SRC Technical Note
1997 -009
June 30, 1997

Juno-2 Language Definition

Greg Nelson and Allan Heydon

dliloli|tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright®© Digital Equipment Corporation 1997. All rights reserved

Contents

1

2

10

11

Preface
Values
Terms
Variables

Literals

5.1 Realliterals.
52 Textliterals.
53 NIL

Functions

6.1 StandardSyntax
6.2 Built-InFunctions.
6.3 User-Defined Functions

Formulas

71 StandardSyntax.
7.2 Formulas Are Always Defined
7.3 AtomicFormulas
7.4 CompoundFormulas
75 Constraints
7.6 User-Defined Predicate Symbols

Commands

8.1 Abort,Skip
8.2 Assignment
83 Guard,
8.4 Sequential Compositian.
85 ElseCommand
8.6 Command Grouping.
8.7 lteration
8.8 Alternative Construct
8.9 Projection
8.10 SaveCommand
8.11 ProcedureCall

Definitions

9.1 Constants
9.2 GlobalVariables.
9.3 Predicates
9.4 PureFunctions
95 Procedures.

Closures
10.1 Closure Introduction.
10.2 Closure Application

Modules

111 Import
11.2 Modules.
11.3 Comments

N

0 0 o PN

Constraint Solving

Syntax

B.1 Operators and Keywords

B.2 EBNFGrammar.

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6

Compilation Unit Productions . .
Declaration Productions
Command Productions.
Formula Productions
Expression Productions

Miscellaneous Productions

B.3 EBNF Syntax For Tokens

10

12
12
12
12
12
13
13
13
14

1 Preface 2 \Values

Juno-2 is a constraint-based language intended for graphe universe of values of a Juno-2 program is the small-
ics applications. A Juno-2 program describes a pictuest set that includes the real numbers, the text strings, the
a Juno-2 implementation renders the picture. This pappecial valueNIL, and is closed under the formation of
describes the language only; for a description of the Jurmpelered pairs.

2 system as a whole, see “The Juno-2 Constraint-Base®he language also supports closures (procedures paired
Drawing Editor” [HN94]. with environments). Closures are represented as ordinary
The Juno-2 language is useful for drawing pictures, addno-2 pairsaccording to a convention that is private to
also interesting for its simplicity, uniformity, and its prothe implementation.

visions for solving constraints. We hope this paper will be
useful as a reference to Juno-2 users, and also of interest
to programming language users and designers. 3 Terms

The theoretical basis for Juno-2 constraints rests on
the following two observations: (1) as an imperative lad term is an expression denoting a partial function from
guage, Juno-2's semantics are defined in terms of prdfiie state of the computation to the universe of values. Syn-
cate transformers, and (2) a constraint is just another naetically, a term is either a variable, a literal, or a function
for a predicate. For afficionados of Dijkstra’s calculus @pplied to arguments that are themselves terms.
guarded commands [Dij76, Nel87], Juno-2 can be defined
in one sentence: it consists of Dijkstra’s predicate trans-)
formers acting on the predicates of the theory of the el Variables
numbers together with a pairing function.

For the rest of us, Juno-2 is an imperative, blociSyntactically, a variable is an identifier, possibly qualified
structured, untyped language with a syntax and contlyl @ module name. Global variables are defined in mod-
structure not too distant from Algol. But its data strugiles (described below), and local variables are defined in
tures are more like Lisp’s than Algol’s: instead of array$§Jocks (also described below).
records, and pointers, Juno-2 provides only scalars and oduno-2 is untyped: every variable ranges over the entire
dered pairs, since this is the simplest set of data structusesserse of values.
sufficient to represent the points and lists of points needed
for the graphics primitives. The primitive graphics opera- .
tions provided by Juno-2 are similar to those of PostScript Literals
[Ad090].

Any constraint expressible in Euclidean geometry (alino-2 has three kinds of literal constants: real (numeric)
equivalently, in the multiplicative theory of the real numliterals, text literals, and the special liteNiL .
bers) can be included in a Juno-2 program. The imple-
mentation splyes the constralr}ts using numerical methog_sl Real Literals

The provisions for constraints make the Juno-2 lan-
guage novel. For example, the command A real literal has the formdecimal [E exponent]
wheredecimal is a non-empty sequence of decimal dig-
its, optionally containing a decimal point, aagbonent
setsx to one of the square roots of two. The user caga non-empty sequence of decimal digits, optionally pre-
supplyhintsfor unknowns to control the non-determinisngeded by a 4" or “—". The literal denotesiecimal
inherent in underconstrained systems. times ten raised to the givesxponent . If “E expo-

To support libraries of reusable graphics prograntsnt ” is omitted,exponent defaults to zero. Case is not
Juno-2 also includes modules. The module system bgignificant: ‘" is as good asE”. Embedded spaces are
rows the notion of @ublic viewfrom Oberon [Wir89]. not allowed.

Juno-2 is an extension of Juno-1 [Nel85]. Juno-2 bor-For example,
rows its overall semantic framework from Juno-1, includ-
ing hints. Going beyond Juno-1, Juno-2 provides a richer
value space and more powerful extensibility, includingre legal, but
user-defined constraints and constraints containing exis-
tential quantifiers. 2.0e+a 5.0Ex

are not.

VAR rINr*r =2 ->x:=r1 END

1. 5 3.1415 5E1 5.0e-1

5.2 Text Literals 6.2 Built-In Functions

A text literalis a sequence of zero or more printing chaPair introduction. Within parentheses, the comma is a
acters or escape sequences enclosed in double qudtestion that forms ordered pairs. That is, the tgxiy)
Printing characters are all printing ISO-Latin-1 characteisthe ordered pair of andy; it is defined for any values
except double-quote and backslash. x andy. For example,

The only way to include a double-quote, backslash, or

- T : (0, (1, NIL))

non-printing character such as newline in a text literal is ,, Alan”, "Turing”)
with an escape sequence. Here are the legal escape se- '
guences: are valid terms. The inner parentheses in the first example
are required. The expressioty,z) is syntactically in-

\n Pewl;ne valid; you must instead specify either the p&ity,z))

N ormieed or the pair((x,y),z)

\t tab

\r carriage return Pair elimination. The functionsCARandCDRare defined
\ backslash on pairs:

v double quotg CAR(p)=x ifandonlyif p=(x,y) forsomey

\nnn character with octal coden CDR(p)=y ifand onlyif p=(xy) for some x

A backslash that is not a part of one of these escape Sgt introduction. Within square brackets, the comma is
quences is a static error. ' ' _
a function that forms lists. More precisely, the term

5-3 NIL [t 1, t 21 e t n]
NIL is a distinguished value used to terminate lists. SEeShorthand for
Section 6.2 below. e, @ 2 (..., n NL) ..0)

that is, for the list oft ; represented by a nest of ordered
pairs as in Lisp. The list can have length one; thaft]is,
; is shorthand folt,NIL) . But the list can’t have length
6 Functions zero; thatis[] is not a legal shorthand foxiL .

A pure functionis a rule that defines a result value in termarithmetic functions. Juno-2 provides the following
of given argument values; at most one result can be asgathmetic functions:
ciated with any tuple of arguments. Functions may be

partial; that is, it may be that for some argument values no* * ¥ x plusy

resultis defined. Pure functions never have side effects off -~ ¥ X minusy

the machine state; they are not to be confused with func- .

tional procedures (defined in Section 9.5). x*y x timesy
What happens when you try to compute an undefined / ¥ x divided by y

function? This is a question about commands and theiX DIV 'y FLOOR(xfy)
computations, which we will get to later (see Sections 7.2 X MOD y x - (y * (x DIV y))
8.2, and 9.5). For now, it is best to remember that a pure)

function is not a rule for computing a result value, but only - X minus x

a rule for defining it. . _
FLOOR(x) the greatest integer not exceedirg

CEILING(x) the smallest integer not less than

6.1 Standard Syntax ROUND(x) the nearest integer ta
The standard syntax for a function application is MAX(x.y) the larger ofx andy
MIN(X,y) the smaller ofx and y
flt 2, t2, ..., tn) ABS(x) the absolute value ok
wheref names a function ands, t», ..., t, are terms. The infix and prefix operators are listed in groups with

Several of the built-in functions have non-standard syequal binding power, and the groups are listed in order
tax; for example, the infix arithmetic operators. The nerf increasing binding power. Parentheses can be used to
section describes Juno-2's built-in functions. override the binding powers. For example,

a+-c*d meansa + (- c) *d . Text concatenation. The infix operator& denotes text

i i i i P n nation:
Infix arithmetic operators with the same binding powecrO catenatio

are left associative. For example, t&u t concatenated withu
a-b+c meandga - b) + c . The function is undefined if either argument is not a text.

The arithmetic functions are defined only on numbers; for) .
exampleNIL+0 is undefined. Alsoxly ,x MOD yandx 6.3 User-Defined Functions
DIV y are undefined i§ is zero.

In addition, the following trigonometric and exponen
tial functions are defined:

So much for the built-in functions. You can also define
new functions, as explained in Section 9.4. Defined func-
tions can be used in terms exactly like built-in functions;

SIN(X) the sine ofx they always have the standard syntax described in Sec-
COS(x) the cosine ofx tion 6.1.

ATAN(Y,X) the angle whose tangent igx

LN(x) the natural logarithm ofk

EXP(x) the exponential ofx 7 Formulas

All angles are in radians. The range of #ieANfunction

is the half-open interval{r, 7). The sign of the result A formulais a condition that is either true or false in any
agrees with the sign of. LN(x) is undefined if is not state of a computation. Syntactically, a formula s either a
positive. predicate symbadpplied to one or more terms (atomic
Coordnat ransiaion A poitsanrdere pairofeal 1% 62 9, conbinaton of er o
numbers. Since Juno-2 is intended for graphics, PO, to
and lists of points occur quite frequently. Juno-2 has a ’

built-in infix operator for coordinate transformations on

points: p REL ¢. Herep must be a point, sagy) , /-1 Standard Syntax

andc must be an ordered pair of points, sa) . Its The standard syntax for an atomic formula is

definition is:
tg, to ...t
(xy) REL (ab) means Pt 1.t 2 ”)_
the point with coordinatex(y) in the wherep names a predicate and, t, ..., t, are terms.
coordinate system whose Origin issaand The only atomic formulas with non-standard syntax are
whose unit x vector ends &t TRUE FALSE, and applications of the built-in infix rela-
tions.
Here is a figure that illustratexEL:
(0,1) REL (a,b) 7.2 Formulas Are Always Defined
Tl A pure function can be undefined, but a formula is always
~e(1,1) REL (a,bh) , : -
N true or false, never undefined. This may require some get-
/ ting used to. Here are four corollaries of this rule:
4
a) 1. A poolean operator applied to arguments of the wrong
’ type is false. For example,
(1,0) REL (a,b)
b NIL < 3

If Juno-2 had complex arithmetic, we could equivas false, rather than undefined.

lently write the definition as follows:) . . .
y 2. An atomic formula is false if any of the terms that it

p REL (a, b) =a +p * (b - a) . contains is undefined. For example,

As a final example, 1/0 = 1/0
(0.5, 0) REL (a, b) is false.

is the midpoint of the segment betwesandb. 3. Compound formulas are defined in terms of their con-
The functionp REL c is undefined ifp is not a point stituent formulas. For examplROT HAs the logical com-

or if c is not a pair of points. plement ofP, so

NOT (1/0 = 1/0) 7.4 Compound Formulas

is true. Propositional ConnectivesIf p andq are formulas, then

4. Formulas are not themselves terms. You cannot useg OR q

; means eithep or q is true;
formulain place of a term; for example

p AND g means botlp andq are true;

x=y)=((=x NOT p meang is false.
is syntactically invalid. These are listed in order of increasing binding power.
Parentheses can be used to override the binding power;
7.3 Atomic Formulas for example, the parentheses are necessary in
Constant Formulas. (x <y OR x < z) AND u < X
TRUE the predicate symbol that is always true Existential Quantification. If v is a variable and is a

FALSE the predicate symbol that is always false formula, then

Type Formulas. If x is any value, then E v P
REAL(x) meansx is a real number;
INT(X) means is an integer;
TEXT(x) means is atext;

PAIR(x) meansx is an ordered pair.

is aformula. (Not any formulais allowed, as we will see

in Section 7.5.) In theory, this existential quantification is
true if there exists some value forthat satisfied. In
practice, it is true only if Juno-2’s constraint solver can
In FORTRAN and Algol, integers and reals are disjoitfind such a value. To help the solver determine a satisfying
types. Butin Juno-2, as in numerical mathematics, the assignment fov, you may need to supply it with a hint for
tegers are contained within the reals. ThereftM@(x) v’s initial value; see Appendix A.

impliesREAL(x) . Juno-2 provides a shorthand for introducing variables
in existential quantifications with hinted or fixed values.

Equality. If s andt are any values, then ,
If t is aterm, then

s =t meanss andt are identical;

s # t meanss andt are not identical. Ex=t:uP) means(E x :
E x ~t P means(E x ::

X =t AND P)

X ~1tAND P

Order. If x andy are real numbers, then)
The variablex is said to befrozenin the first case and

X<y meansx precedey; hintedin the second case.

X >y meansx gxceedsy; Furthermore, the construction
X <=y meansx IS at mosty;

X >= y means is at leasy. E vy vy ..., va i P)

These atomic formulas are false if eitheor y are not is shorthand for

numbers. Evyio(EV 2 ..(EvVvyP) o).
Near. The infix predicate symbol, read “near”, is con-
sidered to be satisfied by any pair of values, but is u
ful for giving hints to the Juno-2 constraint solver, as d
scribed in Section 8.9 and Appendix A.

Lny of thev’s may be frozen or hinted. However, it is a
é:[atic error for the same variable to occur more than once
inthe listvy, ..., vy.

For example,
Geometric Formulas. A pointis a pair of real numbers. .)
A segments a pair of points, called the endpoints of the (E X i X*x=2) is equivalentte >= 0;
segment. Ip andq are points and andt are segments, (E xy i z=(xy)) is equivalent tPAIR(z) .
then
p HOR g meansCDR(p) = CDR(q) ; 7.5 Constraints
p VER q meansCAR(p) = CAR(q) ;
s CONG t meanss andt have the same length; The notation(E v :: P) is allowed only if the for-
s PARA t meanss is parallel tot . mula P is a constraint A constraint is a formula, syn-

tactically restricted in order to make it easy to solve for its
unknowns. The following functions, predicate symbols,
d connectives can be used in constraints:

The atomic formulap HOR gandp VER qare true if
p=q. The formulas PARA t is true if eithers ort has
length zero. These formulas are false if their argumer?tg
do not have the correct type. literals,

pair introductioni(x, y)

listintroduction:[x, y, ..., 7] ,

CAR CDR,

+,-,%, 1/,

SIN, COS ATAN LN, EXP,
REL,

TRUE FALSE,

REAL TEXT, PAIR,

~
’ ’

HORVER CONGPARA
AND
existential quantification,

8 Commands

Executing a command produces a sequence of state tran-
sitions, the eventual outcome of which is to loop forever,
cause a checked runtime error, or haltin some state. Since
Juno-2’s constraint solver is non-deterministic, a Juno-2
command may be non-deterministic as well. That is, the
outcome of a command need not be functionally deter-
mined by the initial state.

Associated with each command is a predicate on the
initial state called itguard A command can be activated
only in a state where its guard is true. An attempt to acti-
vate a command in a state where its guard is false is said

user-defined pure functions, tofail.

user-defined predicates. Failure is not to be confused with abortion of the com-
putation due to a run-time error. A computation that
aborts may change the state before it aborts, but an attempt
to activate a command where its guard is false fails imme-

The following are forbidden in constraints:

DIV, MOD diately, without changing the state. To implement these
FLOOR CEILING , ROUND semantics without backtracking, the Juno-2 grammar syn-
MAX MIN, ABS tactically restricts the placement of commands that may
INT, potentially fail.

#, <, <=, > >=, &, We write “grd(S) ” to denote the guard of the com-
OR NOT mands. If grd(S)=TRUE , thensS can be activated in any

state, and we say thatis total. Otherwise S is partial.

The remainder of this section lists the Juno-2 com-
Functional procedures, defined in Section 9.5 below, amainds.
not to be confused with pure functions.

functional procedures.

For example, 8.1 Abort, Skip
Ezumz*z=2 The commandBORTcauses a checked runtime error. It
is total.

is a legal formula, since and= are allowed in constraints.

Th mmandKIP is a no-op. It is also total.
But the formulas e commandKIP is a no-op

(Ez:INTz) AN Dz +z=4 8.2 Assignment

(E z : (z & "bc" & z) = "abchcabc"))
The assignment command has the form

are illegal, since neitheNT nor & is allowed in a con-
straint.

There is one exceptional caseris allowed in a con- wherevy, vo, ..., v, are distinct variables and, t », .. .,
straint if one of its arguments is the predicate symbp), are terms. The effect is to evaluate all the terms and
TRUEand its other argument is a constraint. This is a deten set each variable to the value of the cqroesling
generate case, SINTRUE OR Ms equivalent torRUE term. For example,

Vi, V2, ...,V =t to ..., 1

X,y =Y, X
7.6 User-Defined Predicate Symbols swaps< andy.

So much for the built-in formulas. You can also define Thg a55|gnment. COmman 'S FOtaI' If any termis
new predicate symbols, as explained in Section 9.3. d@_deflned, the assignment is equivalemBoRT

fined predicate symbols can be used in atomic formulas

exactly like built-in predicate symbols. They always has@.3 Guard

the standard formula syntax described in Section 7.1. . .
If Pis a formula ands is a command, the guarded com-

mand

P->S
fails if P is false, and otherwise is the sameSasVe have
grd(P -> S) = (P AND grd(S))

8.4 Sequential Composition
If Sis a command and is a total command, then
S, T

means: executs, then executd. The guard of S ; T”

DOn<m->m:=m-n
| m<n->n:=n-m
oD

will compute the greatest common divisor of the two non-
negative integers andm
8.8 Alternative Construct

If Sis a command, then the total command
IF S FI

is the guard of. Notice that since is total, there is no s equivalent to

danger that will fail after S has changed the state.

The guard arrow has weaker binding power than theS | ABORT.

semicolon; thusin

X <y ->max =Yy, mn = X ,

the guard covers both assignments.

8.5 Else Command
If SandS’ are commands, the command
S| S

(read 'S elseS’ ") executess if its guard is true, otherwise

it executess’ . It fails only if bothS ands’ fail:
grd(S | S’) = grd(S) OR grd(S")

The else operator has weaker binding power than
guard arrow and semicolon.

8.6 Command Grouping

Curly braces can be used to override the binding powe

the operators on commands. For example,
P->A;B]|C

is equivalent to
{P>{A;B}}IC

which is different from
P>A;{B]|C}

8.7
If Sis a command, then the total command
DO S OD

Iteration

For example,

IF x>y ->m =X
ly>=x->m
Fi

is equivalent tom = MAX(X, y) In particular, both
commands abort if either or y are not numbers: thiE
command aborts because both guards are false; the assign-
ment aborts becauseAXis defined only on numbers.

8.9 Projection

If v is a variable an® is a command such thgtd(S) is

%constraint, then the command
the

VAR v IN S END

introducesv as a local and executes The scope o¥
starts atN and ends aEND Its initial value is chosen so

A5t to make the guard ¢ true; if the constraint solver

cannot find such a value, the command fails. We have:

grd(VAR v IN S END) = (E v : grd(S))

For example, the command

VAR r IN
r*r=2-=>x:=r
END

will set x to one of the square roots of two. If you care
which square root you get, you can use the near predicate
to give a hint to the solver:

VAR r IN
r ~ 1 AND
END

r*r=2->x:=r

repeatedly executesuntil its guard becomes false. Thafhis has the same formal semantics as the previous ver-

is, this command is equivalent to
{S ;DO S OD}| SKP .

For example,

sion, but in practice will set to the positive square root
of two.

Juno-2 solves constraints by numerical methods; the
near predicate provides the initial value for the numerical

iteration. The hint you supply can be an arbitrary expre8:10 Save Command

sion, and you can supply a different hint feach variable.
For more information on the near predicate and Juno-g’é\/I

constraint solver, see Appendix A.

is the name of a module ands a total command, the
total command

Similar to the syntax for existential quantification, save M IN T END
Juno-2 provides a shorthand for introducing variables in
projections with hinted or fixed values.tlfis a term, then is shorthand for

VAR x =t IN S END means
VAR X IN x =t -> S END
VAR x ~ t IN S END means
VAR X IN x ~t -> S END

Furthermore, the command
VAR v, Vo2, ..., Vv, IN S END
is shorthand for

VAR v IN
VAR \, IN
S
END

END

M.Save(); T; M.Restore()

Notice that sincer follows a semi-colon in this transla-
tion, it must be total.

This is useful for temporarily changing various as-
pects of the program state, as illustrated in the built-in
PostScript modules.

8.11 Procedure Call

A procedure call is a total command. See Section 9.5 for
the syntax and semantics of a procedure call.

9 Definitions

You can extend Juno-2 by defining your own constants,

As before, any of the's may be frozen or hinted, and ity|opal variables, predicates, pure functions, and proce-
is a static error for the same variable to occur more thgQlres. These definitions are grouped into modules, as de-

once inthe list/q, ..., vn.
By definition, we have

grd(VAR v 1, V2, ..., Vv IN S END) =
(E Vv1, Va2, ..., vV grd(S))

scribed in Section 11.

Each definition is either public or private; private defi-
nitions are preceeded by the optional keywBRIVATE.
Private definitions are hidden from clients, and they are
elided in public views of the module.

As another example, here is a program that reverses th€onstants, global variables, and procedures are imper-

list p, using an auxiliary variable:

g = NIL;
DO
VAR u, v IN
p=(uv) ->
q:=(u, gy
p=v
END

As a final example,

VAR a, b IN
INT(a) AND INT(b)
AND a * b = 89801 ->
X,y =ab
END

is illegal, sinceNT is not allowed in constraints.

ative programming constructs, so except for the initializa-
tion order of constants and global variables, their defini-
tion order within a module does not matter. Predicate and
pure function definitions, on the other hand, express re-
lations in first-order logic (where recursive definitions are

disallowed), so there are restrictions on their definition or-
der.

9.1 Constants
Ifid 1,..., id , are names anty, ..., t, are terms, the
definition

CONST idg =tq, ..., 0d p = tp;

defines eaclid ; as a read-only name for the value of the
termt ;. Here are some examples:

CONST Pi = 3.14159, Zero = SIN(Pi);
CONST Data = [("Jan", 2.3), ("Feb", 5)];
CONST Len = Text.Length("Juno-2");

Itis an unchecked error for any to depend on the initial is logically equivalent taC. A defined pure function can
value of a constant or global variable declared at or aftee used in a term just like a built-in function.
id ; in the same module. For example, the definition Here are some example pure function definitions:

CONSTx = 3 * x - 2; FUNC n = Halffm) IS m = n + n END;

is an unchecked error because it ifseferential. FUNC y = Cadr(l) IS

_ (E x, tail : = (% (y, tail)
9.2 Global Variables END;
If vq,..., v, are names angd;, ..., t , are terms, the def- In a pure function definition, the constrainay not refer
inition to any procedures, nor to any constants, global variables,

_ _ _ predicates, or pure functions defined at or aiftelin the
VAR \1 [.— t]_]1 ..oy Vn [.— t n], same mOdU|e

introducesv, .. ., vy as global variables with initial val- If & pure function has more than one possible result for
uestq,...,tn. Ifanyt; is omitted, the corresponding’s Some input, the result computed for that function is non-
initial value is arbitrary. It is an unchecked error for angeterministic. For example,
ti to depend on the initial value of a constant or global -\ y = Sqit) ISy *y=x END:
variable declared at or after in the same module.
is unadvised, sincg is not determined uniquely from
However, such a function can be used reliably if the func-
tional result is given a suitable hint — for example:

A predicate definition has the form a ~ 1AND a = Sqr(2).

9.3 Predicates

PRED id(args) IS C END; It is perfectly all right for a pure function to be partial;

whereCis a constraint andrgs is a list of distinctidenti- POthHalf andCadr above are partial, sindealf is de-
fiers. It definesd(args) to be equivalent t@. A defined fined only on numerical arguments, agedr is defined
predicate can be used in a formula just like a built-in pre@tly on lists with at least two elements.

icate.

Here are some example predicate definitions: 9.5 Procedures
PRED R3(p) IS A procedure definition has the form
E xy,z : . _—
p =[x v, zZ] AND REAL(X) AND PROC J[outs :=] [(inouts):] id(ins) IS
REAL(y) AND REAL(2)) S
END; END;
_ whereouts , inouts , andins are lists of identifiers (col-
PRED Colinear(a, b, c) IS lectively called theformal parameterof the procedure),
(a, b) PARA (a,) id is an identifier (the name of the procedure) ahis
END; a total command (the body of the procedure). The"

In a predicate definition, the constrai@tmay not refer Enl;'St be omitted ?t’“ts .is empty, and the initial§ * and
i« must be omitted ifinouts is empty; however, the

to any procedures, nor to any constants, global variables,

predicates, or pure functions defined at or aiftelin the second (.) grei reguwed even 'i.hs IS _empty. Add|t|9n-
same module. ally, the initial “() " may be omitted ifinouts contains

exactly one identifier.
9.4 Pure Functions Procedure Call. A call to the procedure has the form
A pure function definition has the form [outActs =] [(inoutActs)] id(inActs)
whereoutActs andinoutActs are lists of variables and
inActs is a list of terms (collectively called thactual
whereres andid are identifiersargs is a list of identi- parameter®fthe call). The ‘=" must be omitted ibut-
fiers, there are no duplicates among the identifersand Acts is empty, and the initial() " and “: " must be omit-
args , andCis a constraint. The effect is to defiite to ted if inoutActs is empty; however, the latte()*” are
be the function with the property thats = id(args) required even iinActs is empty. Additionally, the initial

FUNC res = id(args) IS C END;

“() " may be omitted ifinoutActs contains exactly one 10 Closures

variable.
The meaning of the call is the same as the followirfgexible drawing libraries often require user-supplied pro-
block cedures as parameters. For example, a scatter-plot pack-
age can accept a userpplied procedure for drawing the
VAR outs, inouts, ins IN points in the plot, or an animation package can accept a
inouts, ins = inoutActs, inActs; procedure for drawing each frame of an animation. For
S; this reason, the Juno-2 language supports closures.
OutActs, inoutActs := outs, inouts A closureis a procedure (called thmdyof the closure)
END paired with a list of values (called tlevironmenof the
closure).

Any formal variable that occurs in any actual must be re- Any built-in or user-defined procedureis considered

named before applying this rule. (Since the formals ageclosure with body and an empty environment.
dummies, renaming them consistently does not affect the

meaning of the procedure definition.) Note that by definj- .
tion of the assignment command (see Section 8.2), theré"aql Closure Introduction

is equivalent tAABORTIf any of theinActs is undefined. The built-in functional procedureéLOSEcreates closures

For example, after the definitions with non-empty environments. The command
PROC st:Push(x) IS st := (x, st) END; CLOSE(cl, t 1, ..., tp)
evaluates to a closure whose body is the body of the clo-
PROC x := stPop() IS surecl and whose environment i$ ’s enviroment ex-
X, st := CAR(st), CDR(st) tended at the right by the list of values, . . ., t .
END;
st = NIL: The built-in procedur@PPLY applies a closure. The ef-

st:Push(1); st:Push(2); fect of the command

x := st:Pop() [outs]:=[(inouts):] APPLY(cl, t 1, -0 tp)

would leavest =[1] andx = 2. is to apply the body of the closuce to the giverout pa-

rameters, the giveinout parameters, and the param-
Functional Procedures. A procedure igunctionalif it eters formed by concatenating the list of valued ifs en-
has exactly one out parameter, like thep procedure vironment with the values of the actual arguments. . . ,
above. Such a procedure can be used as a function, withTheout andinout arguments are optional, just as for
the obvious meaning. For example, here is a recursi€ ordinary procedure call.

definition of a procedure for appending two lists: For example,
PROC res := Append(y, z) IS VAR
y = NIL -> res = z cl := CLOSE(Text.Cat, "Hello, ");
| res := (CAR(y), Append(CDR(y), 2)) nm = APPLY(cl, "Juno!);
END; initializesnmto “Hello, Juno! "

Juno-2's framework is geared toward pure functions, b#]tThe environment of a closure provides values only for

we include functional procedures for their notational co €in parameters of its body, not for amyt or in-

venience. However, they should be used with cafgl parameters. Actualut andinout = parameters can

Functional procedures cannot be used within ConStrairﬁg/frupFr)rl1leﬁt%ﬁiﬁigeafleoiﬂreec:(seipgIIr?Sﬁnical| Ly
Functional procedures may have side-effects, butitis dam-egl::me ¢ andinout arametersy the numyb‘ eﬁru of ac-
gerous to use such procedures functionally, since Junp-2-" ou inout P ’

. .~ . fuals must equal the number of formals of the closure’s
may evaluate the subexpressions of an expression in gn . .
y. Forin parameters, the number of values in the

order. Finally, note that a functional procedure who re environment together with the number of actuals
body aborts is semantically different from an undefin&PSure enviro 9 \ .
pure function. must sum to the number of the body’s formal in parame-

ters.

11 Modules how the solver works. This section is intended to provide
some helpful information.

Larger Juno-2 programs are organized imtmdules There are three steps in solving a system of constraints.

which are collections of declarations. The modal@ust The solver (1) propagates known values, (2) propagates

import the moduleB to refer to the names declaredBn hints, and (3) uses the numeric solver.

The qualified identifieB.N is used withim to refer to the The numeric solver uses Newton-Raphson iteration.

entity in B nameaN. This is quite reliable (even for the consistent but over-

Withina modulegach name can be declared eitheb- constrained caseyrovided that adequate hints are given

lic or private Only public names are visible to importersgut if any variable involved in a non-linear constraint is
unhinted, the solver is unlikely to sceed. Thus, if the

11.1 Import solver isn't working properly there is probably a problem

with the initial hints or with their propagation.

TheIMPORTSstatement has the following form: Initial hints. You specify the initial hints with theear

IMPORT M, ..., Mp; constraint. Ifs andt are terms, then

where theM are module names. s ~t

IMPORT makes the names of the modules ..., M,
visible. To refer to an entity namedin any M, the im-
porter must use the qualified identifigrN . Importing a
module providesccess to the names it declares, but nBfopagating known values. The solver’s first step uses

to those it imports. The import relation must be acyclic.equalities to eliminate unknowns by propagating known
values. That is, ifk=E or E=x is a constraint, where

is an unknown and is an expression all of whose vari-

is semanticallyTRUE but it supplies a hint to the solverr
for one or more unknowns.

11.2 Modules ables have known values, theris reclassified as known
A module has the form: instead of unknown, and given the known valuésofor
example, in
MODULE id ";" { Imports } { Defns }
L . . VAR xy,z IN
whereud. is an |dent|f|er.that names the modu{em- x=5 AND x=y AND y*y=z -> ..
ports} is a sequence of import statements, &ébefns} END

is a sequence of definitions (or comments).

All defined names in the module are visible with- the known valué for x is propagated tg and then the
out qualification in the module. The names defined in tkeown value2s of y*y is propagated ta. In this simple
module and the visible imported names must be distincgtase, propagation of known values has solved all the con-
straints, but in general, some unknowns and constraints
will remain.

In propagating known values, the solver does not use
Comments may appear in a module wherevfGDULE algebraic facts about arithmetic. For example, from
header,IMPORT statement, or definition is legal. ComAND x+y=4 it is unable to propagate the known valze
ments can appear at top-level only; this is to simplify tie y. Therefore the propogation phase leayess an un-
pretty-printer. Comments may be nested. Public and ptirown, and the solver uses the numeric solver on the sys-
vate comments have the following forms: tem2+y=4 with unknowny.

Propagating hints. The solver’s second step uses equal-
ities and near constraints to propagate hints to as many
unknowns as possible. That is,¥£E or E=x or x~E
Private comments are elided from public module viewsor E~x is a constraint, wherg is an unhinted unknown
andE is an expression all of whose variables either have
known values or hints, thenis given as a hint the value

A C traint Solvi of E, where the unknowns iBare considered to have their
onstraint So ving hinted values. For example, in

11.3 Comments

(* public comment*)
[* private comment+/

In principal, the semantics of Juno-2 depend only on theVAR xy,z IN

semantics constaints, and not on the implementation of x=1 AND x~y AND

the constraint solver. But in practice, if you are using y+0.5=z AND z*z=2 -> ..
Juno-2 you will sometimes need to know something aboutEND

10

the known value 1 foi is propagated to become the
hinted value foty, and then this hint is used to give the
hint 1.5 toz. Thus the numeric solver is invoked on the
equatiorz*z=2 with the initial valuez=1.5 .

In propagating hints, the solver does not use algebraic
facts about arithmetic. But hints for ordered pairs are used
to produce hints for their components. For example, con-
sider the command

VAR p IN
p ~ (0.5, 0) REL ((0, 0), (2, 2)) AND
CAR(p) * CAR(p) = 2 > ...

END

The solver will use the value of tHREL expression (which
is(1,1)) as a hintfomp. This will cause the solver to use
1 as the hint foCAR(p) . Therefore, the Newton-Raphson
solver will solvex*x=2 with 1 as the initial value ok,
producing a final solutiongf = (1.414, 1)

Errors in hints. If the propagation of hints terminates
without making use of one of the user’s near constraints,
the Juno compiler gives the error messageised near
constraintand refuses to compile the program. The al-
ternative would be to invoke the numeric solver from an
initial value that ignored one or more of the user’s near
constraints, which would be likely to be fail in some con-
fusing way.

Two common problems lead to thaused near con-
straint error. One of them is to accidentallyqatuce a
cycle of hints, as in

VAR x,y IN
X ~ (y5) AND y ~ CAR(x) -> ..
END

The second is to write near constraints that Juno can'’t
use because it doesn’t use algebraic idis to propa-
gate NEAR constraints, as for example in:

VAR X, y IN
x=2 AND y+x~5 AND y*y=10 -> ..
END

Such systems can be solved by rewriting the NEAR con-
straints so the unknowns appear alone on one side of the
~, like this:

VAR X, y IN
x=2 AND y~5-x AND y*y=10 -> ...
END

11

B Syntax

In this appendix, we describe the Juno-2 syntax: its operators, keywords, reserved words, grammar, and tokens.

B.1 Operators and Keywords
Here are Juno-2's operators:

S R & N B

>~ = #H < >>= <=+ - * [&
Here are Juno-2's keywords:

MODULE IMPORT PRIVATE CONST VAR PRED FUNC PROC
IS SKIP ABORT IF FI DO OD SAVE IN END NIL TRUE
FALSE OR AND NOT CONG PARA HOR VER E REL DIV MOD

Here are Juno-2’s reserved identifiers, which cannot be redefined:

FLOOR CEILING ROUND MAX MIN ABS SIN COS ATAN LN
EXP CAR CDR REAL TEXT PAIR INT CLOSE APPLY

Identifiers beginning with the underscore character are also reserved.

B.2 EBNF Grammar
The following grammar uses an extended BNF notation in w{¢his a sequence of zero or more occurrences, of

and[S] is zero or one occurrence 8f Tokens are written as all upper-case identifiers, as double-quoted strings, or
surrounded by angle brackets. Each production list ends with a period.

B.2.1 Compilation Unit Productions

Module = [ModDecl] { Import } { Decl }.
ModDecl = MODULE <ld> ";".

Import = IMPORT IdList ";".

Decl = [PRIVATE] Declaration ";".

Comments may appear anywhere at the top level of a module.
B.2.2 Declaration Productions

Declaration = CONST ConstDecls
| VAR VarDecls
| PRED PredDecl
| FUNC FuncDecl
| PROC ProcDecl.

ConstDecls = ConstDecl { "," ConstDecl }.

ConstDecl = <ld> "=" Expr.

VarDecls = VarDecl { "," VarDecl }.

VarDecl = <ld> ["=" Expr].

PredDecl = <Id> "(" IdList ")" IS Constraint END.

FuncDecl = <Id> "=" <Id> "(" IdList ")" IS Constraint END.
ProcDecl = ProcHead IS TotalCmd END.

ProcHead = [IdList ":="] [IdList2 ™"] <Id> "(" [IdList] ")".

12

B.2.3 Command Productions

TotalCmd = Cmd.
Cmd = SKIP | ABORT
QldList ":=" ExprList

I

| Cmd ";" TotalCmd

| Formula "->" Cmd

| Cmd "|" Cmd

| DO Cmd OD

| IF Cmd FI

| VAR NearVarList IN Cmd END
| SAVE <Id> IN TotalCmd END
I
I

ProcedureCall
" Cmd "}".
ProcedureCall = [QldList "="] [QldList2 "] QId "(" [ExprList] ")".
The infix command operators (namely;: “, “; ", “->", and “| ") are listed indecreasingorder of binding power.

The grammar defines BotalCmd simply as aCmd but there are syntactic restrictions dotalCmd s. The com-
mandsSKIP, ABORT assignmentpO... ODQ IF ... Fl, SAVE... IN ... END and procedure call are always-
talCmd s. In addition, the commandgA, AT, { T } , andVAR NearVarList IN T END are eachlotalCmd S
when the command is aTotalCmd and none of the variables MearVarList has a hint. Any other command is
considered partial, even if its guard is semanticalRUE

B.2.4 Formula Productions

Constraint = Formula.
Formula AndFormula [OR Formula 1.

AndFormula = NotFormula [AND AndFormula].
NotFormula = SimpleFormula | NOT NotFormula.
SimpleFormula = TRUE | FALSE

| "(" Formula ")"

| RelationFormula

| PredicateUse

| SolveFormula.
RelationFormula = Expr RelationOp Expr.

RelationOp SR i - I B B B
| CONG | PARA | HOR | VER.

PredicateUse = Qld "(" [ExprList 1 ")".

SolveFormula = "(" E NearVarList ":" Constraint ")".

The grammar defines@onstraint ~ simply as aormula , butConstraint s must conform to the restrictions listed
in Section 7.5.

B.2.5 Expression Productions

Expr = Exprl [REL Exprl].
Exprl = Expr2 [AddOp Exprl].
Expr2 = Expr3 [MultOp Expr2 1.
Expr3 = Exprd | "-" Expr3.
Exprd = Qld

| NIL

| Literal

| "(" Expr ")

I

u(u EXpI’ u,n EXpI’ u)n

13

| n[n EXpI’LISt u]n

| FunctionCall.
AddOp =" | e
MultOp =" | "/ | DIV | MOD.
Literal = <Number> | <TextLiteral>.
FunctionCall = [QldList2 ™"] QId "(" [ExprList] ")".

B.2.6 Miscellaneous Productions

IdList = <ld> { "" <ld> }.

IdList2 = <ld> | "(" IdList ")".

Qld = <ld> ["." <ld>].

QldList = Qld { ") QId }.

QldList2 = Qld | "(" QldList ")".

ExprList = Expr { "" Expr }.

NearVarList = NearVar { "" NearVar }.

NearVar = <l d>[(" ~"|"=") Expr]

B.3 EBNF Syntax For Tokens

To read a token, first skip all blanks, tabs, newlines, carriage returns, vertical tabs, and form feeds. Then read the
longest sequence of characters that form®©perator , Id , Number, TextLiteral ~, or comment. The syntax of
comments is described in Section 11.3.

An Id is a case-significant sequence of letters, digits, and underscores that begins with a letter. An Id is a keyword
or reserved identifier if it appears in the corresponding list above, and an ordinary identifier otherwise.

In the following grammar, terminals are characters surrounded by double-quotes and the special terminal DQUOTE
represents double-quote itself.

Operator = II;II | II::II | Il.|l | ll:=ll | n:n | Il(ll | ll)ll | ll[ll | II]II
| II{II | II}II | II|II | II_>II | II=|I | ll#l! | II<II I ll>ll | ll>=ll
| II<=II | Il,!l | |I+I| | Il_ll | Hgett | Il/!l | ll&l! | " f'\.al'_
Id = (Letter | "_ ") { Letter | Digit | "_" }.
Number = Floval [Exponent]
Floval = { Digit } (Digit | Digit "." | "." Digit) { Digit }
Exponent =("E" | "e") ["+" | ""] Digit { Digit }.
TextLiteral = DQUOTE { PrintingChar | Escape } DQUOTE.
Escape = II\II Ilnll | II\II "t" | |I\II Ilrll | II\I! |lfll | Il\ll II\II
| "* DQUOTE | "\" OctalDigit OctalDigit OctalDigit.
PrintingChar = Letter | Digit | OtherChar.
OctalDigit ="0" | "1" | R A
Digit = OctalDigit | "8" | "9".
Letter = IIAII | llBl! | . | IIZII | llall | llbl! | . | ”Z”.
Otherchar = " " | IIII! | II#II | II$II | II%II | Il&ll | mwn I II(| II)II | gt
| | nn | II_II | II.I| | Il/!l | ll:ll | ll;ll | lI | |l " | I|>II
| II?II | lI " | Il[!l | |I]II | nn | II_II | mn | II{ | II| | II}II
| "~ ExtendedChar
ExtendedChar = any char with ISO-Latin-1 code in [8_240..8_377].

14

References

[Ado90] Adobe Systems IncorporatedPostScript Language Reference Manu&lddison Wesley, second edition,
1990.

[Dij76] Edsger W. Dijkstra.A Discipline of Programming Series in Automatic Computation. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1976.

[HN94] Allan Heydon and Greg Nelson. The Juno-2 Constraint-Based Drawing Editor. Research Report 131a,
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 9438 bber1 994.

[Nel85] Greg Nelson. Juno, a Constraint-Based Graphics Sys#V Proceedings on Computer &rhics (SIG-
GRAPH) 19(3):235-243, July 1985. San Francisco.

[Nel87] Greg Nelson. A Generalization of Dijkstra’s Calculus. Technical Report 16, Digital Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301, April 1987.

[Wir89] Niklaus Wirth. From modula to oberon. Technical report, ETHtigh, September 1989.

15

