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Abstract
This paper describes the DIGITAL Continuous Profil-
ing Infrastructure, a sampling-based profiling system
designed to run continuously on production systems.
The system supports multiprocessors, works on unmod-
ified executables, and collects profiles for entire sys-
tems, including user programs, shared libraries, and the
operating system kernel. Samples are collected at a
high rate (over 5200 samples/sec per 333-MHz proces-
sor), yet with low overhead (1–3% slowdown for most
workloads).

Analysis tools supplied with the profiling system
use the sample data to produce an accurate account-
ing, down to the level of pipeline stalls incurred by
individual instructions, of where time is being spent.
When instructions incur stalls, the tools identify pos-
sible reasons, such as cache misses, branch mispredic-
tions, and functional unit contention. The fine-grained
instruction-level analysis guides users and automated
optimizers to the causes of performance problems and
provides important insights for fixing them.

1 Introduction
The performance of programs running on modern high-
performance computer systems is often hard to under-
stand. Processor pipelines are complex, and mem-
ory system effects have a significant impact on perfor-
mance. When a single program or an entire system does
not perform as well as desired or expected, it can be
difficult to pinpoint the reasons. The DIGITAL Contin-
uous Profiling Infrastructure provides an efficient and
accurate way of answering such questions.

The system consists of two parts, each with novel
features: a data collection subsystem that samples pro-
gram counters and records them in an on-disk database,
and a suite of analysis tools that analyze the stored pro-
file information at several levels, from the fraction of
CPU time consumed by each program to the number of
stall cycles for each individual instruction. The infor-
mation produced by the analysis tools guides users to
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time-critical sections of code and explains in detail the
static and dynamic delays incurred by each instruction.

We faced two major challenges in designing and im-
plementing our profiling system: efficient data collec-
tion for a very high sampling rate, and the identifica-
tion and classification of processor stalls from program-
counter samples. The data collection system uses pe-
riodic interrupts generated by performance counters
available on DIGITAL Alpha processors to sample pro-
gram counter values. (Other processors, such as Intel’s
Pentium Pro and SGI’s R10K, also have similar hard-
ware support.) Profiles are collected for unmodified ex-
ecutables, and all code is profiled, including applica-
tions, shared libraries, device drivers, and the kernel.
Thousands of samples are gathered each second, allow-
ing useful profiles to be gathered in a relatively short
time. Profiling is also efficient: overhead is about 1-
3% of the processor time, depending on the workload.
This permits the profiling system to be run continuously
on production systems and improves the quality of the
profiles by minimizing the perturbation of the system
induced by profiling.

The collected profiles contain time-biased samples of
program counter values: the number of samples associ-
ated with a particular program counter value is propor-
tional to the total time spent executing that instruction.
Samples that show the relative number of cache misses,
branch mispredictions, etc. incurred by individual in-
structions are also collected.

Some of the analysis tools use the collected samples
to generate the usual histograms of time spent per im-
age, per procedure, per source line, or per instruction.
Other analysis tools use a detailed machine model and
heuristics described in Section 6 to convert time-biased
samples into the average number of cycles spent exe-
cuting each instruction, the number of times each in-
struction was executed, and explanations for any static
or dynamic stalls.

Section 3 contains several examples of the output
from our tools. As discussed there, the combination of
fine-grained instruction-level analysis and detailed pro-
filing of long-running workloads has produced insights
into performance that are difficult to achieve with other
tools. These insights have been used to improve the
performance of several major commercial applications.

The output of the analysis tools can be used directly
by programmers; it can also be fed into compilers, link-
ers, post-linkers, and run-time optimization tools. The

1



profiling system is freely available on the Web [7]; it
has been running on DIGITAL Alpha processors under
DIGITAL Unix since September 1996, and ports are in
progress to Alpha/NT and OpenVMS. Work is under-
way to feed the output of our tools into DIGITAL’s op-
timizing backend [3] and into the Spike/OM post-linker
optimization framework [5, 6]. We are also studying
new kinds of profile-driven optimizations made possi-
ble by the fine-grained instruction-level profile infor-
mation provided by our system.

Section 2 discusses other profiling systems. Sec-
tion 3 illustrates the use of our system. Sections 4 and 5
describe the design and performance of our data collec-
tion system, highlightingthe techniques used to achieve
low overhead with a high sampling rate. Section 6 de-
scribes the subtle and interesting techniques used in our
analysis tools, explaining how to derive each instruc-
tion’s CPI, execution frequency, and explanations for
stalls from the raw sample counts. Finally, Section 7
discusses future work and Section 8 summarizes our re-
sults.

2 Related Work
Few other profiling systems can monitor complete sys-
tem activity with high-frequency sampling and low
overhead; only ours and Morph [26] are designed to run
continuously for long periods on production systems,
something that is essential for obtaining useful profiles
of large complex applications such as databases. In ad-
dition, we know of no other system that can analyze
time-biased samples to produce accurate fine-grained
information about the number of cycles taken by each
instruction and the reasons for stalls; the only other
tools that can produce similar information use simula-
tors, at much higher cost.

Table 1 compares several profiling systems. The
overheadcolumn describes how much profiling slows
down the target program; low overhead is defined ar-
bitrarily as less than 20%. Thescopecolumn shows
whether the profiling system is restricted to a single
application (App) or can measure full system activity
(Sys). Thegraincolumn indicates the range over which
an individual measurement applies. For example, gprof
counts procedure executions, whereas pixie can count
executions of each instruction. Prof goes even further
and reports the time spent executing each instruction,
which, given the wide variations in latencies of differ-
ent instructions, is often more useful than just an exe-
cution count. Thestallscolumn indicates whether and

how well the system can subdivide the time spent at
an instruction into components like cache miss latency,
branch misprediction delays, etc.

System Overhead Scope Grain Stalls
pixie High App inst count none
gprof High App proc count none
jprof High App proc count none
quartz High App proc count none
MTOOL High App inst count/time inaccurate
SimOS High Sys inst time accurate
Speedshop (pixie) High App inst count none
Vtune (dynamic) High App inst time accurate
prof Low App inst time none
iprobe High Sys inst time inaccurate
Morph Low Sys inst time none
Vtune (sampler) Low Sys inst time inaccurate
SpeedShop (timer Low Sys inst time inaccurate

and counters)
DCPI Low Sys inst time accurate

Table 1: Profiling systems

The systems fall into two groups. The first in-
cludespixie [17], gprof [11], jprof [19], quartz [1],
MTOOL [10], SimOS [20], part of SGI’s Speed-
Shop[25], and Intel’sVtunedynamic analyzer [24].
These systems use binary modification, compiler sup-
port, or direct simulation of programs to gather mea-
surements. They all have high overhead and usually
require significant user intervention. The slowdown is
too large for continuous measurements during produc-
tion use, despite techniques that reduce instrumenta-
tion overhead substantially [2]. In addition, only the
simulation-based systems provide accurate information
about the locations and causes of stalls.

The systems in the second group use statistical sam-
pling to collect fine-grained information on program
or system behavior. Some sampling systems, includ-
ing Morph [26], prof [18], and part of SpeedShop, rely
on an existing source of interrupts (e.g., timer inter-
rupts) to generate program-counter samples. This pre-
vents them from sampling within those interrupt rou-
tines, and can also result in correlations between the
sampling and other system activity. By using hardware
performance counters and randomizing the interval be-
tween samples, we are able to sample activity within
essentially the entire system (except for our interrupt
handler itself) and to avoid correlations with any other
activity.

Other systems that use performance counters, includ-
ing iprobe [13], the Vtunesampler [24], and part of
SpeedShop, share some of the characteristics of our
system. However, iprobe and Vtune cannot be used for
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continuous profiling, mostly because they need a lot of
memory for sample data. In addition, iprobe, the Vtune
sampler, and SpeedShop all fail to map the sample data
accurately back to individual instructions. In contrast,
our tools produce an accurate accounting of stall cy-
cles incurred by each instruction and the reasons for the
stalls.

3 Data Analysis Examples
Our system has been used to analyze and improve the
performance of a wide range of complex commercial
applications, including graphics systems, databases, in-
dustry benchmark suites, and compilers. For exam-
ple, our tools pinpointed a performance problem in a
commercial database system; fixing the problem re-
duced the response time of an SQL query from 180
to 14 hours. In another example, our tools’ fine-
grained instruction-level analyses identified opportuni-
ties to improve optimized code produced by DIGITAL’s
compiler, speeding up the mgridSPECfp95 benchmark
by 15%.

Our system includes a large suite of tools to analyze
profiles at different levels of detail. In this section, we
present several examples of the following tools:

� dcpiprof : Display the number of samples per pro-
cedure (or per image).

� dcpicalc: Calculate the cycles-per-instruction and
basic block execution frequencies of a procedure,
and show possible causes for stalls (see Section 6).

� dcpistats: Analyze the variations in profile data
from many runs.

Other tools annotate source and assembly code with
sample counts, highlight the differences in two sepa-
rate profiles for the same program, summarize where
time is spent in an entire program (the percentage of cy-
cles spent waiting for data-cache misses, etc.; see Fig-
ure 4 for an example of this kind of summary for a sin-
gle procedure), translate profile data into pixie format,
and produce formatted Postscript output of annotated
control-flow graphs.

3.1 Procedure-Level Bottlenecks

Dcpiprof provides a high-level view of the performance
of a workload. It reads a set of sample files and displays
a listing of the number of samples per procedure, sorted
by decreasing number of samples. (It can also list the

samples by image, rather than by procedure.) Figure 1
shows the first few lines of the output of dcpiprof for
a run of an X11 drawing benchmark. For example, the
ffb8ZeroPolyArc routine accounts for 33.87% of
the cycles for this workload. Notice that this profile
includes code in the kernel (/vmunix ) as well as code
in shared libraries.

3.2 Instruction-Level Bottlenecks

Dcpicalc provides a detailed view of the time spent
on each instruction in a procedure. Figure 2illus-
trates the output of dcpicalc for the key basic block in
a McCalpin-like copy benchmark [15], running on an
AlphaStation 500 5/333. The copy benchmark runs the
following loop wheren = 2000000 and the array ele-
ments are 64-bit integers:

for (i = 0; i < n; i++)
c[i] = a[i];

The compiler has unrolled the loop four times, resulting
in four loads and stores per iteration. The code shown
drives the memory system at full speed.

At the beginning of the basic block, dcpicalc shows
summary information for the block. The first two lines
display the best-case and actual cycles per instruction
(CPI) for the block. The best-case scenario includes all
stalls statically predictable from the instruction stream
but assumes that there are no dynamic stalls (e.g., all

*** Best-case 8/13 = 0.62CPI
*** Actual 140/13 = 10.77CPI

Addr Instruction Samples CPI Culprit
pD (p = branch mispredict)
pD (D = DTB miss)

009810 ldq t4, 0(t1) 3126 2.0cy
009814 addq t0, 0x4, t0 0 (dual issue)
009818 ldq t5, 8(t1) 1636 1.0cy
00981c ldq t6, 16(t1) 390 0.5cy
009820 ldq a0, 24(t1) 1482 1.0cy
009824 lda t1, 32(t1) 0 (dual issue)

dwD (d = D-cache miss)
dwD ... 18.0cy
dwD (w = write-buffer overflow)

009828 stq t4, 0(t2) 27766 18.0cy 9810
00982c cmpult t0, v0, t4 0 (dual issue)
009830 stq t5, 8(t2) 1493 1.0cy

s (s = slotting hazard)
dwD
dwD ... 114.5cy
dwD

009834 stq t6, 16(t2) 174727 114.5cy 981c
s

009838 stq a0, 24(t2) 1548 1.0cy
00983c lda t2, 32(t2) 0 (dual issue)
009840 bne t4, 0x009810 1586 1.0cy

Figure 2: Analysis of Copy Loop.
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Total samples for event type cycles = 6095201, imiss = 1117002

The counts given below are the number of samples for each listed event type.
==============================================================================================

cycles % cum% imiss % procedure image
2064143 33.87% 33.87% 43443 3.89% ffb8ZeroPolyArc /usr/shlib/X11/lib_dec_ffb_ev5.so

517464 8.49% 42.35% 86621 7.75% ReadRequestFromClient /usr/shlib/X11/libos.so
305072 5.01% 47.36% 18108 1.62% miCreateETandAET /usr/shlib/X11/libmi.so
271158 4.45% 51.81% 26479 2.37% miZeroArcSetup /usr/shlib/X11/libmi.so
245450 4.03% 55.84% 11954 1.07% bcopy /vmunix
209835 3.44% 59.28% 12063 1.08% Dispatch /usr/shlib/X11/libdix.so
186413 3.06% 62.34% 36170 3.24% ffb8FillPolygon /usr/shlib/X11/lib_dec_ffb_ev5.so
170723 2.80% 65.14% 20243 1.81% in_checksum /vmunix
161326 2.65% 67.78% 4891 0.44% miInsertEdgeInET /usr/shlib/X11/libmi.so
133768 2.19% 69.98% 1546 0.14% miX1Y1X2Y2InRegion /usr/shlib/X11/libmi.so

Figure 1: The key procedures from an x11perf run.

load instructions hit in the D-cache). For the copy
benchmark, we see that the actual CPI is quite high at
10.77, whereas the best theoretical CPI (if no dynamic
stalls occurred) is only 0.62. This shows that dynamic
stalls are the significant performance problem for this
basic block.

Dcpicalc also lists the instructions in the basic block,
annotated with information about the stall cycles (and
program source code, if the image contains line num-
ber information). Above each assembly instruction that
stalls, dcpicalc insertsbubblesto show the duration and
possible cause of the stall. Each line of assembly code
shows, from left to right, the instruction’s address, the
instruction, the number of PC samples at this instruc-
tion, the average number of cycles this instruction spent
at the head of the issue queue, and the addresses of
other instructions that may have caused this instruction
to stall. Note that Alpha load and load-address instruc-
tions write their first operand; 3-register operators write
their third operand.

Each line in the listing represents a half-cycle, so it
is easy to see if instructions are being dual-issued. In
the figure, we see that there are two large stalls, one for
18.0 cycles at instruction009828, and another for 114.5
cycles at instruction 009834. The bubbles labeleddwD
before the stalledstq instruction at 009828 indicate
three possible reasons: a D-cache miss incurred by the
ldq at 009810 (which provides the data needed by the
stq ), a write-buffer overflow, or a DTB miss. Thestq
instruction at 009834 is also stalled for the same three
possible reasons. The lines labeleds indicate static
stalls; in this case they are caused by the 21164 not be-
ing able to dual-issue adjacentstq instructions.

As expected, the listing shows that as the copy loop
streams through the data the performance bottleneck is

mostly due to memory latency. Also, the six-entry write
buffer on the 21164 is not able to retire the writes fast
enough to keep up with the computation. DTB miss is
perhaps not a real problem since the loop walks through
each page and may incur DTB misses only when cross-
ing a page boundary. Dcpicalc will likely rule out DTB
miss if givenDTBMISS samples but lists it as a pos-
sibility here because our analysis is designed to make
pessimistic assumptions when information is limited.

3.3 Comparing Performance

Several benchmarks that we used to analyze the per-
formance of the data collection system showed a no-
ticeable variance in running times across different runs.
We used our tools to examine one of these benchmarks,
wave5 from the sequentialSPECfp95 workload, in more
detail.

We ran wave5 on an AlphaStation 500 5/333 and ob-
served running times that varied by as much as 11%.
We ran dcpistats on 8 sets of sample files to isolate
the procedures that had the greatest variance; dcpistats
reads multiple sets of sample files and computes statis-
tics comparing the profile data in the different sets. The
output of dcpistats for wave5 is shown in Figure 3.

The figure shows the procedures in the wave5 pro-
gram, sorted by the normalized range,i.e., the dif-
ference between the maximum and minimum sample
counts for that procedure, divided by the sum of the
samples. We see that the proceduresmooth had a
much larger range than any of the other procedures.
Next, we ran dcpicalc onsmooth for each profile, ob-
taining a summary of the fraction of cycles consumed
by each type of dynamic and static stall within the pro-
cedure.
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Number of samples of type cycles
set 1 = 860301 set 2 = 862645 se t 3 = 871952 se t 4 = 870780 TOTAL 7144601
set 5 = 942929 set 6 = 893154 se t 7 = 890969 se t 8 = 951871

Statistics calculated using the sample counts for each procedure from 8 different sample set(s)
=============================================================================================

range% sum sum% N mean std-dev min max procedure
11.32% 441040.00 6.17% 8 55130.00 21168.70 38155.00 88075.00 smooth_

1.44% 72385.00 1.01% 8 9048.12 368.74 8578.00 9622.00 fftb_
1.39% 71129.00 1.00% 8 8891.12 327.68 8467.00 9453.00 fftf_
0.94% 4242079.00 59.37% 8 530259.87 14097.11 515253.00 555180.00 parmvr_
0.68% 378622.00 5.30% 8 47327.75 1032.09 46206.00 48786.00 putb_
0.65% 410929.00 5.75% 8 51366.13 1161.61 50420.00 53110.00 vslv1p_

Figure 3: Statistics across eight runs of theSPECfp95 benchmark wave5.

The summary for the fastest run (the profile with the
fewest samples) is shown in Figure 4. The summary
for the slowest run (not shown) shows that the percent-
ages of stall cycles attributed to D-cache miss, DTB
miss, and write buffer overflow increase dramatically to
44.8-44.9%, 14.0-33.9%, and 0.0-18.3% respectively.

*** Best-case 14686/36016 = 0.41CPI,
*** Actual 35171/36016 = 0.98CPI
***
*** I-cache (not ITB) 0.0% to 0.3%
*** ITB/I-cache miss 0.0% to 0.0%
*** D-cache miss 27.9% to 27.9%
*** DTB miss 9.2% to 18.3%
*** Write buffer 0.0% to 6.3%
*** Synchronization 0.0% to 0.0%
***
*** Branch mispredict 0.0% to 2.6%
*** IMUL busy 0.0% to 0.0%
*** FDIV busy 0.0% to 0.0%
*** Other 0.0% to 0.0%
***
*** Unexplained stall 2.3% to 2.3%
*** Unexplained gain -4.3% to -4.3%
*** ----------------------------------------
*** Subtotal dynamic 44.1%
***
*** Slotting 1.8%
*** Ra dependency 2.0%
*** Rb dependency 1.0%
*** Rc dependency 0.0%
*** FU dependency 0.0%
*** ----------------------------------------
*** Subtotal static 4.8%
*** ----------------------------------------
*** Total stall 48.9%
*** Execution 51.2%
*** Net sampling error -0.1%
*** ----------------------------------------
*** Total tallied 100.0%
*** (35171, 93.1% of all samples)

Figure 4: Summary of how cycles are spent in the pro-
ceduresmooth for the fast run of theSPECfp95 bench-
mark wave5.

The increase is probably in part due to differences in
the virtual-to-physical page mapping across the differ-
ent runs—if different data items are located on pages
that map to the same location in the board cache, the
number of conflict misses will increase.

4 Data Collection System

The DIGITAL Continuous Profiling Infrastructure pe-
riodically samples the program counter (PC) on each
processor, associates each sample with its correspond-
ing executable image, and saves the samples on disk in
compact profiles.

Sampling relies on the Alpha processor’s
performance-counter hardware to count various
events, such as cycles and cache misses, for all in-
structions executed on the processor. Each processor
generates a high-priority interrupt after a specified
number of events has occurred, allowing the inter-
rupted instruction and other context to be captured.
Over time, samples accumulate to provide an accu-
rate statistical picture of the total number of events
associated with each instruction in every executable
image run on the system. (There are a few blind
spots in uninterruptible code; however, all other code
is profiled, unlike systems that rely on the real-time
clock interrupt or other existing system functions to
obtain samples.) The accumulated samples can then
be analyzed, as discussed in Section 6, to reveal useful
performance metrics at various levels of abstraction,
including execution counts and the average number of
stall cycles for each instruction.

The key to our system’s ability to support high-
frequency continuous profiling is its efficiency: it uses
about 1–3% of the CPU, and modest amounts of mem-
ory and disk. This is the direct result of careful design.
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Figure 5: Data Collection System Overview

Figure 5 shows an overview of the data collection sys-
tem. At an abstract level, the system consists of three
interacting components: a kerneldevice driverthat ser-
vices performance-counter interrupts; a user-modedae-
mon processthat extracts samples from the driver, as-
sociates them with executable images, and merges them
into a nonvolatile profile database; and amodified sys-
tem loaderand other mechanisms for identifying exe-
cutable images and where they are loaded by each run-
ning process. The rest of this section describes these
pieces in more detail, beginning with the hardware per-
formance counters.

4.1 Alpha Performance Counters

Alpha processors [9, 8] provide a small set of hard-
ware performance counters that can each be config-
ured to count a specified event. The precise number
of counters, set of supported events, and other inter-
face details vary across Alpha processor implementa-
tions. However, all existing Alpha processors can count
a wide range of interesting events, including proces-
sor clock cycles (CYCLES), instruction cache misses
(IMISS), data cache misses (DMISS), and branch mis-
predictions (BRANCHMP).

When a performance counter overflows, it generates
a high-priority interrupt that delivers thePC of the next
instruction to be executed [21, 8] and the identity of the
overflowing counter. When the device driver handles
this interrupt, it records the process identifier (PID) of
the interrupted process, thePC delivered by the inter-
rupt, and the event type that caused the interrupt.

Our system’s default configuration monitorsCYCLES

andIMISS events.1 Monitoring CYCLES results in pe-
riodic samples of the program counter, showing the to-
tal time spent on each instruction. MonitoringIMISS

events reveals the number of times each instruction
misses in the instruction cache. Our system can also
be configured to monitor other events (e.g., DMISS and
BRANCHMP), giving more detailed information about
the causes for dynamic stalls. Since only a limited num-
ber of events can be monitored simultaneously (2 on the
21064 and 3 on the 21164), our system also supports
time-multiplexing among different events at a very fine
grain. (SGI’s Speedshop [25] provides a similar multi-
plexing capability.)

4.1.1 Sampling Period
Performance counters can be configured to overflow at
different values; legal settings vary on different Alpha
processors. When monitoringCYCLES on the Alpha
21064, interrupts can be generated every 64K events
or every 4K events. On the 21164, each 16-bit perfor-
mance counter register is writable, allowing any inter-
interrupt period up to the maximum of 64K events to
be chosen. To minimize any systematic correlation be-
tween the timing of the interrupts and the code being
run, we randomize the length of the sampling period
by writing a pseudo-random value [4] into the perfor-
mance counter at the end of each interrupt. The default
sampling period is distributed uniformly between 60K
and 64K when monitoringCYCLES.

4.1.2 Attributing Events to PCs

To accurately interpret samples, it is important to un-
derstand thePC delivered to the interrupt handler. On
the 21164, a performance counter interrupt is delivered
to the processor six cycles after the counter overflows.
When the interrupt is delivered, the handler is invoked
with the PC of the oldest instruction that was in the is-
sue queue at the time of interrupt delivery. The delayed
delivery does not skew the distribution of cycle counter
overflows; it just shifts the sampling period by six cy-
cles. The number of cycle counter samples associated
with each instruction is still statistically proportional to
the total time spent by that instruction at the head of the
issue queue. Since instructions stall only at the head of
the issue queue on the 21064 and 21164, this accounts
for all occurrences of stalls.

1We monitorCYCLES to obtain the information needed to es-
timate instruction frequency and cpi; see Section 6 for details. We
also monitorIMISS because theIMISS samples are usually accurate,
so they provide important additional information for understanding
the causes of stalls; see the discussion in Section 4.1.2.
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Events that incur more than six cycles of latency can
mask the interrupt latency. For example, instruction-
cache misses usually take long enough that the interrupt
is delivered to the processor before the instruction that
incurred theIMISS has issued. Thus, the sampledPCfor
anIMISS event is usually (though not always) correctly
attributed to the instruction that caused the miss.

For other events, the six-cycle interrupt latency can
cause significant problems. The samples associated
with events caused by a given instruction can show
up on instructions a few cycles later in the instruction
stream, depending on the latency of the specific event
type. Since a dynamically varying number of instruc-
tions, including branches, can occur during this inter-
val, useful information may be lost. In general, samples
for events other thanCYCLES andIMISS are helpful in
tracking down performance problems, but less useful
for detailed analysis.

4.1.3 Blind Spots: Deferred Interrupts
Performance-counter interrupts execute at the highest
kernel priority level (spldevrt ), but are deferred
while running non-interruptiblePALcode [21] or system
code at the highest priority level.2 Events inPALcode
and high-priority interrupt code are still counted, but
samples for those events will be associated with the in-
struction that runs after thePALcode finishes or the in-
terrupt level drops belowspldevrt .

For synchronousPAL calls, the samples attributed to
the instruction following the call provide useful infor-
mation about the time spent in the call. The primary
asynchronousPAL call is “deliver interrupt,” which dis-
patches to a particular kernel entry point; the samples
for “deliver interrupt” accumulate at that entry point.
The other samples for high-priority asynchronousPAL

calls and interrupts are both relatively infrequent and
usually spread throughout the running workload, so
they simply add a small amount of noise to the statisti-
cal sampling.

4.2 Device Driver

Our device driver efficiently handles interrupts gener-
ated by Alpha performance counter overflows, and pro-
vides anioctl interface that allows user-mode pro-
grams to flush samples from kernel buffers to user
space.

2This makes profiling the performance-counter interrupt han-
dler difficult. We have implemented a “meta” method for obtain-
ing samples within the interrupt handler itself, but space limitations
preclude a more detailed discussion.

The interrupt rate is high: approximately 5200 in-
terrupts per second on each processor when monitor-
ing CYCLES on an Alpha 21164 running at 333 MHz,
and higher with simultaneous monitoring of additional
events. This raises two problems. First, the interrupt
handler has to be fast; for example, if the interrupt han-
dler takes 1000 cycles, it will consume more than 1.5%
of the CPU. Note that a cache miss all the way to mem-
ory costs on the order of 100 cycles; thus, we can af-
ford to execute lots of instructions but not to take many
cache misses. Second, the samples generate significant
memory traffic. Simply storing the raw data (16-bit
PID, 64-bit PC, and 2-bitEVENT) for each interrupt in
a buffer would generate more than 52 KB per proces-
sor per second. This data will be copied to a user-level
process for further processing and merging into on-disk
profiles, imposing unacceptable overhead.

We could reduce these problems by resorting to
lower-frequency event sampling, but that would in-
crease the amount of time required to collect useful
profiles. Instead, we engineered our data collection sys-
tem to reduce the overhead associated with processing
each sample. First, we reduce the number of samples
that have to be copied to user space and processed by
the daemon by counting, in the device driver, the num-
ber of times a particular sample has occurred recently.
This typically reduces the data rate by a factor of 20 or
more. Second, we organize our data structures to min-
imize cache misses. Third, we allocate per-processor
data structures to reduce both writes to shared cache
lines and the synchronization required for correct oper-
ation on a multiprocessor. Fourth, we switch dynami-
cally among specialized versions of the interrupt han-
dler to reduce the time spent checking various flags and
run-time constants. The rest of this section describes
our optimizations in more detail.

4.2.1 Data Structures

Each processor maintains its own private set of data
structures. A processor’s data structures are primarily
modified by the interrupt routine running on that pro-
cessor. However, they can also be read and modified
by the flush routines that copy data to user space. Syn-
chronization details for these interactions are discussed
in Section 4.2.3.

Each processor maintains ahash tablethat is used
to aggregate samples by counting the number of times
each (PID, PC, EVENT) triple has been seen. This re-
duces the amount of data generated by a factor of 20
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or more for most workloads, resulting in less memory
traffic and lower processing overhead per aggregated
sample. The hash table is implemented with an array
of fixed size buckets, where each bucket can store four
entries (each entry consists of aPID, PC, andEVENT,
plus a count).

A pair of overflow buffersstores entries evicted from
the hash table. Two buffers are kept so entries can be
appended to one while the other is copied to user space.
When an overflow buffer is full, the driver notifies the
daemon, which copies the buffer to user space.

The interrupt handler hashes thePID, PC, andEVENT

to obtain a bucket indexi; it then checks all entries at
index i. If one matches the sample, its count is incre-
mented. Otherwise one entry is evicted to an overflow
buffer and is replaced by the new sample with a count of
one. The evicted entry is chosen using a mod-4 counter
that is incremented on each eviction. Each entry occu-
pies 16 bytes; therefore, a bucket occupies one cache
line (64 bytes) on an Alpha 21164, so we incur at most
one data-cache miss to search the entire bucket.

The four-way associativity of the hash table helps to
prevent thrashing of entries due to hashing collisions.
In Section 5 we discuss experiments conducted to eval-
uate how much greater associativity might help.

4.2.2 Reducing Cache Misses

A cache miss all the way out to memory costs on the or-
der of 100 cycles. Indeed, it turns out that cache misses,
for both instructions and data, are one of the dominant
sources of overhead in the interrupt handler; we could
execute many more instructions without a significant
impact on overhead as long as they did not result in
cache misses.

To reduce overhead, we designed our system to min-
imize the number of cache misses. In the common case
of a hash table hit, the interrupt handler accesses one
bucket of the hash table; various private per-processor
state variables such as a pointer to the local hash table,
the seed used for period randomization, etc; and global
state variables such as the size of the hash table, the set
of monitored events, and the sampling period.

On the 21164, the hash table search generates at most
one cache miss. Additionally, we pack the private state
variables and read-only copies of the global variables
into a 64 byte per-processor data structure, so at most
one cache miss is needed for them. By making copies
of all shared state, we also avoid interprocessor cache
line thrashing and invalidations.

In the uncommon case of a hash table miss, we evict
an old entry from the hash table. This eviction accesses
one extra cache line for the empty overflow buffer en-
try into which the evicted entry is written. Some per-
processor and global variables are also accessed, but
these are all packed into the 64 byte per-processor struc-
ture described above. Therefore these accesses do not
generate any more cache misses.

4.2.3 Reducing Synchronization

Synchronization is eliminated between interrupt han-
dlers on different processors in a multiprocessor, and
minimized between the handlers and other driver rou-
tines. Synchronization operations (in particular, mem-
ory barriers [21]) are expensive, costing on the order of
100 cycles, so even a small number of them in the in-
terrupt handler would result in unacceptable overhead.
The data structures used by the driver and the tech-
niques used to synchronize access to them were de-
signed to eliminateall expensive synchronization op-
erations from the interrupt handler.

We use a separate hash table and pair of overflow
buffers per processor, so handlers running on different
processors never need to synchronize with each other.
Synchronization is only required between a handler and
the routines that copy the contents of the hash table
and overflow buffers used by that handler to user space.
Each processor’s hash table is protected by a flag that
can be set only on that processor. Before a flush rou-
tine copies the hash table for a processor, it performs
an inter-processor interrupt (IPI) to that processor to set
the flag indicating that the hash table is being flushed.
The IPI handler raises its priority level to ensure that
it executes atomically with respect to the performance-
counter interrupts. If the hash table is being flushed, the
performance counter interrupt handler writes the sam-
ple directly into the overflow buffer. Use of the over-
flow buffers is synchronized similarly.

Although IPIs are expensive, they allow us to re-
move all memory barriers from the interrupt handler, in
exchange for increasing the cost of the flush routines.
Since the interrupt handler runs much more frequently
than the flush routines, this is a good tradeoff.

4.3 User-Mode Daemon

A user-mode daemon extracts samples from the driver
and associates them with their corresponding images.
Users may also request separate, per-process profiles
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Workload Meanbase Platform Description
runtime (secs)

Uniprocessor workloads
SPECint95 13226� 258 333 MHz ALPHASTATION 500 TheSPECbenchmark suite compiled using both theBASE and
SPECfp95 17238�106 333 MHz ALPHASTATION 500 PEAK compilation flags and run with therunspecdriver [22].

x11perf N/A 333 MHz ALPHASTATION 500
Several tests from the x11perf X server performance testing pro-
gram. The tests chosen are representative of CPU-bound tests [16].

McCalpin N/A 333 MHz ALPHASTATION 500
The McCalpinSTREAMSbenchmark, consisting of four loops that
measure memory-system bandwidth [15].

Multiprocessor workloads

AltaVista 319� 2 300 MHz 4-CPUALPHASERVER4100
A trace of 28622 queries made to the 3.5 GB AltaVista news index.
The system was driven so as to maintain 8 outstanding queries.

DSS 2786� 35 300 MHz 8-CPUALPHASERVER8400
A decision-support system (DSS) query based upon the TPC-D
specification [23].

parallel
SPECfp

2777� 168 300 MHz 4-CPUALPHASERVER4100
The SPECfp95 programs, parallelized by the Stanford SUIF com-
piler [12].

timesharing 7 days 300 MHz 4-CPUALPHASERVER4100
A timeshared server used for office and technical applications, run-
ning thedefaultconfiguration of our system. We used this work-
load to gather statistics for a long-running profile session.

Table 2: Description of Workloads

for specified images. The data for each image is peri-
odically merged into compact profiles stored as sepa-
rate files on disk.

4.3.1 Sample Processing

The main daemon loop waits until the driver signals a
full overflow buffer; it then copies the buffer to user
space and processes each entry. The daemon maintains
image maps for each active process; it uses thePID and
the PC of the entry to find the image loaded at thatPC

in that process. ThePC is converted to an image off-
set, and the result is merged into a hash table associated
with the relevant image andEVENT. The daemon ob-
tains its information about image mappings from a va-
riety of sources, as described in the following section.

Periodically, the daemon extracts all samples from
the driver data structures, updates disk-based profiles
and discards data structures associated with terminated
processes. The time intervals associated with periodic
processing are user-specified parameters; by default,
the daemon drains the driver every 5 minutes, and in-
memory profile data is merged to disk every 10 minutes.
This simple timeout-based approach can cause undesir-
able bursts of intense daemon activity; the next version
of our system will avoid this by updating disk profiles
incrementally. A complete flush can also be initiated by
a user-level command.

4.3.2 Obtaining Image Mappings

We use several sources of information to deter-
mine where images are loaded into each process.
First, a modified version of the dynamic system

loader (/sbin/loader ) notifies our system’s dae-
mon whenever an image is loaded into a process. The
notification contains thePID, a unique identifier for
each loaded image, the address at which it was loaded,
and its filesystem pathname. This mechanism captures
all dynamically loaded images.

Second, the kernelexec path invokes a chain of rec-
ognizer routines to determine how to load an image. We
register a special routine at the head of this chain that
captures information about all static images. The rec-
ognizer stores this data in a kernel buffer that is flushed
by the daemon every few seconds.

Finally, to obtain image maps for processes already
active when the daemon starts, on start-up the daemon
scans all active processes and their mapped regions
using Mach-based system calls available in DIGITAL
Unix.

Together, these mechanisms are able to successfully
classify virtually all samples collected by the driver.
Any remaining unknown samples are aggregated into
a special profile. In our experience, the number of un-
known samples is considerably smaller than 1%; a typ-
ical fraction from a week-long run is 0.05%.

4.3.3 Profile Database
The daemon stores samples in an on-disk profile
database. This database resides in a user-specified di-
rectory, and may be shared by multiple machines over a
network. Samples are organized into non-overlapping
epochs, each of which contains all samples collected
during a given time interval. A new epoch can be initi-
ated by a user-level command. Each epoch occupies a
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separate sub-directory of the database. A separate file
is used to store the profile for a given image andEVENT

combination.

The profile files are written in a compact binary for-
mat. Since significant fractions of most executable im-
ages consist of symbol tables and instructions that are
never executed, profiles are typically smaller than their
associated executables by an order of magnitude, even
after days of continuous profiling. Although disk space
usage has not been a problem, we have also designed
an improved format that can compress existing profiles
by approximately a factor of three.

5 Profiling Performance

Performance is critical to the success of a profiling sys-
tem intended to run continuously on production sys-
tems. The system must collect many thousands of sam-
ples per second yet incur sufficiently low overhead that
its benefits outweigh its costs. In this section we sum-
marize the results of experiments designed to measure
the performance of our system and to explore tradeoffs
in its design.

We evaluated our profiling system’s performance un-
der three different configurations:cycles, in which
the system monitors only cycles,default, in which
the system monitors both cycles and instruction-cache
misses, andmux, in which the system monitors cycles
with one performance counter and uses multiplexing
to monitor instruction-cache misses, data-cache misses,
and branch mispredictions with another counter. Ta-
ble 2 shows the workloads used, their average running
times (from a minimum of 10 runs, shown with 95%-
confidence intervals) in thebaseconfiguration without
our system, and the machines on which they ran.

5.1 Aggregate Time Overhead

To measure the overhead, we ran each workload a min-
imum of 10 times in each configuration, and ran many
workloads as many as 50 times. Table 3 shows the per-
centage overhead (with 95%-confidence intervals) im-
posed by the three different configurations of our sys-
tem compared to thebaseconfiguration. (The timeshar-
ing workload is not included in the table; since it was
measured on a live system, we cannot run it in each con-
figuration to determine overall slowdown.) McCalpin
and x11perf report their results as rates (MB/sec for
McCalpin, and operations/sec for x11perf); for these,
the table shows the degradation of the rates. For the

Workload cycles (%) default (%) mux (%)
Uniprocessor workloads

SPECint95 2:0� 0:8 2:8� 0:9 3:0� 0:7

SPECfp95 0:6� 1:0 0:5� 1:1 1:1� 1:1

x11perf
noop 1:6� 0:5 1:9� 0:5 2:2� 0:5

circle10 2:8� 0:6 2:4� 0:4 2:4� 0:4

ellipse10 1:5� 0:2 1:8� 0:2 2:3� 0:4

64poly10 1:1� 0:4 2:0� 0:5 2:4� 0:6

ucreate 2:7� 0:7 4:2� 0:7 5:0� 0:7

McCalpin
assign 0:9� 0:1 0:9� 0:1 1:1� 0:1

saxpy 1:0� 0:1 1:1� 0:1 1:3� 0:1

scale 1:1� 0:1 1:1� 0:1 1:2� 0:1

sum 1:1� 0:1 1:1� 0:1 1:2� 0:1

Multiprocessor workloads
AltaVista 0:5� 0:8 1:3� 1:8 1:6� 0:5

DSS 1:2� 1:1 1:8� 2:6 0:6� 0:3

parallelSPECfp 6:0� 3:5 3:1� 1:8 7:5� 4:6

Table 3: Overall Slowdown (in percent)

other workloads, the table shows the increase in run-
ning time. The numbers in Table 3 show that the overall
overhead imposed by our system is quite low, usually 1
to 3%. The variation in performance from run to run of
each workload is typically much greater than our sys-
tem’s overhead.

Figure 6 shows the data in more detail for three pro-
grams: AltaVista; the gcc portion of theSPECint95
workload (peak version); and the wave5 portion of the
SPECfp95 workload (peak version). Each graph gives a
scatter plot of the running times in seconds for all four
configurations. The x-axis is centered at the meanbase
value; the range of the y-axis is from 90% to 135%
of the mean value. 95%-confidence intervals are also
shown.

AltaVista is representative of the majority of the
workloads that we studied: the profiling overhead is
small and there is little variance across the different
runs. In contrast, our system incurs relatively high over-
head on gcc (about 4% to 10%). This benchmark com-
piles 56 pre-processed source files into assembly files;
each file requires a separate invocation of the program
and thus has a distinctPID. Since samples with distinct
PID’s do not match in the hash table, the eviction rate is
high, resulting in higher overhead (see section 5.2). Fi-
nally, the wave5 data shows an apparent speedup from
running DCPI in our experiments. In this and similar
cases, the running time variance exceeded our profiling
overhead.

The overheads we measured are likely to be slightly
higher than would be experienced in practice, since as
discussed in the next section, all measurements were
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Figure 6: Distribution of running times

done using an instrumented version of the system that
logged additional statistics, imposing overhead that
would not normally be incurred.

5.2 Components of Time Overhead

There are two main components to our system’s over-
head. First is the time to service performance-counter
interrupts. Second is the time to read samples from
the device driver into the daemon and merge the sam-
ples into the on-disk profiles for the appropriate im-
ages. To investigate the cost of these two components,
we performed all the experiments with our system in-
strumented to collect several statistics: (1) the num-
ber of cycles spent in our interrupt handler, collected
separately for the cases when samples hit or miss in
the hash table; (2) the eviction rate from the hash ta-
ble; and (3) the total number of samples observed. For
real workloads, we are able to directly measure only
the time spent in our interrupt handler, which does not
include the time to deliver the interrupt nor the time
to return from the interrupt handler. Experimentation
with a tight spin loop revealed the best-case interrupt
setup and teardown time to be around 214 cycles (not
including our interrupt handler itself). Under real work-
loads, this value is likely to increase due to additional

instruction-cache misses.

To evaluate the daemon’s per-sample cost of pro-
cessing, all experiments were configured to gather per-
process samples for the daemon itself; this showed how
many cycles were spent both in the daemon and in the
kernel on behalf of the daemon. Dividing this by the
total number of samples processed by the driver gives
the per-sample processing time in the daemon.3

These statistics are summarized for each workload
in Table 4 for each of the three profiling configurations.
We also separately measured the statistics for the gcc
program in theSPECint95 workload to show the effects
of a high eviction rate. The table shows that work-
loads with low eviction rates, such asSPECfp95 and
AltaVista, not only spend less time processing each in-
terrupt (because a hit in the hash table is faster), but
also spend less time processing each sample in the dae-
mon because many samples are aggregated into a sin-
gle entry before being evicted from the hash table. For
workloads with a high eviction rate, the average inter-
rupt cost is higher; in addition, the higher eviction rate
leads to more overflow entries and a higher per-sample
cost in the daemon.

5.3 Aggregate Space Overhead

Memory and disk resources are also important. Mem-
ory is consumed by both the device driver and the dae-
mon, while disk space is used to store nonvolatile pro-
file data.

As described in Section 4, the device driver main-
tains a hash table and a pair of overflow buffers for each
processor in non-pageable kernel memory. In all of our
experiments, each overflow buffer held 8K samples and
each hash table held 16K samples, for a total of 512KB
of kernel memory per processor.

The daemon consumes ordinary pageable memory.
It allocates a buffer large enough to flush one over-
flow buffer or hash table per processor, as well as data
structures for every active process and image. Memory
usage grows with the number of active processes, and
also depends upon workload locality. Per-process data
structures are reaped infrequently (by default, every 5
minutes), and samples for each image are buffered un-
til saved to disk (by default, every 10 minutes); as a

3The per-sample metric is used to allow comparison with the
per-sample time in the interrupt handler, and is different from the
time spent processing each entry from the overflow buffer (since
multiple samples are “processed” for entries with counts higher
than one).
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cycles default mux
per sample cost (cycles) per sample cost (cycles) per sample cost (cycles)

Workload miss intr cost daemon miss intr cost daemon miss intr cost daemon
rate avg (hit/miss) cost rate avg (hit/miss) cost rate avg (hit/miss) cost

SPECint95 6.7% 435 (416/700) 175 9.5% 451 (430/654) 245 9.5% 582 (554/842) 272
gcc 38.1% 551 (450/716) 781 44.5% 550 (455/669) 927 44.2% 667 (558/804) 982
SPECfp95 0.6% 486 (483/924) 59 1.4% 437 (433/752) 95 1.5% 544 (539/883) 107
x11perf 2.1% 464 (454/915) 178 5.6% 454 (436/763) 266 5.5% 567 (550/868) 289
McCalpin 0.7% 388 (384/1033) 51 1.4% 391 (384/916) 70 1.1% 513 (506/1143) 72
AltaVista 0.5% 343 (340/748) 21 1.7% 349 (344/661) 56 1.6% 387 (382/733) 47
DSS 0.5% 230 (227/755) 41 0.9% 220 (216/660) 49 0.9% 278 (273/815) 60
parallelSPECfp 0.3% 356 (354/847) 29 0.7% 355 (352/713) 47 0.9% 444 (440/854) 58
timesharing not measured 0.7% 202 (199/628) 66 not measured

Table 4: Time overhead components

result, the daemon’s worst-case memory consumption
occurs when the profiled workload consists of many
short-lived processes or processes with poor locality.

Table 5 presents the average and peak resident mem-
ory (both text and data) used by the daemon for each
workload. For most workloads, memory usage is mod-
est. The week-long timesharing workload, running on
a four-processor compute server with hundreds of ac-
tive processes, required the most memory. However,
since this multiprocessor has 4GB of physical memory,
the overall fraction of memory devoted to our profiling
system is less than 0.5%.

On workstations with smaller configurations (64MB
to 128MB), the memory overhead ranges from 5 to
10%. Since the current daemon implementation has
not been carefully tuned, we expect substantial mem-
ory savings from techniques such as reductions in the
storage costs of hash tables and more aggressive reap-
ing of inactive structures.

Finally, as shown in Table 5, the disk space con-
sumed by profile databases is small. Most sets of pro-
files required only a few megabytes of storage. Even
the week-long timesharing workload, which stored both
CYCLES and IMISS profiles for over 480 distinct exe-
cutable images, used just 13MB of disk space.

5.4 Potential Performance Improvements

While the driver has been carefully engineered for per-
formance, there is still room for improvement. In ad-
dition, the performance of the daemon can probably be
improved substantially.

As shown in Section 5.2, the performance of our sys-
tem is heavily dependent on the effectiveness of the
hash table in aggregating samples. To explore alter-
native designs, we constructed a trace-driven simulator
that models the driver’s hash table structures. Using
sample traces logged by a special version of the driver,

we examined varying associativity, replacement policy,
overall table size and hash function.

Our experiments indicate that (1) increasing associa-
tivity from 4-way to 6-way, by packing more entries per
processor cache line (which would also increase the to-
tal number of entries in the hash table), and (2) using
swap-to-front on hash-table hits and inserting new en-
tries at the beginning of the line, rather than the round-
robin policy we currently use, would reduce the overall
system cost by 10-20%. We intend to incorporate both
of these changes in a future version of our system.

Unlike the driver, the user-mode daemon has not
been heavily optimized. A few key changes should re-
duce the time to process each raw driver sample signif-
icantly. One costly activity in the daemon involves as-
sociating a sample with its corresponding image; this
currently requires three hash lookups. Sorting each
buffer of raw samples byPID and PC could amortize
these lookups over a large number of samples. Mem-
ory copy costs could also be reduced by mapping ker-
nel sample buffers directly into the daemon’s address
space. We estimate that these and other changes could
cut the overhead due to the daemon by about a factor of
2.

6 Data Analysis Overview

The CYCLES samples recorded by the data collection
subsystem tell us approximately how much total time
was spent by each instruction at the head of the issue
queue. However, when we see a large sample count for
an instruction, we do not know immediately from the
sample counts whether the instruction was simply exe-
cuted many times or whether it stalled most of the times
it was executed. In addition, if the instruction did stall,
we do not know why. The data analysis subsystem fills
in these missing pieces of information. Note that the
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cycles default mux
Space (KBytes) Space (KBytes) Space (KBytes)

Workload Uptime Memory Disk Uptime Memory Disk Uptime Memory Disk
avg (peak) usage avg (peak) usage avg (peak) usage

SPECint95 14:57:50 6600 (8666) 2639 15:00:36 8284 (13500) 4817 15:08:45 8804 (11250) 6280
gcc 5:49:37 8862 (11250) 1753 5:42:10 9284 (9945) 3151 5:47:44 11543 (12010) 4207
SPECfp95 19:15:20 2364 (3250) 1396 19:14:17 2687 (3750) 2581 19:22:37 2958 (3800) 3182
x11perf 0:21:25 1586 (1750) 216 0:20:58 1786 (1917) 356 0:21:31 1959 (2141) 434
McCalpin 0:09:10 1568 (2000) 108 0:09:07 1716 (2179) 155 0:09:09 1812 (2311) 157
AltaVista 0:26:49 2579 (3000) 265 0:27:04 2912 (3286) 470 0:27:09 3156 (3571) 571
DSS 3:55:14 4389 (5500) 634 3:56:23 5126 (5288) 1114 3:53:41 5063 (5242) 1389
parallelSPECfp 8:10:49 2902 (3250) 1157 7:57:02 3384 (3636) 2028 8:17:34 3662 (3950) 2616
timesharing not measured 187:43:46 10887 (14200) 12601 not measured

Table 5: Daemon Space Overhead

analysis is done offline, after samples have been col-
lected.

Given profile data, the analysis subsystem produces
for each instruction:

� A frequency, which is proportional to the number
of times the instruction was executed during the
profiled period;

� A cpi, which is an estimate of the average number
of cycles spent by that instructionat the head of the
issue queue for each execution during the profiled
period; and

� A set ofculprits, which are possible explanations
for any wasted issue slots (due to static or dynamic
stalls).

The analysis is done in two phases; the first phase es-
timates the frequency and cpi for each instruction, and
the second phase identifies culprits for each stall. The
analysis is designed for processors that execute instruc-
tions in order; we are working on extending it to out-
of-order processors.

For programs whose executions are deterministic, it
is possible to measure the execution counts by instru-
menting the code directly (e.g., using pixie). In this
case, the first phase of the analysis, which estimates
the frequency, is not necessary. However, many large
systems (e.g., databases) are not deterministic; even for
deterministic programs, the ability to derive frequency
estimates from sample counts eliminates the need to
create and run an instrumented version of the program,
simplifying the job of collecting profile information.

6.1 Estimating Frequency and CPI

The crux of the problem in estimating instruction fre-
quency and cpi is that the sample data provides infor-
mation about the total time spent by each instruction at
the head of the issue queue, which is proportional to the

product of its frequency and its cpi; we need to factor
that product. For example, if the instruction’s sample
count is 1000, its frequency could be 1000 and its cpi 1,
or its frequency could be 10 and its cpi 100; we cannot
tell given only its sample count. However, by combin-
ing information from several instructions, we can often
do an excellent job of factoring the total time spent by
an instruction into its component factors.

The bulk of the estimation process is focused on es-
timating the frequency,Fi, of each instructioni. Fi

is simply the number of times the instruction was exe-
cuted divided by the average sampling period,P , used
to gather the samples. The sample countSi should be
approximatelyFiCi, whereCi is the average number
of cycles instructioni spends at the head of the issue
queue. Our analysis first findsFi; Ci is then easily ob-
tained by division.

The analysis estimates theFi values by examining
one procedure at a time. The following steps are per-
formed for each procedure:

1. Build a control-flow graph (CFG) for the proce-
dure.

2. Group the basic blocks and edges of the CFG into
equivalence classes based on frequency of execu-
tion.

3. Estimate the frequency of each equivalence class
that contains instructions with suitable sample
counts.

4. Use a linear-time local propagation method based
on flow constraints in the procedure’s CFG to
propagate frequency estimates around the CFG.

5. Use a heuristic to predict the accuracy of the esti-
mates.

Some details are given below.
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Addr Instruction S_i M_i S_i/M_i
009810 ldq t4, 0(t1) 3126 1 3126
009814 addq t0, 0x4, t0 0 0
009818 ldq t5, 8(t1) 1636 1 1636
00981c ldq t6, 16(t1) 390 0
009820 ldq a0, 24(t1) 1482 1 1482 *
009824 lda t1, 32(t1) 0 0
009828 stq t4, 0(t2) 27766 1 27766
00982c cmpult t0, v0, t4 0 0
009830 stq t5, 8(t2) 1493 1 1493 *
009834 stq t6, 16(t2) 174727 1 174727
009838 stq a0, 24(t2) 1548 1 1548 *
00983c lda t2, 32(t2) 0 0
009840 bne t4, 0x009810 1586 1 1586 *

Figure 7: Estimating Frequency of Copy Loop.

6.1.1 Building a CFG

The CFG is built by extracting the code for a proce-
dure from the executable image. Basic block bound-
aries are identified from instructions that change control
flow, e.g., branches and jumps. For indirect jumps, we
analyze the preceding instructions to try to determine
the possible targets of the jump. Sometimes this anal-
ysis fails, in which case the CFG is noted as missing
edges. The current analysis does not identify interpro-
cedural edges (e.g., from calls to longjmp), nor does it
note their absence.

6.1.2 Determining Frequency Equivalence

If the CFG is noted as missing edges, each block and
each edge is assigned its own equivalence class. Oth-
erwise, we use an extended version of the cycle equiv-
alence algorithm in [14] to identify sets of blocks and
edges that are guaranteed to be executed the same num-
ber of times. Each such set constitutes one equivalence
class. Our extension to the algorithm is for handling
CFG’s with infinite loops,e.g., the idle loop of an oper-
ating system.

6.1.3 Estimating Frequency From Sample Counts

The heuristic for estimating the frequency of an equiva-
lence class of instructions works on one class at a time.
All instructions in a class have the same frequency,
henceforth calledF .

The heuristic is based on two assumptions: first, that
at least some instructions in the class encounter no dy-
namic stalls, and second, that one can statically com-
pute, for most instructions, the minimum number of cy-
clesMi that instructioni spends at the head of the issue
queue in the absence of dynamic stalls.

Mi is obtained by scheduling each basic block us-
ing a model of the processor on which it was run.Mi

may be 0. In practice,Mi is 0 for all but the first of a

group of multi-issued instructions. Anissue pointis an
instruction withMi > 0.

If issue pointi has no dynamic stalls, the frequency
F should be, modulo sampling error,Si=Mi. If the is-
sue point incurs dynamic stalls,Si will increase. Thus,
we can estimateF by averaging some of the smaller
ratiosSi=Mi of the issue points in the class.

As an example, Figure 7 illustrates the analysis for
the copy loop shown previously in Figure 2. TheMi

column shows the output from the instruction sched-
uler, and theSi=Mi column shows the ratio for each
issue point. The heuristic used various rules to choose
the ratios marked with* to be averaged, computing a
frequency of 1527. This is close to 1575.1, the true fre-
quency for this example.

There are several challenges in making accurate es-
timates. First, an equivalence class might have few is-
sue points. In general, the smaller the number of issue
points, the greater the chance that all of them encounter
some dynamic stall. In this case, the heuristic will over-
estimateF . At the extreme, a class might have no is-
sue points,e.g., because it contains no basic blocks. In
this case, the best we can do is exploit flow constraints
of the CFG to compute a frequency in the propagation
phase.

Second, an equivalence class might have only a small
number of samples. In this case, we estimateF as
P

i Si=
P

iMi, wherei ranges over the instructions in
the class. This increases the number of samples used
by our heuristic and generally improves the estimate.

Third, Mi may not be statically determinable. For
example, the number of cycles an instruction spends
at the head of the issue queue may in general depend
on the code executed before the basic block. When a
block has multiple predecessors, there is no one static
code schedule for computingMi. In this case, we cur-
rently ignore all preceding blocks. For the block listed
in Figure 7, this limitation leads to an error:Mi for the
ldq instruction at 009810 should be 2 instead of 1 be-
cause the processor cannot issue aldq two cycles after
thestq at 009838 from the previous iteration. Thus, a
static stall was misclassified as a dynamic stall and the
issue point was ignored.

Fourth, dynamic stalls sometimes make theMi val-
ues inaccurate. Suppose an issue point instructioni de-
pends on a preceding instructionj, either becausei uses
the result ofj or becausei needs to use some hardware
resource also used byj. Thus,Mi is a function of the
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latency ofj. If an instruction betweenj andi incurs a
dynamic stall, this will causei to spend fewer thanMi

cycles at the head of the issue queue because the latency
of j overlaps the dynamic stall. To address this prob-
lem, we use the ratio

Pi
k=j+1 Sk=

Pi
k=j+1Mk for the

issue pointi when there are instructions betweenj and
i. This estimate is more reliable thanSi=Mi because
the dependence ofi on j ensures that the statically de-
termined latency between them will not be decreased
by dynamic stalls ofj or intervening instructions.

Finally, one must select which of the ratios to include
in the average. In rough terms, we examine clusters of
issue points that have relatively small ratios, where a
cluster is a set of issue points that have similar ratios
(e.g., maximum ratio in cluster� 1:5 � minimum ratio
in cluster). However, to reduce the chance of underes-
timatingF , the cluster is discarded if its issue points
appear to have anomalous values forSi orMi, e.g., be-
cause the cluster contains less than a minimum fraction
of the issue points in the class or because the estimate
for F would imply an unreasonably large stall for an-
other instruction in the class.

6.1.4 Local Propagation

Local propagation exploits flow constraints of the CFG
to make additional estimates. Except for the boundary
case where a block has no predecessors (or successors),
the frequency of a block should be equal to the sum of
the frequencies of its incoming (and outgoing) edges.

The flow constraints have the same form as dataflow
equations, so for this analysis we use a variant of the
standard, iterative algorithm used in compilers. The
variations are (1) whenever a new estimate is made for
a block or an edge, the estimate is immediately propa-
gated to all of the other members in the block or edge’s
equivalence class, and (2) no negative estimates are al-
lowed. (The flow equations can produce negative val-
ues because the frequency values are only estimates.)
Because of the nature of the flow constraints, the time
required for local propagation is linear in the size of the
CFG.

We are currently experimenting with a global con-
straint solver to adjust the frequency estimates where
they violate the flow constraints.

6.1.5 Predicting Accuracy of Estimates

The analysis uses a second heuristic to predict the accu-
racy of each frequency estimate as beinglow, medium,
or high confidence. The confidence of an estimate is a
function of the number of issue points used to compute
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Figure 8: Distribution of Errors in Instruction Frequen-
cies (Weighted byCYCLES Samples)

the estimate, how tightly the ratios of the issue points
were clustered, whether the estimate was made by prop-
agation, and the magnitude of the estimate.

6.2 Evaluating the Accuracy of Estimates

A natural question at this point is how well the fre-
quency estimates produced by our tools match the ac-
tual frequencies. To evaluate the accuracy of the esti-
mates, we ran a suite of programs twice: once using
the profiling tools, and once using dcpix, a pixie-like
tool that instruments both basic blocks and edges at
branch points to obtain execution counts. We then com-
pared the estimated execution countsFP , whereF is
the frequency estimate andP the sampling period, to
the measured execution counts – the values should be
approximately equal (modulo sampling error) for pro-
grams whose execution is deterministic.

For this experiment, we used a subset of theSPEC95
suite. The subset contains the “base” versions of all
floating point benchmarks, and the “peak” versions of
all integer benchmarks except ijpeg. The other executa-
bles lacked the relocation symbols required by dcpix,
and the instrumented version of ijpeg did not work. The
profiles were generated by running each program on its
SPEC95 workload three times.

Figure 8 is a histogram showing the results for in-
struction frequencies. The x-axis is a series of sample
buckets. Each bucket covers a range of errors in the
estimate,e.g., the -15% bucket contains the samples of
instructions whereFP was between:85 and:90 times
the execution count. The y-axis is the percentage of all
CYCLES samples.
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Figure 9: Distribution of Errors in Edge Frequencies
(Weighted by Edge Executions)

As the figure shows, 73% of the samples have esti-
mates that are within 5% of the actual execution counts;
87% of the samples are within 10%; 92% are within
15%. Furthermore, nearly all samples whose estimates
are off by more than 15% are marked low confidence.

Figure 9 is a measure of the accuracy of the fre-
quency estimates of edges. Edges never get samples, so
here the y-axis is the percentage of all edge executions
as measured by dcpix. As one might expect, the edge
frequency estimates, which are made indirectly using
flow constraints, are not as accurate as the block fre-
quency estimates. Still, 58% of the edge executions
have estimates within 10%.

To gauge how the accuracy of the estimates is af-
fected by the number ofCYCLES samples gathered, we
compared the estimates obtained from a profile for a
single run of the integer workloads with those obtained
from 80 runs. For the integer workloads as a whole, re-
sults in the two cases are similar, although the estimates
based on 80 runs are somewhat more tightly clustered
near the -5% bucket.E.g., for a single run, 54% of the
samples have estimates within 5% of the actual execu-
tion counts; for 80 runs, this increases to 70%. How-
ever, for the individual programs such as gcc on which
our analysis does less well using data from a small num-
ber of runs, the estimates based on 80 runs are signif-
icantly better. With a single run of the gcc workload,
only 23% of the samples are within 5%; with 80 runs,
this increases to 53%.

Even using data from 80 runs, however, the>45%
bucket does not get much smaller for gcc: it decreases
from 21% to 17%. We suspect that the samples in this

bucket come from frequency equivalence classes with
only one or two issue points where dynamic stalls occur
regularly. In this case, gathering moreCYCLES samples
does not improve the analysis.

The analysis for estimating frequencies and identify-
ing culprits is relatively quick. It takes approximately
3 minutes to analyze the suite of 17 programs, which
total roughly 26 MB of executables. Roughly 20% of
the time was spent blocked for I/O.

6.3 Identifying Culprits

Identifying which instructions stalled and for how long
reveals where the performance bottlenecks are, but
users (and, eventually, automatic optimizers) must also
knowwhythe stalls occurred in order to solve the prob-
lems. In this section, we outline the information our
tools offer, how to compute it, and how accurate the
analysis is.

Our tools provide information at two levels: instruc-
tion and procedure. At the instruction level, we anno-
tate each stall with culprits (i.e., possible explanations)
and, if applicable, previous instructions that may have
caused the stall. Culprits are displayed as labeled bub-
bles between instructions as previously shown in Fig-
ure 2. For example, the analysis may indicate that an
instruction stalled because of a D-cache miss and point
to the load instruction fetching the operand that the
stalled instruction needs. At the procedure level, we
summarize the cycles spent in the procedure, showing
how many have gone to I-cache misses, how many to
D-cache misses, etc., by aggregating instruction-level
data. A sample summary is shown earlier in Figure 4.
With these summaries, users can quickly identify and
focus their effort on the more important performance
issues in any given procedure.

For each stall, we list all possible reasons rather
than a single culprit because reporting only one cul-
prit would often be misleading. A stall shown on the
analysis output is the average of numerous stalls that
occurred during profiling. An instruction may stall for
different reasons on different occasions or even for mul-
tiple reasons on the same occasion. For example, an in-
struction at the beginning of a basic block may stall for
a branch misprediction at one time and an I-cache miss
at another, while D-cache misses and write-buffer over-
flow may also contribute to the stall if that instruction
stores a register previously loaded from memory.

To compute the list of culprits for each stall, we con-
sider both static and dynamic causes. For static causes,
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we schedule instructions in each basic block using an
accurate model of the processor issue logic and assum-
ing no dynamic stalls. Detailed record-keeping pro-
vides how long each instruction stalls due to static con-
straints, why it stalls, and which previously issued in-
structions may cause it to stall. These explain the static
stalls. Additional stall cycles observed in the profile
data are treated as dynamic stalls.

To explain a dynamic stall at an instruction, we fol-
low a “guilty until proven innocent” approach. Specif-
ically, we start from a list of all possible reasons for
dynamic stalls in general and try to rule out those that
are impossible or extremely unlikely in the specific case
in question. Even if a candidate cannot be eliminated,
sometimes we can estimate an upper bound on how
much it can contribute to the stall. When uncertain, we
assume the candidate to be a culprit. In most cases,
only one or two candidates remain after elimination.
If all have been ruled out, the stall is marked as un-
explained, which typically accounts for under 10% of
the samples in any given procedure (8.6% overall in the
entireSPEC95 suite). The candidates we currently con-
sider are I-cache misses, D-cache misses, instruction
and data TLB misses, branch mispredictions, write-
buffer overflows, and competition for function units, in-
cluding the integer multiplier and floating point divider.
Each is ruled out by a different technique. We illustrate
this for I-cache misses.

The key to ruling out I-cache misses is the observa-
tion that an instruction is extremely unlikely to stall due
to an I-cache miss if it is in the same cache line as ev-
ery instruction that can execute immediately before it4.
More specifically, we examine the control flow graph
and the addresses of instructions. If a stalled instruc-
tion is not at the head of a basic block, it can stall for
an I-cache miss if and only if it lies at the beginning
of a cache line. If it is at the head of a basic block,
however, we can determine from the control flow graph
which basic blocks may execute immediately before it.
If their last instructions are all in the same cache line
as the stalled instruction, an I-cache miss can be ruled
out. For this analysis, we can ignore basic blocks and
control flow edges executed much less frequently than
the stalled instruction itself.

4Even so, an I-cache miss is still possible in some scenarios: the
stalled instruction is executed immediately after an interrupt or soft-
ware exception returns, or the preceding instruction loads data that
happen to displace the cache line containing the stalled instruction
from a unified cache. These scenarios are usually rare.

If IMISS event samples have been collected, we can
use them to place an upper bound on how many stall
cycles can be attributed to I-cache misses. Given the
IMISS count on each instruction and the sampling pe-
riod, we estimate how many I-cache misses occurred at
any given instruction. From this estimate and the ex-
ecution frequency of the instruction, we then compute
the upper bound on stall cycles by assuming pessimisti-
cally that each I-cache miss incurred a cache fill all the
way from memory.

How accurate is the analysis? Since in any nontrivial
program there is often no way, short of detailed simula-
tion, to ascertain why individual instructionsstalled, we
cannot validate our analysis directly by comparing its
results with some “correct” answer. Instead, we eval-
uate it indirectly by comparing the number of stall cy-
cles it attributes to a given cause with the corresponding
sample count from event sampling, which serves as an
alternative measure of the performance impact of the
same cause5. Though not a direct quantitative metric
of accuracy, a strong correlation would suggest that we
are usefully identifying culprits. Again, we illustrate
this with I-cache misses.

Figure 10 plots I-cache miss stall cycles against
IMISS events for the procedures accounting for 99.9%
of the execution time of each benchmark in theSPEC95
suite, with part of the main graph magnified for clar-
ity. Each of the 1310 procedures corresponds to a
vertical bar. The x-axis is the projected number of I-
cache misses in that procedure, calculated by scaling
theIMISS counts by the sampling period. The y-axis is
the number of stall cycles attributed to I-cache misses
by our tools, which report a range because some stall
cycles may be caused only in part by I-cache misses6.

Figure 10 shows that the stall cycles generally in-
crease with theIMISS counts, with each set of endpoints
clustering around a straight line except for a few outlier
pairs. In more quantitative terms, the correlation co-
efficients between theIMISS count of each procedure
and the top, bottom, and midpoint of the correspond-
ing range of stall cycles are 0.91, 0.86, and 0.90 re-

5Event counts alone are not enough to deduce an exact number
of stall cycles because events can have vastly different costs. For
example, an I-cache miss can cost from a few to a hundred cycles,
depending on which level of the memory hierarchy actually has the
instruction.

6To isolate the effect of culprit analysis from that of fre-
quency estimation in this experiment, the analysis used execution
counts measured with instrumented executables as described in
Section 6.2.
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Figure 10: Correlation between numbers of I-cache
miss stall cycles and ofIMISS events for procedures in
SPEC95 benchmark suite

spectively, all suggesting a strong (linear) correlation.
We would expect some points to deviate substantially
from the majority because the cost of a cache miss can
vary widely and our analysis is heuristic. For example,
Figure 10 has two conspicuous outliers near (0.05,3)
and (1.8,4). In the first case, the number of stall cy-
cles is unusually large because of an overly pessimistic
assumption concerning a single stall in the compress
benchmark ofSPECint95. In the second case, the num-
ber is smaller than expected because the procedure
(twldrv in fpppp of SPECfp95) contains long basic
blocks, which make instruction prefetching especially
effective, thus reducing the penalty incurred by the rel-
atively large number of cache misses.

7 Future Directions
There are a number of interesting opportunities for fu-
ture research. We plan to focus primarily on new
profile-driven optimizations that can exploit the fine-
grained information supplied by our analysis tools.
Work is already underway to drive existing compile-
time, link-time, and binary-rewriting optimizations us-
ing profile data, and to integrate optimizers and our pro-
filing system into a single “continuous optimization”
system that runs in the background improving the per-
formance of key programs.

We also plan to further optimize and extend our exist-
ing infrastructure. We are currently investigating hard-
ware and software mechanisms to capture more infor-
mation with each sample, such as referenced memory

addresses, register values, and branch directions. We
have already prototyped two general software exten-
sions: instruction interpretation and double sampling.

Interpretation involves decoding the instruction asso-
ciated with the sampled PC, and determining if useful
information should be extracted and recorded. For ex-
ample, each conditionalbranch can be interpreted to de-
termine whether or not the branch will be taken, yield-
ing “edge samples” that should prove valuable for anal-
ysis and optimization. Double sampling is an alternate
technique that can be used to obtain edge samples. Dur-
ing selected performance counter interrupts, a second
interrupt is setup to occur immediately after returning
from the first, providing twoPC values along an execu-
tion path. Careful coding can ensure that the secondPC

is the very next one to be executed, directly providing
edge samples; two or more samples could also be used
to form longer execution path profiles.

We are also developing a graphical user interface to
improve usability, as well as tools for interactively visu-
alizing and exploring profile data. Finally, we are work-
ing with hardware designers to develop sampling sup-
port for the next generation of Alpha processors, which
uses an out-of-order execution model that presents a
number of challenges.

8 Conclusions
The DIGITAL Continuous Profiling Infrastructure
transparently collects complete, detailed profiles of en-
tire systems. Its low overhead (typically 1–3%) makes
it practical for continuous profiling of production sys-
tems. A suite of powerful profile analysis tools reveals
useful performance metrics at various levels of abstrac-
tion, and identifies the possible reasons for all processor
stalls.

Our system demonstrates that it is possible to col-
lect profile samples at a high rate and with low over-
head. High-rate sampling reduces the amount of time
a user must gather profiles before using analysis tools.
This is especially important when using tools that re-
quire samples at the granularity of individual instruc-
tions rather than just basic blocks or procedures. Low
overhead is important because it reduces the amount of
time required to gather samples and improves the accu-
racy of the samples by minimizing the perturbation of
the profiled code.

To collect data at a high rate and with low overhead,
performance-counter interrupt handling was carefully
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designed to minimize cache misses and avoid costly
synchronization. Each processor maintains a hash table
that aggregates samples associated with the samePID,
PC, andEVENT. Because of workload locality, this ag-
gregation typically reduces the cost of storing and pro-
cessing each sample by an order of magnitude. Sam-
ples are associated with executable images and stored
in on-disk profiles.

To describe performance at the instruction-level, our
analysis tools introduce novel algorithms to address two
issues: how long each instruction stalls, and the reasons
for each stall. To determine stall latencies, an average
CPI is computed for each instruction, using estimated
execution frequencies. Accurate frequency estimates
are recovered from profile data by a set of heuristics that
use a detailed model of the processor pipeline and the
constraints imposed by program control-flow graphs
to correlate sample counts for different instructions.
The processor-pipeline model explains static stalls; dy-
namic stalls are explained using a “guilty until proven
innocent” approach that reports each possible cause not
eliminated through careful analysis.

Our profiling system is freely available via the
Web [7]. Dozens of users have already successfully
used our system to optimize a wide range of produc-
tion software, including databases, compilers, graph-
ics accelerators, and operating systems. In many cases,
detailed instruction-level information was essential for
pinpointing and fixing performance problems, and con-
tinuous profiling over long periods was necessary for
obtaining a representative profile.
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