
SRC Technical Note
1997 - 009
June 30, 1997

Juno-2 Language Definition

Greg Nelson and Allan Heydon

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved



Contents

1 Preface 1

2 Values 1

3 Terms 1

4 Variables 1

5 Literals 1
5.1 Real Literals . . . . . . . . . . . . . . . . 1
5.2 Text Literals . . . . . . . . . . . . . . . . 2
5.3 NIL . . . . . . . . . . . . . . . . . . . . 2

6 Functions 2
6.1 Standard Syntax . . . . . . . . . . . . . . 2
6.2 Built-In Functions . . . . . . . . . . . . . 2
6.3 User-Defined Functions . . . . . . . . . . 3

7 Formulas 3
7.1 Standard Syntax . . . . . . . . . . . . . . 3
7.2 Formulas Are Always Defined . . . . . . 3
7.3 Atomic Formulas . . . . . . . . . . . . . 4
7.4 Compound Formulas. . . . . . . . . . . 4
7.5 Constraints . . . . . . . . . . . . . . . . 4
7.6 User-Defined Predicate Symbols . . . . . 5

8 Commands 5
8.1 Abort, Skip . . . . . . . . . . . . . . . . 5
8.2 Assignment . . . . . . . . . . . . . . . . 5
8.3 Guard . . . . . . . . . . . . . . . . . . . 5
8.4 Sequential Composition. . . . . . . . . . 6
8.5 Else Command . . . . . . . . . . . . . . 6
8.6 Command Grouping. . . . . . . . . . . 6
8.7 Iteration . . . . . . . . . . . . . . . . . . 6
8.8 Alternative Construct . . . . . . . . . . . 6
8.9 Projection . . . . . . . . . . . . . . . . . 6
8.10 Save Command . . . . . . . . . . . . . . 7
8.11 Procedure Call . . . . . . . . . . . . . . 7

9 Definitions 7
9.1 Constants . . . . . . . . . . . . . . . . . 7
9.2 Global Variables . . . . . . . . . . . . . . 8
9.3 Predicates . . . . . . . . . . . . . . . . . 8
9.4 Pure Functions . . . . . . . . . . . . . . 8
9.5 Procedures . . . . . . . . . . . . . . . . . 8

10 Closures 9
10.1 Closure Introduction. . . . . . . . . . . 9
10.2 Closure Application . . . . . . . . . . . . 9

11 Modules 10
11.1 Import . . . . . . . . . . . . . . . . . . . 10
11.2 Modules. . . . . . . . . . . . . . . . . . 10
11.3 Comments . . . . . . . . . . . . . . . . . 10

A Constraint Solving 10

B Syntax 12
B.1 Operators and Keywords . . . . . . . . . 12
B.2 EBNF Grammar . . . . . . . . . . . . . . 12

B.2.1 Compilation Unit Productions . . 12
B.2.2 Declaration Productions . . . . . 12
B.2.3 Command Productions. . . . . . 13
B.2.4 Formula Productions. . . . . . . 13
B.2.5 Expression Productions. . . . . . 13
B.2.6 Miscellaneous Productions . . . . 14

B.3 EBNF Syntax For Tokens . . . . . . . . . 14

i



1 Preface

Juno-2 is a constraint-based language intended for graph-
ics applications. A Juno-2 program describes a picture;
a Juno-2 implementation renders the picture. This paper
describes the language only; for a description of the Juno-
2 system as a whole, see “The Juno-2 Constraint-Based
Drawing Editor” [HN94].

The Juno-2 language is useful for drawing pictures, and
also interesting for its simplicity, uniformity, and its pro-
visions for solving constraints. We hope this paper will be
useful as a reference to Juno-2 users, and also of interest
to programming language users and designers.

The theoretical basis for Juno-2 constraints rests on
the following two observations: (1) as an imperative lan-
guage, Juno-2’s semantics are defined in terms of predi-
cate transformers, and (2) a constraint is just another name
for a predicate. For afficionados of Dijkstra’s calculus of
guarded commands [Dij76, Nel87], Juno-2 can be defined
in one sentence: it consists of Dijkstra’s predicate trans-
formers acting on the predicates of the theory of the real
numbers together with a pairing function.

For the rest of us, Juno-2 is an imperative, block-
structured, untyped language with a syntax and control
structure not too distant from Algol. But its data struc-
tures are more like Lisp’s than Algol’s: instead of arrays,
records, and pointers, Juno-2 provides only scalars and or-
dered pairs, since this is the simplest set of data structures
sufficient to represent the points and lists of points needed
for the graphics primitives. The primitive graphics opera-
tions provided by Juno-2 are similar to those of PostScript
[Ado90].

Any constraint expressible in Euclidean geometry (or,
equivalently, in the multiplicative theory of the real num-
bers) can be included in a Juno-2 program. The imple-
mentation solves the constraints using numerical methods.

The provisions for constraints make the Juno-2 lan-
guage novel. For example, the command

VAR r IN r * r = 2 -> x := r END

setsx to one of the square roots of two. The user can
supplyhintsfor unknowns to control the non-determinism
inherent in underconstrained systems.

To support libraries of reusable graphics programs,
Juno-2 also includes modules. The module system bor-
rows the notion of apublic viewfrom Oberon [Wir89].

Juno-2 is an extension of Juno-1 [Nel85]. Juno-2 bor-
rows its overall semantic framework from Juno-1, includ-
ing hints. Going beyond Juno-1, Juno-2 provides a richer
value space and more powerful extensibility, including
user-defined constraints and constraints containing exis-
tential quantifiers.

2 Values

The universe of values of a Juno-2 program is the small-
est set that includes the real numbers, the text strings, the
special valueNIL , and is closed under the formation of
ordered pairs.

The language also supports closures (procedures paired
with environments). Closures are represented as ordinary
Juno-2 pairsaccording to a convention that is private to
the implementation.

3 Terms

A term is an expression denoting a partial function from
the state of the computation to the universe of values. Syn-
tactically, a term is either a variable, a literal, or a function
applied to arguments that are themselves terms.

4 Variables

Syntactically, a variable is an identifier, possibly qualified
by a module name. Global variables are defined in mod-
ules (described below), and local variables are defined in
blocks (also described below).

Juno-2 is untyped: every variable ranges over the entire
universe of values.

5 Literals

Juno-2 has three kinds of literal constants: real (numeric)
literals, text literals, and the special literalNIL .

5.1 Real Literals

A real literal has the formdecimal [ E exponent ] ,
wheredecimal is a non-empty sequence of decimal dig-
its, optionally containing a decimal point, andexponent
is a non-empty sequence of decimal digits, optionally pre-
ceded by a “+” or “−”. The literal denotesdecimal

times ten raised to the givenexponent . If “ E expo-

nent ” is omitted,exponent defaults to zero. Case is not
significant: “e” is as good as “E”. Embedded spaces are
not allowed.

For example,

1 1. .5 3.1415 5E1 5.0e-1

are legal, but

2.0e+a 5.0Ex

are not.
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5.2 Text Literals

A text literal is a sequence of zero or more printing char-
acters or escape sequences enclosed in double quotes.
Printing characters are all printing ISO-Latin-1 characters
except double-quote and backslash.

The only way to include a double-quote, backslash, or
non-printing character such as newline in a text literal is
with an escape sequence. Here are the legal escape se-
quences:

\n newline
\f formfeed
\t tab
\r carriage return
\\ backslash
\" double quote
\nnn character with octal codennn

A backslash that is not a part of one of these escape se-
quences is a static error.

5.3 NIL

NIL is a distinguished value used to terminate lists. See
Section 6.2 below.

6 Functions

A pure functionis a rule that defines a result value in terms
of given argument values; at most one result can be asso-
ciated with any tuple of arguments. Functions may be
partial; that is, it may be that for some argument values no
result is defined. Pure functions never have side effects on
the machine state; they are not to be confused with func-
tional procedures (defined in Section 9.5).

What happens when you try to compute an undefined
function? This is a question about commands and their
computations, which we will get to later (see Sections 7.2,
8.2, and 9.5). For now, it is best to remember that a pure
function is not a rule for computing a result value, but only
a rule for defining it.

6.1 Standard Syntax

The standard syntax for a function application is

f(t 1, t 2, . . ., t n)

wheref names a function andt 1, t 2, . . ., t n are terms.
Several of the built-in functions have non-standard syn-
tax; for example, the infix arithmetic operators. The next
section describes Juno-2’s built-in functions.

6.2 Built-In Functions

Pair introduction. Within parentheses, the comma is a
function that forms ordered pairs. That is, the term(x,y)

is the ordered pair ofx andy; it is defined for any values
x andy. For example,

(0, (1, NIL))

("Alan", "Turing")

are valid terms. The inner parentheses in the first example
are required. The expression(x,y,z) is syntactically in-
valid; you must instead specify either the pair(x,(y,z))

or the pair((x,y),z) .

Pair elimination. The functionsCARandCDRare defined
on pairs:

CAR(p)=x if and only if p=(x,y) for some y

CDR(p)=y if and only if p=(x,y) for some x

List introduction. Within square brackets, the comma is

a function that forms lists. More precisely, the term

[t 1, t 2, . . ., t n]

is shorthand for

(t 1, (t 2, ( . . ., (t n, NIL) . . .)))

that is, for the list oft i represented by a nest of ordered
pairs as in Lisp. The list can have length one; that is,[t]

is shorthand for(t,NIL) . But the list can’t have length
zero; that is,[] is not a legal shorthand forNIL .

Arithmetic functions. Juno-2 provides the following
arithmetic functions:

x + y x plus y

x - y x minus y

x * y x times y

x / y x divided by y

x DIV y FLOOR(x/y)

x MOD y x - (y * (x DIV y))

- x minus x

FLOOR(x) the greatest integer not exceedingx

CEILING(x) the smallest integer not less thanx
ROUND(x) the nearest integer tox
MAX(x,y) the larger of x and y

MIN(x,y) the smaller ofx and y

ABS(x) the absolute value ofx

The infix and prefix operators are listed in groups with
equal binding power, and the groups are listed in order
of increasing binding power. Parentheses can be used to
override the binding powers. For example,
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a + - c * d meansa + ((- c) * d) .

Infix arithmetic operators with the same binding power
are left associative. For example,

a - b + c means(a - b) + c .

The arithmetic functions are defined only on numbers; for
exampleNIL+0 is undefined. Also,x/y , x MOD y, andx

DIV y are undefined ify is zero.
In addition, the following trigonometric and exponen-

tial functions are defined:

SIN(x) the sine of x

COS(x) the cosine ofx
ATAN(y,x) the angle whose tangent isy/x

LN(x) the natural logarithm ofx
EXP(x) the exponential ofx

All angles are in radians. The range of theATANfunction
is the half-open interval [−π, π). The sign of the result
agrees with the sign ofy. LN(x) is undefined ifx is not
positive.

Coordinate translation. A point is an ordered pair of real
numbers. Since Juno-2 is intended for graphics, points
and lists of points occur quite frequently. Juno-2 has a
built-in infix operator for coordinate transformations on
points: p REL c. Herep must be a point, say(x,y) ,
andc must be an ordered pair of points, say(a,b) . Its
definition is:

(x,y) REL (a,b) means
the point with coordinates (x, y) in the
coordinate system whose origin is ata and
whose unit x vector ends atb.

Here is a figure that illustratesREL:

a

b
(1,0) REL (a,b)

(1,1) REL (a,b)

(0,1) REL (a,b)

If Juno-2 had complex arithmetic, we could equiva-
lently write the definition as follows:

p REL (a, b) = a + p * (b - a) .

As a final example,

(0.5, 0) REL (a, b)

is the midpoint of the segment betweena andb.
The functionp REL c is undefined ifp is not a point

or if c is not a pair of points.

Text concatenation. The infix operator& denotes text
concatenation:

t & u t concatenated withu

The function is undefined if either argument is not a text.

6.3 User-Defined Functions

So much for the built-in functions. You can also define
new functions, as explained in Section 9.4. Defined func-
tions can be used in terms exactly like built-in functions;
they always have the standard syntax described in Sec-
tion 6.1.

7 Formulas

A formula is a condition that is either true or false in any
state of a computation. Syntactically, a formula is either a
predicate symbolapplied to one or more terms (anatomic
formula), or a logical combination of other formulas (a
compound formula). Like terms, formulas never have side
effects.

7.1 Standard Syntax

The standard syntax for an atomic formula is

p(t 1, t 2, . . ., t n)

wherep names a predicate andt 1, t 2, . . ., t n are terms.
The only atomic formulas with non-standard syntax are
TRUE, FALSE, and applications of the built-in infix rela-
tions.

7.2 Formulas Are Always Defined

A pure function can be undefined, but a formula is always
true or false, never undefined. This may require some get-
ting used to. Here are four corollaries of this rule:

1. A boolean operator applied to arguments of the wrong
type is false. For example,

NIL < 3

is false, rather than undefined.

2. An atomic formula is false if any of the terms that it
contains is undefined. For example,

1/0 = 1/0

is false.

3. Compound formulas are defined in terms of their con-
stituent formulas. For example,NOT Pis the logical com-
plement ofP, so
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NOT (1/0 = 1/0)

is true.

4. Formulas are not themselves terms. You cannot use a
formula in place of a term; for example

(x = y) = (y = x)

is syntactically invalid.

7.3 Atomic Formulas

Constant Formulas.

TRUE the predicate symbol that is always true
FALSE the predicate symbol that is always false

Type Formulas. If x is any value, then

REAL(x) meansx is a real number;
INT(x) meansx is an integer;
TEXT(x) meansx is a text;
PAIR(x) meansx is an ordered pair.

In FORTRAN and Algol, integers and reals are disjoint
types. But in Juno-2, as in numerical mathematics, the in-
tegers are contained within the reals. Therefore,INT(x)
impliesREAL(x) .

Equality. If s andt are any values, then

s = t meanss andt are identical;
s # t meanss andt are not identical.

Order. If x andy are real numbers, then

x < y meansx precedesy;
x > y meansx exceedsy;
x <= y meansx is at mosty;
x >= y meansx is at leasty.

These atomic formulas are false if eitherx or y are not
numbers.

Near. The infix predicate symbol∼, read “near”, is con-
sidered to be satisfied by any pair of values, but is use-
ful for giving hints to the Juno-2 constraint solver, as de-
scribed in Section 8.9 and Appendix A.

Geometric Formulas. A point is a pair of real numbers.
A segmentis a pair of points, called the endpoints of the
segment. Ifp andq are points ands andt are segments,
then

p HOR q meansCDR(p) = CDR(q) ;
p VER q meansCAR(p) = CAR(q) ;
s CONG t meanss andt have the same length;
s PARA t meanss is parallel tot .

The atomic formulasp HOR qand p VER q are true if
p=q. The formulas PARA t is true if eithers or t has
length zero. These formulas are false if their arguments
do not have the correct type.

7.4 Compound Formulas

Propositional Connectives.If p andq are formulas, then

p OR q means eitherp or q is true;
p AND q means bothp andq are true;
NOT p meansp is false.

These are listed in order of increasing binding power.
Parentheses can be used to override the binding power;
for example, the parentheses are necessary in

(x < y OR x < z) AND u < x

Existential Quantification. If v is a variable andP is a

formula, then

(E v :: P)

is a formula. (Not any formulaP is allowed, as we will see
in Section 7.5.) In theory, this existential quantification is
true if there exists some value forv that satisfiesP. In
practice, it is true only if Juno-2’s constraint solver can
find such a value. To help the solver determine a satisfying
assignment forv, you may need to supply it with a hint for
v ’s initial value; see Appendix A.

Juno-2 provides a shorthand for introducing variables
in existential quantifications with hinted or fixed values.
If t is a term, then

(E x = t :: P) means (E x :: x = t AND P)

(E x ∼ t :: P) means (E x :: x ∼ t AND P)

The variablex is said to befrozen in the first case and
hintedin the second case.

Furthermore, the construction

(E v 1, v 2, . . ., v n :: P)

is shorthand for

(E v 1 :: (E v 2 :: . . . (E v n :: P) . . . )) .

Any of thev ’s may be frozen or hinted. However, it is a
static error for the same variable to occur more than once
in the listv1, . . ., vn.

For example,

(E x :: x*x=z) is equivalent toz >= 0 ;
(E x,y :: z=(x,y)) is equivalent toPAIR(z) .

7.5 Constraints

The notation(E v :: P) is allowed only if the for-
mula P is a constraint. A constraint is a formula, syn-
tactically restricted in order to make it easy to solve for its
unknowns. The following functions, predicate symbols,
and connectives can be used in constraints:

literals,
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pair introduction:(x, y) ,
list introduction:[x, y, . . ., z] ,
CAR, CDR,

+, - , * , / ,
SIN , COS, ATAN, LN, EXP,
REL,
TRUE, FALSE,
REAL, TEXT, PAIR,
=,∼,
HOR, VER, CONG, PARA,
AND,
existential quantification,
user-defined pure functions,
user-defined predicates.

The following are forbidden in constraints:

DIV , MOD,
FLOOR, CEILING , ROUND,
MAX, MIN, ABS,
INT ,
#, <, <=, >, >=, &,
OR, NOT,
functional procedures.

Functional procedures, defined in Section 9.5 below, are
not to be confused with pure functions.

For example,

(E z :: z * z = 2)

is a legal formula, since* and= are allowed in constraints.
But the formulas

(E z :: INT(z) AN D z + z = 4)

(E z :: (z & "bc" & z) = "abcbcabc")

are illegal, since neitherINT nor & is allowed in a con-
straint.

There is one exceptional case:ORis allowed in a con-
straint if one of its arguments is the predicate symbol
TRUEand its other argument is a constraint. This is a de-
generate case, sinceTRUE OR Pis equivalent toTRUE.

7.6 User-Defined Predicate Symbols

So much for the built-in formulas. You can also define
new predicate symbols, as explained in Section 9.3. De-
fined predicate symbols can be used in atomic formulas
exactly like built-in predicate symbols. They always have
the standard formula syntax described in Section 7.1.

8 Commands

Executing a command produces a sequence of state tran-
sitions, the eventual outcome of which is to loop forever,
cause a checked runtime error, or halt in some state. Since
Juno-2’s constraint solver is non-deterministic, a Juno-2
command may be non-deterministic as well. That is, the
outcome of a command need not be functionally deter-
mined by the initial state.

Associated with each command is a predicate on the
initial state called itsguard. A command can be activated
only in a state where its guard is true. An attempt to acti-
vate a command in a state where its guard is false is said
to fail.

Failure is not to be confused with abortion of the com-
putation due to a run-time error. A computation that
aborts may change the state before it aborts, but an attempt
to activate a command where its guard is false fails imme-
diately, without changing the state. To implement these
semantics without backtracking, the Juno-2 grammar syn-
tactically restricts the placement of commands that may
potentially fail.

We write “grd(S) ” to denote the guard of the com-
mandS. If grd(S)=TRUE , thenS can be activated in any
state, and we say thatS is total. Otherwise,S is partial.

The remainder of this section lists the Juno-2 com-
mands.

8.1 Abort, Skip

The commandABORTcauses a checked runtime error. It
is total.

The commandSKIP is a no-op. It is also total.

8.2 Assignment

The assignment command has the form

v1, v 2, . . ., v n := t 1, t 2, . . ., t n

wherev1, v2, . . ., vn are distinct variables andt 1, t 2, . . .,
t n are terms. The effect is to evaluate all the terms and
then set each variable to the value of the corresponding
term. For example,

x, y := y, x

swapsx andy.
The assignment command is total. If any termt i is

undefined, the assignment is equivalent toABORT.

8.3 Guard

If P is a formula andS is a command, the guarded com-
mand
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P -> S

fails if P is false, and otherwise is the same asS. We have

grd(P -> S) = (P AND grd(S)) .

8.4 Sequential Composition

If S is a command andT is a total command, then

S ; T

means: executeS, then executeT. The guard of “S ; T ”
is the guard ofS. Notice that sinceT is total, there is no
danger thatT will fail after S has changed the state.

The guard arrow has weaker binding power than the
semicolon; thus in

x < y -> max := y; min := x ,

the guard covers both assignments.

8.5 Else Command

If S andS’ are commands, the command

S | S’

(read “S elseS’ ”) executesS if its guard is true, otherwise
it executesS’ . It fails only if bothS andS’ fail:

grd(S | S’) = grd(S) OR grd(S’) .

The else operator has weaker binding power than the
guard arrow and semicolon.

8.6 Command Grouping

Curly braces can be used to override the binding power of
the operators on commands. For example,

P -> A ; B | C

is equivalent to

{ P -> { A ; B } } | C

which is different from

P -> A ; { B | C } .

8.7 Iteration

If S is a command, then the total command

DO S OD

repeatedly executesS until its guard becomes false. That
is, this command is equivalent to

{ S ; DO S OD } | SKIP .

For example,

DO n < m -> m := m - n

| m < n -> n := n - m

OD

will compute the greatest common divisor of the two non-
negative integersn andm.

8.8 Alternative Construct

If S is a command, then the total command

IF S FI

is equivalent to

S | ABORT.

For example,

IF x >= y -> m := x

| y >= x -> m := y

FI

is equivalent tom := MAX(x, y) . In particular, both
commands abort if eitherx or y are not numbers: theIF
command aborts because both guards are false; the assign-
ment aborts becauseMAXis defined only on numbers.

8.9 Projection

If v is a variable andS is a command such thatgrd(S) is
a constraint, then the command

VAR v IN S END

introducesv as a local and executesS. The scope ofv
starts atIN and ends atEND. Its initial value is chosen so
as to make the guard ofS true; if the constraint solver
cannot find such a value, the command fails. We have:

grd(VAR v IN S END) = (E v :: grd(S)) .

For example, the command

VAR r IN

r * r = 2 -> x := r

END

will set x to one of the square roots of two. If you care
which square root you get, you can use the near predicate
to give a hint to the solver:

VAR r IN

r ∼ 1 AND r * r = 2 -> x := r

END.

This has the same formal semantics as the previous ver-
sion, but in practice will setr to the positive square root
of two.

Juno-2 solves constraints by numerical methods; the
near predicate provides the initial value for the numerical
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iteration. The hint you supply can be an arbitrary expres-
sion, and you can supply a different hint foreach variable.
For more information on the near predicate and Juno-2’s
constraint solver, see Appendix A.

Similar to the syntax for existential quantification,
Juno-2 provides a shorthand for introducing variables in
projections with hinted or fixed values. Ift is a term, then

VAR x = t IN S END means
VAR x IN x = t -> S END

VAR x ∼ t IN S END means
VAR x IN x ∼ t -> S END

Furthermore, the command

VAR v1, v 2, . . ., v n IN S END

is shorthand for

VAR v1 IN

. . .

VAR vn IN

S

END

. . .

END.

As before, any of thev ’s may be frozen or hinted, and it
is a static error for the same variable to occur more than
once in the listv1, . . ., vn.

By definition, we have

grd(VAR v 1, v 2, . . ., v n IN S END) =

(E v 1, v 2, . . ., v n :: grd(S)) .

As another example, here is a program that reverses the
list p, using an auxiliary variableq:

q := NIL;

DO

VAR u, v IN

p = (u, v) ->

q := (u, q);

p := v

END

OD;

p := q

As a final example,

VAR a, b IN

INT(a) AND INT(b)

AND a * b = 89801 ->

x, y := a, b

END

is illegal, sinceINT is not allowed in constraints.

8.10 Save Command

If Mis the name of a module andT is a total command, the
total command

SAVE M IN T END

is shorthand for

M.Save(); T; M.Restore() .

Notice that sinceT follows a semi-colon in this transla-
tion, it must be total.

This is useful for temporarily changing various as-
pects of the program state, as illustrated in the built-in
PostScript modulePS.

8.11 Procedure Call

A procedure call is a total command. See Section 9.5 for
the syntax and semantics of a procedure call.

9 Definitions

You can extend Juno-2 by defining your own constants,
global variables, predicates, pure functions, and proce-
dures. These definitions are grouped into modules, as de-
scribed in Section 11.

Each definition is either public or private; private defi-
nitions are preceeded by the optional keywordPRIVATE.
Private definitions are hidden from clients, and they are
elided in public views of the module.

Constants, global variables, and procedures are imper-
ative programming constructs, so except for the initializa-
tion order of constants and global variables, their defini-
tion order within a module does not matter. Predicate and
pure function definitions, on the other hand, express re-
lations in first-order logic (where recursive definitions are
disallowed), so there are restrictions on their definition or-
der.

9.1 Constants

If id 1, . . . , id n are names andt 1, . . . , t n are terms, the
definition

CONST id1 = t 1, . . ., id n = t n;

defines eachid i as a read-only name for the value of the
termt i . Here are some examples:

CONST Pi = 3.14159, Zero = SIN(Pi);

CONST Data = [("Jan", 2.3), ("Feb", 5)];

CONST Len = Text.Length("Juno-2");
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It is an unchecked error for anyt i to depend on the initial
value of a constant or global variable declared at or after
id i in the same module. For example, the definition

CONSTx = 3 * x - 2;

is an unchecked error because it is self-referential.

9.2 Global Variables

If v1, . . . , vn are names andt 1, . . . , t n are terms, the def-
inition

VAR v1 [:= t 1], . . ., v n [:= t n];

introducesv1, . . ., vn as global variables with initial val-
uest 1, . . ., t n. If any t i is omitted, the correspondingv i ’s
initial value is arbitrary. It is an unchecked error for any
t i to depend on the initial value of a constant or global
variable declared at or afterv i in the same module.

9.3 Predicates

A predicate definition has the form

PRED id(args) IS C END;

whereC is a constraint andargs is a list of distinct identi-
fiers. It definesid(args) to be equivalent toC. A defined
predicate can be used in a formula just like a built-in pred-
icate.

Here are some example predicate definitions:

PRED R3(p) IS

(E x,y,z ::

p = [x, y, z] AND REAL(x) AND

REAL(y) AND REAL(z))

END;

PRED Colinear(a, b, c) IS

(a, b) PARA (a, c)

END;

In a predicate definition, the constraintC may not refer
to any procedures, nor to any constants, global variables,
predicates, or pure functions defined at or afterid in the
same module.

9.4 Pure Functions

A pure function definition has the form

FUNC res = id(args) IS C END;

whereres andid are identifiers,args is a list of identi-
fiers, there are no duplicates among the identifiersres and
args , andC is a constraint. The effect is to defineid to
be the function with the property thatres = id(args)

is logically equivalent toC. A defined pure function can
be used in a term just like a built-in function.

Here are some example pure function definitions:

FUNC n = Half(m) IS m = n + n END;

FUNC y = Cadr(l) IS

(E x, tail : : l = (x, (y, tail)))

END;

In a pure function definition, the constraintCmay not refer
to any procedures, nor to any constants, global variables,
predicates, or pure functions defined at or afterid in the
same module.

If a pure function has more than one possible result for
some input, the result computed for that function is non-
deterministic. For example,

FUNC y = Sqrt(x) IS y * y = x END;

is unadvised, sincey is not determined uniquely fromx.
However, such a function can be used reliably if the func-
tional result is given a suitable hint — for example:

a ∼ 1 AND a = Sqrt(2).

It is perfectly all right for a pure function to be partial;
bothHalf andCadr above are partial, sinceHalf is de-
fined only on numerical arguments, andCadr is defined
only on lists with at least two elements.

9.5 Procedures

A procedure definition has the form

PROC [outs :=] [(inouts):] id(ins) IS

S

END;

whereouts , inouts , andins are lists of identifiers (col-
lectively called theformal parametersof the procedure),
id is an identifier (the name of the procedure) andS is
a total command (the body of the procedure). The “:= ”
must be omitted ifouts is empty, and the initial “() ” and
“ : ” must be omitted ifinouts is empty; however, the
second “() ” are required even ifins is empty. Addition-
ally, the initial “() ” may be omitted ifinouts contains
exactly one identifier.

Procedure Call.A call to the procedure has the form

[outActs :=] [(inoutActs):] id(inActs)

whereoutActs andinoutActs are lists of variables and
inActs is a list of terms (collectively called theactual
parametersof the call). The “:= ” must be omitted ifout-
Acts is empty, and the initial “() ” and “: ” must be omit-
ted if inoutActs is empty; however, the latter “() ” are
required even ifinActs is empty. Additionally, the initial
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“ () ” may be omitted ifinoutActs contains exactly one
variable.

The meaning of the call is the same as the following
block

VAR outs, inouts, ins IN

inouts, ins := inoutActs, inActs;

S;

outActs, inoutActs := outs, inouts

END

Any formal variable that occurs in any actual must be re-
named before applying this rule. (Since the formals are
dummies, renaming them consistently does not affect the
meaning of the procedure definition.) Note that by defini-
tion of the assignment command (see Section 8.2), the call
is equivalent toABORTif any of theinActs is undefined.

For example, after the definitions

PROC st:Push(x) IS st := (x, st) END;

PROC x := st:Pop() IS

x, st := CAR(st), CDR(st)

END;

the command

st := NIL;

st:Push(1); st:Push(2);

x := st:Pop()

would leavest = [1] andx = 2.

Functional Procedures. A procedure isfunctional if it
has exactly one out parameter, like thePop procedure
above. Such a procedure can be used as a function, with
the obvious meaning. For example, here is a recursive
definition of a procedure for appending two lists:

PROC res := Append(y, z) IS

y = NIL -> res := z

| res := (CAR(y), Append(CDR(y), z))

END;

Juno-2’s framework is geared toward pure functions, but
we include functional procedures for their notational con-
venience. However, they should be used with care.
Functional procedures cannot be used within constraints.
Functional procedures may have side-effects, but it is dan-
gerous to use such procedures functionally, since Juno-2
may evaluate the subexpressions of an expression in any
order. Finally, note that a functional procedure whose
body aborts is semantically different from an undefined
pure function.

10 Closures

Flexible drawing libraries often require user-supplied pro-
cedures as parameters. For example, a scatter-plot pack-
age can accept a user-supplied procedure for drawing the
points in the plot, or an animation package can accept a
procedure for drawing each frame of an animation. For
this reason, the Juno-2 language supports closures.

A closureis a procedure (called thebodyof the closure)
paired with a list of values (called theenvironmentof the
closure).

Any built-in or user-defined procedurep is considered
a closure with bodyp and an empty environment.

10.1 Closure Introduction

The built-in functional procedureCLOSEcreates closures
with non-empty environments. The command

CLOSE(cl, t 1, . . ., t n)

evaluates to a closure whose body is the body of the clo-
surecl and whose environment iscl ’s enviroment ex-
tended at the right by the list of valuest 1, . . . , t n.

10.2 Closure Application

The built-in procedureAPPLY applies a closure. The ef-
fect of the command

[outs]:=[(inouts):] APPLY(cl, t 1, . . ., t n)

is to apply the body of the closurecl to the givenout pa-
rameters, the giveninout parameters, and thein param-
eters formed by concatenating the list of values incl ’s en-
vironment with the values of the actual argumentst 1, . . . ,

t n. Theout andinout arguments are optional, just as for
an ordinary procedure call.

For example,

VAR

cl := CLOSE(Text.Cat, "Hello, ");

nm := APPLY(cl, "Juno!");

initializesnmto “Hello, Juno! ”.
The environment of a closure provides values only for

the in parameters of its body, not for anyout or in-

out parameters. Actualout and inout parameters can
be supplied when the closure is applied.

Argument counts are checked dynamically atAPPLY

time. Forout and inout parameters, the number of ac-
tuals must equal the number of formals of the closure’s
body. For in parameters, the number of values in the
closure environment together with the number of actuals
must sum to the number of the body’s formal in parame-
ters.
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11 Modules

Larger Juno-2 programs are organized intomodules,
which are collections of declarations. The moduleA must
import the moduleB to refer to the names declared inB.
The qualified identifierB.N is used withinA to refer to the
entity inB namedN.

Within a module,each name can be declared eitherpub-
lic or private. Only public names are visible to importers.

11.1 Import

The IMPORTstatement has the following form:

IMPORT M1, . . ., Mn;

where theMi are module names.
IMPORT makes the names of the modulesM1, . . ., Mn

visible. To refer to an entity namedN in any Mi , the im-
porter must use the qualified identifierMi .N . Importing a
module providesaccess to the names it declares, but not
to those it imports. The import relation must be acyclic.

11.2 Modules

A module has the form:

MODULE id ";" { Imports } { Defns }

where id is an identifier that names the module,{Im-

ports} is a sequence of import statements, and{Defns}

is a sequence of definitions (or comments).
All defined names in the moduleid are visible with-

out qualification in the module. The names defined in the
module and the visible imported names must be distinct.

11.3 Comments

Comments may appear in a module wherever aMODULE

header,IMPORT statement, or definition is legal. Com-
ments can appear at top-level only; this is to simplify the
pretty-printer. Comments may be nested. Public and pri-
vate comments have the following forms:

(* public comment*)
/* private comment*/

Private comments are elided from public module views.

A Constraint Solving

In principal, the semantics of Juno-2 depend only on the
semantics constaints, and not on the implementation of
the constraint solver. But in practice, if you are using
Juno-2 you will sometimes need to know something about

how the solver works. This section is intended to provide
some helpful information.

There are three steps in solving a system of constraints.
The solver (1) propagates known values, (2) propagates
hints, and (3) uses the numeric solver.

The numeric solver uses Newton-Raphson iteration.
This is quite reliable (even for the consistent but over-
constrained case)provided that adequate hints are given.
But if any variable involved in a non-linear constraint is
unhinted, the solver is unlikely to succeed. Thus, if the
solver isn’t working properly there is probably a problem
with the initial hints or with their propagation.

Initial hints. You specify the initial hints with thenear
constraint. Ifs andt are terms, then

s ∼ t

is semanticallyTRUE, but it supplies a hint to the solverr
for one or more unknowns.

Propagating known values. The solver’s first step uses
equalities to eliminate unknowns by propagating known
values. That is, ifx=E or E=x is a constraint, wherex
is an unknown andE is an expression all of whose vari-
ables have known values, thenx is reclassified as known
instead of unknown, and given the known value ofE. For
example, in

VAR x,y,z IN

x=5 AND x=y AND y*y=z -> ...

END

the known value5 for x is propagated toy and then the
known value25 of y*y is propagated toz. In this simple
case, propagation of known values has solved all the con-
straints, but in general, some unknowns and constraints
will remain.

In propagating known values, the solver does not use
algebraic facts about arithmetic. For example, fromx=2
AND x+y=4 it is unable to propagate the known value2

to y. Therefore the propogation phase leavesy as an un-
known, and the solver uses the numeric solver on the sys-
tem2+y=4 with unknowny.

Propagating hints. The solver’s second step uses equal-
ities and near constraints to propagate hints to as many
unknowns as possible. That is, ifx=E or E=x or x∼E

or E∼x is a constraint, wherex is an unhinted unknown
andE is an expression all of whose variables either have
known values or hints, thenx is given as a hint the value
of E, where the unknowns inE are considered to have their
hinted values. For example, in

VAR x,y,z IN

x=1 AND x∼y AND

y+0.5=z AND z*z=2 -> ...

END
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the known value 1 forx is propagated to become the
hinted value fory, and then this hint is used to give the
hint 1.5 to z. Thus the numeric solver is invoked on the
equationz*z=2 with the initial valuez=1.5 .

In propagating hints, the solver does not use algebraic
facts about arithmetic. But hints for ordered pairs are used
to produce hints for their components. For example, con-
sider the command

VAR p IN

p ∼ (0.5, 0) REL ((0, 0), (2, 2)) AND

CAR(p) * CAR(p) = 2 -> ...
END

The solver will use the value of theRELexpression (which
is (1,1) ) as a hint forp. This will cause the solver to use
1 as the hint forCAR(p) . Therefore, the Newton-Raphson
solver will solvex*x=2 with 1 as the initial value ofx,
producing a final solution ofp = (1.414, 1) .

Errors in hints. If the propagation of hints terminates
without making use of one of the user’s near constraints,
the Juno compiler gives the error messageunused near
constraintand refuses to compile the program. The al-
ternative would be to invoke the numeric solver from an
initial value that ignored one or more of the user’s near
constraints, which would be likely to be fail in some con-
fusing way.

Two common problems lead to theunused near con-
straint error. One of them is to accidentally produce a
cycle of hints, as in

VAR x,y IN

x ∼ (y,5) AND y ∼ CAR(x) -> ...

END

The second is to write near constraints that Juno can’t
use because it doesn’t use algebraic identities to propa-
gate NEAR constraints, as for example in:

VAR x, y IN

x=2 AND y+x∼5 AND y*y=10 -> ...

END

Such systems can be solved by rewriting the NEAR con-
straints so the unknowns appear alone on one side of the
∼, like this:

VAR x, y IN

x=2 AND y∼5-x AND y*y=10 -> ...
END

11



B Syntax

In this appendix, we describe the Juno-2 syntax: its operators, keywords, reserved words, grammar, and tokens.

B.1 Operators and Keywords

Here are Juno-2’s operators:

; . , : ( ) { } [ ] := :: |

-> ∼ = # < > >= <= + - * / &

Here are Juno-2’s keywords:

MODULE IMPORT PRIVATE CONST VAR PRED FUNC PROC

IS SKIP ABORT IF FI DO OD SAVE IN END NIL TRUE

FALSE OR AND NOT CONG PARA HOR VER E REL DIV MOD

Here are Juno-2’s reserved identifiers, which cannot be redefined:

FLOOR CEILING ROUND MAX MIN ABS SIN COS ATAN LN

EXP CAR CDR REAL TEXT PAIR INT CLOSE APPLY

Identifiers beginning with the underscore character are also reserved.

B.2 EBNF Grammar

The following grammar uses an extended BNF notation in which{S} is a sequence of zero or more occurrences ofS,
and[S] is zero or one occurrence ofS. Tokens are written as all upper-case identifiers, as double-quoted strings, or
surrounded by angle brackets. Each production list ends with a period.

B.2.1 Compilation Unit Productions

Module = [ ModDecl ] { Import } { Decl }.

ModDecl = MODULE <Id> ";".

Import = IMPORT IdList ";".

Decl = [ PRIVATE ] Declaration ";".

Comments may appear anywhere at the top level of a module.

B.2.2 Declaration Productions

Declaration = CONST ConstDecls

| VAR VarDecls

| PRED PredDecl

| FUNC FuncDecl

| PROC ProcDecl.

ConstDecls = ConstDecl { "," ConstDecl }.

ConstDecl = <Id> "=" Expr.

VarDecls = VarDecl { "," VarDecl }.

VarDecl = <Id> [ ":=" Expr ].

PredDecl = <Id> "(" IdList ")" IS Constraint END.

FuncDecl = <Id> "=" <Id> "(" IdList ")" IS Constraint END.

ProcDecl = ProcHead IS TotalCmd END.

ProcHead = [ IdList ":=" ] [ IdList2 ":" ] <Id> "(" [ IdList ] ")".
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B.2.3 Command Productions

TotalCmd = Cmd.

Cmd = SKIP | ABORT

| QIdList ":=" ExprList

| Cmd ";" TotalCmd
| Formula "->" Cmd

| Cmd "|" Cmd

| DO Cmd OD

| IF Cmd FI

| VAR NearVarList IN Cmd END

| SAVE <Id> IN TotalCmd END

| ProcedureCall

| "{" Cmd "}".

ProcedureCall = [ QIdList ":=" ] [ QIdList2 ":" ] QId "(" [ExprList] ")".

The infix command operators (namely, “:= ”, “ ; ”, “ -> ”, and “| ”) are listed indecreasingorder of binding power.
The grammar defines aTotalCmd simply as aCmd, but there are syntactic restrictions onTotalCmd s. The com-

mandsSKIP , ABORT, assignment,DO . . . OD, IF . . . FI , SAVE . . . IN . . . END, and procedure call are alwaysTo-
talCmd s. In addition, the commandsT;A , A|T , { T } , andVAR NearVarList IN T END are eachTotalCmd s
when the commandT is aTotalCmd and none of the variables inNearVarList has a hint. Any other command is
considered partial, even if its guard is semanticallyTRUE.

B.2.4 Formula Productions

Constraint = Formula.

Formula = AndFormula [ OR Formula ].

AndFormula = NotFormula [ AND AndFormula ].

NotFormula = SimpleFormula | NOT NotFormula.

SimpleFormula = TRUE | FALSE

| "(" Formula ")"

| RelationFormula

| PredicateUse

| SolveFormula.

RelationFormula = Expr RelationOp Expr.

RelationOp = " ∼" | "=" | "#" | "<" | ">" | "<=" | ">="

| CONG | PARA | HOR | VER.
PredicateUse = QId "(" [ ExprList ] ")".

SolveFormula = "(" E NearVarList "::" Constraint ")".

The grammar defines aConstraint simply as aFormula , butConstraint s must conform to the restrictions listed
in Section 7.5.

B.2.5 Expression Productions

Expr = Expr1 [ REL Expr1 ].

Expr1 = Expr2 [ AddOp Expr1 ].
Expr2 = Expr3 [ MultOp Expr2 ].

Expr3 = Expr4 | "-" Expr3.

Expr4 = QId

| NIL

| Literal

| "(" Expr ")"

| "(" Expr "," Expr ")"
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| "[" ExprList "]"

| FunctionCall.

AddOp = "+" | "-" | "&".

MultOp = "*" | "/" | DIV | MOD.

Literal = <Number> | <TextLiteral>.

FunctionCall = [ QIdList2 ":" ] QId "(" [ ExprList ] ")".

B.2.6 Miscellaneous Productions

IdList = <Id> { "," <Id> }.

IdList2 = <Id> | "(" IdList ")".

QId = <Id> [ "." <Id> ].

QIdList = QId { "," QId }.

QIdList2 = QId | "(" QIdList ")".

ExprList = Expr { "," Expr }.

NearVarList = NearVar { "," NearVar }.

NearVar = <Id> [ (" ∼" | "=") Expr ].

B.3 EBNF Syntax For Tokens

To read a token, first skip all blanks, tabs, newlines, carriage returns, vertical tabs, and form feeds. Then read the
longest sequence of characters that forms anOperator , Id , Number, TextLiteral , or comment. The syntax of
comments is described in Section 11.3.

An Id is a case-significant sequence of letters, digits, and underscores that begins with a letter. An Id is a keyword
or reserved identifier if it appears in the corresponding list above, and an ordinary identifier otherwise.

In the following grammar, terminals are characters surrounded by double-quotes and the special terminal DQUOTE
represents double-quote itself.

Operator = ";" | "::" | "." | ":=" | ":" | "(" | ")" | "[" | "]"

| "{" | "}" | "|" | "->" | "=" | "#" | "<" | ">" | ">="

| "<=" | "," | "+" | "-" | "*" | "/" | "&" | " ∼".

Id = ( Letter | "_ " ) { Letter | Digit | "_" }.

Number = FloVal [ Exponent ]

FloVal = { Digit } ( Digit | Digit "." | "." Digit ) { Digit }

Exponent = ( "E" | "e" ) [ "+" | "-" ] Digit { Digit }.

TextLiteral = DQUOTE { PrintingChar | Escape } DQUOTE.

Escape = "\" "n" | "\" "t" | "\" "r" | "\" "f" | "\" "\"

| "\" DQUOTE | "\" OctalDigit OctalDigit OctalDigit.

PrintingChar = Letter | Digit | OtherChar.

OctalDigit = "0" | "1" | . . . | "7".

Digit = OctalDigit | "8" | "9".

Letter = "A" | "B" | . . . | "Z" | "a" | "b" | . . . | "z".

OtherChar = " " | "!" | "#" | "$" | "%" | "&" | "’" | "(" | ")" | "*"

| "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | "=" | ">"

| "?" | "@" | "[" | "]" | "ˆ" | "_" | "‘" | "{" | "|" | "}"

| " ∼" | ExtendedChar.

ExtendedChar = any char with ISO-Latin-1 code in [8_240..8_377].

14



References

[Ado90] Adobe Systems Incorporated.PostScript Language Reference Manual. Addison Wesley, second edition,
1990.

[Dij76] Edsger W. Dijkstra.A Discipline of Programming. Series in Automatic Computation. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1976.

[HN94] Allan Heydon and Greg Nelson. The Juno-2 Constraint-Based Drawing Editor. Research Report 131a,
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December1994.

[Nel85] Greg Nelson. Juno, a Constraint-Based Graphics System.ACM Proceedings on Computer Graphics (SIG-
GRAPH), 19(3):235–243, July 1985. San Francisco.

[Nel87] Greg Nelson. A Generalization of Dijkstra’s Calculus. Technical Report 16, Digital Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301, April 1987.

[Wir89] Niklaus Wirth. From modula to oberon. Technical report, ETH Z¨urich, September 1989.

15


