SRC Technical Note
1997-019
September 5, 1997

Maintaining Minimum Spanning Trees in
Dynamic Graphs

Monika Rauch Henzinger and Valerie King

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright©Digital Equipment Corporation 1997. All rights reserved

Valerie King is at the University of Victoria, Victoria, BC. Her electronic malil
addresses is: val@csr.uvic.ca

Abstract

We present the first fully dynamic algorithm for maintaining a minimum
spanning tree in time(,/n) per operation. To be precise, the algorithm
usesO(n'3logn) amortized time per update operation. The algorithm is
fairly simple and deterministic. An immediate consequence is the first fully
dynamic deterministic algorithm for maintaining connectivity and, bipartite-
ness in amortized tim®(n*/logn) per update, withO(1) worst case time
per query.

1 Introduction

We consider the problem of maintaining a minimum spanning tree during an arbi-
trary sequence of edge insertions and deletions. Givemartex graphG with

edge weights, th&ully dynamic minimum spanning tree probléto maintain a
minimum spanning foredt under an arbitrary sequence of the following update
operations:

insert(u,v): Add the edgdu, v} toG. Add{u, v} to F if it connects two previously
unconnected trees & or if it reduces the cost df. If the latter, return the
edge ofF that has been replaced.

delete(u,v):Remove the edgfu, v} from G. If {u, v} € F, then (a) removéu, v}
from F and (b) return the minimum-cost edgef G \ F that reconnect§&
if e exists or returmull if e does not exist.

In addition, the data structure permits the following type of query:
connected(u,v)Determine if verticesi andv are connected.

In 1985 [7], Fredrickson introduced a data structure knowtopslogy trees
for the fully dynamic minimum spanning tree problem with a worst case cost of
O(y/m) per update His data structure permitted connectivity queries to be an-
swered inO(1) time. In 1992, Eppstein et. al. [3, 4] improved the update time
to O(4/n) using thesparsification techniquelf only edge insertions are allowed,
the Sleator-Tarjan dynamic tree data structure [13] maintains the minimum span-
ning forest in timeO(logn) per insertion or query. If only edge deletions are al-
lowed (“deletions-only”), then no algorithm faster than taé,/n) fully dynamic
algorithm was known.

Using randomization, it was recently shown that the fully dynamic connec-
tivity problem, i.e., the restricted problem where all edge costs are the same, can
be solved in amortized tim®(log n) per update and(logn) per connectiv-
ity query [9, 10]. However, this approach could not be extended to arbitrary edge

2

weights, leaving the question open as to whether the fully dynamic minimum span-
ning tree problem can be solved in timg,/n).

In this paper we give a positive answer to this question: We present a fully
dynamic minimum spanning tree data structure that @@g/3logn) amortized
time per update an®(1) worst case time per query when update time is averaged
over any sequence @ (mj,) updates, fom;, the initial size of the graph. Our
technique is very different from [7].

The result is achieved in two steps: First, we give a deletions-only minimum
spanning tree algorithm that us€gm'¥/3logn + n¢) amortized time per update
and O(1) worst case time per query when the update time is averaged over any
sequence of2(mj,) updates. Here is any constant such that9 ¢ < 1/3, and
' is the number ohontreeedges at the time of the update.

Then we present a general technique which, given a deletions-only minimum
spanning tree data structure with a certain property, generates a fully dynamic data
structure with the same running time as the deletions-only data structure. Let
f(m', n) be the amortized time per deletion in the deletions-only data structure
with m' nontree edges amdvertices. The property required is that, upon inserting
into the graph no more tham' edges at the same time (a “batch insertion”), the
deletions-only data structure can be modified to reflect these insertions and up to
M’ subsequent deletions can be performed in a tot@@f f (m', n)) time.

Using this technique, we develop a fully dynamic minimum spanning tree algo-
rithm with amortizedtime per update 0©(m*/3logn), for a sequence of updates
of lengthQ2 (m;,), wheremis the size ofs at the time of the update. In other words,
lettingmg;, denote the size &b (vertices and edges) after updatehe total amount
of work for processing a sequence of updates of IehgxlO(Z'izo mg) /3 logn).

We then apply sparsification [3, 4] to reduce the running time for the sequence to
O(In/3logn).

Our result immediately gives fastdeterministidully dynamic algorithms for
the following problems: connectivity, bipartitenekssdge witness, maximal span-
ning forest decomposition, and Euclidean minimum spanning tree. See [9] for all
but the last reduction; see Eppstein [2] for the last reduction. For these problems,
the new algorithm achieves a(n'/®/logn) factor improvement over the previ-
ously bestdeterministiaunning time. If randomization is allowed, however, much
faster times are achievable [9, 10].

Additionally, improvements can be achieved in the following static problems
(see [4, 3]): randomly sampling spanning forests of a given graph [6]; finding a
color-constrained minimum spanning tree [8].

The paper is structured as follows: In Section 2 we give a deletions-only min-
imum spanning tree algorithm. In Section 3, we show how to use a sequence of
deletions-only data structures to create a fully dynamic data structure.

3

2 Maintaining a minimum spanning tree—deletions-only

In this section, we give an algorithm which maintains a minimum spanning tree
while edges are being deleted. The amortized update tid¢rig/3 logn) and the
guery time isO(2) for queries of the form “Are verticeisand j connected?”. Let
G = (V, E) be an undirected graph with edge weights. Without loss of generality,
we assume that edge weights are distinct.

Initially, we compute the minimum spanning forgstof G. Let m{, be the

number of nontree edges @ initially and k = m/iln/?’log n. We sort the nontree
edges by weight and partition them intty, / k levels of sizek so that the lightest

are in level 0, the nexX lightest are in level 1 and so on. The set of edges in a level
i is denoted byE;. In addition, all tree edges of the initial minimum spanning
forestF are placed in level 0. (We omit floors andlg®ys to simplify notation;
either may be used without affecting the asympotic analysis.)

Throughout the algorithm, the level of an edge remains unchanged:; aled
notes the minimum spanning forest. ko 0, 1, ..., (M'jn /K) — 1, let F denote
the minimum spanning forest of the graph with vertex\setnd edgeset; -; E;.
(Initially, all F; = F, butin later stages, an edge from any level may become a tree
edge. ThuskFp € F1 C ... Fmyy k-1 = F.) LetTi(x) denote the tree if; which
containsx and letT (x) without the subscript denote the treeRrcontainingx.

The main idea is the following. If a nontree edge is deleted, then the minimum
spanning foresF is unchanged. Suppose a tree efigev} in leveli is deleted.
Then for eachF;, j > i, the deletion splits the tree i containingu andv into
Tj(u) andTj(v). We search for the minimum weight nontree edggalled the
“replacement edge”) that connedigu) andT (v) by gathering and then testing a
setS of candidate edges on leviel If none is found, we repeat the procedure on
leveli + 1, etc. until one is found or all levels are exhausted. We now describe the
update operations:

deletgu, v): Delete edgdu, v} from any data structures in which it occurs. If a
tree edgdu, v} from leveli is deleted, then removga, v} from F and search for
a replacement by iang Replacdi, u, v). We refer toi as the level of the call to
Replace

In the algorithm below, the subroutisearchwhen applied to atree iR; finds
all nontree edges in levelwhich are incident to the tree. A phase consists of the
examination of a single edge. (Its exact definition and the detai®eafchare
given in Section 2.2 below.)

Replacdi, u, v)
1. Alternatingin lockstep, one phase at a titGearch(T; (u)) andSearch(T; (v))

4

untilk/logn phases are executed (Case A) or one of the searches has stopped
(Case B).

e Case A: LetSbe the set of all nontree edges in leiel

e Case B: LetS be the set of (nontree) edges produced bySkarch
that stopped.

2. Testevery edge iBto see if it connectd (u) andT (v).

e If a connecting edge is found, insert the minimum weight connecting
edge intoF and the data structures representingfej > i.

e Elseifi is not the last level, caReplacgi + 1, u, v).

2.1 Data Structures

The idea here is to use the ET-tree data structure developed in [9]: (1) to represent
and update each tree I, so that in constant time, we can quickly test if a given
edge joins two trees; and (2) to represent each tree iRjdn such a way that
we can quickly retrieve nontree edgesHkn which are incident to the tree. To
avoid excessive cost, we explicitly maintain only thé$evherei is a multiple of
m/ilr{?’/ logn. An undesirable consequence of this is that when retrieving nontree
edges inE;, other nontree edges are also retrieved.

Below, we refer to input graph vertices as "vertices” and use “node” to mean
nodes of the B-tree in which we store the “ET-sequences.”

ET-trees:An ET-sequencis a sequence generated from a tree by listing each ver-
tex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a B-tree of deyrddis allows us to
implement the deletion or insertion of an edge in the forest as follows: we split a
tree by deleting an edge or join two trees by inserting an edge in@dogy n),

using a constant number of splits and joins on the corresponding B-trees. Also we
can test two vertices of the forest to determine whether they are in the same tree in
time O(logy n). See for example [1, 11] for operations on B-treesd # n*, for

a a positive constant, then the join and split operations take @b and the test
operation takes tim®©(1). We refer to the B-trees used to store ET-sequences as
ET-trees.

This data structure allows us to keep information about a vertex so that the cu-
mulative information about all vertices in a tree may be maintained. For example,
we may keep the number of nontree edges incident to a vertex at one designated
occurrence of the vertex. Then each internal node of the ET-tree stores the sum

of the numbers of nontree edges kept with designated occurrences in its subtree.
In a degreal ET-tree, each split or join operation or each change to the number
associated with an occurrence requires the adjustmedtlofyy n) internal nodes

with each adjustment takin@(d) timesteps.

We maintain the following data structures.

e Each edge islabelled by its level and a bit which indicates if it is a tree edge.

o Letk' = max{m/iln/?’log n, n¢}, for any constant & ¢ < 1/3. Each tree ik

is represented as an ET-sequence which is stored in a déd3eeece.

e Letc = m/ilr{?’/ logn. We map each level to the j which is the largest

multiple of c no greater thanby the functionf (i) = cli/c].
For each levej such that|j (“c dividesj”):

— we represent each tree Hj as an ET-sequence which is stored in a
binary B-tree;

— for each vertex, we create a liskj (v) which contains:
(i) all nontree edges incident towhich are in any level € f~1(j)
and;
(ii) all tree edges incident towhich are in any level > j,i € f~1(j).

— We mark each designated occurrence of a vertexhose listL; (v) is
nonempty. Each internal node of the ET-tree is marked if its subtree
contains a marked occurrence.

2.2 The Search routine

SearcHT; (u)) returns all nontree edges in leveincident toT; (u). It begins by
searchingTt) (u) which is a subtree of;(u). It proceeds by examining all edges

in Lt (v) for all verticesv in the tree being searched. Nontree edges in iesst
picked out and tree edges in levélsf (i) < i’ < i are followed to other trees of

Ft) which are then searched in turn. Note that all such tree edges lead to other
trees ofF 4, which are subtrees df (u); and all subtrees df; (u) will be found by

this procedure. Ahaseof the algorithm consists of the examination of one eelge
inalistL.

Search(T; (u))
1. S <« ¢;

2. treelist «<— T (u);

3. Repeat untitreelistis empty:

¢ Remove an ET-tree from theeelist.

e For each marked vertex in the ET-tree and for each edge, y} in
eachL ¢ (x):

— If {x, y}is a nontree edge on levieladd it to the set of edges to
return.

— Else if {x, y} is a tree edge on levélsuch thal < i, then add
Tty (y) totreelist.

2.3 Analysis

Initialization: We compute the minimum spanning foréstcreate the ET-trees for

F;, for eachj such that]j, and partition the nontree edges by weightcRll that

n'in is the number of nontree edges in the initial graph. t_be the number of
edges in the initial minimum spanning forest. The creation of all the listskes

time proportional to the number of nontree edgig. The building of ET-trees for

F and allF; such that|j and the marking of internal nodes takes time proportional
to the size of each forest @(((m'in /K)/Ot + M'jn) = O(m/iln/?’t + mM'ip).

Deletions of nontree edgedeleting a nontree edge on any level may require
resetting the bit of an occurrence of a vertex in some ET-tree, which may require
resetting bits on all internal nodes on the path to the ro@{logn) time.

Deletions and insertions of tree edgd3eleting a tree edge take3(k’) time to
delete it from the ET-tree oF and O(logn) time to delete it from the ET-tree
of eachF; such that|j, for a total ofO(k' 4+ ((m'in/k)/c) logn) time per edge.
Inserting a replacement edge takes the same time.

Finding a replacement edgéhe first analyze the cost @earch Let theweight
w(T) of atree T of some;fe) |L¢ (v)| summed over all verticesin T. It
costsO(logn) to move down the path from the root to a leaf in an ET-tree to find a
marked occurrence of a vertex, or to move up a tree from an occurrence to the root.
Thus, the cost oBearch(T; (x)) is O(logn) times the number of edges examined,
or O(w(T;(x)) logn), if Searchis carried out until it ends, an@(K) if itis run for
k/logn phases.

In Replacgu, v, i), if w(Tjw)) < w(T;(v)), then we refer tar;(u) as the
smaller component; T otherwiseT; is Ti(v). The cost of a call teReplacegu, v, i)
is the cost of thesearchplus the cost of testing each edgeSn The number of
edges inSis O(min{k, w(Ty)}). We may use th&'-degree ET-tree representa-

tion for F to test each edge at co®&t(1). Thus the cost of a call tReplaceis
O(min{k, w(Ty) logn}).

To pay for these costs: If a replacement edge is found on letleén we
charge the cost oReplacdgu, v, i) to the deletion. In addition, we charge the
cost of modifyingF to the deletion so the total cost charged to the deletion is
O(min{k, w(Ty) logn} + ((M'in /K) /) logn + k') = O(((M'in /k)/C) logn + K').

If no replacement edge is found on levehen a tree of; which was split by
the deletion remains split. We use the following:

Claim 2.1 O(}_ w(T1)) summed over all smaller componentsathich split from
atree T on any given level during &leplaceoperations is Qw(T) logn).

The proof of the claim follows [5]. The first time a smaller componént
of a treeT is searched, it can have weight no greater thé&h)/2. Between two
successive times thit ¢ 4 (v) | contributes to the weight of a smaller componént
and that component splits off, the weight of a smaller compomgobntainingv is
no more than half its weight the previous time. Heflcg;, (v)| contributes to the
weight of anyT; no more thaog,w(T) = O(logn) times. l.e.,0(}_ w(Ty)) =
O et ILti () logn) = O(w(T) logn).

There are at most edges per level (except for level 0, which has at most
nontree edges). Eadh; (v) consists of edges frora levels. Since level O tree
edges do not belong to any likf (v), the maximum weight of a tree(T) is ck.
Thus the total cost charged to a leveldgcklog?® n). Summing over all levels we
haveO((m/in/k)(chog%2 n) = O(m/inclog2 n), or an amortized cost per deletion
of O(clog?n) = O(m/in/?’log n), if Q(m'j,) edges are deleted.

The cost charged to each deletion@g(m'i,/ck)(logn) + k). Fork' =

max{m/ilr{?’ logn, n} andc = m/ilr{?’/ logn, this isO(m/iln/?’Iogn + n°).

To summarize the cost of initialization when amortized d€m,) operations is
O(m/iln/?’) and the cost per deletion of an edge and finding replacement edges, when
amortized oveg2 (m'j,)) operations isO(m/ilr{?’Iogn + n¢). Thus for a sequence
of Q(mjn) operations, the amortized time per updat@'(sm/ilr{?’ logn + n°).

Finally, we note that the query of the form “Are nodeand j connected?”
may be answered using the ET-tree data structuré fior O(1) time.

3 From deletions-only to fully dynamic

In this section, we show a general technique to develop a fully dynamic data struc-
ture using several deletions-only data structures with an added operation. (We call

these “extended” deletions-only data structures.) As before, we assume the edge
weights are distinct.
First, we define the following operation on a deletions-only data stru&ure

batchadd(G, E’, F'): Given a graphG = (V, E) with minimum spanning forest
F,insertall edges 0o’ into G, if they are not already there. The resulting spanning
forestF’ is given.

We refer to the period of time which occurs between two consecutive calls
to batchadd on a graphG, or between the start of the algorithm and the first
batchaddon G as aperiod of G Alternatively, a period may be terminated pre-
maturely (see below).

We prove the following theorem:

Theorem 3.1 Suppose for any value of n and mthere is an extended deletions-
only data structure for any dynamic graph% (V, E) with |V| = n and the num-
ber of nontree edges in the edgeset E is initially,uch thatn+m/,) f°(m(,,, n)

is the worst case time needed to initialize A, d@gd- m;) f (m{,, n) is an upper
bound on the time to process y deletions.

Suppose we can process a batatid(H, E’, F’), following any period in
which y edges were deleted from G, in tim&@+ m{,, + [F'\ F|) f B/, n)),
where m, is an upper bound on the total number of nontree edges in G after the
batch.add.

We also assume that’f f, fB are monotone nondecreasing functions.

There is a fully dynamic minimum spanning tree data structure that runs in
amortized cost per edge deletion or insertion afd@? n+2f:0(s—i +D[FO>m;i, n)+
f(mi, n) + fB(m;, n)] where s< 3+ Igm and m is the size (vertices plus edges)
of the dynamic graph at the time of the update. Here, costs are amortized over a
sequence of m update operations, wherejfnis the size of the initial graph.

In Section 3.4, we show that

Corollary 3.2 A minimum spanning forest can be maintained in a fully dynamic
graph with amortized cost per update of /@2 logn), where m is the size of the
graph at the time of the update, for a sequencg ah;,,) operations.

We prove the theorem, by constructing a fully dynamic data structure from
extended deletions only data structures.

Definitions: We refer to the current minimum spanning forestoés the (global)
MST. Letm’ be the number of nontree edges in the current graghdenote the
number of nontree edges in the initial graph, andenote the current size (vertices
and edges) of.

During the course of the algorithm, we simultaneously maintain up to
max{Ig n, Ilg(4m’)} extended deletions-only data structums Ag, ..., As, Where
eachA; is an extended deletions-only minimum spanning tree data structure for a
subgraptG' + (V, E') of the global grapiG = (V, E). We call this thecomposite
data structure We maintain the MST in a Sleator-Tarjan dynamic tree [13] and
also in an ET-tree of degree 2.

Fori = 0,...,[2lgn], letm; = 2'. The minimum spanning forest &' as
maintained byA; is referred to asocal spanning foresand denoted'. A local
nontree edgef A; is an edge of3' which is not inA;’s local spanning forest or
the MST. Letx; be the number of local nontree edgesin; A;.

Whenn falls below Z2/4 ands > Ign, s is resetand the composite data
structure is reinitialized. Between two consecutive resets, we define the the period
of time which occurs between two consecutive callbatchaddon a graphG, or
between the initialization or reinitialization of the composite data structure and the
first batchaddon G as aperiod of G A reset terminates all periods.

Thesizeof a graph refers to the number of vertices plus edges. Note that the
size of a graph is alway®(s).

We maintain the following invariants:

Invariants: (1) Every edge in the local forest of someis (a) in the MST, or (b)
is a local nontree edge in somdg, j # 1.
(2) E = (UE') UMST.

We now describe the algorithm.

To initialize: Let the initial value o6 = [Igm;_ 7. We initialize As as an extended
deletions-only data structure f@° = G with FS = M ST and the set of local
nontree edges being all nontree edge&of

To perform an insertion operatiomsert(u, v) is called, whergu, v) is an edge
to be inserted int@s.

insert(e):

1. Use the dynamic tree to determineihould be added to the MST:
Find the maximum weight edg€ on the path betweegis endpoints in the
MST.

2. If there is no path betweass endpoints or if there is a path aeds lighter
than f, removef from the MST, callinsert_nontree(f), and adce to the
MST.

10

3. Else calinsert_nontree(e).

The following subroutine inserts a nontree eégeto the composite data struc-
ture:

insert_nontree(e). Leti be the smallest index such that > x;, the number of

local nontree edges idj <; A _
Let E’ be the set of local nontree edgesn; E! U {e} .

1. Delete the edges & from A, j <.
Setx; = 0.

2. If A is not initialized, initializeA; on the empty grapls' consisting ofn
nodes and no edges.

3. Callbatchadd(G', E'UMST, MST).
Adjustx; accordingly.

After the procedure, the local nontree edge§bfre the nontree edges previ-
ously contained inJj<; Aj. Its local forestF' = MST. Note that at the beginning
of a period ofG', x; = 0 for j <.

To delete an edgefrom G:

deletqe):

1. Deletee from all data structures in which it appears, includingGll] and
update corresponding; accordingly. Thus for each local spanning forest
F' which contained, the local replacement edgéis determined, if there
is one.

2. If ewas in the MST, use the ET-tree representation of the MST to determine
which of those local replacement edges reconnect the two subtrees of the
MST which result from the deletion @& Insert the lightest connecting edge
into the MST.

3. All other local replacement edges are reinserted into the composite data
structure using the proceduesert.nontree

4. If Xs < mg_» andxs > n, reinitialize the composite data structure. That
is, sets = [lg xs]; initialize As as an extended deletions-only data structure
for G5 = G with FS = M ST and the set of local nontree edges being all

nontree edges db.

11

3.1 Proof of correctness

It is easy to see that the invariants are maintained, by induction on the number of
operations. Initially, the invariants hold sin@® = G. Invariant (2) is preserved
after each insertion, since each edge when add&lisoeither added to the MST

or someG'. Each edge when deleted fraBis deleted from all data structures in
which it appears. Invariant (1) holds fé when A is initialized or abatchadd

is executed since the local fordst= MST. The local forest ofA; changes only
when an edge is deleted and is replaced by some eddglgee is then either

put into the MST or reinserted into the composite data structure. In that case, itis
added to somé by abatchaddoperation. Ifeis not in the MST, thele becomes
alocal nontree edge d;. In either case, invariant (1) is preserved.

The correctness of the algorithm follows easily from the invariants. We use
the well-known fact that an edge is in the minimum spanning tree iff it is not the
heaviest edge in any cycle (“red rule” [14]). We also note that every edge in the
composite data structure is an edg&ain

Letebe an edge of the MST which is deleted. eebe the correct replacement
edge. Consider the state of the composite data structures right before the deletion
of e. By the invariant, since’ was not in the MST, it was a local nontree edge in
someA .

Suppose is a local nontree edge iA;. Since€ is the correct replacement
edge fore in the MST then aftee’s deletion,€ is not the heaviest edge in any
cycle of G and therefore is not the heaviest edge of any cycl&'ofHence, after
e's deletion g becomes a local forest edge, i€.is a local replacement edge fer
in G'. Recall tha¥ is the minimum weight edge which connects the two subtrees
of the MST resulting from the deletion & Thus,¢€ is the lightest connecting
edge from the set of local replacement edges, and is chosen in Step Zefdatee
algorithm.

3.2 Analysis

We first prove the following claims:

Claim 3.3 During any full period of &, there were at least m;/(s — i + 1)
updatesto G.

Proof: Fori > 0, immediately befor®atchaddis executed o', x;_1 > m;_1.
Immediately afterwardsq; 1 = 0.

We examine the types of insertions into the composite data structure to see
how they affectx;: (2) when a nontree edge is inserted i@¢b) when an edge is
replaced in the MST after an insertion ; (c) when an edge is deletédand it is

12

replaced in up te local spanning forests. The first two cases cayde increase
by no more than one. The third case may cause wgpisertions. However, the
s insertions do not affect ally the same. Each insertion in this case results from
a local nontree edgebecoming a local forest edge. Hence if this occurs in some
Aj, | < i, the increase o%; resulting from the insertion of a copy efinto the
composite data structure is offset by the decreasg chused by the change in
status ofe from a local nontree edge to a local tree edge. Thus unchanged by
a case-(c) insertion into the composite data structurg,is changed by at most 1,
and in generaly; is changed by at most—i.

Hence, at leastn,_; /(s — i + 1) insertions or deletions occurred during any
full period of G'. This concludes the proof of the claim.

We are now ready to analyze the costs of the algorithm.

Initialization: Since eachd is initialized once, the cost for initialization during
the algorithm is(n + m;) f9(m;, n). Note thatA is initialized only if the number
of nontree edges exceat_1.

We amortize the initialization costs of the first data structdyend all A; for
i < lgn by requiring there to b& (m;,,) operations, where, is the size (vertices
and edges) of the initial graph. We note that for at least half these operations, the
current size of the graptm > m;, /2.

We amortize the cost of initializingy, i > Ign over the operations of the
preceding period when at least_; /(s — i + 1) operations occurred.

The cost ofreinitialization of the composite data structure may be charged
to thems/2 deletions which must have occurred since the previous reset. Note
that a reset only occurs whans > n, so that the initialization cost ofn +
ms_») f9(ms_», n) results in a charge of°(ms_, n) per operation.

Execution of batcladd:

By assumption(y + m; + [MST\ F'|) f B(m;, n) is an upper bound on the
time to performbatchadd(G', E'UMST\ F', MST), wherey is the number of
deletions performed 06' in the preceding period.

We can charge the cost pf B(m;, n) to they deletions for a cost of B(m;, n)
each.

To charge then; f B(m;, n): By the claim,batchaddis called onG' after at
leastm;_1/(s — i + 1) insertions and deletions occurred in the preceding period.
Charging them; f B(m;, n) to those updates gives a cost per updatésof i +
1) fB(mi, n).

To charge theMST\ F'|fB(m;, n), we note that at the start of the period,
F' = MST. and for each, each insertion or deletion i can cause at most one
edge to be added to and/or one edge to be deleted FronThus we can charge

13

the[MST\ F'|fB(m;, n) to the operations in the preceding period, for a cost of
O(fB(m;, n)) each.

Performing deletions during a period of G

The cost of maintainingy during a period containing deletions of edges in
G' is by assumption, bounded above ty+ m;) f (m;, n). These costs may be
charged in the same way as the costdfamich addwere charged, to the operations
of the preceding period.

In the unique case of the initighs, wheres = [lgm/,7 when there was no
preceding period, costs are amortized over thtealrsequence of2 (m;,) deletions
and insertions, as in the analysis of the initialization costs.

After a reset of, the cost of performing deletions i after Ag is reinitialized
is charged to the deletions which resulted in the reset, as in the analysis of the
reinitialization costs.

The cost ofO(log? n) for Step (2) and to update the MST is charged to the
delete operation.

SummaryFor each, the cost per operation is therefa®g(s—i +1)[f°(m;, n) +
f(mi, n) + fB(mi,).

Except for the initialization and reinitialization &, we have charged opera-
tions of the preceding period for all costs incurred in the following period. Since
the preceding periods occur in between resets of the valagvad know that for
the indices of thel, i < s < max{lg4m’, Ign}. Hences < 2+ Igm, m being the
size of the graph at the time of the operation.

For the initialization and reinitialization oAs, we charge operations which
occurred whers may have been smaller by 1. Here< 3+ Igm, m the size of
the graph at the time of the operation.

Each operation requires a constant number of updates in the dynamic tree data
structure and the binary ET-tree data structure storing the MST. This takes time
O(logn).

Summing over, we have 00 (log? n+3Y"7_(s—i+1)[fO(my, n)+ f (mi, n)+
f B(m;, n)], wherem is the current size o6 at the time of the operation, when
amortized over a sequence of, update operations anmth, is the size of the
initial graph.

3.3 Implementingbatchadd

In this section, we show how a deletions-only data strucfuie section 2 for a
graphG which initially hadm;, nontree edges can be extended so that the operation
batch addwhich occurs after a sequengef y edge deletions can be implemented
intime O((y + M/, + |F’\ F))(m,*®logn).

in

14

We begin by restoring the ET-trees &fto M STyg, the minimum spanning
forest of G before the start of the sequengeof deletions. The cost of joining
two ET-trees is asympotically the same as splitting them; thus the calculations of
section 2 apply. For each deletion, the cost of restorati@(in/ilr{3) logn + n°).

We next transformM STyq to MST, by again modifying the ET-trees. We
remove every edge iM STyq \ MSTand insert every edge M ST\ MSTq, for
a cost ofo(m';/%logn + ne).

To determine the transformations required, we keep a list of sorted changes
which occurred since the lagttch_add.

We remove all nontree edges which are stored #nd sort the nontree edges
of E U E’, assign them to levels, and store them with the appropriaté lifthe
cost per edge of removing, sorting and then storin® (ggn) per edge for the
unique (binary) ET-tree in which the edge is stored.

Let f'(mj, n) = mil/?’logn + n¢. We have shown an extended deletions-only
data structure such th&((n + m;,) f'(min, n)) is an upper bound on the worst
case time needed to initialize A, a@{(y +m,) f'(min, n)) is an upper bound on
the time to procesyg deletions.

And, we can processtamtchadd(G, E’, F’), following any period in whicty
edges were deleted fro, in time O((y +m;, 4+ [F"\ F|) f'(m;_, n)), wherem{
is an upper bound on the total number of nontree edg&safter thebatchadd

3.4 Proof of corollary

Substitutingf’ for fB, f, and f°, we conclude that there is a fully dynamic min-
imum spanning tree data structure that runs in amortized cost per edge deletion or
insertion ofO(log? n + Zfzo(s —i+21) f'(mj, n), wheres < 3+ Igm.

Substituting forf” andm;, we haveO(log?n + Y7o + 1)(25")¥3logn +
né) = 0((2%)¥3logn + n¢ logn) = O(M*3logn + n¢) for ¢’ any constant.

References

[1] T. Corman, C. Leiserson, and Rivelsitroductionto AlgorithmsMIT Press
(1989), p. 381-399.

[2] D. Eppstein, “Dynamic Euclidean minimum spanning trees and extrema of
binary functions”, Disc. Comp. Geom. 13 (1995), 111-122.

[3] D. Eppstein, Z. Galil, G. F. Italiano, “Improved Sparsification”, Tech. Re-
port 93-20, Department of Information and Computer Science, University
of California, Irvine, CA 92717.

15

[4] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A
Technique for Speeding up Dynamic Graph AlgorithiRsdc. 33rd Symp.
on Foundations of Computer Sciend®92, 60—69.

[5] S. Even and Y. Shiloach, “An On-Line Edge-Deletion ProbledyACM28
(1981), 1-4.

[6] T. Feder and M. Mihail, “Balanced matroidsProc. 24th ACm Symp. on
Theory of Computingl992, 26-38.

[7] G. N. Frederickson, “Data Structures for On-line Updating of Minimum
Spanning Trees'SIAM J. Comput.14 (1985), 781-798.

[8] G. N. Frederickson and M. A. Srinivas, “Algorithms and data structures for
an expanded family of matroid intersection problen®&AM J. Computl8
(1989), 112-138.

[9] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms
with Polylogarithmic Time per OperatioRroc. 27th ACM Symp. on Theory
of Computing1995, 519-527.

[10] M. R. Henzinger and M. Thorup. Improved Sampling with Applications to
Dynamic Graph Algorithms. To appear l#froc. 23rd International Collo-
quium on Automata, Languages, and Programming (ICALLIR)CS 1099,
Springer-Verlag, 1996.

[11] K. Mehlhorn. “Data Structures and Algorithms 1. Sorting and Searching”,
Springer-Verlag, 1984.

[12] H. Nagamochi and T. Ibaraki, “Linear time algorithms for finding a sparse
k-connected spanning subgraph dt-aonnected graph’Algorithmica?,
1992, 583-596.

[13] D. D. Sleator, R. E. Tarjan, “A data structure for dynamic tree<Comput.
System ScR4, 1983, 362-381.

[14] R. E. TarjanData Structures and Network FIQWIAM (1983) p. 71.

16

