SRC Technical Note
1997-012
June 24, 1997

Online Throughput-Competitive Algorithm for
Multicast Routing and Admission Control

Ashish Goel, Monika Rauch Henzinger and Serge Plotkin

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright©Digital Equipment Corporation 1997. All rights reserved

Ashish Goel and Serge Plotkin are at Stanford University. Their electronic mail
addresses ardagoel, plotki @cs.stanford.edu.

Abstract

We present the first polylog-competitive online algorithm for the general
multicast problem in the throughput model. The ratio of the number of re-
guests accepted by the optimum offline algorithm to the expected number of
requests accepted by our algorithmOglog M (logn + loglogAt) logn),
whereM is the number of multicast groups ands the number of nodes in
the graph. We show that thisis close to optimum by presentig&ygn log. M)
lower bound on this ratio for any randomized online algorithm against an
oblivious adversary, wheit is much larger than the link capacities. We
also show that it is impossible to be competitive against an adaptive online
adversary.

As in the previous online routing algorithms, our algorithm uses edge-
costs when deciding on which is the best path to use. In contrast to the previ-
ous competitive algorithms in the throughput model, our cost is not a direct
function of the edge load. The new cost definition allows us to decouple the
effects of routing and admission decisions of different multicast groups.

1 Introduction

Future high-speed communication networks such as ATM will use bandwidth-
reservation in order to achieve Quality of Service (QoS) guarantees. Given a re-
quest for a Virtual Circuit (VC), the router has to either accept or reject this request
and, if it decides to accept it, allocate the requested bandwidth along a path con-
necting the endpoints of the VC.

In case of multicast requests, the bandwidth has to be allocated along a tree
spanning the nodes participating in the multicast group. In the general case, a
multicast request specifies the user (endpoint) and the multicast group that this
user wants to participate in. The router should either reject the request or accept it
and allocate bandwidth along a path connecting the new endpoint with the already
existing tree for this group.

In this paper we present the first polylog-competitive algorithm for the general
multicast problem. Our algorithm is randomized since it is impossible to achieve
polylog competitive ratio by a deterministic algorithm. The ratio of the number
of requests accepted by the optimum offline algorithm to the expected number of
requests accepted by our algorithnOglog M (logn + log logM) logn), where
M is the number of multicast groups ands the number of nodes in the graph. If
each vertex is allowed to serve at most ondtioast group, the competitive ratio
simplifies toO(log® n).

Routing and admission control problems in the online setting were extensively

2

studied. In particular, in [3] it was shown how to achi€édogn) competitive ratio

with respect to throughput for infinite duration requests, i.e. number of accepted
requests, an@(lognT) ratio for requests that specify holding times (durations)
upon arrival, wherdl is the longest duration. The randomized model where the
durations are exponentially distributed and the arrivals are Poisson with unknown
rates was considered in [9]. They describi@ & ¢)-competitive algorithm, where

€ depends on the ratio of the minimum capacity to maximum bandwidth of a single
VC. Both [3] and [9] assume at least logarithmic ratio between maximum VC band-
width and minimum link capacity. Similar results without this assumption were
developed for special network topologies (see e.g. [10]). An optimal congestion-
competitive online algorithm for multicast routing was presented in [1].

The techniques in the above mentioned papers can be used to solve several
restricted multicast problems. In particular, [3] shows that if the participants in a
single multicast group arrive together(“batch arrivals”), and the accept/reject deci-
sion is for the whole multicast group, it is possible to achi@gn) competitive
ratio. The case where we keep the restriction of batch arrivals, but allow rejection
of some of the group members and acceptance of others is considered in [6].

Recently, Awerbuch and Singh has shown how to combine the “winner-picking”
technique [2] with the techniques in [3] to achieve a polylog competitive ratio for
the case where members of eachltioast group arrive sequentially, i.e. the size
and membership of the group is unknown upon its creation. Their algorithm can
deal only with thenon-interleavedase, i.e. when all the members of a particular
multicast group arrive before a new group can be created.

It is not clear how to apply the algorithm and the analysis of [4] to the more
general case, where the arrivals of requests belonging to different multicast groups
areinterleaved The main problem is that their algorithm strongly depends on the
fact that, at every instance, the algorithm is dealing with the construction of only
a single multicast tree and all accept/reject decisions with respect to all existing
multicast groups are already known.

As in [3], the algorithm in [4] uses edge costs the are exponential in the cur-
rent link load. One of our contributions is a new definition of edge-costs that are
independent of the specific accept/reject decisions made with respect to each mul-
ticast group. This decoupling between multicast groups is what allows us to apply
the techniques in [3] and [2] to achieve a polylog competitive ratio for the general
multicast problem.

A natural question to ask is if it is possible to make the competitive ratio inde-
pendent ofM, the number of multicast group. We address this issue by showing
a lower bound of2 (log M logn) whenAM is much larger than the link capacities.

This is the first bound for this problem that is stronger tkgiogn).

The algorithm presented in this paper works agains¢mi-obliviousadver-
sary, i.e. the adversary is allowed to look at the tree used by the online algorithm
to service a multicast group only after all the requests for that group have been
processetl We show that no algorithm can do well against an adaptive online
adversary.

As is customary for online algorithms, previous papers on multicast ignored
the issue of computational complexity. In particular, the algorithm in [4] assumes
an NP-hard computation at each routing decision. We show that it is possible to
use the special properties of the Prize-Collecting Steiner tree algorithm in [8] to
implement each step of our algorithm in polynomial time.

In Section 2 we introduce the model and the terminology. Section 3 describes
the algorithm, and Section 5 presents the proof of the competitive ratio. Lower
bounds are presented in Section 8. Appendix A explains how to implement each
decision step of our online algorithm in polynomial time.

2 Model and Definitions

A request to join a multicast group specifies the group, the node that wants to join,

and the amount of the requested bandwidth. The multicast routing and admission
algorithm can either reject this “join” request or accept it and allocate the requested
bandwidth along some path from the new node to the current tree associated with
the requested multicast group. The algorithm is not allowed to allocate above link

capacity.

We model the network as a capacitated graph wittodes anan edges. For
simplicity, we will assume that all edges have capaditgnd all requests are for
unit bandwidth. We also assume that the number of multicast grdups known
in advance. The issue of removing some of the assumptions is deferred to Sec-
tion 7.

We also assume that > logu, whereu is a parameter that is polynomial
in n, M defined latef. We assume that multicast groups, once established, never
leave. The case where eachltiwast group has a “holding time” will be addressed
in the full version of this paper.

1A semi-oblivious adversary is at least as powerful as an oblivious adversary.
2This requirement corresponds to a similar requirement in [3].

3 The Algorithm

The online algorithm can be viewed as consisting-ot= logn + log.M *“vir-

tual” algorithms for each one of th&t multicast groups. We call these algorithms
virtual because the routing and accept/reject decisions of these algorithms are not
implemented. Instead, they only modify internal data structures and, in particu-
lar the cost associated with each edge. The description of the cost computation is
deferred to Section 4. For now, it is sufficient to assume that each edge has an as-
sociated cost that is deterministic, depends only on the input sequence of requests,
and is monotonically non-decreasing in time.

The jth virtual algorithm associated with thth multicast — VA j — is shown
in Figure 1. The goal of VA is to build a tre€T; j. This tree spans some of the
nodes that requested to be added toithemulticast group and that are already
spanned by tree§; i, for k < i. In other words, a request is first generated at
VA, 1; if itimmediately gets added & 1, it is passed on to VA, etc.

Each request to join thigh multicast group is considered as a potential unit
of profit, and the virtual algorithms use (“consume”) this profit to “pay” for their
trees. VA j can expand its tre®; ; by adding a subtree only if it can pay for this
subtree. We will refer to these subtrees as “fragments”. As paymen, 8#n use
only the profit that is on the nodes of this subtree and that was not used iy VA
for k < j (This is denoted by ROFIT; j (v) in Figure 1). More precisely, Vi
monitors the profit passed from YA_1. Each time it gets units of profit at some
nodev, it addsz to PROFIT; j (v). It then tries to find a fragment that includes
such that the ratio of the unused profit associated with nodes of this fragment plus
n'is atleastl = dT - grier times the cost of adding this fragmentTg;, where
dT = 1/(mu) andn’ < PROFIT; j (v). The goal of the algorithm is to minimize

7'

This subtree is added to tfig;, d times the cost of this tree is “consumed”,
and the rest of the profit (in fact, at most one unit) on the newly added nodes is
bequeathed t¥; j 1.

Observe that, since costs are increasing, the total profit used to corngtyuct
is bounded by its final cost divided layy Since VA ; builds its tree in an online
fashion, there might be a larger (in terms of the spanned nodes that requested par-
ticipation inith multicast) tree that can be constructed offline using the same profit.
In Lemma 5.1 we show that this “loss” is not very significant. Also, note that the
only way virtual algorithms dealing with different multicast groups interact with
each other is through edge costs. Another important property is that fprthk
vertices which contribute towards the profit collected by; YAre a subset of the

VAi
A Initialization (s is the root of the i-th multicast):

1 Tiyj <—{S}
2 for all u
PROFIT; j (u)<-0.

USED-PROFIT; j (U)<-0 (USED-PROFIT;; is used only for the
analysis, specifically in Lemma 5.1)

B Invoked due to receiving profit m at node v from VA;j_1 (VAo is
invoked with unit profit due to a join request at node v):

1 PROFIT; j (v) «<-PROFIT; j (v) + 7.
2 Contract T to a single vertex S.
3 Find smallest ' < PROFIT; j(v) such that 3 tree S with the

following properties:
() veSsesS (i) Cost (S) =< (X csuz PROFITj (W) +7)/d.
4 if such =’ found
4.1 Let S be the tree which satisfies the conditions in Step
3.
42 for all ueSuz#v
USED-PROFIT; j (u) «<—PROFIT; j (U);
PROFIT; j (u)<-0.
4.3 USED-PROFIT; j (v) <7,
7 «PROFIT; j (v) — 7/,
PROFIT; j (v) <-0.
4.4 Uncontract Tij;
Tiyj <—Tiyj U S.
4.5 Update the cost of each edge ec S
4.6 Pass profit m at node v to VAjji1.

Figure 1: Thej-th Virtual phase of the-th Realalgorithm. Recall thad is the
density value defined at the beginning of Section 3.

Real(i)
1 Choose 7 €[1...L] such that Prob (i =j)=p8-2l.

2 Follow the computation of VA i, and whenever an edge gets added to
Ti,, add that edge to the real tree being used to service the
i-th multicast group.

Figure 2: TheRealalgorithm for multicast group.

vertices that contribute towards the profit collected by VA .

The “real” algorithm is shown in Figure 2. For each ltieast group, it ran-
domly chooses one of the virtual algorithms and implements the construction of
the tree built by this virtual algorithm. We set the probability of choosing Vo
p = B -2}, whereg is chosen such thaf|_, pj = 1.

Observe that if the-th real algorithm has chosen VAfor a specific multicast,
it does not get the profit for the requests that were taken into account whgn VA
was constructing its tree. Instead, it will get the profit for the later requests. In
particular, it will get the profit that was inherited by VA 1.

In Step 3 of the virtual algorithm (see Figure 1) we need to solve the maximal
dense subtree problem, which is NP-hard. In Appendix A we show how a good-
enough approximation can be obtained in polynomial time.

4 Edge Costs

In this section we define the cost metric and the way it is updated as a result of
each new request. The cost metric is updated by the virtual algorithms and hence
is deterministic.

The online algorithm constructs the cost metric as it goes along. When profit
propagates from VA _1 to VA j, we consider this an “event”. An event might
cause VA; to consume some profit and update its tigg. Let ce(k) denote
the cost of edge after thek-th event. When thé&th event occurs, the virtual
algorithms use costs(k — 1) for making their decision. These decisions are then
used to computey(k) in a deterministic fashion.

Let = (n1, ..., nm) represent the indices of the virtual algorithms chosen for
the M multicasts. Also, lefp; represent the probability of making this sequence

of choices. Define the load on an edge 48 fimes the number of trees it was
used in by the real algorithm, and b’ (k) represent the load on edgefter the
first k events have occurred, whefjaepresents the choices made by Realal-
gorithms. Since the random choices of Bealalgorithms for different multicasts
are independenp; = [T, p,.

Let ce(0) = u for each edge. Suppose costx(0) to c(k — 1) were already
computed. Thewe(k) is computed as follows.

(1)
cek) = u Y pyud
7

The value ofu is set to 4nflog? M. The reason for this value will become
clear in Section 6. Observe that, givénthe expressiohé’”(k) is deterministic,
and hence the costg(k) are deterministic as well.

DefineX 3! (k) as indicator variables, with’ (k) being 1 if edgeeis used by
VA j during the firskk events and 0 otherwise. Notice thé@’”(k) are determin-
istic quantities. Now,k(eﬁ)(k) = (1/u) - Zij‘;‘l Xg”“)(k). We can use this to rewrite
the costee(K):

M @,mj)
cek) =ud T (pm e (k)/u)
5=l

Interchanging the order of the summation and the product, we get
ML [((3))
Ce() =u D puXe O (1)
i=1j=1

The above representation gives an easy way to contpkeefficiently. Since
only one of the sums changes during any event, the online algorithm can recompute
that sum and obtain the new costs.

The following claim follows from the way we construct the cost metric.

Claim 4.1 The cost g(k) is the expectation of the quantityite® wherexe(k) is
a random variable representing the load on edge e after k events.

5 Proof of competitiveness

In order to prove the competitive ratio, we will divide the multicast groups into
“profitable” and “unprofitable”, based on the cost of ygimumtrees for these

8

groups with respect to the cost metric constructed by our algorithm. Here, by
optimum trees we mean the trees constructed by the optimum offline algorithm.

Consider theth multicast group, and let the number of requests satisfied by
the optimal offline algorithm be*(i). Similarly, letr (i) be the profit obtained by
the online algorithm. Letv*(i) be the cost (in the final cost metric) of the tige
used by the optimum algorithm to service multicast groupVe call a multicast
group profitableif the optimal’s tree for this multicast group has a high profit to
cost ratio in thdinal cost metric:

Definition 1 The i-th multicast group iprofitableif ;—(('I)) >dT, whered = L.

We use the quantitieB* and R to represend ¥, r*(i) and Y r (i), re-
spectively. LetP andU represent the set of profitable and unprofitable multicast
groups, respectively. Also, we defilR = >, _pr*(i) andR) = >, r () =

R* — R.

We first show (Lemma 5.2) that the online algorithm obtains almost as much
profit from profitable groups as the optimal solution. Then we show that the total
profit obtained by the online algorithm can only be poly-logarithmically smaller
than optimal’s profit from unprofitable groups. To prove the latter claim, we take
an indirect route. We use capacity constraints to argue that the quarfgtyis
bounded by the sum of the final costs of all edges (Lemma 5.3). Finally, we bound
the final costs in terms of the expected profit obtained by the online algorithm
(Lemma 5.7).

Consider the quantitiesf®FIT; j (v) and USED-PROFIT; j (v) at the end ie. af-
ter all requests have been received. Ligt(®) = PROFIT; j (v)+USED-PROFIT; j (v).
The quantity P; (v) denotes the profit consumed by MAat nodev. For any
set X of vertices, Pj(X) =) ,.x Pi.j(v). The definitions of RoFIT; ; and
USED-PROFIT; j are similarly extended.

Lemma 5.1 P (T*) < 3w*(i)dlogn.
Proof: O ur proof of this claim is different from the one presented in [4].

We first bound the quantity ®OFIT; j (T*). This contribution comes from
nodes inT;* which do not belong tdlj ;. The profit consumed on these nodes
by VA ; must be at mosiv*(i)d, else these nodes would have formed a fragment
on their own and been addedTp;.

Now we bound WED-PROFIT; j (T;*). This contribution comes from nodes
that belong tdl; ;. Recall thatv A j acquiresT; j in tree fragments. Consider an
Eulerian tourD of T*. Let asegmenbf tour D be a maximal contiguous piece of

9

D such that all edges of the segment belong to the same fragm@&ng.dhitially,

all segments are marked active. If two consecutive active segments on this tour
belong to the same fragment, they are merged together along with the portion of
the tour between between them to form a single segment.(tetienote the event

at which the edges of segmeswvere added td; ;.

Furthermore, we define jared andsuccrelation on active segments such that
pred(s, D) is the predecessor gfin tour D andsucgs, D) is the successor &f
in D.

Let Dg = D. Forh > 1, letHy = {sis an active segment d,_1,t(s) <
t(pred(s, Dn_1)), t(s) < t(sucds, Dy_1))}. Let £ denote the remaining seg-
ments ofDy,_1, and letDy, denote the touby_;1 with each segment id, marked
inactive. The segments #;, remain active irDy. As mentioned above, consecu-
tive active segments are merged if they belong to the same fragment.

Note that for allh:
[Lh| > [Hnl.

This implies that there at most loagnon empty set€;,. Lets € Ly for someh.
Also, lets’ be the successor or predecessor segmeniroby,_; with t(s') < t(s)
and letp consists of the part dD betweers ands'.

Assume WBED-PROFIT; j (s) > d(w*(s) + w*(p)). Letv € s be the node with
the last request in multicasiamong all nodes is. When the request atarrived,
the sum ROFIT; j (s) =) s PROFIT; j (u) is at leastl(w*(s) + w*(p)), because
PROFIT; j (s) is the source of JED-PROFIT; j (S). Thus, at that time we could have
used at mostl(w*(s) + w*(p)) to adds + p as a fragment. Since the algorithm
always tries to create a fragment using the minimum amount of profit, we have:

USED-PROFIT; j (s) < d(w*(s) + w*(p)).
Considering thab visits every node twice it follows that

Z USED-PROFIT; | (S) < 2w*(i)d.

seLlh

Summing over all values dfit follows that the profit consumed By A ; from
all nodes which belong td* N T; j is at most 2v*(i)d logn. This completes the
proof of this lemma. [|

It is easy to see that, for profitable multicasts, the profit obtained by our online
algorithm is high:

Lemma5.2 R> R;/2.

10

Proof: Since there aré levels, Lemma 5.1 guarantees that the total wasted profit
for multicast group is at most & w*(i)d logn. Pluggingind = dT - W and
using the fact that profitable implies that*(i) > d"w* (i), we obtain a bound of
r*(i)/2 on the wasted profit. Therefongi) > r*(i)/2 for all profitable groups.
Summing over all the profitable groups, we get the desired result. |

Having bounded the profit from the profitable groups, we now concentrate on
the unprofitable groups. Recall thatis the cost of edge at the end i.e. after all
the events have taken place, and that the costs are non-decreasing in time.

Lemma53 mR) <) .Ce

Proof: Letk} be the number of multicast groups which use edgethe optimal
offline solution. Consider the trég" used by the optimal to route tiie¢h multicast
group. If this group is unprofitable then by definitioh(i) < miu ZeeTi* Ce. We

sum this over all the unprofitable multicast groups, and then reverse the order of
summation.

1
Ry = m—UZZCe

icU eeT*
1 k

=< m—uXezkeCe
< %Zce

e

The last inequality follows from the fact that the optimal offline is not allowed to
exceed capadties, implyingki < u. [|

Let wj (i) represent the cost incurred by VAin constructing the tred; ;.
In other words, each tree fragmentf; contributes taw; (i) its cost associated
with the event of adding this fragment. We usé) to denotew,) (i), wheren
represents the chose of the real algorithm. . &t represent the profit consumed
in constructing thid; ;. The following lemma implies that if the expected profit is
small, then the expected cost of the constructed trees is small as well.

Lemmab.4 Hr(i)) > (d/2Ew()) — ﬁ wherew(i) is the cost paid by the
Realalgorithm for multicast group i.

Proof: If the real algorithm chooses to follow VA, i.e. n(i) = j, then it will get
at least the profit used by VA,1. Therefore:

L-1
Er@) =Y prjpad).
L

I

11

By definition, pj = pj+1/2, and hence

L
Er@) =Y pir)/2.
j=2

i
By construction:
L

L
Ew() =Y pwj@) < @/d)> pir).
j=1 j=1
Thus, we have
d-Ew()) < 2E(r (i) + para(i).

Now notice thatr;(i) can be at mosh, since each request brings in one unit of
profit, and there can be at mastrequests for a single multicast group. Also,
P -1 2171 = 1, which implies thatp;/2 < 27, SubstitutingL = logn +
log M, we obtainE(r (i) > (d/2)Ew(i)) — .

We remark that in this proof the fact that the VAs are deterministic is quite
crucial; otherwise, the profitg (i) would be conditioned on the random choices
made by the real algorithms and the above argument would break down completely.

[|

Now we prove that if the expected cost of the constructed trees is small, then
the total cost of all the edges is small as well. But first, we need to prove the
following technical lemma. Roughly speaking, this lemma implies that if an event
caused an edge to be used by one of the trees, the increase in the cost of this edge
is proportional to its current cost.

Consider an everkt that caused VA, to augment its tree, and I8 represent
the set of edges of the newly added subtree.

Lemmab5.5 Foralle € Ey, ce(k) —Ce(k — 1) < '0% pjCe(k — 1). For the edges
e ¢ Ex, Ce(K) = Ce(k — 1).

Proof: The second part of the lemma is obvious. We concentrate on edgé&s.
By definition of the indicator variablex ')’ (k — 1) = 0 andX{"!’ (k) = 1. Using
Equation 1, we have:

(.} a'.i"
Cek) —Cek—1) = p(u* WM —Du] pue N
i
Ce(k — 1)
>y pyXe Do

pj (Y — Dce(k — 1).

= p@ -1

A

12

The lastinequality above follows from the fact thaf, pjxuxg’j ‘k=D/u > Py =

1. For allx between 0 and 1,X2— 1 < x. Thereforeu/¥ — 1 = 2(0gw/u _ 1 <

(log) /u, which completes the proof of the lemma. |
LetW =), wi represent the total cost of the trees constructed by the online

algorithm. The following lemma relates the cost incurred by the algorithms and
the final cost of the edges.

Lemmab.6 IO%E(W) > Y o(Ce —U).

Proof: Let Ag(k) = ce(k) — ce(k — 1) represent the increase in cost on edge
during thekth event. Clearlyge = ce(0) +), Ae(k) where the summation is over
all events and(0) = u for all edgese. Now, let VA, j, be the virtual algorithm
that updates its tree during evéntLemma 5.5 implies that

Y Ce—w = dogu/wd Y g Y D celk—1).
e i j

Kik=i, k=] ecEx
Using definition ofw; (i), we can rewrite this expression as follows:

Y (Ce—u) < (logpe/w) Y > prwj (i) = (logu/u) Y Ew(i)).
e i j i

Using linearity of expectations,_; E(w(i)) = E(}_; wi)), which completes
the proof. m

We are now ready to show that if the obtained profitis small, then the total cost
of all the edges is small as well.

Lemma 5.7 (5% logu)mE(R) > > . Ce
Proof: Summing up Lemma 5.4 over all multicast groups, we have:

2 (gr S > E(W)
5 ()+;M_ :

As we will show belowE(R) > 1. Therefore, the above inequality can be
rewritten as§E(R) > E(W). Using Lemma 5.6, and the fact thatdru = 1, we
obtain

logu 4
Xe;Ce < T-EE(R)+mu
4dT u
= [—E(R — .
mogu(5 E)+I0gu)

13

To complete the proof, it remains to show that the firstog . requests are
always accepted, i.é£(R) > u/logu. Suppose the firdt < u/logu requests
have been accepted. As a result, the load on each edge is no moke #mahthe
cost of servicing the next request can be at mogik/¥ < muuﬁ = 2mu. By
construction, the profit needed to pay for this cost is at most

2mud=2mui ! = 1
mu6Llogn 3Llogn

Thus, the unit of profit brought by this request is enough to pay for extending the
trees of all VA algorithms dealing with the corresponding multicast group. Thus,
this request is going to be accepted by the real algorithm as well. In other words,
if there are less than/log u requests generated by the adversary therRiba!
algorithm accepts them all and has a cotitpe ratio of 1. Else R (and therefore
E(R)) is greater tham/ log 1, which completes the proof of the claim. |

Combining Lemma 5.3 and Lemma 5.7 with Lemma 5.2, we obtain the follow-
ing result:

Theorem 1 R*/E(R) = O(lognlogu(logn + log.M))

6 Capacity Constraints

In the previous section we showed that the algorithm accepts a significant fraction
of the requests accepted by the optimum offline algorithm. It remains to show
that our online algorithm does not overflow the available capacities. To that end,
we sety = 4m®log® M. Note that, by Theorem 1, this implies that we get an
O(logn(logn+log logM)(logn+log M))-competitive algorithm. For the special
case where each node is allowed to serve at most offtecasi group, we clearly
have anO(log® n)-competitive algorithm.

We now show that the above valueofs sufficient to ensure that the capacity
constraints are never violated with high probability.

Lemma 6.1 For any edge e, the cost does not exceedut’?.

Proof: Supposee(k) > upl/2-1/U for somek. Sincep = 4m®log? M andu >

log i, we getce > um?log M. Since maximum profit of a single tree fragment is
n, this cost is above maximum profit divided By Thus, this edge will never be
used again by any VA. The claim follows from the fact that during any one event,
ce(k) can increase only by a factor pft/u. [|

14

Lemma 6.2 With probability at leasi. — 1/m?, no edge violates its capacity con-
straint.

Proof: Claim 4.1 states that, is equal to the expected value of the quartify-=,
where Ae is the final load on an edge. The event > 1 implies thatup’e >
wY?E(up’e). Using Markov inequality, the probability of this event happening is
at mostu Y2 < 1/m3. Therefore, with probability at least4 1/m?, all edges
satisfy the capacity constraints. |

If the algorithm tries to exceed capacity of an edge, we terminate it. Lemma
6.2 guarantees that this does not affect the competitive ratio given in Theorem 1.

7 Relaxing some of the assumptions

Using techniques in [3], it is easy to relax some of the assumptions made in Sec-
tion 2. In particular, we can allow the bandwidth requirements of different multi-
cast groups and the capacities of the edges to vary arbitrarily, as long as the largest
bandwidth requirementis no more t tlmes the smallest edge capacity. Also,
different multicast groups can have dn‘ferent profits as in [3]. Further, we do not
need to knowM in advance. We can keep doubling our guessdfifmodifying
accordingly; this results in the loss of another factor ofAdgn the competitive

ratio.

We would like to point out that this competitive ratio holds againsemi-
obliviousadversary — the adversary is allowed to look at the multicast tree gener-
ated by the online algorithm but only after all the requests for that multicast group
have been processed. The next obvious question to ask is whether any algorithm
can work well against a more powerful adversary. We answer this question in the
negative in Section 8.2

8 Lower bounds

8.1 Against an oblivious adversary

A lower bound of logn for the problem studied in this paper immediately follows
from [3]. The challenge in the online multicast problem is to decide which requests
to service (“winner picking”) and how to route a request (“online routing”). We
now show how to combine a lower bound for winner picking [2] with the lower
bound for online routing [3] to achieve a lower bound of Jbglogn for the online

15

multicast problem. This is the first lower bound stronger thamléy the online
multicast problem.

Theorem 2 No algorithm for selective online multicast can have a competitive
ratio better thar2 (log(M /u) logn) even againstan oblivious adversary, and even
when the requests are non-interleaved.

Proof: The basic idea behind the winner picking lower bound for online multicast
is the following: AssumeM multicasts are created, but both the online and the
offline algorithm are just allowed to pick one. A multicast consists of at least one
and up to logM classes, each class consistingcatquests for some parameter

c. Half of the multicasts, chosen randomly from all multicasts, consist of exactly
c request. One fourth of the multicasts, chosen randomly from the remaining half
of the multicasts, consist of exactlyc 2equest, etc. Thus, the expected profit of
online is Z, while the expected profit of offline islog M.

The lower bound for online routing works in phases: There ara{efjphases,
with the “profit”, i.e. number of requests, doubling in each phase. It can be shown
that there must be a phase such that the expected profit that online has received so
far is at most 2logn of the profit that is available in the current phase. In this
phase, offline services all the request, i.e., takes all the profit, and the sequence of
requests terminates.

We show next how to combine these two bounds. To simplify the presentation
we assume that all demands and all edge capacities are 1, but it is permissible to
satisfy a fractional demand and obtain a fractional profit (the profit for a multicast
group is the product of the satisfied demand and the number of satisfied requests).
We explain later how this result carries over to our model.

We restrict ourselves to values @84t such that,/n > log.M. Consider the
graphG onn + 2 vertices (see Figure 3) which is defined as follows. The vertex
setis{r, X, v1, ..., vn}. There is an edge fromto x, and there is an edge from
to each ofv; ... vn. For convenience, defind = M/logn andN = n/logM.
Notice that the restriction we have placed.btimplies thatN > /n.

The adversary operates in at most Mghases: we describe tieh phase,
1 <i <logN. In phasé the adversary divides the vertices. . . v, into classes
of size 2-1. Notice that there must be at least Mgclasses. The adversary then
generatesM multicasts, each with as the root. The requests for these multicasts
will be non-interleaved. For each ttigast, the adversary generates a request at
each of the nodes in the first class. Then the adversary flips a coin. If the coin toss
is a Head (ie. with probability half) the adversary moves on to the next multicast.
Else, it generates a request at each node in the next class, flips another coin, and

16

Vi

Figure 3: The lower bound graph for Theorems 2 and 3

repeats the same process again. If requests have been generateld aidsges

for the same multicast, the adversary moves on to the next multicast. At the end of
all M multicasts for this phase, the adversary moves on to the next phase. Notice
that setting the class size t62 is equivalent to doubling available profit by 2 for
each phase.

Letc(i) be the capacity on the edge x) used by the online algorithm during
phasei. Also, let p(i) be the profit obtained by online during theh phase.
Let p*(i) andc*(i) be the corresponding quantities for the solution generated by
the oblivious adversary. Notice that; c(i) can be at most 1. Defin8(Kk) =
§1E > 1<k E(p(i)). The total expected profit obtained by the algorithm in the kirst
phases is'&S(k).

We give brief proofs for the following two claims.

Claim 8.1 E(p(i)) < 2'E(c(i)).

Proof: Suppose the online algorithm decides to satisfy a fractional demard of
for a specific multicast in the-th phase. The cost incurred ¥s Suppose that
this commitment is made by the algorithm after th¢h request for this multi-
cast group comes in. Then the expected profit from this multicast grodiplis 2
XY j<p<m 271 < 2x. Now we sum this up over all the multicast groups in
phasé to get the desired result. |

Claim 8.2 During any phase i, the adversary can ensure that

logM

E(p*(i)) > TZiC*(i)-

17

Proof: During phasd, the adversary can pick the multicast with the maximum
number of classes of requests. LRt (i) denote the probability of this number
being less tham. Now, P<(i) = (1/2+ 1/4+4 ...21H)M = (1 — 21-1)M for

i <logM. Clearly, P<(% logM) < 1/33 This tells us that the expected number
of classes is greater théﬂ%. To complete the proof of this claim we observe that
each class in thieth phase has' 2! requests. |

We now prove that there exists a ph&smich that the total expected profit ob-
tained by the online algorithm during the fiksphases is no more thak? / log N.
Suppose thisis not true. TheBi) > 2/logN for alli. In particular,

Z S(i) > 2.

l<i<logN
But 1
DS =D E(mi) > =2y E(pi/2.
i i i<j<logN i
Using Claim 8.1, we have
> Ec) > 1.

But this is a contradiction, as the online is not allowed to overflow capacities. This
proves the existence of a phdseith S(k) < 2/logN.

The oblivious adversary cannot see the coin tosses of the online algorithm but
it can compute in advance the quantitig). Having found the valuk guaranteed
by the above argument, the adversary stops after ase does not generate any
more multicast requests. The adversary also generates a ‘good’ solution as follows:
It does not satisfy any demands in the fkst 1 phases, and in the last phase, it
uses up the entire edge x). Now from Claim 8.2 E(p*(k)) > 22logM. The
total expected profit obtained by the online algorithmi$&) < 2<1/logN.
This gives a lower bound @2 (log M log N) on the competitive ratio of any online
algorithm. SinceN > ./nandM = M/ logn, thisis also &2 (log .M logn) lower
bound.

In the above analysis, we assumed tjfat> log.M. This is not a very restric-

tive assumption, because for Iad > ./n, our proof shows that the competitive
ratio is already as bad &5(,/n).

Now we adapt this lower bound proof to our model. Assume that the capacity
isu. Let M be the number of multicasts, and &’ = M/u. The adversary

3This is a very loose statemeer(% log M) is much,much smaller, but we do not need a stronger
bound.

18

proceeds as before, except that each phase gets repetiaes. Also, the on-
line algorithm is restricted to satisfy the entire demand of 1 unit or none at all.
The same calculation as done above gives a lower bouri(laig M’ logn) =
Q(log(M/u)logn). [|

8.2 Against an adaptive-online adversary

Recall that an adaptive-online adversary is one which can adapt the input sequence
depending on the response of the online algorithm; however the adversary must
also generate a solution as it goes along.

Theorem 3 No randomized algorithm for selective online multicast can have bet-
ter thanQ (min(n, %)) competitive ratio against an adaptive-online adversary.
The lower bound holds even when the requests are non-interleaved.

Proof: Consider the same graph as in the previous section (see Figure 3). Each
edge has a capacity all requests have demand 1. The valugufs fixed at 2 u.

The adversary works inl2phases.

During thei-th phase, the adversary chooses a numemiformly at random
from the sefl, ..., n}. The adversary then does the following for at most- 1
sub-phases. It generates a new SET-UP requesttghen generates, in sequence,
requests at nodes, ..., v, for the newly set up multicast group. As soon as the
online algorithm accepts any of these requests, the adversary aborts this phase com-
pletely and moves to the next phase. If the online algorithm does not accept any of
thesen requests, the adversary moves to the next sub-phase. The adversary does
not accept any request during the fingt— 1 sub-phases. If ath; — 1 sub-phases
end without the online algorithm having accepted even one request, then the ad-
versary generates yet another SET-UP request atmdtithen generates requests
in sequence at nodes, ..., v, and accepts them all without bothering about the
online algorithm (if the edge: r, X > is already full in the adversary’s network,
the adversary rejects these requests). During any phase, the online algorithm gets a
profit of n if it ‘guesses’ correctly the valuey;, and at most 1 otherwise. Sinog
is chosen uniformly at random frofd, ..., n}, the expected profit for the online
algorithm during any one phase is at most 2.

At the end of thesei2phases, the adversary is guaranteed to have acoepted
requests. The expected number of requests accepted by the online algorithm can be
no more than 4. This proves the desired result. Notice that the requests generated
by the adversary are non-interleaved. If each node is allowed to serve no more than
one multicast group, the above argument can be modified to obfair/a) lower
bound foru = O(/n). []

19

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing
with applications to machine scheduling and virtual circuit rout?fih ACM
Symposium on Theory of Computipgges 623-31, 1993.

[2] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in
the face of uncertainty: How to pick a winner almost every tird8th ACM
Symposium on Theory of Computipgges 519-530, 1996.

[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive online routing.
34th IEEE symposium on Foundations of Computer Scijepages 32—40,
1993.

[4] B. Awerbuch and T. Singh. Online algorithms for selective multicast and
maximal dense tree9th ACM Symposium on Theory of Computit@97.

[5] N. Garg. A 3-approximation for the minimum tree spanning k vertices.
37th IEEE Symposium on Foundations of Computer Scjgrages 302—309,
1996.

[6] A.Goeland S. Plotkin. An algorithm for throughput competitive online mul-
ticasting in capacitated networkdnpublished Manuscript

[71 M. Goemans and J. Kleinberg. An improved approximation ratio for the min-
imum latency problem7th ACM-SIAM Symposium on Discrete Algorithms
pages 152-158, 1996.

[8] M. Goemans and D. Williamson. A general approximation technique for
constrained forest problemSIAM J. Comput.24(2):296-317, April 1995.

[9] A. Kamath, O. Palmon, and S. Plotkin. Routing and admission control in
general topology networks with poisson arrivalth ACM-SIAM Symposium
on Discrete Algorithmgages 269-278, 1996.

[10] J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graptts.
IEEE symposium on Foundations of Computer Scigpages 52—61, 1995.

[11] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Comm. of the ACV28(2):202—-208, 1985.

20

A Making our algorithm run in polynomial time

There are two issues we need to address to make our algorithm run in polynomial
time. First, in step 3 of VA; (Figure 1), we need to compute the minimum profit
needed out of the new request to create an appropriate tree fragment. Second,
we need to provide a polynomial time approximation algorithm for finding the
fragment in step 3 of V4.

The first problem can be solved by doing a binary searchz et the available
profit on the node where the new request has been generated. We run a maximal
dense tree algorithm with aft units of profit available. If a non-empty tree is
returned, we try with half the profit, and so on. The key observation here is that we
can afford to incur an additive error of BnL) in finding the minimum profitr’.
Therefore, the binary search needs to be done only up to a depthriidg 8The
competitive ratio remains unaffected by this modification.

The second problem is resolved using the prize collecting Steiner tree algo-
rithm of Goemans and Williamson [8] which has some very nice properties [7,
5].The prize collecting Steiner tree problem is the following: given a cost metric
on the edges, and a penalty function defined on the vertices, find a tree such that the
sum of the cost of the edges in the tree and the penalty of the vertices not in the tree
is minimum. We already have a cost metric defined on edges. For a verngik
available profitr,, the penalty of missing is set torr, /d. Now the approximation
algorithm [8] for the prize collecting Steiner tree problem is invoked, and the tree
fragment returned by this algorithm is used.dlis set to half its current value,
we obtain the same bound on the competitive ratio (except the loss of a factor of
two). The proof goes along the lines of [6], where the same technique is used in
the context of semi-selective online multicast.

21

