
SRC Technical Note
1997 - 017

March 14, 1997

Dynamic Coscheduling on Workstation Clusters

Patrick G. Sobalvarro, Scott Pakin, William E. Weihl, and
Andrew A. Chien

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Dynamic Coscheduling on Workstation Clusters

Patrick G. Sobalvarro1 Scott Pakin2 William E. Weihl1

Andrew A. Chien2

March 14, 1997

1DEC Systems Research Center
2University of Illinois at Urbana-Champaign

Abstract

Coscheduling has been shown to be a critical factor in achieving efficient
parallel execution in timeshared environments [11, 18, 4]. However, the most
common approach, gang scheduling, has limitations in scaling, can compro-
mise good interactive response, and requires that communicating processes
be identified in advance.

We explore a technique calleddynamic coscheduling(DCS) which pro-
duces emergent coscheduling of the processes constituting a parallel job.
Experiments are performed in a workstation environment with high perfor-
mance networks and autonomous timesharing schedulers for each CPU. The
results demonstrate that DCS can achieve effective, robust coscheduling for a
range of workloads and background loads. Empirical comparisons toimplicit
schedulingand uncoordinated scheduling are presented. Under spin-block
synchronization, DCS reduces job response times by up to 20% over implicit
scheduling while maintaining fairness; and under spinning synchronization,
DCS reduces job response times by up to two decimal orders of magnitude
over uncoordinated scheduling. The results suggest that DCS is a promising
avenue for achieving coordinated parallel scheduling in an environment that
coexists with autonomous node schedulers.

1 Introduction

Coordinated scheduling of parallel jobs across the nodes of a multiprocessor is
well-known to produce benefits in both system and individual job efficiency [11,

1

17, 4, 16, 3]. Without coordinated scheduling, the processes constituting a paral-
lel job suffer high communication latencies because ofprocessor thrashing[11].
While multiprocessor systems typically address these problems with a mix of batch,
gang, and timesharing scheduling (based on kernel scheduler changes), the prob-
lem is more difficult for shared workstation clusters in which stock operating sys-
tems kernels must be run.

With clusters connected by high performance networks that achieve latencies
in the range of tens of microseconds [12, 19, 20, 8, 6], scheduling and context
switching latency can increase communication latency by several orders of mag-
nitude. For example, under Solaris, CPU quanta vary from 20 ms to 200 ms [9];
consequently uncoordinated scheduling can increase best-case latencies (∼ 10 mi-
croseconds) by three to four orders of magnitude, nullifying many benefits of fast
communication subsystems. Uncoordinated scheduling can also decrease the ef-
ficiency of resource utilization. Coordinated scheduling reduces communication
latencies and increases system efficiency by reducing spin-waiting periods and con-
text switches.

Coscheduling for clusters is a challenging problem because it must recon-
cile the demands of parallel and local computations, balancing parallel efficiency
against local interactive response. Ideally a coscheduling system would provide the
efficiency of a batch-scheduled system for parallel jobs and a private timesharing
system for interactive users. In reality, the situation is much more complex, as we
expect some parallel jobs to be interactive. Furthermore, in a cluster environment,
there are advantages to be had in using existing commercial operating systems,
so we restrict ourselves here to approaches that involve augmentation of existing
operating system infrastructure.

The approach to coordinated scheduling that we use is a form of demand-based
coscheduling called dynamic coscheduling (DCS) [16, 15], which achieves coor-
dination by observing the communication between threads. This is a bottom-up,
emergent scheduling approach that exploits the key observation that only those
threads which are communicating need be coscheduled. This approach can achieve
coscheduling without changes to the operating system scheduler or applications
programs.

Our implementation of dynamic coscheduling is based on the Illinois Fast
Messages communication layer which delivers low latency and high bandwidth
user-space to user-space communication [12, 13]. We augmented this system with
blocking communication primitives, and implemented dynamic coscheduling with
changes to a device driver, network interface card firmware, and the communica-
tion library. The device driver influences the operating system scheduler’s deci-
sions through kernel interfaces, based on the communication traffic it observes on
the network interface card.

2

Experiments using a variety of workloads (with different synchronization char-
acteristics) and competitive background loads are used to compare dynamic coschedul-
ing against the unmodified Solaris 2.4 scheduler with spinning and spin-block syn-
chronization. These results indicate that dynamic coscheduling, spin-block, and the
combination of dynamic coscheduling with spin-block synchronization can effec-
tively achieve coscheduling. The effectiveness of spin-block has been previously
documented in [3] (where it was calledimplicit scheduling), and our measure-
ments confirm their results. In addition, our work demonstrates that DCS achieves
coscheduling with both spinning and spin-block synchronization, where implicit
scheduling requires processes to block awaiting message arrivals for coscheduling
to happen. Interestingly, coscheduling based on spin-block alone does not obtain a
fair share of the CPU for parallel jobs, requiring a process to have blocked before
communication can be treated as a demand for coscheduling. DCS can potentially
treat all message arrivals as a demand for coscheduling, and obtains a fair share of
CPU time.

The successful coscheduling approaches accrue benefits of higher system through-
put and lower response time for jobs. However, one must be chary about drawing
broad conclusions based on a modest set of experiments. The dynamics of sched-
ulers and workloads are complex, and we have only begun to understand the ben-
efits and limitations of demand-based coscheduling approaches. Important limi-
tations of our study include use of only a single parallel job1 and a modest sized
cluster2. Both of these limitations are being remedied in future studies.

However, parallel jobs are only an one possible application of DCS — we
believe that DCS-like approaches can be used to implement coordinated resource
management in a much broader range of cases, including:

• real-time and proportional-share processor scheduling

• multimedia and other quality-of-service-sensitive applications

• coordinated access to input/output devices

• coordinated memory management

• efficient parallel computing with demand-paged virtual memory

Most of these areas are still to be explored, and a discussion of specific ap-
proaches to them is beyond the scope of this paper. For the remainder of this paper
we confine ourselves to a focus on achieving low latency, fairness, and efficiency

1A limitation of our FM infrastructure.
2A limitation of our computing infrastructure.

3

for tightly-coupled parallel jobs. We found that DCS performs quite well in these
cases. Our results show that under spin-block synchronization, DCS reduces job
response times by up to 20% over implicit scheduling while maintaining fairness.
Under spinning synchronization, DCS reduces job response times by up to two
decimal orders of magnitude over uncoordinated scheduling with only a slight re-
duction in fairness.

The remainder of the paper is organized as follows. Section 2 summarizes the
relevant related work. Section 3 describes the idea behind dynamic coscheduling
briefly and our prototype implementation. Section 4 outlines our experiments and
empirical results which provide evidence for the viability of dynamic coschedul-
ing. A discussion of the results and their implications as well as limitations of our
experiments are discussed in Section 5, along with some promising directions for
future work. Finally, Section 6 briefly summarizes our results.

2 Related Work

There has been a wide variety of work on coscheduling, beginning with Ouster-
hout’s seminal paper [11] which identified the need. The larger challenge can be
logically divided into three subproblems: detecting threads needing to be cosched-
uled, providing mechanisms for achieving coscheduling, and assessing the perfor-
mance impact.

2.1 Performance Impact of Coscheduling

A variety of efforts on shared-memory machines have demonstrated and character-
ized the benefits of coscheduling for threads in a parallel job. Ousterhout provided
a basic framework and presents a number of ways to achieve coscheduling while
optimizing for system utilization [11]. Later work on the DASH multiprocessor
[7, 2] demonstrated that coscheduling could be used to achieve efficiencies compa-
rable to batch scheduling, while providing more flexible resource sharing. Specif-
ically, coscheduling and process control (dynamic space-partitioning) performed
similarly in the experiments described in [2].

2.2 Detecting Threads Requiring Coscheduling

Coscheduling implies coordinated scheduling of clusters of threads; identification
of such clusters has been pursued through both explicit and implicit approaches.
The shared memory workloads described in [7, 2] are parallel jobs which consist
of thread collections, explicitly indicating which threads should be coscheduled. A
variety of implicit schemes which do not require explicit programmer annotation

4

have been explored. On distributed memory systems, the need for coscheduling
has typically been associated with communication [16, 5, 3, 15]. Feitelson’s Run-
time Activity Working Set Identification (RAWSI) monitors the communication
between processes or threads3 to determine their rate of communication. Working
sets of processes (which require coscheduling) are identified based on their rate
of communication. RAWSI collects the information and uses a coordinated global
mechanism to decide on a schedule. Both our dynamic coscheduling approach [16]
and implicit scheduling [3] detect threads requiring coscheduling through their
communication. However, neither system explicitly identifies the sets of processes
to be coscheduled.

2.3 Mechanisms for Achieving Coscheduling

Once thread clusters have been identified, a mechanism for coscheduling must be
used. In many systems, particularly those with shared memory, a gang scheduler
which has the capability to achieve coordinated context switches across processors
has been assumed [7, 11, 4, 5]. Such systems replace the basic process sched-
uler in the operating system, and schedule the related threads across the processing
nodes. These schedulers can achieve high system efficiency on regular parallel
applications, but have difficulty in selecting alternate jobs to run when processes
block, require simultaneous multi-context switches across the nodes of the pro-
cessor (which causes difficulty in scaling), and for good performance require long
scheduling quanta which can interfere with interactive response, making them a
less attractive choice for use in a cluster of commodity workstations. It is largely
these limitations which motivate the integrated approaches.

2.4 Integrated Scheduling Techniques

The requirement of centralized control and the poor timesharing response of other
scheduling approaches have motivated new, integrated coscheduling approaches.
Such approaches extend local timesharing schedulers, preserving their interactive
response and autonomy. Further, such systems have typically not explicitly iden-
tified sets of processes to be coscheduled, but rather integrate the detection of a
coscheduling requirement with actions to produce effective coscheduling. An ear-
lier paper ondynamic coscheduling[16] detailed analysis and simulation of an
integrated coscheduling technique. Subsequently, Dusseau’simplicit scheduling
was evaluated via simulation in [3], using synthetic single-program, multiple data
applications. Because dynamic coscheduling is discussed extensively in the re-
mainder of the paper, we only describe implicit scheduling here.

3Feitelson’s system actually addresses both distributed and shared memory systems.

5

Implicit scheduling uses spin-block synchronization primitives and the prior-
ity boost given by the SVR4 scheduler to threads which block on input/output to
produce coscheduling. Because threads awakened when the communication com-
pletes obtain a high priority, they are likely to run when their communication peer
has sent just a message (and is therefore running). To further improve performance,
implicit scheduling can also modify the spin times in spin-block synchronization,
adapting to developed skew between threads in a coschedule. Implicit scheduling
has been demonstrated in simulations to achieve good performance on a variety of
“bulk-synchronous” applications (those which perform regular barriers, possibly
with other communication taking place in between barriers), specifically a syn-
thetic workload of SPMD programs. It remains an open question whether good
performance can be achieved for more varied communication, computation, and
synchronization structures, as well as in actual operating environments (with atten-
dant daemons, scheduling idiosyncrasies, and other system activity). However, it
is our understanding that efforts to explore these issues are currently underway.

In contrast, our dynamic coscheduling achieves coscheduling by explicitly treat-
ing all message arrivals (not just those directed to blocked processes) as a demand
for coscheduling, and explicitly schedules the destination processes when it would
be fair to do so through the explicit control of scheduler priorities. While this
appears quite similar to implicit scheduling for the particular case of bulk syn-
chronous jobs using spin-block synchronization, we believe dynamic coscheduling
can be used to achieve coordinated scheduling in a broader range of cases.

3 Dynamic Coscheduling

3.1 Overview

Demand-based coscheduling[16, 15] exploits communication between processes
to deduce which processes should be coscheduled and to effect coscheduling. It
is effective because of the key observation: the communicating (or synchronizing)
processes are the ones that need be coscheduled. Thus, demand-based coschedul-
ing produces emergent coscheduling without requiring explicit identification by
programmer of the computations that need be coscheduled.

Dynamiccoscheduling [16] is a type of demand-based coscheduling in which
scheduling decisions are driven directly by message arrivals. If an arriving message
is directed to a process that isn’t running, a scheduling decision is made. This deci-
sion can be based on a wide variety of factors (e.g., system load, last time run, etc.),
and is generally designed to maximize coscheduling performance while ensuring
fairness of CPU allocation. Previously published modeling and simulation results
[16] indicate that dynamic coscheduling produces robust coscheduling. Thus, the

6

key elements of dynamic coscheduling are:

1. Monitoring communication/thread activity

2. Causing scheduling decisions

3. Making a decision whether to preempt

The latter two points are intimately tied to how the operating system operates.
Causing scheduling decisions depends on the preemption capabilities and times
context switches can occur. The decision procedure in particular can depend on
fairness, and coscheduling stability concerns. The elements of DCS can be im-
plemented in a host of different ways, and our experimental approach is described
below. The details of any such implementation embody only a specific instance of
a dynamic coscheduling.

3.2 Implementation Context

3.2.1 Fast Messages and Myrinet

Our dynamic coscheduling prototype is implemented under Illinois Fast Messages
(FM), a user-level messaging layer developed at the University of Illinois at Urbana-
Champaign [14]. Fast Messages is a high-performance messaging layer that by-
passes the operating system to provide direct access to an underlying Myricom
Myrinet [1] and thereby achieve high performance. Details of FM can be found
in [12, 14]. We also employ an implementation of the Message Passing Interface
(MPI) built atop FM, called MPI-FM [10], for some of the benchmarks.

3.2.2 Implementing Spin-block in Fast Messages

Fast Messages was enhanced with a spin-block mechanism to support our experi-
mentation. Adding a spin-block communication primitive required changes to the
FM firmware, the network device driver, and the FM libraries. The firmware was
modified to add an interrupt generation to wake a sleeping process upon message
arrival. The device driver was modified to add a call puts the caller to sleep, waiting
for a message. Finally, the FM libraries were modified to integrate these changes.

We chose our maximum spin time of 1600µsec based on the empirical ev-
idence of experiments described in [15], in which the maximum delay we saw
for response in the case where a context switch was required was approximately
1500µsec. 1600µsec is also slightly greater than twice the mean context-switch
time plus the message round-trip time. It is noted in [11] that a two-context-switch
maximum spin time is competitive, and in [3] it is argued that two context-switch

7

times might be required for a processor to respond to a message if the message
arrives at the beginning of a context switch to a process that is not the one to which
the message is directed.

3.2.3 Experimental Platform

Our experimental platform consists of seven SPARCstation-2’s connected by a
Myrinet. The SPARCstation-2’s have 40 MHz processors, 16 MB of main memory,
and run the Solaris 2.4 operating system. The Myrinet provides high-bandwidth
communication (up to 80 MB/sec) and is coupled to Lanai Version 2.3 interface
boards (20 MHz Lanai’s which matched the SBUS clock speed).

Despite the obsolete workstations, Illinois Fast Messages Version 2.0 achieves
user-space to user-space latencies of 40µsec with 128-byte messages, and band-
widths of 13 MB/sec.4 FM maps the Myrinet interface board memory and control
registers into both kernel and user space, allowing direct user access to the net-
work for high performance. The mapping into kernel space enables convenient
initialization and control of the device in response to system calls by the kernel.

3.2.4 Sunsoft Solaris Version 2.4

The dynamic coscheduling prototype runs under the Solaris 2.4 operating system.
Two aspects of the implementation are specific to Solaris 2.4 (or this family of
operating system): the mechanism for implementing scheduling decisions, and the
fairness mechanism. Both of these are affected by the priority-decay algorithm of
the scheduler.

Solaris 2.4’s dispatcher for timeshared and interactive jobs is a table-driven
Unix priority-decay scheduler. The scheduler uses 60 queues for user processes;
these are numbered 0 through 59. The priority of a given queue is its number; the
higher the number, the higher the priority. The scheduler schedules the job at the
head of the highest-priority queue that is occupied. Timeslice expiration leads to
demotion to a lower-priority queue; preemption without timeslice expiration causes
the job to be placed at the end of the queue. Once per second, a routine called
ts update increases the priorities of processes that are on run queues, but not
running. The routine also sets a flag (dispwait) on processes that are on sleep
queues; if the flag is set when the process returns to a run queue, it experiences
a substantial priority boost, to the value calledts slpret , as shown in Table 1.
Some of the effects of this priority boost will be described in Section 5.

4Note that recent performance numbers for Illinois Fast Messages Version 2.01 with more modern
Myricom hardware and more modern Sun workstations are≈ 11µsec and 56.3 megabytes/second.

8

Quantum
Prio. (ms) ts slpret

lowest priority 0– 9 200 50
10–19 160 51
20–29 120 52
30–34 80 53
35–39 80 54
40–44 40 55
45–49 40 56
50–54 40 57
55–58 40 58

highest priority 59 20 59

Table 1: Default Solaris 2.4 dispatch table

3.3 DCS Prototype

We describe our prototype by relating each of the high level elements of dynamic
coscheduling to its implementation. This not only provides a clear perspective
on the rather myriad low-level details required for work of this type, but it also
clearly illuminates the approximations and compromises in the prototype. A simple
illustration of the DCS implemenation is shown in Figure 1. Our description of the
implementation is necessarily brief; further detail can be found in [15].

3.3.1 Monitoring Communication/Thread Activity

Communication and thread monitoring is performance on the network interface
card. Myricom’s network interface card provides a programmable processor, run-
ning the Fast Messages firmware. We modified the FM firmware to monitor the
ongoing communication and thread activity. Monitoring communication is sim-
ple; the firmware is essentially a dispatch loop for each communication. The FM
firmware monitors thread activity by periodically reading the host’s kernel mem-
ory the address of the currently running lightweight process (LWP). Because this
operation is achieved with DMA, and must cross an I/O bus bridge, is costs tens
of microseconds. Thus, the firmware reads the value only once per millisecond,
and hence the firmware has only an approximation of the currently running thread.
However, because the scheduling quanta are 20 milliseconds or larger, this ap-
proximation is sufficient. The mechanisms used for dealing with cases where the
information is inaccurate are described in [15].

9

Kernel Network interface
 processor

Initialization:
 write kernel info to
 NIP memory

On message receipt,
 if current_LWP != FM_LWP
 interrupt

Every millisecond,
 DMA to kernel to fetch
 CPU->current_LWP

Device driver

DCS policy and
interrupt handler

Figure 1: Simplified DCS implementation schematic (spin-block implementation
not shown).

if (running_LWP != FM_LWP) {
if (fair to preempt) {

for each kernel thread belonging to FM_LWP {
raise priority to maximum for user mode;

}
preempt currently running thread;

}
}

Figure 2: DCS scheduling decisions are affected in the device driver interrupt han-
dler.

3.3.2 Causing Scheduling Decisions

Scheduling decisions are effected by a device driver for the Myrinet network inter-
face card (NIC). This driver is invoked by interrupts from the NIC, if the message
is received is not for the LWP currently running. FM messages are sent to LWP’s,
not to individual threads within an LWP. So, in the device driver, all of the threads
within the receiving process have their priority boosted as shown in Figure 2. Note
that all of our benchmarks have only a single thread within the process, so this
approximation is not a concern.

If the interrupt routine in the device driver finds that it would be fair to preempt
the currently running process, each thread belonging to the LWP for the parallel
process has its priority raised to the maximum allowable priority for user-mode

10

timesharing processes5 and is placed at the front of the dispatcher queue. Flags are
set to ensure that the Solaris 2.4 scheduler runs on exit from the interrupt routine,
causing a scheduling decision based on the new priorities. This will cause the
process receiving the message to be scheduled unless the process that was running
had a higher priority than the maximum allowable priority for user mode.

3.3.3 Making a Decision Whether to Preempt

In dynamic coscheduling, an incoming message’s process is scheduled only if do-
ing so would not cause unfair CPU allocation. The equalization mechanism de-
scribed in [16] used detailed CPU time numbers. At the time we designed our
implementation, we chose to implement fairness by limiting the frequency of pri-
ority boosts.6 Our fairness criterion is the following inequality:

2E(Tc − Tp)+ C ≥ Tq R (1)

whereE, Tc, Tp, C, Tq, andR are defined as:

E = Exponent

Tc = Current time

Tp = Time of previous priority boost and preemption attempt

C = Constant, in milliseconds

Tq = Length of minimum time quantum (20 msec)

R = Number of jobs in the run queue

Our approach limits the frequency of the preemptions for each cycle the sched-
uler makes through the run queue, assuming that all jobs on the run queue are
running at the highest priority.E andC are chosen empirically for individual ex-
periments.R× Tq is the “length of the run queue in time” if the jobs on the run
queue each run for an entire minimum-length timeslice (Tq). Tc − Tp is the time
since the last preemption. For example, a value of−1 for E would enable a pre-
emption (priority boost) only if the time since the last preemption were at least
twice the length of the run queue in time.

5With the default Solaris 2.4 dispatcher table, this is 59.
6Only later did we learn that a direct implementation based on CPU usage information was pos-

sible. This a subject of future work.

11

4 Empirical Studies

In this section, we present the results of experiments with our FM-DCS system.
These experiments include a range of parallel kernels and competitive workloads.
First, we describe the performance metrics, workload, and scheduling variants
used. Subsequently, we describe the experimental results and give analysis.

4.1 Experimental Parameters and Metrics

4.1.1 Performance Metrics

We chose three performance metrics which capture the scheduler’s effectiveness in
providing both interactive response and high system efficiency.

• Job Response Timeis the wall-clock time from job initation to completion.

• CPU Time is the sum of system and user CPU time for the job. In all ex-
periments, the system time was less than 5%, so this basically captures user
CPU time.

• Fairness is the degree to which threads are allocated equal shares of pro-
cessor time. We normalize CPU share to the ideal equal share and define a
fairness fractionF . An ideal fairness fraction is unity.

F = N
TC

TE
(2)

WhereTC is the CPU time consumed by a process over its lifetime,TE is its
job response time, andN is the number of processes running on the machine.

In all graphs, the mean of several runs is shown along with 90% confidence
intervals computed using Student’s T-distribution. In many cases, the confidence
intervals are too small to be seen on the graph.

4.1.2 Workload

We used three distinct workloads in our experiments. These workloads consist of
parallel kernels, run in competition with sequential jobs that compete for the CPU.
The choice of a single parallel job is dictated by FM’s current limitation to a single
parallel job. The sequential competitors for the first two workloads are processes
that execute a simple spin loop and run for the duration of the test; for the third
workload they are real applications, as described below. The parallel kernels are
designed to exercise different aspects of performance:

12

Program Command line
SOR sor
GNU tar (+ GNU zip) gtar -czhvf /dev/null

/usr/local/Gnu/lib/gnuemacs/etc
Ghostscript gs -q -dNODISPLAY -dNOPAUSE

inputfiles/pakin-ms.ps
inputfiles/quit.ps

Table 2: Applications and arguments used for the Mixed Workload

• Latency is a simple token-passing benchmark in which two nodes repeat-
edly exchange a 128-byte packet. Each nodes records the elapsed wall-clock
time for each round trip, including the sending and receiving of the packet.
System calls for timing add approximately three microseconds to each round
trip.

• Barrier performs a sequence of barriers, interspersing local computation be-
tween the barriers. It provides a distinct pattern of communication and syn-
chronization the than latency benchmark. The root node initially broadcasts
a “passed barrier” message to all nodes, then all nodes enter a spin loop (lo-
cal computation). After the local computation is complete, each node sends
an “at barrier” message to the root node. When the root node has received
“at barrier” messages from all nodes, the loop begins anew.

• Mixed Workload consists of three programs in competition on the clus-
ter. The parallel job is a SOR kernel, a two-dimensional Laplace’s equation
solver on a 128×128 element matrix (written in FORTRAN on an FM-based
implementation of MPI [10]). The sequential jobs are GNU tar, archiving
and compressing a collection of 97 files, totalling 2.1 MB, and Ghostscript,
a PostScript interpreter on a 1.7 MB, 103-page PostScript file. All files were
read from a remote NFS filesystem.

4.1.3 Scheduling Variants

The scheduling types used vary both the synchronization method (blocking or spin-
ning) and whether demand-based coscheduling is included.

• 〈No DCS, spin only〉 The base Solaris 2.4 scheduler and FM using spin-
based polling for incoming messages.

13

• 〈No DCS, spin-block〉 The base Solaris 2.4 scheduler and FM using spin-
block synchronization, blocking after 1600 microseconds of spinning.

• 〈DCS, spin only〉 The Solaris 2.4 scheduler augmented with demand-based
coscheduling, using spinning synchronization (without blocking). The rele-
vant parameters areE, the exponent for the run queue length factor, andC,
the offset constant.

• 〈DCS, spin-block〉 The Solaris 2.4 scheduler augmented with demand-based
coscheduling, using spin-block synchronization, blocking after 1600 mi-
croseconds of spinning. The relevant parameters areE, the exponent for
the run queue length factor, andC, the offset constant.

4.2 Experimental Results

To begin, we present results from our Latency and Barrier benchmarks. These ker-
nels illuminate the behavior of DCS and the underlying Solaris 2.4 scheduler using
different synchronization approaches — spinning and spin-block. Subsequently,
we consider performance on the the Mixed Workload benchmark.

4.2.1 Latency and Barrier benchmarks

Job Response Time

The response times for the Latency and Barrier benchmarks for a range of
coscheduling approaches are shown in Figures 3 and 4. Note that the vertical scale
in the job response time graphs is logarithmic, to accomodate the extremely long
times for uncoordinated scheduling. To see the differences on a linear scale for just
〈DCS, spin-block〉 and〈No DCS, spin-block〉, see Figure 5.

For each graph, the number of sequential competitor jobs per node varies along
the X-axis and the wall-clock time to complete the benchmark varies along the Y-
axis. For each number of competitors, wall-clock times for four different schedul-
ing approaches are presented. As mentioned above, the sequential competitors run
for the duration of the test; the test ends when when the parallel job terminates.

In the presence of competition, the〈No DCS, spin only〉 configuration per-
forms poorly, and especially so for the Barrier benchmark. However, either chang-
ing to spin-block or adding DCS improved the effective coscheduling for both
benchmarks. For the Latency benchmark, spin-block both with and without DCS
are clearly more effective than〈DCS, spin only〉, whereas for the Barrier bench-
mark, 〈No DCS, spin-block〉 and 〈DCS, spin only〉 have job response times that
are quite close to each other, although〈DCS, spin only〉 is slower. In all cases, the

14

Latency test, 1,000,000 message round trips

C
=

-200

C
=

-200

C
=

-200

C
=

10

C
=

-200

10

100

1000

10000

100000

0 1 2 4 8

number of competitor processes

w
al

l-c
lo

ck
 ti

m
e

to
 c

om
pl

et
io

n,
 s

ec
on

ds No DCS, spin
only

DCS, spin only,
E=-3, C=0

No DCS, spin-
block

DCS, spin-block,
E=2

Latency test, 1,000,000 message round trips

C
=

-200

C
=

-200

C
=

-200

C
=

-200

C
=

10

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 4 8

number of competing processes

to
ta

l C
P

U
 ti

m
e,

 s
ec

on
ds

No DCS, spin
only

DCS, spin only,
E=-3, C=0

No DCS, spin-
block

DCS, spin-block,
E=2

Figure 3: Wall-clock time (job response time) and CPU time in the latency bench-
mark for a variety of schedulers and numbers of competitors. Note the log scale
used in the job response time graph; differences are larger than they appear — see
Figure 5 for fine details.

policy 〈DCS, spin-block〉 produces the best coscheduling performance for these
benchmarks.

Fairness

Figure 6 contains fairness data for the Latency and Barrier benchmarks. In each
graph, the number of competitors varies along the X-axis, and the fairness metric
of Equation 2 is given on the Y-axis. As before, for each number of competitors,
data for several scheduling approaches are shown.

The fairness metric clearly distinguishes the different approaches to coschedul-
ing. For the Latency benchmark, the base Solaris 2.4 scheduler delivers slightly
more than a fair share of CPU for the parallel job. The〈No DCS, spin-block〉
approach is a weak competitor, obtaining less and less than its fair share as the
number of competitors is increased. However, in all cases the DCS approaches
come closer to or even surpass a fair share of CPU. Thus we can see that DCS is
a stronger competitor for CPU, whereas the〈No DCS, spin-block〉 approach is a
weaker competitor.

4.2.2 Mixed Workload

Job Response Time

The job response and CPU time results for the Mixed Workload benchmark are

15

Barrier test, 100,000 barriers, 1,000 delay iterations

1

10

100

1000

10000

100000

0 1 2 4 8

number of competitor processes

w
al

l-c
lo

ck
 ti

m
e

to
 c

om
pl

et
io

n,
 s

ec
on

ds

No DCS, spin
only

DCS, spin only,
E=0, C=0

No DCS, spin-
block

DCS, spin-block,
E=2, C=100

Barrier test, 100,000 barriers, 1,000 delay iterations

1

10

100

1000

10000

0 1 2 4 8

Number of competitor processes

to
ta

l C
P

U
 ti

m
e,

 s
ec

on
ds

No DCS, spin only

DCS, spin only,
E=0, C=0

No DCS, spin-
block

DCS, spin-block,
E=2, C=100

Figure 4: Barrier Benchmark wall-clock times (job response times) and CPU times
under a variety of scheduling and competitors. Uniform 1,000 delay iterations
(78 µsec) used on all nodes. Note the log scale used in the job response time
graphs; differences are larger than they appear — see Figure 5 for fine details.

shown in Figure 7. The top four sets of bars correspond to timesharing workloads
in which all jobs are started simultaneously. The response time for each job is at
its right end. Batch performance is shown as a baseline at the bottom.

For the mixed workload, all three of the schedulers employing either DCS
or spin-block achieved system efficiencies and therefore job response times close
to that of batch. The only scheduler which produced poor performance was the
〈No DCS, spin only〉 version, which fails to achieve coscheduling. Amongst the
other schedulers, the combination of〈DCS, spin-block〉 gives the best job response
time, with 〈No DCS, spin-block〉 and〈DCS, spin only〉 not far behind.

The CPU time data (also in Figure 7) clearly capture the benefits of coschedul-
ing on parallel job efficiency. While the CPU times for the sequential jobs are fairly
consistent over the four schedulers, the CPU time for the parallel job, SOR, varies
widely. In the absence of coscheduling, it is nearly four times larger than in the
batch case. The〈DCS, spin only〉 scheduler is able to reduce this CPU time sig-
nificantly, by achieving coscheduling, however the spinning synchronization still
increases CPU time by nearly one half. Adding spin-block effectively eliminates
the CPU time increase with the〈DCS, spin-block〉 case giving best performance.

Fairness

Because jobs in the Mixed Workload test have different lifetimes, fairness is
measured over the period until the first job to terminate does so; this is a shorter pe-

16

Latency test, 1,000,000 message round trips

C
=

-200

C
=

-200

C
=

-200

C
=

-200

C
=

10

0

500

1000

1500

2000

2500

0 1 2 4 8

number of competing processes

w
al

l-c
lo

ck
 ti

m
e

to
 c

om
pl

et
io

n,
 s

ec
on

ds

No DCS, spin-
block

DCS, spin-
block, E=2

Barrier test, 100,000 barriers, 1,000 delay iterations

0

50

100

150

200

250

300

350

400

450

500

0 1 2 4 8

number of competitor processes

w
al

l-c
lo

ck
 ti

m
e

to
 c

om
pl

et
io

n,
 s

ec
on

ds

No DCS, spin-
block

DCS, spin-
block, E=2,
C=100

Figure 5: Latency and Barrier Benchmark wall-clock times (job response
times) shown with a linear scale for the cases〈DCS, spin-block〉 and
〈No DCS, spin-block〉. These are the same experiments as in Figures 4 and 3,
with the linear scale to show detail.

riod than in the Barrier and Latency tests, where all processes run equally long and
fairness is measured over the entire experiment. The results are shown in Figure 8.
As with our Latency and Barrier benchmarks, several key characteristics are clear:
the base Solaris scheduler (〈No DCS, spin only〉) is unfair, the〈DCS, spin only〉
scheduler is least fair, the〈DCS, spin-block〉 scheduler is able to use its fair CPU
share, however, the〈No DCS, spin-block〉 scheduler does not.

4.3 Analysis

We sought in our experiments to answer the following questions:

• Can dynamic coscheduling achieve coscheduling of processes in a parallel
application?

• What are the effects of using spinning synchronization versus those of using
spin-block synchronization?

• What are the effects on fairness, efficiency, and response time of using DCS?

In all three workloads, DCS clearly coscheduled the parallel applications. This
can be seen from both the reduced job response times and the fact that fairness
could be achieved even under spin-block synchronization. More detailed evidence,

17

Latency test, 1,000,000 message round trips

C
=

-200

C
=

-200

C
=

-200

C
=

-200

C
=

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 4 8

number of competitor processes

ra
tio

 o
f C

P
U

 s
ha

re
 to

 id
ea

l f
ai

r
sh

ar
e No DCS, spin

only

DCS, spin only,
E=-3, C=0

No DCS, spin-
block

DCS, spin-block,
E=2

Barrier test, 100,000 barriers, 1,000 delay iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 4 8

number of competitor processes

ra
tio

 o
f C

P
U

 s
ha

re
 to

 id
ea

l f
ai

r
sh

ar
e

No DCS, spin
only

DCS, spin only,
E=0, C=0

No DCS, spin-
block

DCS, spin-block,
E=2, C=100

Figure 6: Fairness metric for the Latency and Barrier benchmarks.

in the form of histograms of message round-trip times, is presented in [15]. The un-
modified Solaris 2.4 scheduler also achieved some coscheduling under spin-block
synchronization, as is discussed at greater length in Section 5. However, the un-
modified Solaris 2.4 scheduler (〈No DCS, spin only〉) failed to achieve coschedul-
ing under spinning synchronization, as indicated by increased CPU and response
times.

Under spinning synchronization, DCS significantly reduced both CPU and
job response time. However, to achieve better coscheduling, it was necessary
to allow DCS to use up to 30% more than its fair share of CPU time. For the
〈DCS, spin only〉 scheduler, there is a clear tradeoff between fairness and coschedul-
ing. It appears necessary to elevate the priority of parallel jobs to achieve coschedul-
ing. Even with this priority elevation, efficiency declined with increasing load for
〈DCS, spin only〉, but not nearly as quickly as for the base〈No DCS, spin only〉
scheduler.

Under spin-block synchronization, coscheduling of a single parallel job could
be achieved, and DCS allows fairness to be finely controlled to almost perfect val-
ues in most cases. Without DCS, parallel jobs obtained as much as 20% less than
their fair share of CPU time. In effect, this meant that parallel jobs scheduled un-
der 〈DCS,spin-block〉 in the presence of competition achieved better job response
times than those scheduled under〈No DCS, spin only〉.

CPU times were nearly identical for schedulers which achieved coscheduling.
In the case of the latency test, DCS required slightly more CPU time than the
〈No DCS, spin only〉 scheduler. However, we have tracked this anomaly down an
extra 5 microseconds latency being required for each message transmission, be-

18

Mixed workload test

0 50 100 150 200 250 300 350

Batch

DCS, spin-block, E=2,
C=100

No DCS, spin-block

DCS, spin only, E=-1,
C=0

No DCS, spin only

wall-clock time to completion, seconds

gtar
gs
SOR

Mixed workload test

0 20 40 60 80 100 120 140 160 180 200

DCS, spin-block, E=2,
C=100

No DCS, spin-block

DCS, spin only, E=-1,
C=0

No DCS, spin only

CPU time, seconds

gtar
gs
SOR

Figure 7: Job response time and CPU time in the mixed workload test. In the
batch case, jobs were executed in sequence. (N.b.: axes and colors have different
significance in these graphs than in the Latency and Barrier results.)

cause of several extra instructions performed on message receipt under DCS in the
Lanai control program’s main loop [15] .7 The effect is not apparent for the Bar-
rier benchmark and Mixed Workload benchmark, because additional computation
is performed which allows the overhead to be overlapped.

5 Discussion

In this section we examine the mechanisms responsible for our experimental re-
sults. We first discuss the workings of DCS and their implications; then we discuss
the coscheduling effects of spin-block message receipt in schedulers that provide a
priority boost on process wakeup; finally we describe directions for future work.

5.1 Mechanisms for Coscheduling with DCS

DCS achieves coscheduling for parallel processes because the arrival of a mes-
sage for a process not currently running can cause it to be scheduled immediately.
In programs with fine-grained communication, the sender and receiver are sched-
uled together and run until one of them blocks or is preempted. Larger collections
of communicating processes are coscheduled by transitivity. Our experiments indi-
cate that this basic, low-level mechanism effectively coschedules parallel processes

7This effect would be reduced with faster network controllers.

19

Mixed workload test

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DCS, spin-block, E=2,
C=100

No DCS, spin-block

DCS, spin only, E=-1,
C=0

No DCS, spin only

ratio of CPU share to ideal fair share

gtar
gs
SOR

Figure 8: Fairness in the mixed workload test. Note that fairness is shown here for
competitor jobs as well.

under both spinning and spin-block synchronization.
DCS enables applications with spinning synchronization to execute more ef-

ficiently and thereby achieve lower job response times when compared to the un-
modified Solaris 2.4 scheduler. In effect, the coscheduling allows the use of syn-
chronization strategies previously only viable on batch scheduled or dedicated ma-
chines. However, our experiments also show that spinning synchronization under
DCS is less efficient than spin-block synchronization (further data are reported
in [15]). We believe that this problem is exacerbated in Solaris 2.4 by the varying
scheduling quanta used by the dispatcher (shown in Table 1), which can cause even
processes that start their timeslices in synchrony to suffer long spinning phases
when one ends its timeslice before others.

5.2 Coscheduling and Synchronization Mechanisms

For all three benchmarks, DCS with spin-block or spinning message receipt achieved
coscheduling. The unmodified Solaris 2.4 schedule with spin-block synchroniza-
tion (〈No DCS, spin-block〉) also achieved coscheduling, though with less success
as the system load increases. Because spin-block is a weak competitor for CPU
(each block yields), the parallel jobs use progressively less of their fair share of
the processor with increasing load. This suggests that an explicit priority boosting
mechanism for coscheduling may be appropriate for multitasking parallel system.

The〈DCS, spin-block〉 and〈No DCS, spin-block〉 schedulers were demonstrated
to be most effective in achieving coscheduling efficiently (the〈DCS, spin-block〉

20

Balanced barrier test, 100,000 iterations

1

10

100

1000

10000

100000

0 1 2 4 8

number of competing processes

w
al

l-c
lo

ck
 ti

m
e

to
 c

om
pl

et
io

n,
 s

ec
on

ds No DCS, spin-block, no
priority boost

DCS, spin-block, no priority
boost, E=2, C=100

No DCS, spin only

DCS, spin only, E=0, C=0

No DCS, spin-block

DCS, spin-block, E=2,
C=100

Figure 9: Barrier test response times with the Solaris 2.4 priority boost for newly-
awakened processes disabled. For comparison, times with the normal Solaris 2.4
dispatcher table are also shown.

scheduler was slightly better). We explore the surprising reasons for this the fol-
lowing discussion.

Spin-block synchronization in combination with the Solaris 2.4 scheduler was
reported to achieve coscheduling [3] (for a synthetic bulk-synchronous workload).
The posited mechanism for thisimplicit schedulingis the following: a process
spins awaiting the arrival of a message and blocks if the message does not ar-
rive in a short period; when the message arrives, because of the priority boost de-
scribed in Section 3.2.4, the process will often be scheduled immediately, resulting
in coscheduling. This priority boost is a characteristic of SVR4 derived schedulers
and designed to enable input/output intensive jobs to get higher priority.8

Our experiments confirm that this priority boost is the mechanism produc-
ing coscheduling for implicit scheduling. We ran the Barrier benchmark (see
Section 4.2.1) with an altered timesharing dispatcher table that cancels the pri-
ority boost by giving reawakened processes the same priority they had when they
blocked. Specifically, in Table 1, we set the value ofts slpret for each queuen
to n. The results (see Figure 9) show that without the priority boost, no coschedul-
ing is achieved. Job response times for spin-block are similar to those under spin-

8Not all Unix priority-decay schedulers implement this boost in this way; for example, the OSF/1-
derived Digital Unix gives a priority boost only to processes sleeping uninterruptibly in the kernel,
which would exclude some ways of implementing spin-block message receipt. However, based on
the results reported in [3] and our own work, it seems clear that the SVR4 approach is a very useful
one for coscheduling.

21

ning synchronization. This explains why the〈DCS, spin-block〉 and〈No DCS, spin-block〉
yielded such similar performance: the priority boosting performed by the So-
laris 2.4 scheduler causes the processes receiving messages to be run immediately
on message arrival — which is exactly how DCS works.

While the combination of the Solaris 2.4 scheduler and spin-block synchro-
nization mimics DCS in this case, there are a wide variety of opportunities for
DCS to coschedule programs with other characteristics. For example, DCS can
schedule on message arrival programs that are not on sleep queues (due to polling,
infrequent communication, asynchronous communication, or one-sided data move-
ment). DCS can also be used to coschedule sets of threads, whereas the SVR4 and
spin-block combination is only applicable for single thread coscheduling.

5.3 Directions for Future Work

Experiments that vary the granularity of communication [15] indicate that spin-
block message receipt paired with DCS or the unmodified Solaris 2.4 scheduler
(with priority boosts on process wakeup) is less successful at coscheduling as the
frequency of communication decreases. With relatively coarse-grained communi-
cation, DCS is more successful at coscheduling than the unmodified Solaris 2.4
scheduler, but no longer causes parallel processes to receive their full share of the
CPU. Characterizing this sensitivity with a broader workload and exploring mech-
anisms to improve robustness of coscheduling (perhaps by artificially increasing
communication frequency) are interesting topics for further research.

DCS with spinning synchronization is not as efficient as spin-block synchro-
nization because processes which are not coscheduled simply spin until the end of
their timeslice. Improving the efficiency of DCS with spinning synchronization is
desirable, but must be achieved while maintaining fairness. We plan to explore a
variety of approaches, including spin-yield synchronization, time slice size match-
ing, or some form of shared priority for parallel jobs.

Our current prototype does not automatically achieve fairness — it isn’t self
calibrating. We originally thought a single setting of the fairness parameters would
work for almost all cases, but in fact different parameter settings were required for
individual experiments. An automatic mechanism is clearly required for any ro-
bust coscheduling system. Obviously, the widespread use of priority-decay sched-
ulers complicates the situation — stride schedulers [21]) or other proportional share
schedulers would provide a better platform for DCS, by separating the concepts of
execution order and processor share. Our current efforts in the context of priority-
decay schedulers focus on obtaining more accurate estimates of recent run time to
implement an equalization criterion [16].

The experiments described in this paper have two key limitations: a single par-

22

allel job and a cluster of only seven nodes were used in all benchmarks. Future
DCS experiments must include multiple parallel jobs, larger workloads, and larger
configurations. Such broadening would enable evaluation of a wide range of is-
sues, including the viability of the epoch number mechanism [16] for multitasking
parallel jobs. Such efforts are already underway as part of the (name omitted for
blind reviewing) Project.

Most of the workloads used to study coscheduling [3, 15] are quite regular in
structure, communication, and computation. Such regularity often fails to exercise
the behavioral richness of dynamic systems. Study of more irregular workloads
and background loads are desirable.

6 Summary

We have presented an implementation of dynamic coscheduling on a cluster of
workstations using a high-performance messaging layer. Experimental results found
using our DCS implementation show that dynamic coscheduling can provide good
performance for a parallel process running on a cluster of workstations in compe-
tition with serial processes. Performance was close to ideal for the case of fine-
grained processes using spin-block message receipt: CPU times were nearly the
same as for batch processing, and DCS reduced job response times by up to 20%
over implicit scheduling while maintaining near-perfect fairness. Under spinning
message receipt, DCS improved efficiency and reduced job response times by as
much as two decimal orders of magnitude over the uncoordinated scheduling of
the base Solaris 2.4 scheduler, with only a small penalty in fairness.

Further research remains to be done, with multiple parallel processes, a larger
workstation cluster, and different sorts of test workloads, but our results to date
show that DCS is a promising means of achieving coscheduling in workstation
clusters.

Acknowledgments

Bert Halstead, Larry Rudolph, and Chandu Thekkath have all given us valuable
suggestions and comments on the work described here. Mario Lauria helped us to
use his implementation of MPI on FM. Roy Campbell and Dave Raila provided the
workstation cluster at UIUC that we used in our experiments.

Sobalvarro and Weihl were supported in part by the Advanced Research Projects
Agency under Contract N00014-94-1-0985, by grants from IBM and AT&T, and
by an equipment grant from DEC.

23

Pakin and Chien are supported in part by in part by DARPA Order #E313
through the US Air Force Rome Laboratory Contract F30602-96-1-0286, NSF
grants MIP-92-23732, and NASA grant NAG 1-613. Support from Intel Corpora-
tion, Tandem Computers, Hewlett-Packard, Microsoft, and Motorola is also grate-
fully acknowledged. Andrew Chien is supported in part by NSF Young Investigator
Award CCR-94-57809.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

References

[1] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet—a gigabit-per-second
local-area network. IEEE Micro, 15(1):29–36, February 1995. Available from
http://www.myri.com/research/publications/Hot.ps .

[2] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and page migration for multiprocessor compute servers. In Proceedings
of the Sixth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 12–24, San Jose, California, 1994.

[3] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. Effective dis-
tributed scheduling of parallel workloads. InACM SIGMETRICS ’96 Conference
on the Measurement and Modeling of Computer Systems, 1996. Available from
http://www.cs.berkeley.edu/˜dusseau/Papers/sigmetrics96.ps .

[4] Dror G. Feitelson and Larry Rudolph. Distributed hierarchical control for parallel
processing.IEEE Computer, 23(5):65–77, May 1990.

[5] Dror G. Feitelson and Larry Rudolph. Coscheduling based on run-time identification
of activity working sets.International Journal of Parallel Programming, 23(2):135–
160, April 1995.

[6] Richard B. Gillett. Memory Channel network for PCI.
IEEE Micro, 16(1):12–18, February 1996. Available from
http://www.computer.org/pubs/micro/web/m1gil.pdf .

[7] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operat-
ing system scheduling policies and synchronization methods on the performance
of parallel applications. InACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 120–132, May 1991. Available from
http://xenon.stanford.edu/˜tucker/papers/sigmetrics.ps .

[8] D. B. Gustavson. The scalable coherent interface and related standards projects.IEEE
Micro, 12(1), Feb. 1992.

24

[9] Sun Microsystems Inc.ts dptbl(4) manual page.SunOS 5.4 Manual. Section 4.

[10] Mario Lauria and Andrew Chien. MPI-FM: High performance MPI on workstation
clusters. Submitted to the Journal of Parallel and Distributed Computing. Available
from http://www-csag.cs.uiuc.edu/papers/mpi-fm.ps .

[11] John K. Ousterhout. Scheduling techniques for concurrent systems. InProceedings
of the 3rd International Conference on Distributed Computing Systems, pages 22–30,
October 1982.

[12] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages (FM): Efficient,
portable communication for workstation clusters and massively-parallel processors.
IEEE Concurrency, 1997.

[13] Scott Pakin, Mario Lauria, Matt Buchanan, Kay Hane, Louis Giannini, Jane
Prusakova, and Andrew Chien.Fast Messages 2.0 User Documentation, October
1996.

[14] Scott Pakin, Mario Lauria, and Andrew Chien. High performance messaging on
workstations: Illinois Fast Messages (FM) for Myrinet. InSupercomputing, De-
cember 1995. Available fromhttp://www-csag.cs.uiuc.edu/papers/
myrinet-fm-sc95.ps .

[15] Patrick G. Sobalvarro.Demand-based Coscheduling of Parallel Jobs on Multipro-
grammed Multiprocessors. PhD thesis, Massachusetts Institute of Technology, 1997.
MIT/LCS/TR-710.

[16] Patrick G. Sobalvarro and William E. Weihl. Demand-based coscheduling
of parallel jobs on multiprogrammed multiprocessors. InProceedings of
the Parallel Job Scheduling Workshop at IPPS ’95, 1995. Available from
http://www.psg.lcs.mit.edu/˜pgs/papers/jsw-for-springer.ps .
Also appears in Springer-Verlag Lecture Notes in Computer Science, Vol. 949.

[17] Andrew Tucker. Efficient scheduling on multiprogrammed shared-memory multipro-
cessors. Technical Report CSL-TR-94-601, Stanford University Department of Com-
puter Science, November 1993. Available fromhttp://elib.stanford.edu/
Dienst/UI/2.0/Describe/stanford.cs/CSL-TR-94-601 .

[18] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for mul-
tiprogrammed shared-memory multiprocessors. InProceedings of the 12th ACM
SIGOPS Symposium on Operating Systems Principles, pages 159–186, 1989. Avail-
able fromhttp://xenon.stanford.edu/˜tucker/papers/sosp.ps .

[19] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages: a mecha-
nism for integrated communication and computation. InProceedings of the Interna-
tional Symposium on Computer Architecture, 1992.

[20] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net:
A user-level network interface for parallel and distributed computing. InPro-
ceedings of the 15th ACM Symposium on Operating Systems Principles, December
1995. Available fromhttp://www.cs.cornell.edu/Info/Projects/
ATM/sosp.ps .

25

[21] Carl A. Waldspurger.Lottery and Stride Scheduling: Flexible Proportional-Share
Resource Management. PhD thesis, Massachusetts Institute of Technology, 1995.
MIT/LCS/TR-667.

26

