
SRC Technical Note
1997 - 012
June 24, 1997

Online Throughput-Competitive Algorithm for

Multicast Routing and Admission Control

Ashish Goel, Monika Rauch Henzinger and Serge Plotkin

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Ashish Goel and Serge Plotkin are at Stanford University. Their electronic mail
addresses are:fagoel, plotking@cs.stanford.edu.

1

Abstract

We present the first polylog-competitive online algorithm for the general
multicast problem in the throughput model. The ratio of the number of re-
quests accepted by the optimum offline algorithm to the expected number of
requests accepted by our algorithm isO(logM(logn + log logM) logn),
whereM is the number of multicast groups andn is the number of nodes in
the graph. We show that this is close to optimum by presenting an�(logn logM)

lower bound on this ratio for any randomized online algorithm against an
oblivious adversary, whenM is much larger than the link capacities. We
also show that it is impossible to be competitive against an adaptive online
adversary.

As in the previous online routing algorithms, our algorithm uses edge-
costs when deciding on which is the best path to use. In contrast to the previ-
ous competitive algorithms in the throughput model, our cost is not a direct
function of the edge load. The new cost definition allows us to decouple the
effects of routing and admission decisions of different multicast groups.

1 Introduction

Future high-speed communication networks such as ATM will use bandwidth-
reservation in order to achieve Quality of Service (QoS) guarantees. Given a re-
quest for a Virtual Circuit (VC), the router has to either accept or reject this request
and, if it decides to accept it, allocate the requested bandwidth along a path con-
necting the endpoints of the VC.

In case of multicast requests, the bandwidth has to be allocated along a tree
spanning the nodes participating in the multicast group. In the general case, a
multicast request specifies the user (endpoint) and the multicast group that this
user wants to participate in. The router should either reject the request or accept it
and allocate bandwidth along a path connecting the new endpoint with the already
existing tree for this group.

In this paper we present the first polylog-competitive algorithm for the general
multicast problem. Our algorithm is randomized since it is impossible to achieve
polylog competitive ratio by a deterministic algorithm. The ratio of the number
of requests accepted by the optimum offline algorithm to the expected number of
requests accepted by our algorithm isO(logM(logn+ log logM) logn), where
M is the number of multicast groups andn is the number of nodes in the graph. If
each vertex is allowed to serve at most one multicast group, the competitive ratio
simplifies toO(log3 n).

Routing and admission control problems in the online setting were extensively

2

studied. In particular, in [3] it was shown how to achieveO(logn) competitive ratio
with respect to throughput for infinite duration requests, i.e. number of accepted
requests, andO(lognT) ratio for requests that specify holding times (durations)
upon arrival, whereT is the longest duration. The randomized model where the
durations are exponentially distributed and the arrivals are Poisson with unknown
rates was considered in [9]. They describe a(1+ ε)-competitive algorithm, where
ε depends on the ratio of the minimum capacity to maximum bandwidth of a single
VC. Both [3] and [9] assume at least logarithmic ratio between maximum VC band-
width and minimum link capacity. Similar results without this assumption were
developed for special network topologies (see e.g. [10]). An optimal congestion-
competitive online algorithm for multicast routing was presented in [1].

The techniques in the above mentioned papers can be used to solve several
restricted multicast problems. In particular, [3] shows that if the participants in a
single multicast group arrive together(“batch arrivals”), and the accept/reject deci-
sion is for the whole multicast group, it is possible to achieveO(logn) competitive
ratio. The case where we keep the restriction of batch arrivals, but allow rejection
of some of the group members and acceptance of others is considered in [6].

Recently, Awerbuch and Singh has shown how to combine the “winner-picking”
technique [2] with the techniques in [3] to achieve a polylog competitive ratio for
the case where members of each multicast group arrive sequentially, i.e. the size
and membership of the group is unknown upon its creation. Their algorithm can
deal only with thenon-interleavedcase, i.e. when all the members of a particular
multicast group arrive before a new group can be created.

It is not clear how to apply the algorithm and the analysis of [4] to the more
general case, where the arrivals of requests belonging to different multicast groups
areinterleaved. The main problem is that their algorithm strongly depends on the
fact that, at every instance, the algorithm is dealing with the construction of only
a single multicast tree and all accept/reject decisions with respect to all existing
multicast groups are already known.

As in [3], the algorithm in [4] uses edge costs the are exponential in the cur-
rent link load. One of our contributions is a new definition of edge-costs that are
independent of the specific accept/reject decisions made with respect to each mul-
ticast group. This decoupling between multicast groups is what allows us to apply
the techniques in [3] and [2] to achieve a polylog competitive ratio for the general
multicast problem.

A natural question to ask is if it is possible to make the competitive ratio inde-
pendent ofM, the number of multicast group. We address this issue by showing
a lower bound of�(logM logn) whenM is much larger than the link capacities.

3

This is the first bound for this problem that is stronger than�(logn).

The algorithm presented in this paper works against asemi-obliviousadver-
sary, i.e. the adversary is allowed to look at the tree used by the online algorithm
to service a multicast group only after all the requests for that group have been
processed1. We show that no algorithm can do well against an adaptive online
adversary.

As is customary for online algorithms, previous papers on multicast ignored
the issue of computational complexity. In particular, the algorithm in [4] assumes
an NP-hard computation at each routing decision. We show that it is possible to
use the special properties of the Prize-Collecting Steiner tree algorithm in [8] to
implement each step of our algorithm in polynomial time.

In Section 2 we introduce the model and the terminology. Section 3 describes
the algorithm, and Section 5 presents the proof of the competitive ratio. Lower
bounds are presented in Section 8. Appendix A explains how to implement each
decision step of our online algorithm in polynomial time.

2 Model and Definitions

A request to join a multicast group specifies the group, the node that wants to join,
and the amount of the requested bandwidth. The multicast routing and admission
algorithm can either reject this “join” request or accept it and allocate the requested
bandwidth along some path from the new node to the current tree associated with
the requested multicast group. The algorithm is not allowed to allocate above link
capacity.

We model the network as a capacitated graph withn nodes andm edges. For
simplicity, we will assume that all edges have capacityu and all requests are for
unit bandwidth. We also assume that the number of multicast groupsM is known
in advance. The issue of removing some of the assumptions is deferred to Sec-
tion 7.

We also assume thatu ≥ logµ, whereµ is a parameter that is polynomial
in n,M defined later.2 We assume that multicast groups, once established, never
leave. The case where each multicast group has a “holding time” will be addressed
in the full version of this paper.

1A semi-oblivious adversary is at least as powerful as an oblivious adversary.
2This requirement corresponds to a similar requirement in [3].

4

3 The Algorithm

The online algorithm can be viewed as consisting ofL = logn + logM “vir-
tual” algorithms for each one of theMmulticast groups. We call these algorithms
virtual because the routing and accept/reject decisions of these algorithms are not
implemented. Instead, they only modify internal data structures and, in particu-
lar the cost associated with each edge. The description of the cost computation is
deferred to Section 4. For now, it is sufficient to assume that each edge has an as-
sociated cost that is deterministic, depends only on the input sequence of requests,
and is monotonically non-decreasing in time.

The j th virtual algorithm associated with thei th multicast – VAi, j – is shown
in Figure 1. The goal of VAi, j is to build a treeTi, j . This tree spans some of the
nodes that requested to be added to thei th multicast group and that are already
spanned by treesTi,k, for k < i . In other words, a request is first generated at
VA i,1; if it immediately gets added toTi,1, it is passed on to VAi,2, etc.

Each request to join thei th multicast group is considered as a potential unit
of profit, and the virtual algorithms use (“consume”) this profit to “pay” for their
trees. VAi, j can expand its treeTi, j by adding a subtree only if it can pay for this
subtree. We will refer to these subtrees as “fragments”. As payment, VAi, j can use
only the profit that is on the nodes of this subtree and that was not used by VAi,k

for k < j (This is denoted by PROFITi, j (v) in Figure 1). More precisely, VAi, j
monitors the profit passed from VAi, j−1. Each time it getsπ units of profit at some
nodev, it addsπ to PROFITi, j (v). It then tries to find a fragment that includesv
such that the ratio of the unused profit associated with nodes of this fragment plus
π ′ is at leastd = dT · 1

6L logn times the cost of adding this fragment toTi, j , where

dT = 1/(mu) andπ ′ ≤ PROFITi, j (v). The goal of the algorithm is to minimize
π ′.

This subtree is added to theTi, j , d times the cost of this tree is “consumed”,
and the rest of the profit (in fact, at most one unit) on the newly added nodes is
bequeathed toVi, j+1.

Observe that, since costs are increasing, the total profit used to constructTi, j

is bounded by its final cost divided byd. Since VAi, j builds its tree in an online
fashion, there might be a larger (in terms of the spanned nodes that requested par-
ticipation ini th multicast) tree that can be constructed offline using the same profit.
In Lemma 5.1 we show that this “loss” is not very significant. Also, note that the
only way virtual algorithms dealing with different multicast groups interact with
each other is through edge costs. Another important property is that for allj , the
vertices which contribute towards the profit collected by VAi, j are a subset of the

5

VA i, j

A Initialization (si is the root of the i -th multicast):

1 Ti, j ←{si }.
2 for all u

PROFITi, j (u)←0.

USED-PROFITi, j (u)←0 (USED-PROFITi, j is used only for the
analysis, specifically in Lemma 5.1)

B Invoked due to receiving profit π at node v from VA i, j−1 (VA i,0 is
invoked with unit profit due to a join request at node v):

1 PROFITi, j (v)←PROFITi, j (v)+ π .

2 Contract Ti, j to a single vertex s.

3 Find smallest π ′ ≤ PROFITi, j (v) such that ∃ tree S with the
following properties:
(i) v ∈ S, s ∈ S (ii) Cost (S) ≤ (∑u∈S,u6=v PROFITi, j (u)+ π ′)/d.

4 if such π ′ found

4.1 Let S be the tree which satisfies the conditions in Step
3.

4.2 for all u ∈ S, u 6= v
USED-PROFITi, j (u)←PROFITi, j (u);

PROFITi, j (u)←0.

4.3 USED-PROFITi, j (v)←π ′;
π←PROFITi, j (v)− π ′;
PROFITi, j (v)←0.

4.4 Uncontract Ti, j ;
Ti, j←Ti, j ∪ S.

4.5 Update the cost of each edge e∈ S.

4.6 Pass profit π at node v to VA i, j+1.

Figure 1: Thej -th Virtual phase of thei -th Realalgorithm. Recall thatd is the
density value defined at the beginning of Section 3.

6

Real(i)

1 Choose ηi ∈ [1 . . . L] such that Prob (ηi = j) = β · 2 j .

2 Follow the computation of VA i,ηi and whenever an edge gets added to
Ti,ηi , add that edge to the real tree being used to service the
i -th multicast group.

Figure 2: TheRealalgorithm for multicast groupi .

vertices that contribute towards the profit collected by VAi, j−1.

The “real” algorithm is shown in Figure 2. For each multicast group, it ran-
domly chooses one of the virtual algorithms and implements the construction of
the tree built by this virtual algorithm. We set the probability of choosing VAi, j to
pj = β · 2 j , whereβ is chosen such that

∑L
j=1 pj = 1.

Observe that if thei -th real algorithm has chosen VAi, j for a specific multicast,
it does not get the profit for the requests that were taken into account when VAi, j

was constructing its tree. Instead, it will get the profit for the later requests. In
particular, it will get the profit that was inherited by VAi, j+1.

In Step 3 of the virtual algorithm (see Figure 1) we need to solve the maximal
dense subtree problem, which is NP-hard. In Appendix A we show how a good-
enough approximation can be obtained in polynomial time.

4 Edge Costs

In this section we define the cost metric and the way it is updated as a result of
each new request. The cost metric is updated by the virtual algorithms and hence
is deterministic.

The online algorithm constructs the cost metric as it goes along. When profit
propagates from VAi, j−1 to VA i, j , we consider this an “event”. An event might
cause VAi, j to consume some profit and update its treeTi, j . Let ce(k) denote
the cost of edgee after thek-th event. When thekth event occurs, the virtual
algorithms use costsce(k− 1) for making their decision. These decisions are then
used to computece(k) in a deterministic fashion.

Let Eη = (η1, . . . , ηM) represent the indices of the virtual algorithms chosen for
theM multicasts. Also, letpEη represent the probability of making this sequence

7

of choices. Define the load on an edge as 1/u times the number of trees it was
used in by the real algorithm, and letλ(Eη)e (k) represent the load on edgee after the
first k events have occurred, whereEη represents the choices made by theRealal-
gorithms. Since the random choices of theRealalgorithms for different multicasts
are independent,pEη =

∏
M

i=1 pηi .

Let ce(0) = u for each edgee. Suppose costsc(0) to c(k − 1) were already
computed. Thence(k) is computed as follows.

ce(k) = u
∑
Eη

pEηµλ
(Eη)
e (k)

The value ofµ is set to 4m6 log2M. The reason for this value will become
clear in Section 6. Observe that, givenEη, the expressionλ(Eη)e (k) is deterministic,
and hence the costsce(k) are deterministic as well.

DefineX(i, j)
e (k) as indicator variables, withXi, j

e (k) being 1 if edgee is used by
VA i, j during the firstk events and 0 otherwise. Notice thatX(i, j)

e (k) are determin-

istic quantities. Now,λ(Eη)e (k) = (1/u) ·∑Mi=1 X(i,ηi)
e (k). We can use this to rewrite

the costce(k):

ce(k) = u
∑
Eη

M∏
i=1

(
pηi · µX

(i,ηi)
e (k)/u

)
Interchanging the order of the summation and the product, we get

ce(k) = u
M∏
i=1

L∑
j=1

pjµ
X(i, j)e (k)/u (1)

The above representation gives an easy way to computece(k) efficiently. Since
only one of the sums changes during any event, the online algorithm can recompute
that sum and obtain the new costs.

The following claim follows from the way we construct the cost metric.

Claim 4.1 The cost ce(k) is the expectation of the quantity uµλe(k) whereλe(k) is
a random variable representing the load on edge e after k events.

5 Proof of competitiveness

In order to prove the competitive ratio, we will divide the multicast groups into
“profitable” and “unprofitable”, based on the cost of theoptimumtrees for these

8

groups with respect to the cost metric constructed by our algorithm. Here, by
optimum trees we mean the trees constructed by the optimum offline algorithm.

Consider thei th multicast group, and let the number of requests satisfied by
the optimal offline algorithm ber ∗(i). Similarly, letr (i) be the profit obtained by
the online algorithm. Letw∗(i) be the cost (in the final cost metric) of the treeT∗i
used by the optimum algorithm to service multicast groupi . We call a multicast
groupprofitableif the optimal’s tree for this multicast group has a high profit to
cost ratio in thefinal cost metric:

Definition 1 The i-th multicast group isprofitableif r ∗(i)
w∗(i) ≥ dT, where dT = 1

mu.

We use the quantitiesR∗ and R to represent
∑
M

i=1 r ∗(i) and
∑
M

i=1 r (i), re-
spectively. LetP andU represent the set of profitable and unprofitable multicast
groups, respectively. Also, we defineR∗P =

∑
i∈P r ∗(i) andR∗U =

∑
i∈U r ∗(i) =

R∗ − R∗P.

We first show (Lemma 5.2) that the online algorithm obtains almost as much
profit from profitable groups as the optimal solution. Then we show that the total
profit obtained by the online algorithm can only be poly-logarithmically smaller
than optimal’s profit from unprofitable groups. To prove the latter claim, we take
an indirect route. We use capacity constraints to argue that the quantitymR∗U is
bounded by the sum of the final costs of all edges (Lemma 5.3). Finally, we bound
the final costs in terms of the expected profit obtained by the online algorithm
(Lemma 5.7).

Consider the quantities PROFITi, j (v) and USED-PROFITi, j (v) at the end ie. af-
ter all requests have been received. Let Pi, j (v) = PROFITi, j (v)+USED-PROFITi, j (v).
The quantity Pi, j (v) denotes the profit consumed by VAi, j at nodev. For any
set X of vertices, Pi, j (X) =

∑
v∈X Pi, j (v). The definitions of PROFITi, j and

USED-PROFITi, j are similarly extended.

Lemma 5.1 Pi, j (T∗i) ≤ 3w∗(i)d logn.
Proof: O ur proof of this claim is different from the one presented in [4].

We first bound the quantity PROFITi, j (T∗i). This contribution comes from
nodes inT∗i which do not belong toTi, j . The profit consumed on these nodes
by VA i, j must be at mostw∗(i)d, else these nodes would have formed a fragment
on their own and been added toTi, j .

Now we bound USED-PROFITi, j (T∗i). This contribution comes from nodes
that belong toTi, j . Recall thatV Ai, j acquiresTi, j in tree fragments. Consider an
Eulerian tourD of T∗. Let asegmentof tour D be a maximal contiguous piece of

9

D such that all edges of the segment belong to the same fragment ofTi, j . Initially,
all segments are marked active. If two consecutive active segments on this tour
belong to the same fragment, they are merged together along with the portion of
the tour between between them to form a single segment. Lett (s) denote the event
at which the edges of segments were added toTi, j .

Furthermore, we define apred andsuccrelation on active segments such that
pred(s, D) is the predecessor ofs in tour D andsucc(s, D) is the successor ofs
in D.

Let D0 = D. For h ≥ 1, letHh = {s is an active segment ofDh−1, t (s) <
t (pred(s, Dh−1)), t (s) < t (succ(s, Dh−1))}. Let Lh denote the remaining seg-
ments ofDh−1, and letDh denote the tourDh−1 with each segment inLh marked
inactive. The segments inHh remain active inDh. As mentioned above, consecu-
tive active segments are merged if they belong to the same fragment.

Note that for allh:
|Lh| > |Hh|.

This implies that there at most logn non empty setsLh. Let s ∈ Lh for someh.
Also, lets′ be the successor or predecessor segment ofs in Dh−1 with t (s′) < t (s)
and letp consists of the part ofD betweens ands′.

Assume USED-PROFITi, j (s) ≥ d(w∗(s)+w∗(p)). Letv ∈ s be the node with
the last request in multicasti among all nodes ins. When the request atv arrived,
the sum PROFITi, j (s) =

∑
u∈s PROFITi, j (u) is at leastd(w∗(s)+w∗(p)), because

PROFITi, j (s) is the source of USED-PROFITi, j (s). Thus, at that time we could have
used at mostd(w∗(s) + w∗(p)) to adds+ p as a fragment. Since the algorithm
always tries to create a fragment using the minimum amount of profit, we have:

USED-PROFITi, j (s) ≤ d(w∗(s)+w∗(p)).
Considering thatD visits every node twice it follows that∑

s∈Lh

USED-PROFITi, j (s) ≤ 2w∗(i)d.

Summing over all values ofh it follows that the profit consumed byV Ai, j from
all nodes which belong toT∗ ∩ Ti, j is at most 2w∗(i)d logn. This completes the
proof of this lemma.

It is easy to see that, for profitable multicasts, the profit obtained by our online
algorithm is high:

Lemma 5.2 R≥ R∗P/2.

10

Proof: Since there areL levels, Lemma 5.1 guarantees that the total wasted profit
for multicast groupi is at most 3Lw∗(i)d logn. Plugging ind = dT · 1

6L logn and

using the fact thati profitable implies thatr ∗(i) ≥ dTw∗(i), we obtain a bound of
r ∗(i)/2 on the wasted profit. Therefore,r (i) ≥ r ∗(i)/2 for all profitable groupsi .
Summing over all the profitable groups, we get the desired result.

Having bounded the profit from the profitable groups, we now concentrate on
the unprofitable groups. Recall thatce is the cost of edgee at the end i.e. after all
the events have taken place, and that the costs are non-decreasing in time.

Lemma 5.3 mR∗U ≤
∑

e ce

Proof: Let k∗e be the number of multicast groups which use edgee in the optimal
offline solution. Consider the treeT∗i used by the optimal to route thei -th multicast
group. If this group is unprofitable then by definitionr ∗(i) ≤ 1

mu

∑
e∈T∗i

ce. We
sum this over all the unprofitable multicast groups, and then reverse the order of
summation.

R∗U ≤ 1

mu

∑
i∈U

∑
e∈T∗i

ce

≤ 1

mu

∑
e

k∗ece

≤ 1

m

∑
e

ce

The last inequality follows from the fact that the optimal offline is not allowed to
exceed capacities, implyingk∗e ≤ u.

Let wj (i) represent the cost incurred by VAi, j in constructing the treeTi, j .
In other words, each tree fragment ofTi, j contributes towj (i) its cost associated
with the event of adding this fragment. We usew(i) to denotewη(i) (i), whereη
represents the chose of the real algorithm. Letr j (i) represent the profit consumed
in constructing thisTi, j . The following lemma implies that if the expected profit is
small, then the expected cost of the constructed trees is small as well.

Lemma 5.4 E(r (i)) ≥ (d/2)E(w(i)) − 1
M

, wherew(i) is the cost paid by the
Realalgorithm for multicast group i.
Proof: If the real algorithm chooses to follow VAi, j , i.e. η(i) = j , then it will get
at least the profit used by VAi, j+1. Therefore:

E(r (i)) ≥
L−1∑
j=1

pj r j+1(i).

11

By definition,pj = pj+1/2, and hence

E(r (i)) ≥
L∑

j=2

pj r j (i)/2.

By construction:

E(w(i)) =
L∑

j=1

pjwj (i) ≤ (1/d)
L∑

j=1

pj r j (i).

Thus, we have
d · E(w(i)) ≤ 2E(r (i)) + p1r1(i).

Now notice thatr1(i) can be at mostn, since each request brings in one unit of
profit, and there can be at mostn requests for a single multicast group. Also,
p1
∑L

j=1 2 j−1 = 1, which implies thatp1/2 < 2−L. SubstitutingL = logn +
logM, we obtainE(r (i)) ≥ (d/2)E(w(i)) − 1

M
.

We remark that in this proof the fact that the VAs are deterministic is quite
crucial; otherwise, the profitsr j (i) would be conditioned on the random choices
made by the real algorithms and the above argument would break down completely.

Now we prove that if the expected cost of the constructed trees is small, then
the total cost of all the edges is small as well. But first, we need to prove the
following technical lemma. Roughly speaking, this lemma implies that if an event
caused an edge to be used by one of the trees, the increase in the cost of this edge
is proportional to its current cost.

Consider an eventk that caused VAi, j to augment its tree, and letEk represent
the set of edges of the newly added subtree.

Lemma 5.5 For all e ∈ Ek, ce(k) − ce(k − 1) ≤ logµ
u pj ce(k− 1). For the edges

e /∈ Ek, ce(k) = ce(k− 1).
Proof: The second part of the lemma is obvious. We concentrate on edgese∈ Ek.
By definition of the indicator variables,X(i, j)

e (k−1) = 0 andX(i, j)
e (k) = 1. Using

Equation 1, we have:

ce(k) − ce(k− 1) = pj (µ
X(i, j)e (k)/u − 1)u

∏
i ′ 6=i

∑
j ′

pj ′µ
X(i
′ , j ′)

e (k)/u

= pj (µ
1/u − 1)

ce(k− 1)∑
j ′ pj ′µX(i, j

′)
e (k−1)/u

≤ pj (µ
1/u − 1)ce(k− 1).

12

The last inequality above follows from the fact that
∑

j ′ pj ′µ
X(i, j

′)
e (k−1)/u ≥∑j ′ pj ′ =

1. For allx between 0 and 1, 2x − 1 ≤ x. Therefore,µ1/u − 1 = 2(logµ)/u − 1 ≤
(logµ)/u, which completes the proof of the lemma.

Let W = ∑i wi represent the total cost of the trees constructed by the online
algorithm. The following lemma relates the cost incurred by the algorithms and
the final cost of the edges.

Lemma 5.6 logµ
u E(W) ≥∑e(ce− u).

Proof: Let 1e(k) = ce(k) − ce(k − 1) represent the increase in cost on edgee
during thekth event. Clearly,ce = ce(0)+

∑
k1e(k) where the summation is over

all events andce(0) = u for all edgese. Now, let VAik, jk be the virtual algorithm
that updates its tree during eventk. Lemma 5.5 implies that∑

e

(ce− u) ≤ (logµ/u)
∑

i

∑
j

pj

∑
k:ik=i, jk= j

∑
e∈Ek

ce(k− 1).

Using definition ofwj (i), we can rewrite this expression as follows:∑
e

(ce− u) ≤ (logµ/u)
∑

i

∑
j

pjwj (i) = (logµ/u)
∑

i

E(w(i)).

Using linearity of expectations,
∑

i E(w(i)) = E(
∑

i wi)), which completes
the proof.

We are now ready to show that if the obtained profit is small, then the total cost
of all the edges is small as well.

Lemma 5.7 (5dT

d logµ)mE(R) ≥∑e ce

Proof: Summing up Lemma 5.4 over all multicast groups, we have:

2

d

(
E(R)+

M∑
i=1

1

M

)
≥ E(W).

As we will show below,E(R) ≥ 1. Therefore, the above inequality can be
rewritten as4

d E(R) ≥ E(W). Using Lemma 5.6, and the fact thatmdTu = 1, we
obtain ∑

e

ce ≤ logµ

u
· 4

d
E(R)+mu

= m logµ

(
4dT

d
E(R)+ u

logµ

)
.

13

To complete the proof, it remains to show that the firstu/ logµ requests are
always accepted, i.e.E(R) ≥ u/ logµ. Suppose the firstk < u/ logµ requests
have been accepted. As a result, the load on each edge is no more thank, and the

cost of servicing the next request can be at mostmuµk/u < muµ
1

logµ = 2mu. By
construction, the profit needed to pay for this cost is at most

2mud= 2mu
1

mu

1

6L logn
= 1

3L logn

Thus, the unit of profit brought by this request is enough to pay for extending the
trees of all VA algorithms dealing with the corresponding multicast group. Thus,
this request is going to be accepted by the real algorithm as well. In other words,
if there are less thanu/ logµ requests generated by the adversary then theReal
algorithm accepts them all and has a competitive ratio of 1. Else,R (and therefore
E(R)) is greater thanu/ logµ, which completes the proof of the claim.

Combining Lemma 5.3 and Lemma 5.7 with Lemma 5.2, we obtain the follow-
ing result:

Theorem 1 R∗/E(R) = O(logn logµ(logn+ logM))

6 Capacity Constraints

In the previous section we showed that the algorithm accepts a significant fraction
of the requests accepted by the optimum offline algorithm. It remains to show
that our online algorithm does not overflow the available capacities. To that end,
we setµ = 4m6 log2M. Note that, by Theorem 1, this implies that we get an
O(logn(logn+log logM)(logn+logM))-competitive algorithm. For the special
case where each node is allowed to serve at most one multicast group, we clearly
have anO(log3 n)-competitive algorithm.

We now show that the above value ofµ is sufficient to ensure that the capacity
constraints are never violated with high probability.

Lemma 6.1 For any edge e, the cost ce does not exceed uµ1/2.

Proof: Supposece(k) > uµ1/2−1/u for somek. Sinceµ = 4m6 log2M andu ≥
logµ, we getce > um3 logM. Since maximum profit of a single tree fragment is
n, this cost is above maximum profit divided byd. Thus, this edge will never be
used again by any VA. The claim follows from the fact that during any one event,
ce(k) can increase only by a factor ofµ1/u.

14

Lemma 6.2 With probability at least1− 1/m2, no edge violates its capacity con-
straint.

Proof: Claim 4.1 states thatce is equal to the expected value of the quantityuµλe,
whereλe is the final load on an edge. The eventλe ≥ 1 implies thatuµλe ≥
µ1/2E(uµλe). Using Markov inequality, the probability of this event happening is
at mostµ−1/2 < 1/m3. Therefore, with probability at least 1− 1/m2, all edges
satisfy the capacity constraints.

If the algorithm tries to exceed capacity of an edge, we terminate it. Lemma
6.2 guarantees that this does not affect the competitive ratio given in Theorem 1.

7 Relaxing some of the assumptions

Using techniques in [3], it is easy to relax some of the assumptions made in Sec-
tion 2. In particular, we can allow the bandwidth requirements of different multi-
cast groups and the capacities of the edges to vary arbitrarily, as long as the largest
bandwidth requirement is no more than1logµ times the smallest edge capacity. Also,
different multicast groups can have different profits as in [3]. Further, we do not
need to knowM in advance. We can keep doubling our guess ofM, modifyingµ
accordingly; this results in the loss of another factor of logM in the competitive
ratio.

We would like to point out that this competitive ratio holds against asemi-
obliviousadversary – the adversary is allowed to look at the multicast tree gener-
ated by the online algorithm but only after all the requests for that multicast group
have been processed. The next obvious question to ask is whether any algorithm
can work well against a more powerful adversary. We answer this question in the
negative in Section 8.2

8 Lower bounds

8.1 Against an oblivious adversary

A lower bound of logn for the problem studied in this paper immediately follows
from [3]. The challenge in the online multicast problem is to decide which requests
to service (“winner picking”) and how to route a request (“online routing”). We
now show how to combine a lower bound for winner picking [2] with the lower
bound for online routing [3] to achieve a lower bound of logM logn for the online

15

multicast problem. This is the first lower bound stronger than logn for the online
multicast problem.

Theorem 2 No algorithm for selective online multicast can have a competitive
ratio better than�(log(M/u) logn) even against an oblivious adversary, and even
when the requests are non-interleaved.

Proof: The basic idea behind the winner picking lower bound for online multicast
is the following: AssumeM multicasts are created, but both the online and the
offline algorithm are just allowed to pick one. A multicast consists of at least one
and up to logM classes, each class consisting ofc requests for some parameter
c. Half of the multicasts, chosen randomly from all multicasts, consist of exactly
c request. One fourth of the multicasts, chosen randomly from the remaining half
of the multicasts, consist of exactly 2c request, etc. Thus, the expected profit of
online is 2c, while the expected profit of offline isc logM.

The lower bound for online routing works in phases: There are logn+1 phases,
with the “profit”, i.e. number of requests, doubling in each phase. It can be shown
that there must be a phase such that the expected profit that online has received so
far is at most 2/ logn of the profit that is available in the current phase. In this
phase, offline services all the request, i.e., takes all the profit, and the sequence of
requests terminates.

We show next how to combine these two bounds. To simplify the presentation
we assume that all demands and all edge capacities are 1, but it is permissible to
satisfy a fractional demand and obtain a fractional profit (the profit for a multicast
group is the product of the satisfied demand and the number of satisfied requests).
We explain later how this result carries over to our model.

We restrict ourselves to values ofM such that
√

n > logM. Consider the
graphG on n+ 2 vertices (see Figure 3) which is defined as follows. The vertex
set is{r, x, v1, . . . , vn}. There is an edge fromr to x, and there is an edge fromx
to each ofv1 . . . vn. For convenience, defineM =M/ logn and N = n/ log M .
Notice that the restriction we have placed onM implies thatN >

√
n.

The adversary operates in at most logN phases: we describe thei -th phase,
1 ≤ i ≤ log N. In phasei the adversary divides the verticesv1 . . . vn into classes
of size 2i−1. Notice that there must be at least logM classes. The adversary then
generatesM multicasts, each withr as the root. The requests for these multicasts
will be non-interleaved. For each multicast, the adversary generates a request at
each of the nodes in the first class. Then the adversary flips a coin. If the coin toss
is a Head (ie. with probability half) the adversary moves on to the next multicast.
Else, it generates a request at each node in the next class, flips another coin, and

16

r x

v1

v2

v
n

Figure 3: The lower bound graph for Theorems 2 and 3

repeats the same process again. If requests have been generated at logM classes
for the same multicast, the adversary moves on to the next multicast. At the end of
all M multicasts for this phase, the adversary moves on to the next phase. Notice
that setting the class size to 2i−1 is equivalent to doubling available profit by 2 for
each phase.

Let c(i) be the capacity on the edge(r, x) used by the online algorithm during
phasei . Also, let p(i) be the profit obtained by online during thei -th phase.
Let p∗(i) andc∗(i) be the corresponding quantities for the solution generated by
the oblivious adversary. Notice that

∑
i c(i) can be at most 1. DefineS(k) =

1
2k

∑
1≤k E(p(i)). The total expected profit obtained by the algorithm in the firstk

phases is 2kS(k).

We give brief proofs for the following two claims.

Claim 8.1 E(p(i)) < 2i E(c(i)).
Proof: Suppose the online algorithm decides to satisfy a fractional demand ofx
for a specific multicast in thei -th phase. The cost incurred isx. Suppose that
this commitment is made by the algorithm after thej -th request for this multi-
cast group comes in. Then the expected profit from this multicast group is 2i−1 ·
x
∑

j≤ j ′≤M 2 j ′− j < 2i x. Now we sum this up over all the multicast groups in
phasei to get the desired result.

Claim 8.2 During any phase i, the adversary can ensure that

E(p∗(i)) ≥ log M

4
2i c∗(i).

17

Proof: During phasei , the adversary can pick the multicast with the maximum
number of classes of requests. LetP<(i) denote the probability of this number
being less thani . Now, P<(i) = (1/2+ 1/4+ . . .21−i)M = (1− 21−i)M , for
i < log M . Clearly,P<(2

3 log M) < 1/3.3 This tells us that the expected number

of classes is greater thanlog M
2 . To complete the proof of this claim we observe that

each class in thei -th phase has 2i−1 requests.

We now prove that there exists a phasek such that the total expected profit ob-
tained by the online algorithm during the firstk phases is no more than 2k+1/ log N.
Suppose this is not true. Then,S(i) > 2/ log N for all i . In particular,∑

1≤i≤log N

S(i) > 2.

But ∑
i

S(i) =
∑

i

E(p(i))
∑

i≤ j≤log N

1

2i
≤ 2

∑
i

E(p(i))/2i .

Using Claim 8.1, we have ∑
i

E(c(i)) > 1.

But this is a contradiction, as the online is not allowed to overflow capacities. This
proves the existence of a phasek with S(k) ≤ 2/ log N.

The oblivious adversary cannot see the coin tosses of the online algorithm but
it can compute in advance the quantitiesS(i). Having found the valuek guaranteed
by the above argument, the adversary stops after phasek and does not generate any
more multicast requests. The adversary also generates a ‘good’ solution as follows:
It does not satisfy any demands in the firstk − 1 phases, and in the last phase, it
uses up the entire edge(r, x). Now from Claim 8.2,E(p∗(k)) ≥ 2k−2 log M . The
total expected profit obtained by the online algorithm is 2kS(k) ≤ 2k+1/ log N.
This gives a lower bound of�(log M log N) on the competitive ratio of any online
algorithm. SinceN ≥ √n andM =M/ logn, this is also a�(logM logn) lower
bound.

In the above analysis, we assumed that
√

n > logM. This is not a very restric-
tive assumption, because for logM >

√
n, our proof shows that the competitive

ratio is already as bad as�(
√

n).

Now we adapt this lower bound proof to our model. Assume that the capacity
is u. LetM be the number of multicasts, and letM′ = M/u. The adversary

3This is a very loose statement.P<(2
3

log M) is much,much smaller, but we do not need a stronger
bound.

18

proceeds as before, except that each phase gets repeatedu times. Also, the on-
line algorithm is restricted to satisfy the entire demand of 1 unit or none at all.
The same calculation as done above gives a lower bound of�(logM′ logn) =
�(log(M/u) logn).

8.2 Against an adaptive-online adversary

Recall that an adaptive-online adversary is one which can adapt the input sequence
depending on the response of the online algorithm; however the adversary must
also generate a solution as it goes along.

Theorem 3 No randomized algorithm for selective online multicast can have bet-
ter than�(min(n, Mu)) competitive ratio against an adaptive-online adversary.
The lower bound holds even when the requests are non-interleaved.
Proof: Consider the same graph as in the previous section (see Figure 3). Each
edge has a capacityu, all requests have demand 1. The value ofM is fixed at 2nu.
The adversary works in 2u phases.

During thei -th phase, the adversary chooses a numbermi uniformly at random
from the set{1, . . . , n}. The adversary then does the following for at mostmi − 1
sub-phases. It generates a new SET-UP request atr . It then generates, in sequence,
requests at nodesv1, . . . , vn for the newly set up multicast group. As soon as the
online algorithm accepts any of these requests, the adversary aborts this phase com-
pletely and moves to the next phase. If the online algorithm does not accept any of
thesen requests, the adversary moves to the next sub-phase. The adversary does
not accept any request during the firstmi − 1 sub-phases. If allmi − 1 sub-phases
end without the online algorithm having accepted even one request, then the ad-
versary generates yet another SET-UP request at noder . It then generates requests
in sequence at nodesv1, . . . , vn and accepts them all without bothering about the
online algorithm (if the edge< r, x > is already full in the adversary’s network,
the adversary rejects these requests). During any phase, the online algorithm gets a
profit of n if it ‘guesses’ correctly the valuemi , and at most 1 otherwise. Sincemi

is chosen uniformly at random from{1, . . . , n}, the expected profit for the online
algorithm during any one phase is at most 2.

At the end of these 2u phases, the adversary is guaranteed to have acceptedun
requests. The expected number of requests accepted by the online algorithm can be
no more than 4u. This proves the desired result. Notice that the requests generated
by the adversary are non-interleaved. If each node is allowed to serve no more than
one multicast group, the above argument can be modified to obtain a�(

√
n) lower

bound foru = O(
√

n).

19

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing
with applications to machine scheduling and virtual circuit routing.25th ACM
Symposium on Theory of Computing, pages 623–31, 1993.

[2] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making commitments in
the face of uncertainty: How to pick a winner almost every time.28th ACM
Symposium on Theory of Computing, pages 519–530, 1996.

[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput competitive online routing.
34th IEEE symposium on Foundations of Computer Science, pages 32–40,
1993.

[4] B. Awerbuch and T. Singh. Online algorithms for selective multicast and
maximal dense trees.29th ACM Symposium on Theory of Computing, 1997.

[5] N. Garg. A 3-approximation for the minimum tree spanning k vertices.
37th IEEE Symposium on Foundations of Computer Science, pages 302–309,
1996.

[6] A. Goel and S. Plotkin. An algorithm for throughput competitive online mul-
ticasting in capacitated networks.Unpublished Manuscript.

[7] M. Goemans and J. Kleinberg. An improved approximation ratio for the min-
imum latency problem.7th ACM-SIAM Symposium on Discrete Algorithms,
pages 152–158, 1996.

[8] M. Goemans and D. Williamson. A general approximation technique for
constrained forest problems.SIAM J. Comput., 24(2):296–317, April 1995.

[9] A. Kamath, O. Palmon, and S. Plotkin. Routing and admission control in
general topology networks with poisson arrivals.7th ACM-SIAM Symposium
on Discrete Algorithms, pages 269–278, 1996.

[10] J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs.36th
IEEE symposium on Foundations of Computer Science, pages 52–61, 1995.

[11] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Comm. of the ACM, 28(2):202–208, 1985.

20

A Making our algorithm run in polynomial time

There are two issues we need to address to make our algorithm run in polynomial
time. First, in step 3 of VAi, j (Figure 1), we need to compute the minimum profit
needed out of the new request to create an appropriate tree fragment. Second,
we need to provide a polynomial time approximation algorithm for finding the
fragment in step 3 of VAi, j .

The first problem can be solved by doing a binary search. Letπ be the available
profit on the node where the new request has been generated. We run a maximal
dense tree algorithm with allπ units of profit available. If a non-empty tree is
returned, we try with half the profit, and so on. The key observation here is that we
can afford to incur an additive error of 1/(8nL) in finding the minimum profitπ ′.
Therefore, the binary search needs to be done only up to a depth log 8πnL. The
competitive ratio remains unaffected by this modification.

The second problem is resolved using the prize collecting Steiner tree algo-
rithm of Goemans and Williamson [8] which has some very nice properties [7,
5].The prize collecting Steiner tree problem is the following: given a cost metric
on the edges, and a penalty function defined on the vertices, find a tree such that the
sum of the cost of the edges in the tree and the penalty of the vertices not in the tree
is minimum. We already have a cost metric defined on edges. For a vertexv with
available profitπv, the penalty of missingv is set toπv/d. Now the approximation
algorithm [8] for the prize collecting Steiner tree problem is invoked, and the tree
fragment returned by this algorithm is used. Ifd is set to half its current value,
we obtain the same bound on the competitive ratio (except the loss of a factor of
two). The proof goes along the lines of [6], where the same technique is used in
the context of semi-selective online multicast.

21

