SRC Technical Note
1997 - 006
April 12, 1997

The Operators of TLA™

Leslie Lamport

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright©Digital Equipment Corporation 1997. All rights reserved

The Operators of TLA

Leslie Lamport
lamport@src.dec.com

12 April 1997

This document is an introduction to the syntax and semantics
of the operators of TLA. It assumes that you are familiar
with ordinary mathematics (sets and functions) and are at least
acquainted with TLA. It should enable you to understand the
expressions that appear in TtEApecifications.

This is a preliminary document; suggestions are welcome.

W

Contents

1 The Constant Operators 2
1.1 uUntypes e 2
1.2 LOQIC . . o vt 5
1.2.1 PropositionalLogic 5
1.2.2 Predicatelogic 5
1.2.3 ThecHOOSEOperator 6
1.24 Typelesslogic 7
1.3 Miscellaneous Operators 7
1.3.1 Constructs Stolen from Programming Languages. . . 7
1.3.2 TheetConstruct 8
1.3.3 JunctionLists 8
14 Sets e e 9
1.4.1 Infixand PrefixOperators 9
142 SetConstructors 9
15 Functions 10
1.5.1 Functions and theirDomains 10
1.5.2 TheexceptConstruct 11
1.5.3 Recursive Function Definitions 12
1.5.4 Functions Versus Operators 13
1.6 Tuples and Functions of Multiple Arguments. 13
1.7 Stringsand Numbers L. 14
1.8 Records 15
2 Action Operators 15
3 Temporal Operators 17
Index 19

The operators of TLA can be classified as constant operators, action oper-
ators, and temporal operators. For convenience, all these operators are listed in
Figures 1-4 on the next page through page 4. They are described in three separate
sections.

The ASCII versions of typeset special characters are shown in Figure 5 on
page 5. In the absence of a reasonable alternative, Tliges the #X command
name for a symbol. (Sometimes there is more than one ASCII version for the same
symbol; the different versions are synonymous.)

1 The Constant Operators

All the constant operators of TLAare listed in Figure 1 on page 3 and Figure 2 on
page 4. In these figureg,andp; are formulasy is a bound variableh andh; are
sequences of characters, there characters, thé are digits, and all other letters
are terms. The operators are explained below, in more or less the order in which
they appear in the figures. (The “miscellaneous operators” are defined earlier so
they can be used in defining other operators.)

The figures show the simple forms of the operators. Some operators have more
general forms. For example, you can wrte, y : p instead ofdz : 3y : p.
The more general forms are described with the individual operators.

1.1 Untypes

TLAT is based on ZFC (Zermelo-Fraenkel set theory with the axiom of choice).
This is an untyped formalism. In an untyped formalism, every syntactically well-
formed expression, no matter how silly, has a meaning—for example, the expres-
sion 3e +/“abc”. If the expression is silly, its meaning is probably unspecified.
All we can tell about the expressione3v/*“abc” is that it is a Boolean, so it equals
eitherTRUE or FALSE.

Mathematicians write silly expressions all the time. For example the expression
1/0 is a silly expression. But if you substitute O fohin the formula(z # 0) =
(z * (1/z) = 1), you get the valid formulg0 # 0) = (0 (1/0) = 1) that
contains the silly expressioryQ. A correct formula can contain silly expressions.
However, the validity of a correct formula cannot depend on the meaning of a silly
expression.

Logic
TRUE FALSE A V = = =
Ye:p dz:p VzeS:p 3Fzel :p
CHOOSEz : p [Equals some: satisfyingp]

Sets
= # € ¢ U N C \/[setdifference]
{e1, ..., ey} [Setconsisting of elements]
{zx €S : p} [Setofelements in S satisfyingp]
{e : z € S} [Setofelements such that in S]
SUBSETS [Set of subsets af]
UNION § [Union of all elements oF]

Functions
flel [Function application]
DOMAIN f [Domain of functionf]
[z €S el [Functionf such thatf[z] = e for z € S]
[S— T] [Set of functions with f[z] € T for € S]

[f EXCEPT![e1] = e7] [Functionf equal tof exceptf[ei] = e2]
[f EXCEPT![e] € S] [Set of functionsf equal tof exceptf[e] € S]

Records

e.h [The h-component of record)]

[A1+ e1,..., hy — e,] [Therecord whosé, componentis;]

[A1 : S1,...,hs : S,] [Setofall records witth; component inS;]

[r EXCEPT!.h = €] [Recordr equal tor excepfr.h = e]

{r EXCEPT!.h € S]} [Set of record$” equal tor exceptr.h € S]
Tuples

e[4] [The i component of tuple]

(e1,...,en) [Then-tuple whose™ component is:;]

S1x...x S, [The setof alln-tuples withi™ component inS;]

Strings and Numbers
“C1...c,”" [A literal string of n characters]
STRING [The set of all strings]
dy...dy di...dp.dpy1...dy, [Numbers]

Figure 1: Simple forms of the constant operators of TLA

Miscellaneous

if p then ey elsee; [Equalse; if p true, elsee;]
casepy — e1 O ... Op, — e, [Equalse; if p; true]
letzy = eq1... 2, =epine [Equalse in the context of the definitions]

A p1 [the conjunctiorpi A...Ap,] Vv p1 [thedisjunctionpy v ...V p,]
N Dn VvV Dn

Figure 2: Simple forms of the constant operators of TL(&ontinued).

P [p true in final state of step]
[A]. [AV (e = e)]
(A)e [AA (e # e)]

ENABLED A [An A step is possible]
UNCHANGED e [e = €]
A-B [Composition of actions]

Figure 3: The action operators of THA

oF [F is always true]

OF [F is eventually true]

WF.(A) [Weak fairness for actior]

SF.(A) [Strong fairness for actiod]

F ~ G [F leads toG]

F % G [F guaranteeg]

dz : F [Temporal existential quantification (hiding).]
Vi : F [Temporal universal quantification.]

Figure 4: The temporal operators of TEEA

AN 1 \E = \equiv
v oV vV \A = <=>
= = e \in CHOOSE CHOOSE
+ # ¢ \notin SUBSET SUBSET
= - 7 UNION UNION
(<< < < DOMAIN DOMAIN
)y >> > > EXCEPT EXCEPT
- > < \eq STRING STRING
= |-> > \geq case CASE
“ oo £ == other OTHER
o o if IF
- \cdot o \o then THEN
let LET in IN else ELSE
N \cap x X - \subseteq
U \cup { A I I}

Figure 5: ASCII versions of typeset special characters.

1.2 Logic

1.2.1 Propositional Logic

In TLA™, we use the ordinary operators of propositional logic. Negation is denoted
by — (" in ASCII), implication by= (=>), and logical equivalence by (\equiv
or <=>), whered = B equals(4A = B) A (B = A).

Among the propositional-logic operators,has highest precedence,andv
have next lower precedence, then comeand=- has lowest precedence. Because
A andv have equal precedence, an expressiondikeB A C'is illegal; parentheses
must be used to disambiguate it.

1.2.2 Predicate Logic

We also use the ordinary universal quantifiei(\A) and existential quantifief
(\E) of predicate logic. Bounded quantifiers are defined in terms of unbounded
ones in the usual way:

VieS:p = Vz:(zel)=p
= Jz:(zeSAp

In these expressions, the bound variablmay not occur in the expressich

TLA*T uses the customary abbreviations for multiple quantification:
Vii,...,2, . pand3izq, ..., 2z, : p. For example

Vz,y,2 . P = Ve :Vy:Vz:.P
The general form of bounded universal quantification is
Vg1 €81,...,4, €Sy i p

where eachy; is either a listz,, ..., z,, of variables or a tupldz1, ..., z,)

of variables. (See Section 1.6 for a discussion of tuples.) None of these bound
variables may appear in any of ti$g. Existential quantification is similar. For
example,

A(z,y)e S, z,weT . p =
dz,y,z,w . (z,y)eSH)ANzeT)A(weT)Ap

where neither:, y, z, nor w may appear irs or T.

An expression begun by or 3, is terminated by the end of the statement or
expression that contains it. The containing expression may be ended by some form
of right parenthesis, by indentation rules (see Section 1.3.3), or by the end of a
statement containing the expression.

1.2.3 ThecHoOSEOperator

ThecHoOSEoperator is known to logicians as Hilbert'g4]. If there is anxz such
that p holds, thencHOOSEz : p equals some such. If there is more than one
suchz, it is not specified which one is chosen. If there is no stdhen the value
of CHOOSEz : p is unspecified.

The most common use for tl1o00SEoperator is to “name” a uniquely spec-
ified value. For example, one possible definition of the operator the setReal
of real numbers is:

r/s = CHOOSEv : (v € Rea) AN (vxs=r)

If r is a nonzero real number, then there is no resich tha « 0 = r. Therefore,
r/0 has a completely unspecified value. We don’t know what a real number times
a string equals, so we cannot say whether or not there is a real nursheh that
v * “abc” equalsr. Hence, we don’t know what the value of*abc” is.

The cHOOSE operator is often used in the following idiom, which defines
notAnS to be some arbitrary element not$n

notAnS = CHOOSEz : z ¢ S

The CHOOSE operator cannot be used to introduce nondeterminisny i$f
equivalent top, thenCHOOSEz : ¢ equalsCHOOSEz : p. Hence,CHOOSE
“chooses the same value every time.”

A cHOOSEexpression, like a quantifier expression, is ended by the end of the
expression or statement that contains it.

1.2.4 Typeless Logic

Because TLA is completely untyped, an expression liken3abc” is legal. We

can therefore ask whether it equaht” A 3, and whethe(3 A “abc”) v = (3 A
“abc”) equalsTRUE? There are two reasonable ways to define the semantics of the
Boolean operators which give two sets of answers to such questions.

In the weak semantics, one knows nothing about the meaning of an expression
like a A b if ¢ andb are not both Booleans. With this semanticsy 3abc” need
not be a Boolean, and there is no reason to expect it to eqbal “A 3. We can
reason about logical operators only when applied to Booleans.

In the strong semantics, A b is a Boolean regardless of whaandb are, and
logical operators obey most of the usual laws. In particular, b equalsb A a
for any ¢ andb. The easiest way to define the strong semantics is to assume an
operatory such thatW(e) is a Boolean for everg, andW (e) equalse if e is a
Boolean. We then define the logical operators so that, for exampieb equals
W(a) A W(b), forall a andb.

The strong semantics is more convenient to use when writing proofs, because
we can apply the laws of logic without having first to prove that the arguments of
Boolean operators are Booleans. However, when writing specifications, we should
assume only the weak semantics. The meaning of a specification should never
depend on the value obtained by applying a Boolean operator to a nonBoolean.

1.3 Miscellaneous Operators
1.3.1 Constructs Stolen from Programming Languages
The expression
if p then e elsee;
equalseq if p is true, otherwise it equals,. Thecaseexpression is defined by

casepy — e10...0p, — e, =
CHOOSE$z : (p1= B =c)A...A(pp = ($x =¢,))

In the caseexpressiony,, can beother, which is an abbreviation for(p1 v ...V
pn—l)-

Like a quantifier expression, aseclause or the final arm of easeexpres-
sion is terminated by the end of the statement or expression that contains it. This
rule means that if oneaseexpression appears within another, then the iwase
encompasses as much of the expression as possible. For example

casep; — a +casepy; — ex2 U p3 — ez U pg— e
is parsed as
casep1 — a + (casepy — e» O p3 — ez 0 pg — ey)

if none of thep; are other expressions. I3 is other, then the only possible
parsing is

casepy — a + (casep, — ep O other — e3) O pg — ea
It is good practise to enclose an inre&sein parentheses to avoid ambiguity. (Per-

haps this practise should be required by the language syntax, but at the moment it
isn't.)

1.3.2 The let Construct

Thelet construct allows one to make and use local definitions within an expression.
For example

let 2 = axc

F(n) = (a+b+c¢)n
in 2%« FQ)+FQ2) +FQ2+ 1)

equals
(axc)x(a+b+c)l+(a+b+c)24+(a+b+c) (24 (axc)

The identifiersz and F' must not have a meaning in the context where ldie
expression appears.

1.3.3 Junction Lists

TLA™ uses the notation for conjunctions and disjunctions explained in [2]. A list of
formulas prefixed by\ or v denotes the conjunction or disjunction of the formulas,
and indentation is used to eliminate parentheses. For example:

AV AV B
v C
AV D
VEAF
v G

equals((Av B)v C) A(D Vv (E A F) v G). The following are the precise rules
for parsing a bulleted list of conjuncts or disjuncts, where general parentheses pairs
are(),{}, [],and ().

e TheA or Vv tokens must line up.

e Each conjunct or disjunct is terminated by either the end of the entire ex-
pression or else the first token, not appearing inside general parentheses, that
appears at the same vertical position or to the left ofits v. (In the ASCII
representation, the position of a symbol is that of its first character.)

1.4 Sets
1.4.1 Infix and Prefix Operators

TLAT uses the conventional infix operators for sets:(\in), ¢ (\notin),
N (\cap), U (\cup), andC (\subseteq). The operatoi, denotes set differ-
ence;A \ B is the set of elements iA that are not inB.

The operators= and=£ (# or /=) should be used for equality and inequality of
nonBoolean values. Although can be used for equality of Boolean values, we
prefer to use= in that case. (The precedence rules encourage this use.)

In TLA*, SUBSET is the powerset operator, stBSETS is the set of all sub-
sets ofS. Thus,S € SUBSETT is equivalent toS € T. We write UNION S
(instead of the more conventiong) S) for the union of all the elements &f. For
example,UNION {S, T'} equalsS U T, andUNION (SUBSETS) equalsS, for any
setsS and T. TheUNION andSUBSET operators can be confusing. Until you
get used to them, you may want to write comments describing typical elements of
each set in each subexpression in which they appear in your specifications.

The operators), U, \, SUBSET, anduNION all have equal precedence, which
is higher than the precedence sharedhy#, €, and<. That precedence is in
turn lower than the precedence of(the highest-precedence Boolean operator).
TLA™ adopts the principle that eliminating ambiguity is more important than sav-
ing keystrokes. Therefore, operators are given equal precedence if there is any
reasonable doubt about their relative precedence.

1.4.2 Set Constructors

Finite sets can be enumerated explicitly with an expression of the form
{e1, ..., en}, Which denotes the set whose elements areethe For example,

{1, 2,1, 3,2, 3} is the set consisting of the three elements 1, 2, and 3. The empty
set is written{ }.

TLA™ provides two set-constructing operators that are often confused. The
first is the subset constructér € S : p}, which denotes the set of all elements of
S satisfyingp. For example{z € Nat : z < 3} equals{0, 1, 2, 3}, whereNat is
the set of natural numbers. The second is the set-of-all constriuctorz € S},
which denotes the set of expressions of the fernfor all - in S. For example,
{2xn : n € Nat}isthe set of even natural numbers. In the expresdiors S : p}
and{e : z € S}, the bound variable may not occur irS.

The subset constructor also has the form

{(z1,...,zn) €5 1 p}
which is defined to equal
{z el 3z1,....2, : (x={(22,...,2Z5)) AP}

where thex; are variables that may not appearSinThe set-of-all constructor has
the general form

{e:q1e 81, ...,q, €8y}

where theg; and S; are the same as for bounded quantifiers—egcis either a
list or a tuple of variables, and none of these bound variables may appear in any of
the S;. For example,

{e:zel,yeT} = UNION{{e : z€ S} :ye T}

In set theory, logical inconsistencies (such as Russell's paradox) are avoided
by restricting the kinds of collections that are sets. These restrictions are built into
the TLA™ operators, which make it impossible to build sets that are “too big”. For
example, the collection of all finite sets is not a set. However, the set of all finite
sets of natural numbers is a set, and can be written using the Dparators.

1.5 Functions
1.5.1 Functions and their Domains

In conventional mathematics, a function is a set of ordered pairs satisfying certain
properties. In TLA, we do not specify any particular set-theoretic representation
of functions. We simply assume that there is a certain kind of set called a function
that has a domain. Function application is denoted by square bracké{s] o

the value obtained by applyingto e. The expressioffi[e] is meaningful even it

is not in the domain of, or if f is not a function; but we have no way of specifying
what the meaning of[e] is unlessf is a function anc is in its domain.

10

The expressiorDOMAIN f equals the domain of, if f is a function. The
expression§ — T7] denotes the set of all functions with domafhand range a
subset ofT. In other wordsf is in [S — T7]iff it is a function with domainS
such thaif[z] € T forallz € S.

The TLA' notation for a “lambda expression” is the function constructor
[z € S — e], which equals the functioi whose domain is the sét, such that
f[z] equalse for eachz in S. For example,] € Nat — i+ 1] defines the succes-
sor function on the saVat of natural numbers. An expressigrdenotes a function
iff f equals & € DOMAIN f — f[z]], wherez is a variable that does not occur in

f.

1.5.2 TheexcePT Construct

Functions If f is a function, thenff EXCEPT ![e1] = e3] equals the functiorf
that is the same gsexcept withf[e1] = e2. Formally,

[f EXCEPT![e1] = €3] = [z € DOMAIN f > if z = e1 thenes
else f[z]]

wherez is a variable that does not occur in the expressifing;, or ep. Think
of [f EXCEPT![eq] = ep] as the function obtained fronfi by the assignment
flea] i= ea.

The character @ appearing in the expressigsatands forf[e1]. For example,
[Fen EXCEPT![3] = @ x 9] is the functionf that is the same aBcn except that
f[3] equalsFen[3] * 5. Think of @ as an abbreviation for the “old value” pf
applied toe;.

The EXCEPT notation is generalized in two ways. First, we let
[f EXCEPT![e1]...[en] = €] be the function obtained fronf by the as-
signmentf[ei]...[en] = e, where @ ine denotesf[ei]...[e,]. Formally,

[f EXCEPT![e1]...[en] = €] equals
[f EXCEPT ![e1] = [@ EXCEPT![e2] =[@ ... EXCEPT![e,] = €]...]
Next, we let f EXCEPT![...] =e1, ..., ![...] = e,] be an abbreviation for
[...[f EXCEPT![...] = e1] EXCEPT ... ![...] = en]...]

Think of [f EXCEPT ![2][7] = @+1, ![3][5] = @+ 2] as the array obtained from
f by performing the two assignments

fl2071 = fl2071 + 15 fI3105] := fI31I5] + 2

11

Sets of Functions It is also convenient to have a notation for sets of functions
that differ fromf only in their value on some element in their domain. We let

{f EXCEPT![e] € ST
be the set of all functions
[f EXCEPT![e] = 2]

with z € S (assumingz does not appear in the expressjpror S). This set is
written in ASCII as

{|f EXCEPT ![e] \in S [}

There is a similar @ convention to the one described above. For example,
{Fen EXCEPT![3] € {@, @ + 1}]} is the set consisting of the functiod®n and
[Fen EXCEPTI[3] = @+ 1].

We generalize thdf EXCEPT![e1] € ep]} construct in the same ways we
generalized the construgt EXCEPT ![e1] = e2] above. For example,

{f EXCEPT![a][b] € S, ![c] € T]}
is the set of all functions
[f EXCEPT[a][b] = s, ![c] =]

with s € S andt € T. There is also one additional abbreviation: we can write
“= ¢” instead of ‘€ {e}". For example,

{f eExcepT![a][7] € S, '[b] = ¢}
is the set

{[f EXCEPT![a][7] = s, ![b] =g] : s € S}

1.5.3 Recursive Function Definitions

TLA™ does not allow recursive definitions of operators. However, usigoOSE
it is easy to write recursive function definitions. For example, the classic recursive
definition of the factorial function on the set of natural numbers can be written as

Fact = CHOOSEf : f =[n € Nat — if n =0 then1
else n * f[n —1]]

TLA ™ provides the following abbreviation for this definition:

Fact[n : Nat] = if n=0then1l
else n x Fact[n — 1]

12

In generalf[z : S] = e isan abbreviation for
f = CHOOSEf :f=[z€eS > ¢]

The bound variable may not appear i§.

Although TLAT does not allow recursive operator definitions, recursive func-
tion definitions can often be used to define operators. For example, the following
defines the operatafardinality so thatifS is a finite set, therCardinality (S) is
the number of elements .

Cardinality(S) = let F[T : SUBSETS] =
it T =1
then O
else 1+ F[T \ {CHOOSEt : t € T}]
in F[S]

1.5.4 Functions Versus Operators

It is important to understand the distinction between an operatoiClikdinality
and a function likeFact. If f is a function, therf andf[z] are both expressions.
Hence, both & f[z] and 1+ f are syntactically legal expressions. (What they
mean will depend on the definition gf.) If O is an operator that takes a single
argument, therf) (e) is an expression, for any expressienHowever,O by itself

is not an expression. One can writet10 (e), but 1+ O is honsense—it is not
a syntactically valid expression. Writing “ 0” makes as little sense as writing
“L4+Cor*C++".

Since functions are expressions, they are often more convenient to use than
operators. However, a function has a domain, which is a set, and it is possible to
specify the value of [z] only for z in its domain. One cannot define a functipn
such thatf[S] equalsCardinality (S) for every finite setS. The domain of such a
function would have to be the collection of all finite sets, and that collection is not
a set.

The most common use of functions is as the values of variables. In a program
written in a conventional programming language, one often declares a vatiable
to be an array variable indexed by some$etn a TLA™ specification, one lets
be a variable whose value is always a function with donfain

1.6 Tuples and Functions of Multiple Arguments

In TLA™, (eq,...,e,) denotes an ordered-tuple. TLAT" provides the usual
Cartesian product notation, wherg; x ... x S, is the set of alln-tuples

13

(e1, ..., e,) with eache; in S;. Unlike conventional mathematics, TtAdefines
then-tuple(es, ..., e,) to be the function with domaifd, ..., n} that maps to
ei. Thus, ife is a tuple with at least components, then[:] is its ith component,
for any positive integeii. In particular, the zero-tuplé) is the unique function
with empty domain.

A function of multiple arguments is a function whose domain is a Cartesian
product. We can writg[eq, ..., e,] as an abbreviation fof[(e1, ..., e,)]. The
general form of an explicit function constructor is

[g1€S81,...,qn,€ Sy — €]

where theg; and S; are the same as for bounded quantifiers—egcis either a
list or a tuple of variables, and none of these bound variables may appear in any of
the S;. For example,

[(z,y)e S,ze T+ e]
is equivalent to

[weSxTrlet z=wl]l] y=w[l]2 z=w[2]
in e]

if w does not occur iy, T, or e.

The EXCEPT construct and recursive function definitions extend in the obvi-
ous way to functions of multiple arguments. For example, the general form of a
function definition is

where theg; andS; are as before.

1.7 Strings and Numbers

A string is written “...”", as in “abc”. Formally, the string &bc” is a 3-tuple, so

it equals(“abc’[1], “abc”[2], “abc’[3]). The elements of this 3-tuple (the three
letters making up the stringabc”) are unspecified. Of course, “” equals. The
set of all strings is writtelsTRING.

A sequence of digits is a humber. Formally, the sequence 376 of digits de-
notesNumeral (*376"), whereNumeral must be a defined operator. TNeturals
module definegVumeral so thatNumeral(“376") equals the number 376. (More
precisely,Numeral(*376") equals the value that represents the number 376 in the
particular representation of the natural numbers defined bytiterals module.)
Since 376 is equivalent to writinfumeral(“376"), it is an error to write 376 in

14

a module wheréVumeral is not defined—which usually means in a module that
does not extend or instan@é&turals or some other module that defines numbers.

The Naturals module also defines the s8lut of natural numbers, and the
following infix operators:

+ — (substraction)* (times) © (exponentiation)< < > >

Decimal numbers are defined in terms of hecimal operator. For example,
3.14159 is an abbreviation f@ecimal (“3", “14159"). The Reals module defines
Decimal appropriately.

1.8 Records

TLA™ provides notation for records, which are like the records of conven-
tional programming languages. Thgz component of a record is written

r.zyz. The expressioni — es,..., h, +— e,] is the recordr with compo-
nentshsi, ..., h, such thatr.h; equalse;, for i = 1,...,n. The expression
[h1 : S1,...,h, : S,]is the set of all records with componentsiq, ..., A,
such that-.h; is an element of the s&;, fori =1, ..., n. In other words,

[hl t S, hy Sn] =
{[h]_l-) 61,...,hn|—>6n] . 61651,...,6n65n}

In both of these notations, has to be at least one; [] is not a legal expression.

In TLA*, a record is a function whose domain is a finite set of strings, and
r.zyz iS an abbreviation for[*xyz"]. Taking !.zyz to be an abbreviation for
I[" xyz"], the EXCEPT notation applies to records as well as functions. For ex-
ample | EXCEPT!.h[e] = @+ 1] is the record that is the same as excepfr.h
is the function that is the same a4 excepfr.h[e] equalsr.h[e] + 1.

Because records are functions, one can always wfiteo”] instead ofr.foo
and can use function constructors for expressing records. This can be quite useful
at times.

2 Action Operators

The action operators of TLA come from TLA. They are listed in Figure 3 on
page 4. Except for.", these operators are all described in [3].

TLA has two classes of variables: rigid variables and flexible variables. Rigid
variables are calledonstantsn TLA*. They are the variables of ordinary predi-
cate logic. The bound variables introduced by the constant operators of Section 1
are rigid variables. Flexible variables are called simgyiablesin TLA ™.

15

An actionis a Boolean formula that may contain primed and unprimed flexible
variables. In an action, an unprimed instance of a variable denotes its value in
“the current state”, and a primed instance denotes its value in “the next state”. For
action reasonings andz’ can be considered to be completely unrelated variables.

The action operators of TLAcan be defined in terms of primed variables as
follows. (These definitions are applied from the inside out, replacing the arguments
of an operator by their definitions and then replacing the operator by its definition.)

p’ Equalsp with every flexible variable: replaced by its primed versiari.
[A]le Equals AV (e¢/ =e).
(A, Equals A A (e’ # e).

ENABLED A Let g, ..., z, be the flexible variables that occur primedAn let
71, ..., Z, be new rigid variables that do not occur iy and letA be
the formula obtained from by replacing each occurrence ©f by z;, for
i=1,...n. Then ENABLED A equalsiZi, ..., 7, : A. For example

ENABLED (z' 2z =y %2) = 32,7 1 Txa=7%2

UNCHANGED e Equalse’ = e.

A - B Equals the composition of the actiodsand B. Intuitively, it is the action
that first doesA then B. More formally, letz4, ..., z, be all the flexible
variables that occur primed id or unprimed inB, let z1, ..., 7, be new
rigid variables that do not occur id or B, let A equal A with eachz’
replaced byz;, and B equal B with eachz; replaced byz;. ThenA - B
equalsizy,...,z, : A A B. For example,

, ANZ —zxy ew
N +Yy—T=2)\ Ay dw A
ANz>y +7 y o

ANz >y+z
R ANy —Txa /
39,5957 (NTTYLTIT 4 A Aimmyew
Y E ANz2>y+7 y

ANt >Y+7

(The TLA™ convention of using bulleted lists of conjuncts and disjuncts is
explained in Section 1.3.)

16

3 Temporal Operators

A temporal formula is one that is true or false of a behavior, which is an infinite
sequence of states. The TLA operators for writing temporal formulas are listed in
Figure 4 on page 4. The temporal quantifiers have the same generalizations as the
unbounded predicate-logic quantifiers—for examley, ..., z, : F.

The temporal operators of TL/Aare all described in [3] except fek-, which
is introduced in [1]. (This operator is used only for assumption/guarantee specifi-
cations.) They are defined in terms@fand3 as follows.

OF Equals—O—F.

WF.(A) Equals(OC—ENABLED (A).) vV (OC(A)e).
SF.(4) Equals(CO—-ENABLED (A).) VvV (OO(A)e).
F ~ G EqualsO(F = <©G).

Vz:F Equals—3z : —F.

F %> G This formula asserts that remains true at least one step longer tian
does. (AndG remains true forever i’ does.) A formulaH is true for
the firstk steps of a behavior iff there is some way to continue those steps
to a complete behavior for whicH is true. This leads to the following
formal definition of F > G.

Let x be the tuple(zy, ..., z,) of all flexible variables that occur free
in F or G; letX be ann-tuple of flexible variablegzy, ..., 7,) distinct
from any variables appearing (bound or free}irmor G; let F andG be
the formulas obtained from?" and G by substituting the variables; for
the corresponding variables, and letb be a flexible variable distinct
from thez; andz;. ThenF % @ is defined to equal

Vb : A(b=TRUE) A g[b’ = FALSE],

AT, T L F A O = (X=YX))
= 371,....%, : G A X=X A 0= X =X)]xz)

References

[1] Martin Abadi and Leslie Lamport. Conjoining specificatio®sCM Transac-
tions on Programming Languages and Systeli$3):507-534, May 1995.

17

[2] Leslie Lamport. How to write a long formula&ormal Aspects of Computing
6:580-584, 1994. First appeared as Research Report 119, Digital Equipment
Corporation, Systems Research Center.

[3] Leslie Lamport. The temporal logic of actionACM Transactions on Pro-
gramming Languages and Systerh8(3):872-923, May 1994.

[4] A. C. Leisenring. Mathematical Logic and Hilbert'g-Symbaol Gordon and
Breach, New York, 1969.

18

Index

. (period), 15
" (prime), 16
- (action composition), 16
@, 11, 12
“...0 14

x, 13

*, 15

+, 15

—, 15

~,15

<,15

<,15

>, 15

>, 15

-
©

thn ®© © 1, ©©

I
\l

epl <>y
|__0'||_\|:u1' N

wv<<oD
= Ol
B
»

le, 16

A)e, 16
(e1,...,ep), 13
5,17
{er,...,ex}, 9
{reS :p},10
{e:zeS},10
[S— T], 11
[teSHe], 11

~— w
!

19

[f EXCEPT![e1] = eg], 11

{f EXCEPT![e1] € e2]}, 12
flz : 8] = e 12

[h1|—> 61,...,hnl—> en],15
[hl . Sl,...,hn . Sn],l5

action operators, 15-16
bound variable, 5, 10

Cartesian product, 13
case’

CHOOSE 6

conjunctions, list of, 8
constant operators, 2—-15

Decimal, 15
decimal number, 15
disjunctions, list of, 8
DoMAIN, 11

empty set, 9
ENABLED, 16
EXCEPT, 11, 12, 15

function, 10-13
of multiple arguments, 14
tuple as, 14
versus operator, 13

Hilbert's ¢, 6

if, 7

implication, 5

inconsistency, avoiding, 10

indentation used to eliminate
parentheses, 8

lambda expression, 11

let, 8
list of conjunctions or disjunctions, 8
logic operators, 5—7

Nat, 15

Naturals module, 15

negation, 5

nondeterminism not introduced by
CHOOSE 7

number, 14-15

operator
versus function, 13

parentheses, eliminated by indenta-
tion, 8
primed variable, 16

record operators, 15
recursive definition
of function, 12—-13

set operators, 9-10
SF, 17

silly expression, 2
string, 14

SUBSET, 9

temporal operators, 17
tuples, 13
types, 2

UNCHANGED, 16
UNION, 9
untyped, 2

variable
primed, 16

WF, 17

20

