SRC Technical Note
1997-014
July 28, 1997

Exploring Unknown Environments

Susanne Albers and Monika Rauch Henzinger

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright©Digital Equipment Corporation 1997. All rights reserved

Abstract

We consider exploration problems where a robot has to construct a com-
plete map of an unknown environment. We assume that the environment
is modeled by a directed, strongly connected graph. The robot’s task is to
visit all nodes and edges of the graph using the minimum nurRlEredge
traversals. Koutsoupias [16] gave a lower boundRaf Q (d’m), and Deng
and Papadimitriou [12] showed an upper boundi8fm, wherem is the
number edges in the graph adds the minimum number of edges that have
to be added to make the graph Eulerian. We give the first sub-exponential
algorithm for this exploration problem, which achieves an upper bound of
dClogdm, We also show a matching lower bounddst°99m for our al-
gorithm. Additionally, we give lower bounds of’#m, resp.d*(°99m for
various other natural exploration algorithms.

1 Introduction

Suppose that a robot has to construct a complete map of an unknown environment
using a path that is as short as possible. In many situations it is convenient to
model the environment in which the robot operates by a graph. This allows to
neglect geometric features of the environment and to concentrate on combinatorial
aspects of the exploration problem. Deng and Papadimitriou [12] formulated thus
the following exploration problem. A robot has to explore all nodes and edges of
an unknown, strongly connected directed graph. The relsits an edge when
it traverses the edge. A node or edgesigloredwhen it is visited for the first
time. The goal is to determineraap i.e. the adjacency matrix, of the graph using
the minimum numbeR of edge traversals. At any point in time the robot knows
(2) all visited nodes and edges and can recognize them when encountered again;
and (2) the number of unvisited edges leaving any visited node. The robot does
not know the head of unvisited edges leaving a visited node or the unvisited edges
leading into a visited node. At each point in time, the robot visitsiaent node
and has the choice of leaving the current node by traversing a specific known or an
arbitrary (i.e. given by an adversary) unvisited outgoing edge. An edge can only be
traversed from tail to head, not vice versa.

If the graph is Eulerian,i® edge traversals suffice [12], wheres the number
of edges. This immediately implies that undirected graphs can be explored with
at most 4n traversals. For a non-Eulerian graph, let teficiency dbe the min-
imum number of edges that have to be added to make the graph Eulerian. Deng
and Papadimitriou [12] suggested to study the dependen&easfm andd and

showed the first upper and lower bounds: they gave a graph such that any algo-
rithm needs2(d?m/ logd) edge traversals, and they also presented an algorithm
that achieves an upper bounda?@m. Koutsoupias [16] improved the lower
bound toQ2(d’m). Deng and Papadimitriou asked the question whether the expo-
nential gap between the upper and lower bound can be closed. Our paper is a first
step in this direction: we give an algorithm that is sub-exponentidl inamely
it achieves an upper bound 899 m, We also show a matching lower bound
for our algorithm and exponential lower bounds for various other exploration algo-
rithms.

Note thatd arises also in the complexity of the “offline” version of the prob-
lem: Consider a directed cycle with one edge replaced 9yl parallel edges. On
this graph any Eulerian traversal requite&dm) edge traversals. A simple modi-
fication of the Eulerian online algorithm solves the offline problem on any directed
graph withO(dm) edge traversals.

Related Work. Exploration and navigation problems for robots have been
studied extensively in the past. The exploration problem in this paper was for-
mulated by Deng and Papadimitriou based on a learning problem proposed by
Rivest [19]. Betkeet al. [8] and Awerbuchet al. [1] studied the problem of ex-
ploring an undirected graph and requiring additionally that the robot returns to its
starting point every so often. Bender and Slonim [9] showed how two cooperating
robots can learn a directed graph with indistinguishable nodes, where each node
has the same number of outgoing edges. Subsequent to the work in [12]eDeng
al. [11] investigated a geometric exploration problem, whose goal is to explore a
room with or without polygonal obstacles. Hoffmaenal. [15] gave an improved
exploration strategy for rooms without obstacles. More generally, theoretical stud-
ies of exploration and navigation problems in unknown environments were initiated
by Papadimitriou and Yannakakis [18]. They considered the problem of finding a
shortest path from a poistto a pointt in an unknown environment and presented
many geometric and graph based variants of this problem. Bluah [7] inves-
tigated the problem of finding a shortest path in an unfamiliar terrain with convex
obstacles. More work on this problem includes [2, 5, 6].

Our Results. Our main result is a new robot strategy, calRdlance that
explores an arbitrary graph with deficiemtynd traverses each edge at mast-
1)6d2'09d times, see Section 3. The algorithm does not need to khiovadvance.

The total number of traversals needed by the algorithm is@igoin{nm, dn? +

m}), wheren is the number of nodes. At the end of Section 3 we show that any
exploration algorithm that fulfills two intuitive conditions achieves an upper bound
of O(min{nm, dn® + m}). A depth-first search strategy obtaining this bound was

independently developed by Kwek [17].

In Section 4 we demonstrate that our analysis oBakncealgorithm is tight:
There exists a graph that is explored by our algorithm ugftit§99 m edge traver-
sals. We also show that various variants of the algorithm have the same lower
bound. In Section 2, we present lower bounds®¥fam, resp.d* 9 m for vari-
ous other natural exploration algorithms to give some intuition for the problem.

Our exploration algorithm tries to explore new edges that have not been visited
so far. That is, starting at some visited nodith unvisited outgoing edges, the
robot explores new edges until it getgickat a nodey, i.e., it reacheg on an
unvisited incoming edge ang has no unvisited outgoing edge. Since the robot
is not allowed to traverse edges in the reverse direction, an adversary can always
force the robot to visit unvisited nodes until it finally gets stuck at a visited node.

The robot then relocates, using visited edges, to some visitedneike un-
explored outgoing edges and continues the exploration. chbieof z is the
only difference between various algorithms andrdiecationto z is the only step
where the robot traverses visited edges. To mininizage have to minimize the
total number of edges traversed during all relocations. It turns out that a locally
greedy algorithm that tries to minimize the number of traversed edges during each
relocation is not optimal: it has a lower bound &¥@m (see Section 2).

Instead, our algorithm uses a divide-and-conquer approach. The robot explores
a graph with deficiencgl by exploringd? subgraphs with deficiencielg2 each and
uses the same approach recursively on each of the subgraphs. To create subgraphs
with small deficiencies, the robot keeps track of visited nodes that have more vis-
ited outgoing than visited incoming edges. Intuitively, these nodesxgrensive
because the robot, when exploring new edges, can get stuck there. The relocation
strategy tries to keep portions of the explored subgraphs “balanced” with respect
to their expensive nodes. If the robot gets stuck at some node, then it relocates to
a nodez such that “its” portion of the explored subgraph contains the minimum
number of expensive nodes.

2 Lower bounds for various algorithms

In this section we give lower bounds of*®'m, resp.d®"©99m for a locally
greedy, a generalized greedy, a depth-first, and a breadth-first algorithm. A related
problem for which lower bounds have been studied extensively, istheonnec-

tivity problemin directed graphs, see [3, 4, 14] and references therein. Given a
directed graph, the problem is to decide whether there exists a path from a dis-
tinguished nodes to a distinguished node Most of the results are developed

3

in the JAG model by Cook and Rackoff [10]. The best time—space tradeoffs cur-
rently known [4, 14] only imply a polynomial lower bound on the computation
time if no upper bounds are imposed in the space used by the computation. Given
the current knowledge of thet connectivity problem it seems unlikely that one
can prove super-polynomial lower bounds faggeneralclass of graph exploration
algorithms.

In the following letG be a directed, strongly connected graph and Ibe a
node ofG. Letin(v) andout(v) denote the number of incoming, resp. outgoing
edges ob. Let thebalance ba{v) = out(v) — in(v). For a graph with deficiency
d there exist at moad nodess, 1 < i < d, such thabal(s) < 0. Every node
s with bal(s) < 0 is called asink Note that— > ¢, -obal(s) = d. We
use the ternthainto denote a path. A chain is a sequence of nodes and edges
X1, (X1, X2), X2, (X2, X3), ..., (Xk_1, Xk), Xk for k > 1.

Greedy: If stuck at a nodg/, move to the nearest nod¢hat has new outgoing
edges.

Generalized-Greedy: At any time, for each path in the subgraph explored so
far, define a lexicographic vector as follows. For each edge on the path, determine
its currentcost which is the number of times the edge was traversed so far. Sort
these costs in non-increasing order and assign this vector to the path. Whenever
stuck at a nodg, out of all paths to nodes with new outgoing edges traverse the
path whose vector is lexicographic minimum.

Depth-First: If stuck at a nodey, move to the most recently discovered node
zthat can be reached and that has new outgoing edges.

Breadth-First: Let v be the node where the exploration starts initially. If
stuck at a nodg, move to the node that has the smallest distance freramong
all nodes with new outgoing edges that can be reached yrom

Theorem 1 For Greedy, Depth-First, and Breadth-First and for every d, there ex-
ist graphs of deficiency d that requi®@m edge traversals. For Generalized-
Greedy and for every d, there exists a graph of deficiency d that requi®8¢¥m
edge traversals.

Proof: Greedy:BasicallyGreedyfails since it is easy to “hide” a subgraph. When-
ever Greedydiscovers this subgraph, the adversary can force it to repeat all the
work done so far.

The graphG consists of two parts, (1) a cycl®) of three edges and nodes
v1(Cy), andv?(Cyp), and (2) a recursively defined proble?i. A problem P, for
any intege > 2, is a subgraph that has twecomingedges whose startnodes do

4

not belong toP? but whose endnodes do, afdutgoingedges whose startnode
belongs toP? but whose endnodes do not. phoblem P is defined in the same
way as a problenP?, § > 2, except thaP? has only one incoming edge. In the
case ofPY, the two incoming edges startal(Cy) andv?(Cyp), respectively; thel
outgoing edges all point to.

For the description oP° we also need recursively defined proble@fs These
problems are identical t®? except that, fos > 2, Q% has exactlys incoming
edges.

A problemP?, § = 1, 2, consists of chains of three edges each. The first
edge of each chain is an incoming edge iRtg the last edge of each chain is an
outgoing edge. A probler®?, § = 1, 2, is the same aB’.

We proceed to defin®?, for § > 2. One of the incoming edges &® is the
first edge of a chaifD? consisting of three edges, the other incoming edge is the
first edge of a long chai@®. For each of these chai® andD?, the last edge is
an outgoing edge d?°. If § = 3, the last interior node of each of the cha@sand
D? has an additional outgoing edge pointing into a probRm If § > 4, (a) the
last two interior nodes of? each have an adibnal outgoing edge pointing into
a subproblenP’-2, (b) the last two interior nodes @’ each have an adtibnal
outgoing edge pointing into a subproblépi—2. There areS — 2 edges leaving
P32 exactly mir{0, § — 4} of which point to nodes 0©®2 such that each node
in Q%2 that hask more outgoing than incoming edges, for> 0, receivesk
incoming edges fronP%~2, The remaining outgoing edges Bf~2 point to the
interior nodes oD? that have additional outgoing edges. The probl@fm? has
8 — 2 outgoing edges all of which are outgoing edge®&f The total number of
edges inC? is 2 plus the number of edges BF plus the total number of edges
contained in the subproble@’—2 below D?.

A problemQ?, § > 2, is the same aB® except that the subproble®’ 2 is
replaced by anothe®?~2 problem. That isQ? is composed of chairng?, D% and
problemsQ?‘z, i =1, 2. As mentioned beforeQ? has exactlys incoming edges.

Greedyis started at node and traverses first chal®y. Then it either explores
CY or DY. In either case, afterwarddreedyexplores all edges aD9-2 sinceC?
is prohibitively long. ThusP9-2 is “hidden” from Greedy We exploit this in the
analysis: LetN(8) be the number of times th&reedyexplores edges of a problem
P? or Q?, gets stuck at some node and cannot relocate to a suitable node by using
only edges inP? resp.Q?. We show thalN(§) > 2%/2. Since the edge leavingis
traversed every time the algorithm cannot relocate by using only edde, ithe
bound follows.

A problem P? contains two subproblemB®~2 and Q°~2. Note (a) that, be-

Figure 1: The graph foGreedy

cause of chaiD?, no node inQ%*~2 can reach a node ¢°~2 without leavingP?.
Note (b) thatQ®~2 is completely explored when the exploration®¥? starts and
all paths starting irP%~2 lead throughD? or Q%~2. Thus, every tim&reedygets
stuck in a subprobler®®~2 or Q%~2 and has to leav®’~2 resp.Q%2 in order to
resume exploration, it also has to leaRé. For Q’~? the statement follows from
(a); for P4=2 it follows from (a) and (b). In the same way we can argue for a prob-
lem Q°. Thus,N(8) > 2N(§ — 2). Since, fors = 1,2, N(§) > 1, we obtain
N(§) > 29/2,

This implies that the edge on Cy leavingw is traversed 2@ times. The
desired bound follows by replacimgy a path consisting ab(m) edges.

Depth-First:We can use the same graph as in the case ddthedyalgorithm.
Depth-Firstwill explore all edges irQ9—2 before it will start exploring?9-2.

Breadth-First: Again we can use the same graph as in the lower bound for
Greedy The last two interior nodes @9 have a larger distance from the initial
nodev than all nodes o9 and inQ%-2. ThusQY-2 is finished befordBreadth-
First starts exploring?9-2.

Generalized-GreedyThe graph used for the lower bound is outlined in Fig-
ure 2. The basic idea in the lower bound construction is as foll@eneralized-
Greedyexplores each subgragp’ and its siblingR” “in parallel”. Without loss
of generality we can assume that the last chain traversed in the two subgraphs lies
in Q] and the algorithm continues to explo@’, ; andR” ;. Let N(y) denote
the number of times that the algorithm has to le&feand traverse the root. We
will show that N(4y) > N(y), which implies that the root has to be traversed
N(d) > d©20099d) times.

To be precise we show the bound fibbeing a power of 4. The bound for all
values ofd follows by “rounding” down to the largest power of 4 smaller tlthn

6

Figure 2: The graph foGeneralized-Greedy

The graphG consists of two parts, (1) a cyd& with nodesy, v1(Cy) andv?(Cp),
and (2) arecursively defined subprobl&h ProblemP¢ has two incoming edges,
one starting ab?(Cy) and one starting at?(Cp). It also hagl outgoing edges, all
pointing tov. The subproblen®? is a union of chain€, each of which consists of
three edges, a startnode, an endnode andrtigdor nodesv!(C) andv?(C). The
interior nodes have at most one additional outgoing edge. Weeptbto defind®
and the “sibling” graph€® and R?, for all § < d that are a power of 4, and then
show the lower bound on this graph.

A problem P, § > 1, is a graph with two incoming edges and exaétiyut-
going edges. Aroblem R, § > 1, consists oP? with § — 2 additional incoming
edges. Theroblem Q consists ofR® with two additional incoming and two addi-
tional outgoing edges.

8 = 1: A problemP? consists of one chain. The incoming edgeRdfis the
first edge of the chain, and the outgoing edgédfis the last edge of the chain.
In P%, the interior nodes of the chain have no additional outgoing edge®}in
each interior node has one atilthal incoming and one additional outgoing edge.
ProblemR! is equal toP?.

8 = 4: A problemP* consists of two subproblend! and P}, and chains
C} and D}, whose first interior nodes have one additional outgoing edge. The
outgoing edge o€} is the incoming edge dP and the corresponding edgeDf
is the incoming edge d®;. The last edge o] and of D and the outgoing edges
of P} and P} are outgoing edges ¢t4. A problemR* is P* with two additional
incoming edges, one at the startnodqu}f and one at the startnode 6’51 A

7

problemQ* is R* with two additional incoming and outgoing edges; each interior
node ofP} has an additional incoming and outgoing edge.

N

Figure 3: The subproble*

§ = 4, for somel > 2: Lety = §/4. ltis simpler to describ&’ first.
The construction is depicted in Figure 4. Every node has the same indegree as
outdegree, i.e., there are no sinks. Probl@Mmconsists of subproblem®! and
R, for1 <i <y, connected by chair@” andD/, for 1 < i < y, whose interior
nodes each have an ational outgoing edge.

The C-chains andQ-subproblems are interleaved as follows. The two edges
leaving the interior nodes &; point into Q). In general, the edges leaving the
interior nodes ofC/" point into Q7. The same holds for th®-chains andR-
subproblems. The first edge & and of D are incoming edges of°, for
i =1, and start inQ}"_;, for 1 < i < y, on a node of the leftmost subproblem
Q! contained inQ!” ;. Recall that this problem consists of one chain with two
additional incoming and outgoing edges. One of these outgoing edges is the first
edge ofC” and the second outgoing edge is the first edgd/af

Additionally, the subproblems are connected as follows. Recallithedges
leaveR. Fori = 1, the edges leavinB;” are outgoing edges &”. For 1< i <
v, two edges leavin®” point to the interior edges @, ,. Additionally, there are
y — 2 edges leavin@®” and pointing intoR” ; such that every node iR" ; that
hask more outgoing than incoming edges, for- 0, receives edges fromR!.

The same holds fo®! with C”" ;. The problenmQ? hasy incoming edges which
are incoming edges fa@’, the problemR} hasy — 2 incoming edges which are
incoming edges fo@?.

There are 4 + 2 = § + 2 outgoing edges iQ’: The last edge of/ and the
last edge oD/, for 1 <i < y, all edges leavingr}, all but two edges leavin@}

(the other two are the incoming edges®f andC}), and two edges leavin@?.
There are alsé + 2 incoming edges: the first edge 6f and of D!, the edges
pointing to the two interior nodes & andD}, they incoming edges 0@, the

y — 2 incoming edges oR}, and 2y — 2 incoming edges ending at the startnodes
of G/ andD/, for2 <i <y.

A problem P? consists of 2 chainsC” andD/, 1 < i < y, as well as
two subproblem$®”, y < i < y + 1, and 2y — 1) subproblem%Q andR”,

8

1 <i <y —1. These components are assembled in the same way@s @xcept
that Q} is replaced byP), ;, and R} is replaced byP;". ProblemsP;” andP)’
each have only two incoming edges fr@} andD/, respectively.

There are 4 = § outgoing edges ifP®: The last edge of/ and the last edge
of D, for1 <i < y, all buttwo edges leavin@? (the other two are the incoming
edges ofD} andC)), all all edges leavin@R} . There are two incoming edges in
P%. The first edge o€} and of D} are incoming edges in every probleéPi. The
following § — 2 nodes are sinks fdp®: the two interior nodes o] and of D},
the 2y — 2 startnodes of andD/", for2 < i <y, they — 2 sinks ofP} and the
y —2sinksifP) ;.

A problemR? is a problemP? with an incoming edge into all sinks ¢#.
Thus there aré incoming and outgoing edges.

Figure 4: The subproblen®? and P?

We analyzeGeneralized-Greedgn G. For simplicity we only discuss the
exploration of a probler®’. The argument foP® andR? is analogous. As before,
lety = §/4. We show inductively that the symmetric constructiorQgf and R”
attached t&C” andD/” as well as the definition dBeneralized-Greedynply that
Q! andR! are explored symmetrically. That is, during two consecutive traversals

of C (in order to resume exploration @) or R”), Generalized-Greedyroceeds
once intoQ!” and once intdR”, whereC is the chain at which chair@” and D/
start. This obviously holds fdar= 1. Assume it holds for and we want to show
it for i + 1. Note thatQ! and R” differ only in the last chain thaBeneralized-
Greedyexplores inQ!, rep. R”. Thus, until the traversal of the earlier of the last
chain of Q" and the last chain oR”, Generalized-Greedygloes not distinguish
Q! from R”. Hence we can assume without loss of generality @ateralized-
Greedytraverses first the last chain & and afterwards the last chain &
(Think of an adversary “giving” tdeneralized-Greedfjrst the last chain oR”
and then the last chain @/ .) ThenGeneralized-GreedgxploresC/, ; andD/
and afterward€Q/, ; and R’, ; symmetrically. Thus, whefGeneralized-Greedy
explores a subproble®”, 1 < i < y, subproblemﬁj” withl < j < i are
already finished.

WheneveiGeneralized-Greedgets stuck inRR’, 1 < i < y, and has to leave
R” in order to resume exploration, it also has to leave the “parent prob@m”
(or P%, R%). This is because the chaily’, 1 < i < y, prevent the algorithm
from reaching a chain iIQJ?”, 1 < j <i, from where unfinished chains i@°,
(P?, R%) can be reached. On the way froR{ to an outgoing edge of the parent
problem,Generalized-Greedgan traverse problenR”, j < i. As shown above,
the subproblems are finished, no further exploratioRj’()ﬁs possible. The same
arguments hold when the algorithm gets stuck in a prof&m

For anys, 4 < § < d, let N(§) be the number of time&eneralized-Greedy
generates a chain iR’ or R®, gets stuck and has to lea®® or R? in order to
continue exploration. TheN(§) > yN(y) = §/4N(8/4). SinceN(1) > 1, we
haveN(d) > d®@99 and hence the edge leaving nodés traversedd®°9%
times. |

3 TheBalancealgorithm

3.1 The algorithm

We present an algorithm that explores an unknown, strongly connected graph with
deficiencyd, without knowingd in advance. First we give some definitions. At
the start of the algorithm, all edges amevisitedor new An edge becomedgsited
whenever the robot traverses it. A noddingshedwhenever all its outgoing edges

are visited. The robot istuckat a nodey if the robot enters a finished nogeon

an unvisited edge. A sink idiscoveredvhenever the robot gets stuck at the sink
for the first time. We assume that whenever the robot discovers a new sink, the

10

subgraph of explored edges is strongly connected. This does not hold in general,
but by properly restarting the algorithm at mddimes the problem can be reduced
to the case described here. Details are given in the Appendix.

Assume the algorithm knew thlemissing edgesss, t1), (S, t2), ..., (S, tg)
and a path from each tot;. Then a modified version of the Eulerian algorithm
could be executed: Whenever the original Eulerian algorithm traverses an edge
(s, ti), the modified Eulerian algorithm traverses the corresponding pathgrom
tot;. Obviously, the modified algorithm traverses each edge at nibgt2times.

Thus, the problem is to find the missing edges and corresponding paths.

Our algorithm tries to find the missing edges by maintairdnedge-disjoint
chains such that the endnode of chriis 5 and the startnode of chainis our
currentguesf tj. As the algorithm progresses paths can be appended at the start
of each chain. At termination, the startnode of chaismindeed;. To mark chain
i all edges on chainare colored with colof.

The algorithm consists of two phases.

Phase 1:Run the algorithm of [12] for Eulerian graphs. Sin@eis not Eu-
lerian, the robot will get stuck at a sir&k At this point stop the Eulerian graph
algorithm and goto Phase 2. The part of the graph explored so far contains a cycle
Co containings [12]. We assume that at the end of Phase 1 all visited nodes and
edges not belonging Gy are marked again as unvisited.

Phase 2:Phase 2 consists sfibphasesDuring each subphase the robot visits
a currentnodex of a currentchainC and makes progress towards finishing the
nodes ofC. The current node of the first subphass,igs current chain i€. The
current node and current chain of subphaskepend on the outcome of subphase
j — 1.

A chain can be in one of three statéssh in progressor finished A chainC
is finishedwhen all its nodes are finishe@;is in progressn subphasg if C was a
current chain in a subphage< j andC is not yet finishedC is freshif its edges
are explored, but is not yet in progress.

At the same time up ta + 1 chains in progress and up tbfresh chains
can exist. The invariant that there are always at ndost 1 chains in progress
is convenient but not essential in the analysis of the algorithm. The invariant that
there exist always at modtfresh chains in crucial. Every startnode of a fresh chain
has more visited outgoing that visited incoming edges and, thus, the robot can get
stuck there. In the analysis we require that there always exist atthsosth nodes.

The algorithm marks the current guess fowith atokent;, for1 <i < d.

In fact, every startnode of a fresh chain represents the current guess fot;some
1 <i =< d, and thus has a tokef). To simplify the description of the relocation

11

process, each token is also assignedwanerwhich is a chain that contains the
node on which the token is placed. Note that a node can be the current guess for
more than one nodg and, thus, have more than one token.

¢From a high-level point of view, at any time, the subgraph explored so far is
partitioned into chains, namefyp and the chains generated in Phase 2. During the
actual exploration in the subphases, the robot travels between chains. While doing
S0, it generates or extends fresh chains, which will be taken into progress later, and
finishes the chains currently in progress.

We give the details of a subphase. First, the algorithm tegtkals an unvisited
outgoing edge.

1. If x does not have an unvisited outgoing edge ans not the endnode dt,
then the next node & becomes the current node and a new subphase is started.

2. If x has no unvisited outgoing edge amds the endnode o€, procedure
Relocateis called to decide which chain becomes the current chain and to
move the robot to the startnodeof this chain. Nodez becomes the current
node.

3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited edges
until it gets stuck at a nodg. Let P be the path traversed. We distinguish four
cases:

Case l:y =x
CutC atx and addP to C. See Figure 5. The robot returnsxand the next
phase has the same current node and current chain.

S e

Figure 5: Case 1

Case 2:y # X, y has a token; and is the startnode of a fresh chdin(see
Figure 6)

AppendP at D to create a longer fresh chain, and move the token fycim
X. The current chail€ becomes thewnerof the token, the previous owner
becomes the current chain, apdbecomes the current node.

Case 3:y # X, Y has a token; but is not the startnode of a fresh chain.
This is the same as Case 2 except that no fresh chain stgrt3 ke algorithm
creates a new fresh chain of colotonsisting ofP. It moves the token frony

12

R

Figure 6: Case 2

to x andC becomes the owner of the token. The previous owner of the token
becomes the current chain apdbecomes the current node.

Case 4.y # x andy does not own a token.

In this casebal(y) < 0. If bal(y) = —k, then this case occukstimes fory.
Leti be the number of existing tokens. The algorithm puts a new takgron
x with ownerC, creates a fresh chain of color- 1 consisting ofP (the first
chain with colori + 1), and moves the robot back $o The initial chainCy
becomes the current chambecomes the current node.

This leads to the algorithm given in Figure 7. We ust denote the current
node,C to denote the current chaikithe number of tokens used, anthe highest
index of a chain. Lines 4-17 of the code correspond to item 3 above. Line 6 and 7
correspond to Case 1, lines 8-13 correspond to Cases 2 and 3, and lines 14-16 to
Case 4. Lines 18 and 19 implement item 2 and item 1, respectively.

Additionally, the algorithm maintains a tréle such that each chai@ corre-
sponds to a node(C) of T andv(C’) is a child ofv(C) if the last subpath ap-
pended taC’ was explored whil€ was the current chain. Reversely, we @5@)
to denote the chain represented by nod&Ve useT, to denote the subtree af
rooted atv and sayC is containedn T, if v(C) liesinT,. We also say a tokenor
an edgee is containedn T, if owner(t), respectively the chain a&fis contained
in T,. If all chains inT, are finished, we say tha, is finished To represent’, the
algorithm assigns parentto each chain.

To relocate the robot needs to be able to move on explored edges from the end-
point of a chainC to its startnode. This is always possible, since at the beginning
of each subphase the explored edges form a strongly connected graph. To avoid
that an edge is traversed often for this purpose, we define for eachClaapath
closurgC) connecting the endnode Gfwith the startnode of such that an edge
belongs taclosurgC) for at mostd®(°99 chainsC. Finally, we will show that
closurgC) is traversed at mosd(d?) times.

A pathQ is called aC-completionf it connects the endnode of a ch&inwith
the startnode of. A pathQ in the graph is called-uniformif it is a concatenation
of chains of coloi. Letu be anode of . A pathQ inthe graph ifl,-homogeneous

13

Algorithm Balance
1.j:=0,k:=1,x:=5,C:=Cy.
2. repeat

3. while C is unfinisheddo

4 while 3 new outgoing edge at do

5. Traverse new edges startingcaintil stuck at a nodg. Call this pathP.
6. if y = xthen

7 InsertP into C;

8 else ify has a tokerthen

9. if 3 chainD of colori startinginy andD is freshthen

10. C’ := owneqt;). Concatenat® with D;

11. else

12. j :==] + 1, C; := chain that consists d?;

13. Placer; onx; ownerr) :=C; x :=y; C:=C/;

14, else(x y # x andy has no toker)

15. j =] + 1, C; := chain that consists d?,

16. k := k + 1; Place tokenk on x; ownerzk) :=C; x :=s; C := Cp;

17. Move robot to;

18. Move robot to first unfinished nodghat appears o€ after its startnode;
X:=1z

19. C :=Relocat¢C); x = startnode ofC;
20.until C = emptychain.

Figure 7: TheBalancealgorithm

if any maximal subpatiR of Q that does not belong g, is (a)i-uniform for some
colori; (b) the edge of) precedingR is the last edge of a chain of coligrand (c)
the edge ofQ after Ris the first edge of a chain of color

We try to chooselosurgC) to be “as local taC” as possible: Le5(C) be the
set of explored edges whé&hbecomes the current chain for the first time. Given
S(C), a(C) is the lowest ancestor af(C) in T such that alyc)-homogeneous
completion ofC exists inS(C). Note thata(C) is well-defined since each chain
has aT,c, -homogeneous completion. The patbsureC) is an arbitraryT,c)-
homogeneous completion 6fusing only edges d(C). The algorithm can com-
puteclosurgC) whenevelC becomes the current chain for the first time without
moving the robot.

We describe th&elocatiorprocedure, see Figure 8. In the relocation step, the
robot repeatedly moves from the current chain to its parent until it reaches a chain
C such thafl,c) is unfinished. To move from a chakto its parentX’, the robot

14

proceeds along to the endnode oX and traverseslosurgX) to the starthode
of X, which belongs toX’. When reachingC, the robot repeatedly moves from
the startnode of the current cha¥to the startnode of one of its children until it
reaches the startnode of an unfinished chain. It chooses thexhifdX such that
among all subtrees rooted at childremofind containing unfinished chaing,x
has the minimum number of tokens.

Procedure Relocate(C)
1. if all chains are finishethen return (empty chain).
2. elseMove robot to the startnode &f alongclosurgC);

3. while C # Cp andT,, is finisheddo

4, Move robot to the startnode plarent(C) alongclosurg parent(C));

5. C :=parent(C)

6. while Cisfinisheddo

7. LetCq, Cy, ..., G be the chains witlparen{Cy) =C, 1 < k <. Let
Ck be the chain such thai,c,) contains the smallest number of tokens
among allT,c,), . .., Tucq) having unfinished chains;

8. C = Cy; x := startnode ofC;

9. Move robot to;

10. if Cis notin progresghen

11. Computelosure(C)

12. return(C)

Figure 8: TheRelocatiorprocedure

3.2 The analysis of the algorithm
3.2.1 Correctness

Since the graph is strongly connected, all nodes of the graph must be visited during
the execution of the algorithm. When the algorithm terminates, all visited nodes
are finished. Thus, all edges must be explored. We show next that each operation
and each move of the robot are well-defined. Pramrsl shows that if a chain of
colori is fresh, then lies at the startnode of the chain. Thus, in line 10, token

lies ony. By assumption there exists a path from any finished nodeTbus, the

move in line 17 is well-defined. In line 18, the robot moves to the next unfinished
node of the current chai@. It would be possible to walk alorgosure(C) but the

proof of Lemma 4 shows later thelibsure(C)is not needed.

15

3.2.2 Fundamental properties of the algorithm

Lemma 1 At most d tokens are introduced during the execution of the Balance
algorithm.

Proof: We say that the algorithm first introduces the tokgat y in line 16.

Letin,(v) andout,(v) denoted the number of visited incoming and visited out-
going edges ob, respectively. Let(v) be the total number of tokens introduced on
nodev in line 16. We show inductively that méixi, (v)—out,(v), 0} = t(v). Since
at terminationin,(v) = in(v) andout,(v) = out(v), it follows that —bal(v) >
t(v) if bal(v) < 0Oandt(v) = 0, otherwise. Thusl = — 3 ith paiw <o 0aI(V) >
>, t).

The claim maxin, (v) — out,(v), 0} = t(v) holds initially. LetP be the newly
explored path when the first token is placedgn.e. when the algorithm gets
stuck atv for the first time. BeforeP entersv, in,(v) = out,(v). TraversingP
incrementsn, (v) by 1 and setsn, (v) — out,(v) = 1. Thus, the claim holds. Let
P be the newly explored path when tokieis placed orv. It follows inductively
thatin,(v) — out,(v) = i — 1 beforeP entersv and traversing® increments the
value by 1 as before. |

We prove next some invariants.

Proposition1 1. For every chain C that is in progress or finished, pafent
is finished.

2. Let C beachainofcoloril <i < d. (a) If C is fresh, C does not own a
token,z; is located at the startnode of C, and parent(C) = owngx((b) If
C isin progress and not the current chain, then C is the owner of some token
T.

3. Every chain C is the parent of at most d chains.

Proof: Part 1. ProcedurRelocateensures thaparent(C)is finished beforeC is
taken into progress.

Part 2a. WherC is first created in line 12 or 15 ddalance 7; is placed on the
startnode ofC. Whenever the robot gets stuck at the current starthode afid
removest;, chainC is extended by a patR because is not in progress. Token
7; is placed on the new startnode®f Lines 13 and 16 ensure that the parentof
is always the owner of;.

Part 2b. We show that whenew€ris the current chain anBalanceleavesC
to continue work on an other chai€, becomes the owner of a token. Cha&n

16

is unfinished. Thus, i€ is the current chainBalancecan only leaveC to con-
tinue work on an other chain during lines 5-17 of the algorithm. In this situation,
Balanceplaces a token on a node GfandC becomes the owner of that token.

Part 3. ChairC can become the parent of other chains whllés in progress
and unfinished. During this time, every ch&hwith paren{C’) = C is unfinished
and not in progress, see Part 1. By Part 2a, the startnode of such &¢hailds a
token andC is the owner of that token. Since there are ahtgken, the proposition
follows. [|

The next lemma shows that our algorithm always balances the number of to-
kens contained in neighboring subtreedoffFor a subtred, of T, let theweight
w(T,) be the number of tokens containedTin LetactivgT,) = 1 if the current
chain is inT,; otherwise letactivgT,) = 0.

Lemma?2 Letu,v € T be siblingsin T such that,Tand T, contain unfinished
chains. Thenw(T,) + activgT,) — w(T,) — activgT,)| < 1.

Proof: Let active(C) = 1 iff C is the current chain, and letctive(C) = 0
otherwise. LetokenC) be the number of tokens owned By and letg(C) =
tokenC)+active(C). Finally, letg(v) = > ¢ ,c)et, 9(C) = w(T,)+active(T,).
We show by induction on the steps of the algorithm tgéat) — g(v)| < 1.

The claim holds initially. For a subtrd@g of T, the valuesv(T,) andactivgT,)
only change in lines 13, 16, and 19 B&lanceand in lines 4 and 9 of procedure
Relocate Additionally, T changes in lines 10, 12, and 15.

Note first that changes i do not affect the invariant: Whenevérchanges,
v(C) receives a new child an@ is not yet finished (or the algorithm has not yet
determined thaC is finished). Thus, the children @f are not yet in progress, i.e.
they do not own any tokens by Proposition 1. Thus, the claim holds for any pair of
children ofv(C).

We consider next all changes#daT,) andactive(T,).

Line 13: Let C be the current chain before the execution of line 13. Note that
tokenC) increases by lactive(C) becomes 0tokenC’) decreases by 1, and
active(C’) becomes 1. Thug(C) andg(C’), and, henceg(v) is unchanged for
every nodev € T.

Line 16: Note that (i)g(C) is unchanged by the same argument as for line 13,
(ii) g(C’) is unchanged, sindmkenC’) andactive(C’) are unchanged, and (iii)
g(Co) is increased by 1. Sindgy only contributes t@(v(Cp)) andv(Cp) is the
root of T, the claim holds.

17

Line 19 of Balance/Line 4 and 9 of Relocatest C be the current chain before
the execution of line 3 or 7 and |&t be the current chain afterwards. In line 3, the
claim does not apply td,c), SinceT,c) is finished. Thus, we are left with line 7.
Note thatactive(C) drops to 0 ana@ctive(C) increases to 1. Thus, for every node
v such thatT, contains either both the parent and its child or neither the parent
nor its child,g(v) is unchanged. The only remaining subtredig,. Before the
execution of line 7, for any siblinG’ of C, w(Ty«c)) < w(Tyc)) < w(Tyc)) + 1.
Sinceactive(C') =0, |w(Tyc)) — w(TycH) + active(C) — active(C’)| <1. ®

Lemma 3 Let C be a chainof coloril <i < d, and, at the time when C is taken
in progress, let ue T be the closest ancestor ofC) that satisfies the following
condition. The path from u to(C) in T contains d nodesuus, ..., Ug such that
each y with1 < j <d has a childy,

(@) T, containsa node of colori; and (b)C) ¢ T,,.

If there is no such ancestor u, then let wl{€p). Then there exists aIhomogeneous
C-completion.

Proof: By assumption, the graph of explored edges is strongly connected, which
implies that there exists &,c,-homogeneou€-completion. Suppose that there
ared nodesuy, ..., Ug satisfying (a) and (b). Fof = 1,...,d, letC, be the
chain corresponding tg;. If one of the nodesy, ..., uq, sayu, is of colori,

then there is the following,, -homogeneou€-completion: Follow edges of color

i until you reach the startnode &, , then walk “down” inT,, along ancestors of

C to the startnode of.

Thus, we are left with the case that none of the nades. ., ug has color.

Forj=1,...,d,letCj, € T, be achain of color such that no ancestor @j 1
contained inT,; has colori. LetCj o, ..., Cj(j be the ancestors @ ; in T .
More precisely, fok = 1,...,1(j) — 1, G kr1 = paren{Cj x) andCj(j, = Cy

is the chain corresponding tp.

Following the edges of colargives aT,-homogeneous path fro@ to every
chainCj; for 1 < j < d. We want to show that there existsTg=homogenous
path to a chairC; (j,. We consider the following game ondax max I(j) grid,
where for 1< j < d, square(j, k) has the color o€« for 1 < k < [(j) and no
color fork > 1(j). Thus, all squaresj, 1) have coloti and no other squares have
colori. Initially all squareqj, 1) are checked, all other squares are unchecked. A
square is checked if the robot can move to the startnode of the corresponding chain
on aTy-homogeneous path. The rules of the game are: (Note that the startnode of
Cj w—1 belongs taCj i .)

18

e Asquardg j, k) of color i’ gets checked whenever there exists a sqjdré’)
of color i’ such that squaré¢j’, k' — 1) is checked and there exists a path of
color-i’ edges from the endnode of & to the startnode of (k.

e The game terminates when one of the squéjelj)) is checked or when
no more square can be checked.

We will show that one of the squarés, | (j)) can be checked. This shows
that there is al,-homogeneous path fro@ to Cj(j,. Sinceu; is an ancestor
of v(C), the same argument as above shows that there exigfhamogeneous
C-completion.

We employ the pigeon-hole principle: Initially, there atechecked squares
(j,1) for1 < j < d and each squarg, 2) has a coloi’ # i. Since there are at
mostd — 1 other colors, there must be two squafg) and(t, 2) with the same
colori’. Since the edges of coldrform a chain, there is either a path frag, to
Ci 2 or vice versa. Thus, one of the two squares can be checked. Inductively, there
ared checked squardg, k(j)) such that(j, k(j) + 1) is unchecked. None of the
squaregj, k(j) + 1) has coloii and thus, there must be two squaggsk(j) + 1)
with the same color, which leads to checking one of the two squares. The game
continues until one of the squargs|(j)) has been checked. |

3.2.3 Counting the number of edge traversals

Lemma 4 Each edge is traversed at most d times during executions of line 17 and
at most2d + 2 times during executions of line 18 of the Balance algorithm.

Proof: Let e be an arbitrary edge and I€tbe the chaire belongs to. Every time
e is traversed during an execution of line 17, a new token is placed on the graph.
Since a total ofl tokens are placed, the first statement of the lemma follows.

Next we analyze executions of line 18. bLetandy be the tail and the head
of e i.e.e = (X, y). Let C! be the portion ofC that consists of the path from the
startnode o€ to x. Similarly, letC? be the path frony to the endnode of.

Note that in line 18, edge could only be traversed while nodes @a are
unfinished if the robot gets stuck at a nogi®n C!, y having a token, and has
to move to an unfinished nodeon C! that lies beforey. Sincey holds a token,
with C being the ownery must have been the current node in a subphase when
C was current chain. However, the node selection rule in line 18 ensures that this
is impossible becauseis unfinished. This also implies that in line 18, the robot

19

can always reach the first unfinished nodeby following C, without traversing
closurgC).

Thus,e is traversed for the first time in line 18 when all nodes@hnare fin-
ished and the robot moves to the next unfinished nod€%nThe edgee can be
traversed again (a) if the robot gets stuck at a nod€band moves to the next
unfinished node o€, or (b) if the robot traverseS from its startnode, since pro-
cedureRelocatareturned chairC. Every time case (a) occurs, a token is removed
from C1, and this token cannot be placed again@n Since there are onlg to-
kens,e can be traversed at ma$tmore times in case (a) after it was traversed the
first time in that line. Every time case (b) occutsken(C)-+active(C) increases
by 1, while no other step of the algorithm can decrease this value as ldDgsas
unfinished. Thus, case (b) occurs at st 1 times. |

Thus, it only remains to bound how often an edge is traverseddlocate
A chain C’ is dependenbn a chainC if C" € T, andclosur€C’) is not T-
homogeneous for any true descendaof v(C).

Lemma 5 For every chain C, there exist at most'8P9*+* chains C € T,c, that
are dependent on C.

Proof: Let n; (C) be the total number of chains of colodependent o€. For a
colori,1<i <d,andaninteges,1 <6 <d, let

Ni (8) = maxz{n;(C); T, contains at most of thed tokens whenever
active(T,c)) = 1}.

We will show that for any, 1 < § < d, and any colof, (1) N; (§) < d?N; (18/2))
and (2)Ni (1) = 1. This impliesN; (d) < d2'°99_ Since}" ; Ni (d) < d - d2'09d,
the lemma follows.

To prove (1), fix a coloi and an integes. Consider a subtre&,, that
contains at mosi tokens wheractivgT,c)) = 1. Out of all chains dependent on
C, let C’ be the chain whose closure is computed last. We show that when the
algorithm computeslosurgC’), then the number of chains of colorthat are
already dependent 0@ is at mostd(d — 1)N;([5/2]). Thus,n;(C) < d(d —
DNi(18/2)) + 1 < d?N; ([8/2)).

Let ug, Uy, ..., U be the sequence of nodes (from lowest to highest) on the
path fromv(C’) to v(C) such that every nodej, j = 1,2,...,1, has a childy
with (a) T,; contains a node of colar and (b)v(C) ¢ T,,. By Lemma 3/ < d.
Suppose that nodg, 1 < j < d, hasc(j) children,vj 1, vj 2, ..., vj¢j) With
v € Ty, ;- By condition (b), 2< c(j) < d.

20

For fixed j andk > 2, we have to show: Up to the time whelosurgC’)
is computed, whenevexctive(T,,,) = 1, thenw(T,,) < [§/2]. Consider the
point in time whenclosurgC’) is computed. Sincd,, , containsC’, T, , is un-
finished. By Lemma 2Balancedistributes the tokens contained Ty, evenly
among the subtreés, , T, ,, ..., Ty ;, that contain unfinished chains. Thus, for
eachunfinished J;, with k > 2, w(T,,,) was up to now at moss /2] whenever
activg(T,;,) = 1. For eactfinished T, ., consider the last point of time when an
unfinished chain oT,;, becomes the current chain. Singg exists, T, , is unfin-
ished and, by Lemma 2y(T,,) is up to this pointin time at mog#/2| whenever
activg(T,;,) = 1. We conclude that up to the time whelosurgC) is computed,
T, contains at mosN; (1§/2]) chains of color that can be dependent on the
chain corresponding tg; x, and, thus, can be dependent@n Summing up, we
obtain thafT,), contains at most

c(})
Z Ni (18/2]) < d(d —1)N;([8/2])

d
j=1 k=2
chains of coloii that can be dependent @

Finally we show thal\; (1) = 1. If a subtre€T,) contains at most one token
wheneverctivgT,c)) = 1, then each node ifi,c) has only one child, by Propo-
sition 1. SinceT,c) never branches, it can contain at most one chain of cdluat
is dependent og. |

Lemma 6 For every chain C, there exist at most'®** chains C € T,c, such
that closure(C) uses edges of C.

Proof: Let C be an arbitrary chain and lete T be the node corresponding@
We show that if a chail€®’ € T, is not dependent o€, thenclosur€C’) does
not use edges @. Lemma 6 follows immediately from Lemma 5.

If a chainC’ € T,(c) is not dependent o@, then the patftlosurgC’) is Ty-
homogeneous for a descendantdf v. Suppose that d,-homogeneous patR
would use edges df. Leti be the color ofC. ChainC does not belong td,.
Thus, afterP has visitedC, it may only traverse chains of colowntil it reaches
again a chain of color that belongs tdl,. Note that all chains of colar that
are reachable fror® via edges of coloi must have been generated earlier that
C. However, all chain inT, were generated later thad. We conclude that a
Ty-homogeneous path cannot use edges.of |

Lemma 7 For every chain C, there exist at masit+2)d?'°99+2 chains C ¢ T,
such that closure(GQ uses edges of C.

21

Proof: A chainC’ needsa chainC if closurdC’) uses edges & andC’ is u-hard
if closurdC’) is T,-homogeneous, but ndt,-homogeneous for any chikd of u.
For each chail€’ there exists a unique nodeof T such thatC is u-hard. IfC’ is
dependent on chai@, thenC’ is u-hard for an ancestar of v(C). If C’ is u-hard
andv is a descendant ef and an ancestor af(C’), thenC'’ is dependent o€ (v).
To prove the lemma it suffices to show the following two claims:

Claim 1: There are at most?'°99+2 chainsC’ ¢ T, c, such thaiC’ needsC and
C’ is u-hard for some ancestarof v(C).

Claim 2: There are at mogt + 1)d?'°99+2 chainsC’ ¢ T,(c) such thatC’ needs
C andC’ is u-hard for some node that is not an ancestor ofC).

Proof of Claim 1: If C' needsC, thenC’ either does not yet exist or is un-
finished whenC is taken into progress. Consider the point in time wiiis
taken into progress. Let, Uy, ..., U be the ancestors @{C) in T that fulfill the
following conditions: Each nodg has a childy; such that (aJl,, contains unfin-
ished chains, and (b)XC) ¢ T,. Thus, every chain that nee@slies in one of the
subtreesT,,. Note thal < d, since by Proposition 1, every subtree that contains
an unfinished chain not equal to the current chain must own a token. Assume
belongs toT,,. Sinceu; is the least common ancestorwiC) andv(C’), andC’
is u-hard for an ancestar of v(C), C" is dependent o€(u;). Since by Lemma
5 there are at most?'°99+1 chains that are dependent @xiu;), there can be at
mostl - d2099+1 < ¢2109d+2 chainsC’ ¢ T, that needC and areu-hard for an
ancestor ob(C). [|

Proof of Claim 2: Leti be the color ofC. Let us denote the concatenation of
all chains of coloii as thepath of color i Note that the path of colarintroduces
a linear order on the chains of color We say a chaitC lies betweeriwo other
chains on the path of coloif C is not equal to one of the chains and lies between
them in the linear order. We define first the nearest predecessor of a chain. Then
we show (1) that for each chal® ¢ T,) that need<C and isu-hard for some
nodeu that is not an ancestor of C), there exists a chai@; of colori such that

e C lies on the path of colarbetweenC; and its nearest predecessor, and

e C; fulfills the conditions of Claim 1, i.eC’ needsC; andu is an ancestor
of v(Cy).

We show next (2) that there exist at malsthainsC; of colori for which C lies
on the path of coloi betweenC; and its nearest predecessor. By Claim 1 and

22

Lemma 6, for eackT; there exist at mostd 4 1)d?'°99+1 closures that are hard for
an ancestor of(Cy). It follows that there are at mosid + 1) - d2!°99+1 chains
C’ that needC and areu-hard for some node that is not an ancestor ofC).

Consider the point in time whe@ is taken into progress. Let(C) be the
closest ancestor af(C) such thafl;c) contains a node of colarthat is not equal
to v(C). Thenearest predecessarf C is the chainC’ # C of colori that was
taken into progress most recentlyTigc).

(1) The closure of’ introduces an order on the chains belonging to it. Let
C; be the last chain of, beforeC on closur€C’) and letC, be the first chain of
Ty afterC onclosurgC’), i.e. C lies on the path of color-edges betwee@; and
C,. We show below that the path of colbedges betwee@; andC; is contained
in the path of coloi- edges betwee@; and its nearest predecessor. This implies
thatC lies on the path of coloiredges betwee@; and its nearest predecessor and
completes the proof of (1).

Since T, is a subtree that contair®g; andC,, i.e. C; and another chain of
colori that was taken into progress befdgg, T, also must contain the nearest
predecessor af;. Following the path of coloi-edges fronCy, C; is the first chain
of Ty that is encountered. Thus, the colgpath betweelC; andC, is contained
in the colori path betweel€; and its nearest predecessor.

(2) We want to bound the number of coliochainsC; such thatC lies on the
path of color betweenC; and its nearest predecessor. ObviouSiyas created,
after C was taken in progress (otherwigg, would have been appended @).
Consider the point in time whe@ is taken into progress. L&y, ..., C| be the
chains that are parents of fresh chains. All chains created afterwards must belong
to Tyc) orto Ty, - - -» Ty~ Note (&) that for no color-chain inT,c), C can
lie on the color path between the chain and its nearest predecessor. Note (b) that
fork = 1,....1, only for the colori chainC® in T, created first afte€ was
taken into progress; can lie betweel€® and its nearest predecessor. The nearest
predecessor of every colochainD created later belongs I, ¢, , and was created
afterC. Thus,C does not lie on the coldrpath betweerD and its predecessor.
Thus, at mosk chains exists such thé&t lies on the coloi- path between the chain
and its predecessor. By Proposition X d. |

Theorem 2 Using the Balance algorithm, the robot explores an unknown graph
with deficiency d and traverses each edge at st 1)%d2'°99 times.

Proof: Let e be an arbitrary edge of chai@. Edgee is traversed for the first
time when it is explored during an execution of line 5 of Bedancealgorithm.

23

By Lemma 4, it can be traversed 3- 2 times during executions of lines 17 and
18. By Lemmas 6 and & belongs to at mogi2'°9d+1 1 (d + 2)d2/099+2 paths
closurgC’). We show that each pattiosurgC’) is traversed at most(d + 1)
times. The patltlosurgC’) is used at modll times during an execution of line 2
of Relocate since each time a token is removed from the finished c@airThe
pathclosurgC’) can also be used at masttimes in line 4 ofRelocatesince each
time a token is removed from the finished subffgg, of a childC” of C'.

Finally, the edge= might be traversed(d + 1) times in line 9 ofRelocate
Whene is traversed in line 9, then (i) either the robot had move@&ja@fter the
introduction of a new token (line 16) or (ii) there exists an ancastfrv(C) with
a childx such that the robot was stuck at a nod&,jrandTy is finished. Thus, by
going “up” the treeT in lines 3-5, the robot reached Case (i) occurs at mosit
times. WhernC becomes the current chain for the first time,uet. . ., u; be the
ancestors 0b(C) such that each; has a child; with (a) T,; contains unfinished
chains, and (by ¢ T,,. By Proposition 1, the nodes, ..., uj can have a total of
d children satisfying (a) and (b). Since each subtree rooted at one of these children
can contain at most tokens, case (ii) occurs at mat times.

Thus, edgee is traversed at most
1+3d +2+d(d + 1)(d?'°9% 4 (d + 2)d?'°9%+2) 1 d(d + 1) < (d + 1)°d?'°%

times. Multiplying the bound by to account for restarts shows the theorens

The total number of edge traversals usedayanceis alsoO(min{mn, dn® +
m}), wheren is the number of nodes in the graph. It is not hard to show that an
upper bound ofo(min{mn, dn? + m}) is achieved by any exploration algorithm
satisfying the following two properties: (1) When the robot gets stuck, it moves on
a cycle-free path to some, i.e. arbitrary, node with new outgoing edges. (2) When
the robot is not relocating, it always traverses new edges whenever possible.

We show that any exploration algorithm satisfying (1) and (2) gets stuck at
most mir{m, dn} times. The bound follows because, by Property (1), at most
edges are traversed during each relocation. Obviously, a robot gets stuck at most
m times. For the proof of the second bound,ilef(v) andout,(v) be the num-
ber of unvisited incoming and unvisited outgoing edges ofespectively. Let
def(v) = min{0, iny(v) — outy(v)}. We show inductively tha} , _; defv) < d.

This implies that, for every node whenever the robot explores the last unvisited
edge out ofv, there are at most unvisited incoming edges at Thus the robot
gets stuck at most times at any node. Summing over all nodes i@ gives the
desired bound aodin.

24

The inequality) ", . def(v) < d holds intitially. The invariant is maintained
whenever the robot relocates from a nogdewvhere it got stuck, to some node
with new outgoing edges because only visited edges are traversed. Whenever the
robot starts a new exploration at a nagleisits a sequence of new edges and gets
stuck at a node, def(2) increases by at most @ie f(x) decreases by 1 while at no
other node, thelefvalue changes.

4 Atightlower bound for the Balancealgorithm and mod-
ifications

In this section we give first a lower bound for tBalancealgorithm and afterwards
we give lower bounds for modifications Balance

Theorem 3 For every d> 1, there exists a graph G of deficiency d that is explored
by Balance using 31°99m edge traversals.

Proof: We show that there exists a gragh= (V, E) and an edge < E that
is traversedd(°9m times whileBalanceexploresG. The theorem follows by
replacinge by a path of®(m) edges. We show the boundabeing a power of 5.
The bound for all values af follows by “rounding” down to the largest power of
5 smaller thard.

The graph is a union of chairs, each of which consists of three edges, a
startnode, an endnode and timterior nodesv(C) andv?(C). The interior nodes
belong to exactly one chain and have up to one additional outgoing edge. We
describeG, see also Figure 9. Graph contains (a) a cycl€, that starts and
ends in a node (Balanceis started ab and findsCy during Phase 1) and (b) a
recursively defined problem? attached teCo.

In the following lets, 1 < § < d, be a power of 5. Aproblem P, for any
integers > 5, is a subgraph that has twecomingedges whose starthodes do not
belong toP? but whose endnodes do, ahd- 1 outgoingedges whose startnodes
belong toP? but whose endnodes do not. A problé has one incoming and
one outgoing edge. In the caseRf, the two incoming edges start &t(Cy) and
v2(Cy), respectivelyd outgoing edges point to and one outgoing edge points to
v1(Co).

For the definition ofP? we also need problen®@’. These problems are iden-
tical to P? except that, fos > 1, Q? has exactly + 1 incoming edges.

25

Figure 9: The grapl®

A problemP? consists of a single chain; the first edge of the chain represents
an incoming edge and the last edge represents an outgoing edge. The interior nodes
have no additional outgoing edges. A probl€rhis identical toP?.

Fors > 5, lety = §/5. ProblemP? consists of 32 chainsC/}, 1 <i <y,

1 < k < 3y, as well asy chainsD; andy recursive subprobler’r@ y1l<i<
y —1,andP}.

These components are assembled as follows. One of the incoming edefes of

is the first edge oC . We assume that;(Cp) is the startnode ottf/l‘r’ Node

v(Cl)) is the startnode o€, 1<i<y,1<k=<3y-1 Nodev(C” '3,)

is the startnode o®,+ll, 1<i<y—1 Thelastedgedf;,, 1 <k < 3y,is
an outgoing edge oP°. The endnode oCVk is equal to the startnode & 1k

2 <i <yandl<k < 3y. Note that the last edge @‘;’l hence is an outgoing
edge ofP’. Nodesv*(C/,), 1 <i < y,1 < k < 3y — 1, have no additional
outgoing edge but nodes(C/5,), 1 < i < y — 1, do. ChainC} , has no
additional outgoing edges.

The second incoming edge 6 is the first edge of a chaiB and, for 2<
i <y, the edge leaving?(C" 1.3,) s the first edge oD/. For1<i <y, the
last edge oD/ is an outgoing edge dP’. If § = 5, then the first interior node of

26

the chainD/ = D} has an additional outgoing edge pointing into a probrn
If § > 5, then the two interior nodes @&, 1 < i < y, each have an adibnal
outgoing edge. For ¥ i < y — 1, these two edges point in@/ and, fori = y,
they point intoP;) .

If § = 5, then the outgoing edge of the only subproblBfis an outgoing
edges ofP? = P°. If § > 5, the problemQ/, 1 < i < y — 1, andP} each
havey + 1 outgoing edges. FaR’, y these edges are also outgoing edgeB of
and one edge points to the interior nodef that is the startnode &; ;. For
2 <i <y -1, exactlyy — 1 edges leavin®! pointinto Q" ; such that every
node that has more outgoing than incoming edges, fox- 0, received edges.
One outgoing edge points to the interior nodeDyf, that does not get an edge
from Q! ; and the remaining edge points to the interior noddgfthat is the
startnode of] ;. In the same way the edges leaviRg are connected witQ]_,,
D) ,andDj.

We identify the sources dP?, i.e. the nodes having higher indegree than out-
degree. At each source, indegree and outdegree differ by 1. The startnodes of the
chainsD/, 2 <i <y, andc;’yk, 1 <k < 3y, represent a total ofy4— 1 sources.

One interior node 0D} represents a source. Finally, the subprobRfrcontains
y — 1 sources.

A problemQ?, § > 5, is the same aB®, except that the subprobleR is
replaced by a probler®}. As mentioned before, a proble@’ receivess — 1
additional incoming edges. These edges point to the nodes that represent sources
in P?,

We analyze the number of edge traversals useBddgnceon G. Consider a
problemP?, § > 5, and lety = §/5. WhenBalancegenerates the strand of chains
C/y....,Cly,, forsome 1< i < y, this strand containg8> y +1 tokens. Since
D/ and the subproblem attached to it contgitokensBalancedoes not explore
the unvisited edges out &, before the subproblem attachedD§ is finished.

In the same way we can argue for a probl€h

Let N(8) be the number of times the following event happens wBaéance
works on a problenP? or Q°: Balancegenerates a new chain, gets stuck and can-
not reach a node with new outgoing edges by using only edges iresp. Q°.
ProblemP? containsy subproblem®, ..., Q)_, andP). Every timeBalance
gets stuck in one of these subproblems and has to leave it in order to resume ex-
ploration, it also has to leav@’. This is because of the following facts: (1) When
BalanceexploresQ!, 1 < i < y — 1, or P}, the subproblem®?, ..., Q" ;
resp.Q7, ..., Q) _, are already finished. (2) The chaibg, ..., D} ensure that

27

Balancecannot reach any chai@’,, 1 < i < y, 1 < k < 3y, from where the
unfinished chains ifP® can be reached. Again the same holds for a prob¥m
Thus, foré > 5, N(§) > yN(y) = (§/5N(8/5). SinceN(§) = 1, fors = 1, we
obtainN(d) = d@°99 Finally, consider the edgeon Cy that leaves. Balance
must traverse at leastN (d) = d20099 times. [

We also modified th8alancealgorithm by relocating to other nodes with new
outgoing edges. Replace the choic€gpfin line 7 of by one of the following rules.

Round Robin: Let Cy be the chain amon@y, ..., G that was selected least
often in any execution of line 7.

Cheapest Subtree:Let C¢ be the chain amon@y, ..., G, such thafTl,c,
contains the fewest number of dependent chains with respect to the current chain.

Theorem 4 For Round Robin and for Cheapest Subtree and for alt d, there
exist graphs of deficiency d that requir@ @99m edge traversals.

Proof: The proof is identical to that dbeneralized-Greedyn Theorem 1. []

Acknowledgment

We thank Prabhakar Raghavan for bringing to our attention the literature sntthe
connectivity problem.

References

[1] B. Awerbuch, M. Betke, R. Rivest and M. Singh. Piecemeal Graph Learning
by a Mobile RobotProc. 8th Conf. on Comput. Learning Thep821-328,
1995.

[2] E. Bar-Eli, P. Berman, A. Fiat and R. Yan. On-line navigation in a room.
Proc. 3rd ACM-SIAM Symp. on Discrete AlgorithrB87-249, 1992.

[3] G.Barnes, J.F. Buss, W.L. Ruzzo and B. Schieber. A sublinear space, polyno-
mial time algorithms for directest connectivityProc. 7th Annual Conf. on
Structure in Compexity Theqr27—-33, 1992.

[4] G.Barnes and J. Edmonds. Time-space lower bounds for direetednnec-
tivity on JAG modelsProc. 34th Symp. on Foundations of Computer Science
228-237,1993.

28

[5] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rasi and M. Saks. Random-
ized robot navigation algorithm®&roc. 7th ACM-SIAM Symp. on Discrete
Algorithms 74-84, 1996.

[6] A. Blum and P. Chalasani. An on-line algorithm for improving performance
in navigationProc. 34th Symp. on Foundations of Computer Sciee#1,
1994.

[7] A. Blum, P. Raghavan and B. Schieber. Navigating in unfamiliar geometric
terrain.Proc. 23rd Symp. on Theory of Computid§4-504, 1991.

[8] M. Betke, R. Rivest and M. Singh. Piecemeal learning of an unknown envi-
ronment.Proc. 5th Conf. on Comput. Learning Thep®y7-286, 1993.

[9] M. Bender and D. Slonim. The power of teach exploration: two robots can
learn unlabeled directed graphroc. 35th Symp. on Foundations of Com-
puter Science75—85, 1994.

[10] S.A. Cook and C.W. Rackoff. Space lower bounds for maze threadability on
restricted machine§€IAM Journal on Computin®:636—652, 1980.

[11] X. Deng, T. Kameda and C. H. Papadimitriou. How to learn an unknown
environmentProc. 32nd Symp. on Foundations of Computer Scieh88—
303, 1991.

[12] X. Deng and C. H. Papadimitriou. Exploring an unknown grapioc. 31st
Symp. on Foundations of Computer Scierd&6—-361, 1990.

[13] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Revised
version of [12].

[14] J. Edmonds and C.K. Poon. A nearly optimal time-space lower bound for
directedst-connectivity on the NNJAG modeRroc. 27th Symp. on Theory
of Computing147-156, 1995.

[15] F. Hoffmann, C. Icking, R. Klein and K. Kriegel. A competitive strategy
for learning a polygonProc. 8th ACM-SIAM Symp. on Discrete Algorithms
166-174,1997.

[16] E. Koutsoupias. Result reported in [13].

[17] S. Kwek. On a simple depth-first search strategy for exploring unknown
graphs. To appear iBroc. 5th Workshop on Algorithms and Data Structures
(WADS) 1997.

29

[18] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a Tirtag.
oretical Computer Scien¢84:127-150, 1991.

[19] R. Rivest. Problem formulation cited in [12].

5 Appendix

Lemma 8 After at most d restarts of the Balance algorithm, whenever a new sink
s, 1 <i < d, was discovered, we can ensure that the subgraph of explored edges
is always strongly connected.

Proof: Whenever théalancealgorithm gets stuck in line 14 and there is no path
tosusing edges that have been traversed before, then the algorithm stops and has to
be restarted as follows. Lef, ..., sc_; be the already discovered sinks. Assume
the robot gets stuck gton a pathP that doesotbelong to any other chain created
since the last restart. Whenever this happeris,a newly discovered sing and
must have occurred oR before (each node has degree?). Take the cycleC
between the two occurrences gfon P and restart the algorithm with current
nodey and current chail© with the following modification: All edges traversed
before the restart are marked las- 1-visited. We show below that there exists
a path ofk — 1-visited edges from all previously visited sinksyo Whenever
the algorithm started & encounters an already visited sigki < k, then the
algorithm traverses thie— 1-visited edges on the path fragnto s¢ as required in
lines 16 and 17 of the algorithm, i.e., the algorithm does not get stugkiak k.

Thus, whenever the modified algorithm restarts, it has discovered a new sink
s«. Hence, after at most restarts, all sinks have been discovered and there is a
path from the every sing withi < kto s.

We show inductively that there exists a path from all previously explored sinks
to y. Obviously the claim holds initially. Whenevgr=s; for j > 1, then obvi-
ously there exists a path frog_; to s;, since this is how the previous algorithm
got stuck. Thus, by transitivity of the reacliléy relation, all previously visited
sinks can reach;. u

30

