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The operators of TLA+ can be classified as constant operators, action oper-
ators, and temporal operators. For convenience, all these operators are listed in
Figures 1–4 on the next page through page 4. They are described in three separate
sections.

The ASCII versions of typeset special characters are shown in Figure 5 on
page 5. In the absence of a reasonable alternative, TLA+ uses the TEX command
name for a symbol. (Sometimes there is more than one ASCII version for the same
symbol; the different versions are synonymous.)

1 The Constant Operators

All the constant operators of TLA+ are listed in Figure 1 on page 3 and Figure 2 on
page 4. In these figures,p andpi are formulas,x is a bound variable,h andh i are
sequences of characters, theci are characters, thed i are digits, and all other letters
are terms. The operators are explained below, in more or less the order in which
they appear in the figures. (The “miscellaneous operators” are defined earlier so
they can be used in defining other operators.)

The figures show the simple forms of the operators. Some operators have more
general forms. For example, you can write∃ x , y : p instead of∃ x : ∃ y : p.
The more general forms are described with the individual operators.

1.1 Untypes

TLA+ is based on ZFC (Zermelo-Fraenkel set theory with the axiom of choice).
This is an untyped formalism. In an untyped formalism, every syntactically well-
formed expression, no matter how silly, has a meaning—for example, the expres-
sion 3∈ √“abc”. If the expression is silly, its meaning is probably unspecified.
All we can tell about the expression 3∈ √“abc” is that it is a Boolean, so it equals
eitherTRUE or FALSE.

Mathematicians write silly expressions all the time. For example the expression
1/0 is a silly expression. But if you substitute 0 forx in the formula(x 6= 0) ⇒
(x ∗ (1/x ) = 1), you get the valid formula(0 6= 0) ⇒ (0 ∗ (1/0) = 1) that
contains the silly expression 1/0. A correct formula can contain silly expressions.
However, the validity of a correct formula cannot depend on the meaning of a silly
expression.
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Logic
TRUE FALSE ∧ ∨ ¬ ⇒ ≡
∀ x : p ∃ x : p ∀ x ∈ S : p ∃ x ∈ S : p
CHOOSEx : p [Equals somex satisfyingp]

Sets
= 6= ∈ /∈ ∪ ∩ ⊆ \ [set difference]
{e1, . . . , en} [Set consisting of elementsei ]
{x ∈ S : p} [Set of elementsx in S satisfyingp]
{e : x ∈ S } [Set of elementse such thatx in S ]
SUBSETS [Set of subsets ofS ]
UNION S [Union of all elements ofS ]

Functions
f [e] [Function application]
DOMAIN f [Domain of functionf ]
[x ∈ S 7→e] [Functionf such thatf [x ] = e for x ∈ S ]
[S → T ] [Set of functionsf with f [x ] ∈ T for x ∈ S ]
[f EXCEPT ![e1] = e2] [Function̂f equal tof except̂f [e1] = e2]
[f EXCEPT ![e] ∈ S ] [Set of functionŝf equal tof except̂f [e] ∈ S ]

Records
e.h [Theh-component of recorde]
[h1 7→ e1, . . . , hn 7→ en ] [The record whosehi component isei ]
[h1 : S1, . . . , hn : Sn ] [Set of all records withhi component inS i ]
[r EXCEPT ! .h = e] [Record̂r equal tor except̂r .h = e]
{[r EXCEPT ! .h ∈ S ]} [Set of recordŝr equal tor except̂r .h ∈ S ]

Tuples
e[i ] [The i th component of tuplee]
〈e1, . . . , en 〉 [Then-tuple whosei th component isei ]
S1× . . .× Sn [The set of alln-tuples withi th component inS i ]

Strings and Numbers
“c1 . . . cn ” [A literal string ofn characters]
STRING [The set of all strings]
d1 . . . dn d1 . . . dn .dn+1 . . . dm [Numbers]

Figure 1: Simple forms of the constant operators of TLA+.
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Miscellaneous
if p then e1 elsee2 [Equalse1 if p true, elsee2]
casep1→ e1 2 . . . 2 pn → en [Equalsei if pi true]

let x1
1= e1 . . . xn

1= en in e [Equalse in the context of the definitions]

∧ p1

. . .

∧ pn

[the conjunctionp1 ∧ . . .∧ pn ] ∨ p1

. . .

∨ pn

[the disjunctionp1 ∨ . . .∨ pn ]

Figure 2: Simple forms of the constant operators of TLA+ (continued).

p ′ [p true in final state of step]
[A]e [A ∨ (e ′ = e)]
〈A〉e [A ∧ (e ′ 6= e)]
ENABLED A [An A step is possible]
UNCHANGED e [e ′ = e]
A · B [Composition of actions]

Figure 3: The action operators of TLA+.

2F [F is always true]
3F [F is eventually true]
WFe(A) [Weak fairness for actionA]
SFe(A) [Strong fairness for actionA]
F ; G [F leads toG ]
F

+−F G [F guaranteesG ]
∃∃∃∃∃∃ x : F [Temporal existential quantification (hiding).]
∀∀∀∀∀∀ x : F [Temporal universal quantification.]

Figure 4: The temporal operators of TLA+.
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∧ /\ ∃ \E ≡ \equiv
∨ \/ ∀ \A ≡ <=>
⇒ => ∈ \in CHOOSE CHOOSE
6= # /∈ \notin SUBSET SUBSET
6= /= ¬ ˜ UNION UNION
〈 << < < DOMAIN DOMAIN
〉 >> > > EXCEPT EXCEPT
→ -> ≤ \leq STRING STRING
7→ |-> ≥ \geq case CASE

“ "
1= == other OTHER

” " 2 [] if IF
· \cdot ◦ \o then THEN
let LET in IN else ELSE
∩ \cap × \X ⊆ \subseteq
∪ \cup {[ {| ]} |}

Figure 5: ASCII versions of typeset special characters.

1.2 Logic

1.2.1 Propositional Logic

In TLA+, we use the ordinary operators of propositional logic. Negation is denoted
by¬ (˜ in ASCII), implication by⇒ (=>), and logical equivalence by≡ (\equiv
or <=>), whereA ≡ B equals(A⇒ B) ∧ (B ⇒ A).

Among the propositional-logic operators,¬ has highest precedence,∧ and∨
have next lower precedence, then comes≡, and⇒ has lowest precedence. Because
∧ and∨ have equal precedence, an expression likeA∨B∧C is illegal; parentheses
must be used to disambiguate it.

1.2.2 Predicate Logic

We also use the ordinary universal quantifier∀ (\A ) and existential quantifier∃
(\E ) of predicate logic. Bounded quantifiers are defined in terms of unbounded
ones in the usual way:

∀ x ∈ S : p
1= ∀ x : (x ∈ S )⇒ p

∃ x ∈ S : p
1= ∃ x : (x ∈ S ) ∧ p

In these expressions, the bound variablex may not occur in the expressionS .
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TLA+ uses the customary abbreviations for multiple quantification:
∀ x1, . . . , xn : p and∃ x1, . . . , xn : p. For example

∀ x , y, z : P
1= ∀ x : ∀ y : ∀ z : P

The general form of bounded universal quantification is

∀ q1 ∈ S1, . . . , qn ∈ Sn : p

where eachq i is either a listx1, . . . , xm of variables or a tuple〈x1, . . . , xm 〉
of variables. (See Section 1.6 for a discussion of tuples.) None of these bound
variables may appear in any of theS i . Existential quantification is similar. For
example,

∃ 〈x , y 〉 ∈ S , z ,w ∈ T : p
1=

∃ x , y, z ,w : (〈x , y 〉 ∈ S ) ∧ (z ∈ T ) ∧ (w ∈ T ) ∧ p
where neitherx , y , z , norw may appear inS orT .

An expression begun by∀ or ∃ , is terminated by the end of the statement or
expression that contains it. The containing expression may be ended by some form
of right parenthesis, by indentation rules (see Section 1.3.3), or by the end of a
statement containing the expression.

1.2.3 TheCHOOSEOperator

TheCHOOSEoperator is known to logicians as Hilbert’sε [4]. If there is anx such
that p holds, thenCHOOSEx : p equals some suchx . If there is more than one
suchx , it is not specified which one is chosen. If there is no suchx , then the value
of CHOOSEx : p is unspecified.

The most common use for theCHOOSEoperator is to “name” a uniquely spec-
ified value. For example, one possible definition of the operator/ on the setReal
of real numbers is:

r/s
1= CHOOSEv : (v ∈ Real) ∧ (v ∗ s = r)

If r is a nonzero real number, then there is no realv such thatv ∗0= r . Therefore,
r/0 has a completely unspecified value. We don’t know what a real number times
a string equals, so we cannot say whether or not there is a real numberv such that
v ∗ “abc” equalsr . Hence, we don’t know what the value ofr/“abc” is.

The CHOOSE operator is often used in the following idiom, which defines
notAnS to be some arbitrary element not inS .

notAnS
1= CHOOSEx : x /∈ S
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The CHOOSE operator cannot be used to introduce nondeterminism. Ifq is
equivalent top, then CHOOSEx : q equalsCHOOSEx : p. Hence,CHOOSE

“chooses the same value every time.”
A CHOOSEexpression, like a quantifier expression, is ended by the end of the

expression or statement that contains it.

1.2.4 Typeless Logic

Because TLA+ is completely untyped, an expression like 3∧ “abc” is legal. We
can therefore ask whether it equals “abc” ∧ 3, and whether(3∧ “abc”) ∨ ¬(3∧
“abc” ) equalsTRUE? There are two reasonable ways to define the semantics of the
Boolean operators which give two sets of answers to such questions.

In the weak semantics, one knows nothing about the meaning of an expression
like a ∧ b if a andb are not both Booleans. With this semantics, 3∧ “abc” need
not be a Boolean, and there is no reason to expect it to equal “abc” ∧ 3. We can
reason about logical operators only when applied to Booleans.

In the strong semantics,a ∧ b is a Boolean regardless of whata andb are, and
logical operators obey most of the usual laws. In particular,a ∧ b equalsb ∧ a

for any a andb. The easiest way to define the strong semantics is to assume an
operator9 such that9(e) is a Boolean for everye, and9(e) equalse if e is a
Boolean. We then define the logical operators so that, for example,a ∧ b equals
9(a) ∧9(b), for all a andb.

The strong semantics is more convenient to use when writing proofs, because
we can apply the laws of logic without having first to prove that the arguments of
Boolean operators are Booleans. However, when writing specifications, we should
assume only the weak semantics. The meaning of a specification should never
depend on the value obtained by applying a Boolean operator to a nonBoolean.

1.3 Miscellaneous Operators

1.3.1 Constructs Stolen from Programming Languages

The expression

if p then e1 elsee2

equalse1 if p is true, otherwise it equalse2. Thecaseexpression is defined by

casep1→ e12 . . .2pn → en
1=

CHOOSE$x : (p1⇒ ($x = e1)) ∧ . . . ∧ (pn ⇒ ($x = en))

In thecaseexpression,pn can beother, which is an abbreviation for¬(p1∨ . . .∨
pn−1).
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Like a quantifier expression, anelseclause or the final arm of acaseexpres-
sion is terminated by the end of the statement or expression that contains it. This
rule means that if onecaseexpression appears within another, then the innercase
encompasses as much of the expression as possible. For example

casep1→ a + casep2→ e2 2 p3→ e3 2 p4→ e4

is parsed as

casep1→ a + (casep2→ e2 2 p3→ e3 2 p4→ e4)

if none of thepi are other expressions. Ifp3 is other, then the only possible
parsing is

casep1→ a + (casep2→ e2 2 other→ e3) 2 p4→ e4

It is good practise to enclose an innercasein parentheses to avoid ambiguity. (Per-
haps this practise should be required by the language syntax, but at the moment it
isn’t.)

1.3.2 The let Construct

Thelet construct allows one to make and use local definitions within an expression.
For example

let x
1= a ∗ c

F (n)
1= (a + b + c)ˆ n

in x ∗ F (1)+ F (2)+ F (2+ x )

equals

(a ∗ c) ∗ (a + b + c)ˆ 1+ (a + b + c)ˆ 2+ (a + b + c)ˆ (2+ (a ∗ c))
The identifiersx andF must not have a meaning in the context where thelet
expression appears.

1.3.3 Junction Lists

TLA+ uses the notation for conjunctions and disjunctions explained in [2]. A list of
formulas prefixed by∧ or∨ denotes the conjunction or disjunction of the formulas,
and indentation is used to eliminate parentheses. For example:

∧ ∨ A ∨ B
∨ C
∧ ∨ D
∨ E ∧ F
∨ G
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equals((A ∨ B) ∨ C ) ∧ (D ∨ (E ∧ F ) ∨G). The following are the precise rules
for parsing a bulleted list of conjuncts or disjuncts, where general parentheses pairs
are( ), { }, [ ], and〈 〉.
• The∧ or∨ tokens must line up.

• Each conjunct or disjunct is terminated by either the end of the entire ex-
pression or else the first token, not appearing inside general parentheses, that
appears at the same vertical position or to the left of its∧ or∨. (In the ASCII
representation, the position of a symbol is that of its first character.)

1.4 Sets

1.4.1 Infix and Prefix Operators

TLA+ uses the conventional infix operators for sets:∈ (\in ), /∈ (\notin ),
∩ (\cap ), ∪ (\cup ), and⊆ (\subseteq ). The operator\ denotes set differ-
ence;A \B is the set of elements inA that are not inB .

The operators= and 6= (# or /= ) should be used for equality and inequality of
nonBoolean values. Although= can be used for equality of Boolean values, we
prefer to use≡ in that case. (The precedence rules encourage this use.)

In TLA+, SUBSET is the powerset operator, soSUBSETS is the set of all sub-
sets ofS . Thus,S ∈ SUBSETT is equivalent toS ⊆ T . We write UNION S

(instead of the more conventional
⋃
S ) for the union of all the elements ofS . For

example,UNION {S ,T } equalsS ∪ T , andUNION (SUBSETS ) equalsS , for any
setsS andT . The UNION and SUBSET operators can be confusing. Until you
get used to them, you may want to write comments describing typical elements of
each set in each subexpression in which they appear in your specifications.

The operators∩, ∪, \, SUBSET, andUNION all have equal precedence, which
is higher than the precedence shared by=, 6=, ∈, and⊆. That precedence is in
turn lower than the precedence of¬ (the highest-precedence Boolean operator).
TLA+ adopts the principle that eliminating ambiguity is more important than sav-
ing keystrokes. Therefore, operators are given equal precedence if there is any
reasonable doubt about their relative precedence.

1.4.2 Set Constructors

Finite sets can be enumerated explicitly with an expression of the form
{e1, . . . , en}, which denotes the set whose elements are thee i . For example,
{1,2,1,3,2,3} is the set consisting of the three elements 1, 2, and 3. The empty
set is written{ }.
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TLA+ provides two set-constructing operators that are often confused. The
first is the subset constructor{x ∈ S : p}, which denotes the set of all elements of
S satisfyingp. For example,{x ∈ Nat : x ≤ 3} equals{0,1,2,3}, whereNat is
the set of natural numbers. The second is the set-of-all constructor{e : x ∈ S },
which denotes the set of expressions of the forme, for all x in S . For example,
{2 ∗ n : n ∈ Nat} is the set of even natural numbers. In the expressions{x ∈ S : p}
and{e : x ∈ S }, the bound variablex may not occur inS .

The subset constructor also has the form

{〈x1, . . . , xn 〉 ∈ S : p}
which is defined to equal

{x ∈ S : ∃ x1, . . . , xn : (x = 〈x1, . . . , xn 〉) ∧ p}
where thex i are variables that may not appear inS . The set-of-all constructor has
the general form

{e : q1 ∈ S1, . . . , qn ∈ Sn}
where theq i andS i are the same as for bounded quantifiers—eachq i is either a
list or a tuple of variables, and none of these bound variables may appear in any of
theS i . For example,

{e : x ∈ S , y ∈ T } 1= UNION {{e : x ∈ S } : y ∈ T }
In set theory, logical inconsistencies (such as Russell’s paradox) are avoided

by restricting the kinds of collections that are sets. These restrictions are built into
the TLA+ operators, which make it impossible to build sets that are “too big”. For
example, the collection of all finite sets is not a set. However, the set of all finite
sets of natural numbers is a set, and can be written using the TLA+ operators.

1.5 Functions

1.5.1 Functions and their Domains

In conventional mathematics, a function is a set of ordered pairs satisfying certain
properties. In TLA+, we do not specify any particular set-theoretic representation
of functions. We simply assume that there is a certain kind of set called a function
that has a domain. Function application is denoted by square brackets, sof [e] is
the value obtained by applyingf to e. The expressionf [e] is meaningful even ife
is not in the domain off , or if f is not a function; but we have no way of specifying
what the meaning off [e] is unlessf is a function ande is in its domain.
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The expressionDOMAIN f equals the domain off , if f is a function. The
expression [S → T ] denotes the set of all functions with domainS and range a
subset ofT . In other words,f is in [S → T ] iff it is a function with domainS
such thatf [x ] ∈ T for all x ∈ S .

The TLA+ notation for a “lambda expression” is the function constructor
[x ∈ S 7→ e], which equals the functionf whose domain is the setS , such that
f [x ] equalse for eachx in S . For example, [i ∈ Nat 7→ i +1] defines the succes-
sor function on the setNat of natural numbers. An expressionf denotes a function
iff f equals [x ∈ DOMAIN f 7→ f [x ]], wherex is a variable that does not occur in
f .

1.5.2 TheEXCEPT Construct

Functions If f is a function, then [f EXCEPT ![e1] = e2] equals the function̂f
that is the same asf except witĥf [e1] = e2. Formally,

[f EXCEPT ![e1] = e2]
1= [x ∈ DOMAIN f 7→ if x = e1 then e2

else f [x ] ]

wherex is a variable that does not occur in the expressionsf , e1, or e2. Think
of [f EXCEPT ![e1] = e2] as the function obtained fromf by the assignment
f [e1] := e2.

The character @ appearing in the expressione2 stands forf [e1]. For example,
[Fcn EXCEPT ![3] = @∗ 5] is the function̂f that is the same asFcn except that
f̂ [3] equalsFcn[3] ∗ 5. Think of @ as an abbreviation for the “old value” off
applied toe1.

The EXCEPT notation is generalized in two ways. First, we let
[f EXCEPT ![e1]...[en ] = e] be the function obtained fromf by the as-
signment f [e1]...[en ] := e, where @ ine denotesf [e1]...[en ]. Formally,
[f EXCEPT ![e1]...[en ] = e] equals

[f EXCEPT ![e1] = [@ EXCEPT ![e2] = [@ . . . EXCEPT ![en ] = e] . . .]

Next, we let [f EXCEPT ![ . . .] = e1, . . . , ![ . . .] = en ] be an abbreviation for

[. . . [f EXCEPT ![ . . .] = e1] EXCEPT . . . ![ . . .] = en ] . . .]

Think of [f EXCEPT ![2][7] =@+1, ![3][5] =@+2] as the array obtained from
f by performing the two assignments

f [2][7] := f [2][7] + 1 ; f [3][5] := f [3][5] + 2
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Sets of Functions It is also convenient to have a notation for sets of functions
that differ fromf only in their value on some element in their domain. We let

{[f EXCEPT ![e] ∈ S ]}
be the set of all functions

[f EXCEPT ![e] = x ]

with x ∈ S (assumingx does not appear in the expressionf or S ). This set is
written in ASCII as

{ |f EXCEPT ! [e] \in S |}
There is a similar @ convention to the one described above. For example,
{[Fcn EXCEPT ![3] ∈ {@,@+ 1}]} is the set consisting of the functionsFcn and
[Fcn EXCEPT ![3] =@+ 1].

We generalize the{[f EXCEPT ![e1] ∈ e2]} construct in the same ways we
generalized the construct [f EXCEPT ![e1] = e2] above. For example,

{[f EXCEPT ![a][b] ∈ S , ![c] ∈ T ]}
is the set of all functions

[f EXCEPT ![a][b] = s, ![c] = t ]

with s ∈ S and t ∈ T . There is also one additional abbreviation: we can write
“= e” instead of “∈ {e}”. For example,

{[f EXCEPT ![a][7] ∈ S , ![b] = g ]}
is the set

{ [f EXCEPT ![a][7] = s, ![b] = g ] : s ∈ S }

1.5.3 Recursive Function Definitions

TLA+ does not allow recursive definitions of operators. However, usingCHOOSE,
it is easy to write recursive function definitions. For example, the classic recursive
definition of the factorial function on the set of natural numbers can be written as

Fact
1= CHOOSEf : f = [n ∈ Nat 7→ if n = 0 then 1

else n ∗ f [n − 1] ]

TLA+ provides the following abbreviation for this definition:

Fact [n : Nat ]
1= if n = 0 then 1

else n ∗ Fact [n − 1]
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In general,f [x : S ]
1= e is an abbreviation for

f
1= CHOOSEf : f = [x ∈ S 7→ e]

The bound variablex may not appear inS .
Although TLA+ does not allow recursive operator definitions, recursive func-

tion definitions can often be used to define operators. For example, the following
defines the operatorCardinality so that ifS is a finite set, thenCardinality(S ) is
the number of elements inS .

Cardinality(S )
1= let F [T : SUBSETS ]

1=
if T = {}

then 0
else 1+ F [T \ {CHOOSEt : t ∈ T }]

in F [S ]

1.5.4 Functions Versus Operators

It is important to understand the distinction between an operator likeCardinality

and a function likeFact . If f is a function, thenf andf [x ] are both expressions.
Hence, both 1+ f [x ] and 1+ f are syntactically legal expressions. (What they
mean will depend on the definition of+.) If O is an operator that takes a single
argument, thenO(e) is an expression, for any expressione. However,O by itself
is not an expression. One can write 1+ O(e), but 1+ O is nonsense—it is not
a syntactically valid expression. Writing “1+ O” makes as little sense as writing
“1 + (” or “C ++”.

Since functions are expressions, they are often more convenient to use than
operators. However, a function has a domain, which is a set, and it is possible to
specify the value off [x ] only for x in its domain. One cannot define a functionf
such thatf [S ] equalsCardinality(S ) for every finite setS . The domain of such a
function would have to be the collection of all finite sets, and that collection is not
a set.

The most common use of functions is as the values of variables. In a program
written in a conventional programming language, one often declares a variablex

to be an array variable indexed by some setS . In a TLA+ specification, one letsx
be a variable whose value is always a function with domainS .

1.6 Tuples and Functions of Multiple Arguments

In TLA+, 〈e1, . . . , en 〉 denotes an orderedn-tuple. TLA+ provides the usual
Cartesian product notation, whereS1 × . . . × Sn is the set of alln-tuples
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〈e1, . . . , en 〉 with eache i in S i . Unlike conventional mathematics, TLA+ defines
then-tuple〈e1, . . . , en 〉 to be the function with domain{1, . . . ,n} that mapsi to
e i . Thus, ife is a tuple with at leasti components, thene[i ] is its i th component,
for any positive integeri . In particular, the zero-tuple〈 〉 is the unique function
with empty domain.

A function of multiple arguments is a function whose domain is a Cartesian
product. We can writef [e1, . . . , en ] as an abbreviation forf [〈e1, . . . , en 〉]. The
general form of an explicit function constructor is

[q1 ∈ S1, . . . , qn ∈ Sn 7→ e]

where theq i andS i are the same as for bounded quantifiers—eachq i is either a
list or a tuple of variables, and none of these bound variables may appear in any of
theS i . For example,

[〈x , y 〉 ∈ S , z ∈ T 7→ e]

is equivalent to

[w ∈ S ×T 7→ let x
1= w [1][1] y

1= w [1][2] z
1= w [2]

in e]

if w does not occur inS , T , or e.
The EXCEPT construct and recursive function definitions extend in the obvi-

ous way to functions of multiple arguments. For example, the general form of a
function definition is

f [q1 : S1, . . . , qn : Sn ]
1= e

where theq i andS i are as before.

1.7 Strings and Numbers

A string is written “. . . ”, as in “abc”. Formally, the string “abc” is a 3-tuple, so
it equals〈“abc”[1] , “abc”[2] , “abc”[3] 〉. The elements of this 3-tuple (the three
letters making up the string “abc”) are unspecified. Of course, “ ” equals〈 〉. The
set of all strings is writtenSTRING.

A sequence of digits is a number. Formally, the sequence 376 of digits de-
notesNumeral(“376” ), whereNumeral must be a defined operator. TheNaturals
module definesNumeral so thatNumeral(“376” ) equals the number 376. (More
precisely,Numeral(“376”) equals the value that represents the number 376 in the
particular representation of the natural numbers defined by theNaturals module.)
Since 376 is equivalent to writingNumeral(“376” ), it is an error to write 376 in
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a module whereNumeral is not defined—which usually means in a module that
does not extend or instanceNaturals or some other module that defines numbers.

The Naturals module also defines the setNat of natural numbers, and the
following infix operators:

+ − (substraction)∗ (times) ˆ (exponentiation)< ≤ > ≥
Decimal numbers are defined in terms of theDecimal operator. For example,

3.14159 is an abbreviation forDecimal(“3” , “14159”). TheReals module defines
Decimal appropriately.

1.8 Records

TLA+ provides notation for records, which are like the records of conven-
tional programming languages. Thexyz component of a recordr is written
r .xyz . The expression [h1 7→ e1, . . . , hn 7→ en ] is the recordr with compo-
nentsh1, . . . , hn such thatr .h i equalse i , for i = 1, . . . ,n. The expression
[h1 : S1, . . . , hn : Sn ] is the set of all recordsr with componentsh1, . . . , hn
such thatr .h i is an element of the setS i , for i = 1, . . . ,n. In other words,

[h1 : S1, . . . , hn : Sn ]
1=

{[h1 7→ e1, . . . , hn 7→ en ] : e1 ∈ S1, . . . , en ∈ Sn}
In both of these notations,n has to be at least one; [ ] is not a legal expression.

In TLA+, a record is a function whose domain is a finite set of strings, and
r .xyz is an abbreviation forr [“ xyz”]. Taking ! .xyz to be an abbreviation for
![“ xyz”], the EXCEPT notation applies to records as well as functions. For ex-
ample [r EXCEPT ! .h[e] =@+1] is the record̂r that is the same asr , except̂r .h
is the function that is the same asr .h except̂r .h[e] equalsr .h[e] + 1.

Because records are functions, one can always writer [“ foo”] instead ofr .foo
and can use function constructors for expressing records. This can be quite useful
at times.

2 Action Operators

The action operators of TLA+ come from TLA. They are listed in Figure 3 on
page 4. Except for “·”, these operators are all described in [3].

TLA has two classes of variables: rigid variables and flexible variables. Rigid
variables are calledconstantsin TLA+. They are the variables of ordinary predi-
cate logic. The bound variables introduced by the constant operators of Section 1
are rigid variables. Flexible variables are called simplyvariablesin TLA+.
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An action is a Boolean formula that may contain primed and unprimed flexible
variables. In an action, an unprimed instance of a variable denotes its value in
“the current state”, and a primed instance denotes its value in “the next state”. For
action reasoning,x andx ′ can be considered to be completely unrelated variables.

The action operators of TLA+ can be defined in terms of primed variables as
follows. (These definitions are applied from the inside out, replacing the arguments
of an operator by their definitions and then replacing the operator by its definition.)

p ′ Equalsp with every flexible variablex replaced by its primed versionx ′.

[A]e EqualsA ∨ (e ′ = e).

〈A〉e EqualsA ∧ (e ′ 6= e).

ENABLED A Let x1, . . . , xn be the flexible variables that occur primed inA, let
x̂1, . . . , x̂n be new rigid variables that do not occur inA, and letÂ be
the formula obtained fromA by replacing each occurrence ofx ′

i
by x̂ i , for

i = 1, . . . n. Then ENABLED A equals∃ x̂1, . . . , x̂n : Â. For example

ENABLED (x ′ ∗ x = y ′ ∗ z ) 1= ∃ x̂ , ŷ : x̂ ∗ x = ŷ ∗ z

UNCHANGED e Equalse ′ = e.

A · B Equals the composition of the actionsA andB . Intuitively, it is the action
that first doesA thenB . More formally, letx1, . . . , xn be all the flexible
variables that occur primed inA or unprimed inB , let x̂1, . . . , x̂n be new
rigid variables that do not occur inA or B , let Â equalA with eachx ′

i

replaced bŷx i , andB̃ equalB with eachx i replaced bŷx i . ThenA · B
equals∃ x̂1, . . . , x̂n : Â ∧ B̃ . For example,

(∧ x ′ + y − x = z

∧ z > y ′ + 7

)
·
∧ z ′ − x ∗ y ′ ∈ w ′
∧ y /∈ w
∧ x ′ > y + z

 1=

∃ ŵ , x̂ , ŷ, ẑ :

(∧ x̂ + y − x = z

∧ z > ŷ + 7

)
∧
∧ z ′ − x̂ ∗ y ′ ∈ w ′
∧ ŷ /∈ ŵ
∧ x ′ > ŷ + ẑ


(The TLA+ convention of using bulleted lists of conjuncts and disjuncts is
explained in Section 1.3.)
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3 Temporal Operators

A temporal formula is one that is true or false of a behavior, which is an infinite
sequence of states. The TLA operators for writing temporal formulas are listed in
Figure 4 on page 4. The temporal quantifiers have the same generalizations as the
unbounded predicate-logic quantifiers—for example,∃∃∃∃∃∃ x1, . . . , xn : F .

The temporal operators of TLA+ are all described in [3] except for+−F, which
is introduced in [1]. (This operator is used only for assumption/guarantee specifi-
cations.) They are defined in terms of2, and∃∃∃∃∃∃ as follows.

3F Equals¬2¬F .

WFe(A) Equals(23¬ENABLED 〈A〉e) ∨ (23〈A〉e).
SFe(A) Equals(32¬ENABLED 〈A〉e) ∨ (23〈A〉e).
F ; G Equals2(F ⇒ 3G).
∀∀∀∀∀∀ x : F Equals¬∃∃∃∃∃∃ x : ¬F .

F
+−F G This formula asserts thatG remains true at least one step longer thanF

does. (AndG remains true forever ifF does.) A formulaH is true for
the firstk steps of a behavior iff there is some way to continue those steps
to a complete behavior for whichH is true. This leads to the following
formal definition ofF +−F G .

Let x be the tuple〈x1, . . . , xn 〉 of all flexible variables that occur free
in F orG ; let x̂ be ann-tuple of flexible variables〈 x̂1, . . . , x̂n 〉 distinct
from any variables appearing (bound or free) inF orG ; let F̂ andĜ be
the formulas obtained fromF andG by substituting the variableŝx i for
the corresponding variablesx i , and letb be a flexible variable distinct
from thex i andx̂ i . ThenF +−F G is defined to equal

∀∀∀∀∀∀ b : ∧ (b = TRUE) ∧ 2[b ′ = FALSE]b
∧ ∃∃∃∃∃∃ x̂1, . . . , x̂n : F̂ ∧ 2(b ⇒ (x = x̂))
⇒ ∃∃∃∃∃∃ x̂1, . . . , x̂n : Ĝ ∧ (x = x̂) ∧ 2[b ⇒ (x′ = x̂′)]〈b,x,̂x〉
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