togetheagain, i.e., a topology
tree representation is created for the (possibly modified) g&hv).

To add non-tree edges to the topology tree data structure we define a bundle between twahraders
C’ as follows: If neitherC is an ancestor of’ nor vice verse, leg(C, C’') be the set of all edges between
C andC’. Otherwise, assume wlog th@t is the ancestor o€. We definee(C, C’) to be the set of all
edges incident t&€ whose least common ancestor in the topology treé& isSince we are considering an
embedded graph, the edges incident to a cluStare embedded & in a fixed circular order. Aundle
between a cluste€ andC’ is a subset 0&(C, C’) that forms a maximal continuous subsequence in the
circular order aC andC’. Note that this definition is independent of the level of the clusters and planarity
guarantees that there are at most three edgeést lbétween two clusters [16]. The first and last edge of a
bundle in this order are called tlextremeedges of the bundle. In the topology tree a bundle betwizen
andC’ is represented by two edgesldf one fromC to the least common ancestor@fandC’ (called the

47

LCA-bundle of ¢ and one fronC’ to the least common ancestor. Whenever the topology tree is expanded
and the grapl&(u, v) is created, we convert these two edges$idback into one.

An edge(u, v) with u, v € C is called aninternal edgeof the clusterC. Assume all dashed internal
edges ofC are contracted. Therojectionof an edggx, y) onto a tree patl is the pathr(x, y) N P. Note
that, by definition, the vertices of each cluster are connected by a subfféelafthe following we define
the projection edge of an edge, the projection gat@), the coverage graph & which consists of small
and big supernodes @. All these definitions are independent of the level of the cluster.

e If C has external degree 1, tpeojection path gC) of C consists of the endpoirztof the (unique)
tree edge incident t6. This endpointis @mall supernodeThecoverage graplof C consists of this
supernode and of all LCA-bundles Gt For each edgeincident toC wherey is the endpointirC,
theprojection edgef eis eif y = zand otherwise the tree edge incidenttihat lies one (y, 2).

e If C has external degree 3, it consists of only one verteBoth, theprojection path gC) and the
coverage graplconsist of only this one vertex which issanall supernode

o If the external degree of a clust€ris 2, there is a unique simple tree path between the tree edges that
are incident taC. This path is theprojection path gC) of C. Theprojection px) of a vertexx in
C is the vertex closest t® on the projection path. Tharojection edgef a vertexx is the edge on
(X, p(x)) incident top(x). If x = p(x), the projection edge of is undefined. Therojection edge
of an edggx, y) with one endpoink in C is the projection edge of, if it is defined and it iSx, y)
otherwise. Therojection edgesf an edge(x, y) with x, y € C are the projection edge afif it is
defined andx, y) otherwise and also the projection edgeyofit is defined and(x, y) otherwise.

If (x,y)isaninternal edge o, then the subpath(x, y) N p(C) is theprojectionof (x, y) on p(C),
p(x) and p(y) are theextreme verticesf the projection, and all vertices on the subpath except for
p(x) and p(y) are theinternal verticesf the projection.

Let (w, 2) and(x, y) be the extreme edges of a LCA-bundle between a cl@terd a cluste€’ with
w,X € Candz y € C'. The pathz(w, X) N p(C) is called theprojectionof the edge bundle on
p(C), p(w) and p(x) are called thextreme verticesf the projection and all vertices on the subpath
exceptp(w) andp(x) areinternal verticesof the projection. Th@rojection edgesf a bundle are the
projection edges of the extreme edges of the bundle.

Thecoverage graplof C is built by compressing(C) as follows:

1. Letuy, Uy, ..., up be a maximal subpath @f(C) such that

— m(ug, Up) intersects the projection of a LCA-bundle pC),
— Uuj is the extreme vertex of the projection of a LCA-bundle or an internal edge,
— Up is the extreme vertex of the projection of a LCA-bundle or an internal edge, and
— every vertexu; for 1 < i < pis an internal vertex of the projection of a bundle or an
internal edge or
there exist two projections with projection nogleand the same projection edgeauatsuch
thatu; andu; with j < i are the extreme vertices of one projection andnduy with
k > i are the extreme vertices of the other projection.
If p > 2, we contract the patiw, ..., up_1 to one vertexu, calledbig supernodeand we say
Uy, ...Up_1 arereplacedby the big supernode. The verticesanduy, are calledsmall supern-
odesand the edgegu,, u) and(u, up) are callecsuperedgesAll edges incident tai, ..., Up_1

48

are now incident tau. This splits a bundle that is incident ta and/oru, and alsou; with
1 < i < pinto up to threesubbundlesone incident tar and the other(s) incident to and/or
Up. If the edge(us, up) (resp. (Up—_1, Up)) is dashed, then the edges, u) (resp. (u, up)) is
dashed.

If p < 2then no nodes are compressed.

2. After replacing all subpaths that fulfill condition 1, ket v, ..., vq be a subpath op(C) such
thatv, andvg are two small supernodes and no vertexvith 1 < i < q is a supernode. We
contract the pathso, ..., vq_1 to onesuperedgév,, vq) and we sayp, ..., vq—1 are replaced
by the superedge. If all edgésy, v2), ..., (vg—1, vq) are dashed, then the superedge is dashed,
otherwise it is solid.

The coverage graplof C consists of this compressed representatiop@) and all LCA-bundles
grouped into sets according to their projection edges.

Note that our definition of a supernode rapés a supernode of [16] by two small and one big supernode and
each bundle is split into at most thregbbundlesone incident to each small supernode and one incident to
the big supernode.

When expanding the topology tree, we build the coverage graph for each node that was marked and each
child of a marked node. For each subbundle that is incident to a supernode in a coverage graph we maintain
its projection edges implicitly as described below.

The coverage graph of a clusteris maintained as a doubly linked path of supernodes. Each supernode
stores up to two doubly linked lists of projection edges incident to it (cgifection lis), one list for each
side of the tree patp(C). Each projection edgestores a double linked list of the subbundles suchelist
the projection edge of the subbundleCithas external degree 1, there is only one supernode, and only one
list of projection edges. IE has external degree 3, it consists of only one supernode without any projection
edges or subbundles. The projection edges and the subbundles are listed in the counterclockwise order of
their embedding. Only the first and last subbundles in a list have direct access to the projection edge and
only the first and last projection edge in a list have direct access to the supernode to which they are incident.
The data structure lets us coalesce two adjacent supernodes or two projection lists into one in constant time;
we can also split a supernode or a projection edge list into two in constant time if we are given pointers
that tell where to split the lists. Note that each subbundle can be contained in at most two lists and if it is
contained in two lists, it is the first element of the one and the last element of the other list.

3.2 Recipes

Each node in the topology tree is enhanced bacipethat describes how the coverage graph of the children

of the node can be created from the coverage graph of the node. The only difference in the algorithm of [16]
and this biconnectivity algorithm is in the contents of the recipes. We describe our recipes in the following.
A recipe contains four kinds of instructions:

1. Split a subbundleReplace a subbundle af edges that have the same target by up to four adjacent
subbundles that have that target and whose (specified) sizes sum to

2. Split a projection edgeSplit the subbundle list at specified locations and replace the old subbundle
list at the supernode by the new subbundle lists.

49

3. Split a supernodeSplit the two projection lists on either side of the supernode into two pieces at
specified locations. Replace the old supernode by two new ones linked by a superedge, and give the
appropriate piece of each projection list to each of the new supernodes.

4. Create a new subbundl€reate a subbundle with a specified target and number of edges, and insert
it at a specified place in a subbundle list of at most two projection edges.

Using these instructions the coverage graphs of the children of a dlistar be transformed into a coverage
graph ofC. The sequence of instructions together with the appropriate parameters (e.g. which subbundle
list has to be split at which location) is calledrecipeand is stored at the node in the topology tree that
represent€. These parameters are either a record of a subbundle (consisting of the number of edges in the
subbundle and its target), a record of a projection edge (consisting of the edge), or a pointdcatied
descriptor A location descriptor consists of a pointer to a subbundle and an offset into the subbundle (in
terms of number of edges) or a pointer into a projection list. It takes constant time to follow a location
descriptor.

Whenever we expand the topology tree, we use the recipes to create the coverage graphs along the
expanded path. Whenever we merge the topology tree, we first determine how to combine the coverage
graphs of two clusters to create the coverage graph of their parent, and then we remember how to undo this
operation in a recipe. We now describe the instructions in the recii® oepending on the number of
children ofC and their external degrees. In the followsgbbundlestands for LCA-subbundle.

Case 1: C has only one child.

In this case the coverage graph®@fis identical to the coverage graph of its child. The recipe is
therefore empty.

Case 2: C has two children with external degrees 3 and 1.

LetY be the child with external degree 3 and Zebe the child with external degree 1. The coverage
graph ofY and ofZ consists of one supernode. We build the coverage graghbyfas follows:

If the tree edge betweerand Z is dashed, we simply contract it by making the projection lisZof
the projection list of one side of the path @f The projection list of the other side is empty. The
projection edges of the bundles do not change and, thus, the subbundle lists do not change.

If the edge(Y, Z) is not dashed, then the supernodeCohas only one projection edge, nhamely the
tree edge betweevi and Z. Thus, the supernode @f has one projection list (the projection list of

the other side is empty) containing one projection edge. The subbundle list of this projection edge
consists of the concatenation of all subbundle listZ ofn the recipe we use location descriptors to
point to the locations of the concatenation. The number of location descriptors is proportional to the
number of removed projection edges.

Case 3: C has two children, both with external degree 1.

In this caseC is the root of the topology tree. Its coverage graph is empty. The coverage graphs of the
children contain one supernode and at most one subbundle apiece, corresponding to the set of non-tree
edges linking the children. Since each subbundle is contained in at most 2 projection lists, there are at
most 4 projection lists. The recipe stores these projection lists (i.e., whether a bundle is contained in

1 or 2 lists) and subbundles (i.e., the number of non-tree edges linking the children).

50

Case 4: C has two children with external degrees 2 and 1.

LetY be the child of degree 2 ardl be the child of degree 1. We collapse all supernodestafone
supernods to build the coverage graph &f from the coverage graph of as follows: On each side
of the tree edge betweéhandZ there may be a subbundle that connétendZ. We remove these
subbundles and make all remaining subbundles incidesnt to

If the edge(Y, Z) is dashed, then the projection edge of the subbundles incid¥rdées not change.
Thus we concatenate the two projection listsYoind the projection list oZ (in the order of the
embedding). This creates a single supernode with a single projection list.

If the edge(Y, 2) is solid, then this edge becomes the projection edge for all subbundles incident to
Y. Thus we concatenate all bundle lists of all projection edgéstofcreate the bundle list faiy, Z).

Then we concatenate the two projection listsYolnd the projection list oZ (in the order of the
embedding). This creates a single supernode with a single projection list.

In both cases, if two newly adjacent subbundles have the same target, we merge them into one sub-
bundle and update the subbundle and projection lists appropriately.

In the recipe we need a location descriptor to point to each subbundle where we concatenated projec-
tion lists or subbundle lists or merged subbundles. We also have to store any subbundles that connect
Y and Z and all projection edges that we removed. The number of location descriptors we store is
proportional to the number of supernodes¥gblus the number of removed projection edges.

Case 5: C has two children, both with external degree 2.

LetY andZ be the children o€. To join the coverage graphs ¥fandZ we consider two cases: If

the tree edge betweé&handZ is dashed, we join the 2 coverage graphs by identifying the appropriate
small supernodes (that are terminating the coverage graphs) and concatenating their projection lists.
If the tree edge betweenandZ is not dashed, we connect the 2 coverage graphs by an edge.

In both cases we remove then all subbundles betWweand Z. If one of the supernode that was
incident to a removed subbundle is no longer incident to a bundle, we replace it by a superedge.
Afterwards we coalesce all the supernodes betwee(¥th&)-subbundle endpoints into three supern-

odes as follows: If the patRP between their endpoints contains only one supernode other than the
endpoints, nothing has to be done. Otherwise, we replace these (at least 2) supernodes by one supern-
ode by concatenating their projection lists. We also merge newly adjacent subbundles into a single
subbundle if they have the same target.

The recipe contains a location descriptor pointing to each subbundle where we coalesced supern-
odes and concatenated projection lists (and possibly merged adjacent subbundles). We also store the
subbundles that were merged together or deleted. If there is a subbundle that loops around the tree,
we need two more location descriptors to mark its endpoints. The number of location descriptors is
proportional to the number of coalesced supernod&sandZ.

New subbundles may be created during recipe evaluation. For each new subbundle, the recipe stores
a bundle record, preloaded with the count of bundle edges, and a location descriptor pointing to the place
in the old subbundle list where the new subbundle is to be inserted. The target field of the subbundle is
easy to set: the least common ancestor of the bundled edges is exactly the node at which the recipe is being
evaluated. In a way similar to [16] we can show the following lemma.

51

Lemma 3.1 If the topology tree is expanded at a constant number of vertices and recipes are evaluated at
the expanded clusters, the total number of edge bundles, supernodes, and superedges creaigd)is O
The expansion takes@gn) time.

Proof: Since the topology tree has deg@t{logn), there areO(logn) marked nodes an® (logn)
children of marked nodes. Thus, the cluster graph consists of the coverage g@@bgf) clus-
ters. Planarity guarantees that these clusters are connect@dlyn) bundles, each bundle is
split into up to three subbundles. Thus there @@ogn) subbundles. Since each supernode in a
cluster with more than one supernode is incident to a subbundles, the@lagn) supernodes.
Because the supernodes and superedges form a tree, the number of superedged(isatgo
Each subbundles has two projection edges. Thus the total number of projection eddegis.

Evaluating a recipe takes time proportional to the number of supernodes or projection edges created
by the recipe plus constant ‘overhead’ time. Thus the total expansion tiégadagn). |

3.2.1 Queries

To answer a queryu, v), we mark all the clusters containingandv in the topology tree. Then we create
the graphG(u, v) in the following steps:

1. We build the cluster graph by expanding the topology tree at a representatis@adifv.

2. Leter, e, ..., e, with p > 1 be all the subbundles whose extreme edges have the same projection
edge(x, y) in a clusterC with x € p(C). We add a small supernogeand connect all these extreme
edges toy.

3. We contract all dashed edges. When contracting a dashed edge between two supernodes, the resulting
supernode is a small supernode.

Since the cluster graph consists@flogn) supernodes, subbundles, and superedges and can be computed
in time O(logn), the graphG(u, v) resulting from these 3 steps contai@glogn) supernodes, subbundles,
and superedges and can be computed in Ddegn).

The following lemmata show that two verticesandv are not biconnected i if and only if there is
an articulation point inG(u, v) separatings andv that is not a big supernode. Since the cluster graph has
sizeO(logn) this can be tested in tim@(logn).

Lemma 3.2 Let u andv be two vertices of @and of G, and let G be a graph created from oy
e contracting connected subgraphs into one vertex,
e replacing the only two edgdsa, b) and(b, c¢) incident to a vertex b by the edga, c),
e replacing parallel edges, and
e removing self-loops.

Let x be a vertex of Gthat is not contained in the contracted subgraphs and not a removed degree-2 vertex.
Then x is an articulation point in Gseparating u and if and only if x is an articulation point separating
u andv in Go.

52

Proof: Consider first the case thatseparatess andv in G;. To achieve thati andv are not
separated by in G, a cycle has to be created that containg, andv. Contracting pieces d&;

that do not contaix or removing degree-2 vertices (other tlkatcannot create new cycles. Thxis

is also an articulation point separatingndv in Go.

If X separatesi andv in G», then expanding vertices (other thanhof G, to connected subgraphs,
replacing one edge by two edges and a degree-2 vertex or adding parallel edges to edges not on
(U, v) and self-loops does not create a cycle that contajng andv. Thusx separatesi andv
alsoinG;. 1

Lemma 3.3 Let u andv be two vertices of G. The graph(G v) is created from G by

contracting connected subgraphs into one vertex,

replacing the only two edgéda, b) and (b, ¢) incident to a degree-2 vertex b by the edggec),
collapsing parallel edges, and

removing self-loops.

No small supernode am(u, v) (except for u and itself) in G(u, v) is contained in a contracted subgraph
of any of these operations.

Proof: The graphG(u, v) can be created fror® by the three operation given in the lemma using
the following steps. Note th& (u, v) does not contain dashed edges and every small supernode of
G(u, v) represents a unique vertgof G.

1. Mark all the nodes that are small supernodeG @f, v) red.

2. Collapse all nodes on the tree path between two red nodes to one blue node.

3. Contract every blue node and all the subtrees whose root is uncolored and connected to the
blue node by a tree edge to a green node.
Now we are left with red, green, and uncolored nodes and every green node is connected by
tree edges to two red nodes.

4. Replace all parallel edges by one edge and remove all self-loops.

5. Replace every degree-2 green node by a superedge. (All remaining green nodes correspond to
big supernodes.)

6. If ared node lies onzg(u, v) and does not lie om (u, v), shrink all subtrees whose root is
uncolored and connected by a tree edge to a yellow node. Otherwise contract all subtrees
whose root is uncolored and connected toy a tree edge to the noae

7. Replace all parallel edges by one edge and remove all self-loops.

The resulting graph i&(u, v). Note thatu andv are small supernodes @&(u, v) and then marked
red. Hence, if a small supernogdies onsx(u, v), itis not replaced by step 6. No small supernodes
are contained in a connected subgraph that is contracted in step 1-5. The lemma follbws.

53

References

[1] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, M. Yung, “Maintenance of a
Minimum Spanning Forest in a Dynamic Planar GraghAlgorithms 13 (1992), 33-54.

[2] D. Eppstein, Z. Galil, G. F. Italiano, “Improved Sparsificatiofgch. Repor83-20, Department of
Information and Computer Science, University of California, Irvine, CA 92717.

[3] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A technique for speeding up
dynamic graph algorithmsRroc. 33nd Annual Symposium on Foundations of Computer Sci&882,
60-69.

[4] D. Eppstein, Z. Galil, G. F. Italiano, and T. Spencer, “Separator based sparsification for dynamic planar
graph algorithms”Proc. 25th Annual Symposium on Theory of Compyti9§3, 208-217.

[5] G. N. Frederickson, “Data Structures for On-line Updating of Minimum Spanning TreS8M J.
Computl14 (1985), 781-798.

[6] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-edge-connectivitykasrdallest
spanning trees”Proc. 32nd Annual IEEE Symposium on Foundation of Comput.1991, 632—641.

[7] M. L. Fredman and M. R. Henzinger, “Lower Bounds for Fully Dynamic Connectivity Problems in
Graphs”,Technical ReporNo. 94-1420. Department of Computer Science, Cornell University, Ithaca,
NY. To appear irAlgorithmica

[8] H. N. Gabow, “Data Structures for Weighted Matching and Nearest Common Ancestors with Linking”,
Proc. 1st Annual Symposium on Discrete Algorithi®90, 434-443.

[9] Z. Galil, G. F. Italiano, “Fully Dynamic Algorithms for Edge Connectivity ProblemSIAM J. Comput.
21 (1992), 1047-1069.

[10] F. Harary, “Graph Theory”, Addison-Wesley, Reading, MA, 1969.

[11] M. R. Henzinger, “Fully Dynamic Biconnectivity in Graphg&jgorithmical3, 1995, 503-538.
Also appeared as M. Rauch, “Fully Dynamic Biconnectivity in GrapiRstic. 33rd Annual Symp. on
Foundations of Computer Sciend®92, pages 50-59.

[12] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Polylogarithmic Time
per OperationProc. 27th ACM Symp. on Theory of Computihg95, 519-527.

[13] M. R. Henzinger and V. King, “Maintaining Minimum Spanning Trees in Dynamic Gragbrsi;. 24th
International Colloquium on Automata, Languages, and Programnii@g7, 594-604.

[14] M. R. Henzinger and H. La Powtr “Certificates and Fast Algorithms for Biconnectivity in Fully-
Dynamic Graphs”Proc. 3rd Annual European Symp. on Algorithms, ESAI®D5, 171-184.

[15] M. R. Henzinger and M. Thorup. Improved Sampling with Applications to Dynamic Graph Algo-
rithms. To appear ifProc. 23rd International Colloquium on Automata, Languages, and Programming
(ICALP), LNCS 1099, Springer-Verlag, 1996.

54

[16] J. Hershberger, M. Rauch, S. Suri, “Fully Dynamic 2—Edge—Connectivity in Planar Graphs,
3rd Scandinavian Workshop on Algorithm ThedrNCS 621, Springer-Verlag, 1992, 233-244.

[17] D.Hareland R. E. Tarjan, “Fast Algorithms for Finding Nearest Common AnceSbkM J. Comput.
13 (1984zzz0, 338-355.

[18] K. Mehlhorn, “Data Structures and Algorithms 1: Sorting and Searching”, Springer-Verlag, 1984.

[19] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia, “Complexity Models for Incremental
Computation”,Theoret. Comput. Sciend80, 1994, 203-236.

[20] M. H. Rauch, “Improved Data Structures for Fully Dynamic Biconnectivifoc. 26 Annual Sym-
posium on Theory of Computing994, 686-695.

[21] D. D. Sleator, R. E. Tarjan, “A Data Structure for Dynamic Trees"Comput. System S@#4 (1983),
362-381.

55

