SRC Technical Note
1997 -004a
June 27, 1997

Fully Dynamic 2-Edge Connectivity Algorithm in
Polylogarithmic Time per Operation

Monika Rauch Henzinger and Valerie King

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright© Digital Equipment Corporation 1997. All rights reserved



Abstract

This paper presents the first dynamic algorithm that maintains 2-edge connectivity in polylogarithmic
time per operation. The algorithm is a Las-Vegas type randomized algorithm.

The expected time fop = 2(mg + n) insertions or deletions of edges@® p log® n), wheremy is
the number of edges in the initial graph witmodes. The worst-case time for a queryddogn). If
only deletions are allowed then the cost foupdates iSD(plog* n) expected time.

1 Introduction

We consider the problem of maintaining 2-edge connectivity during an arbitrary sequence of edge insertions
and deletion. Two nodes aBeedge connecteif there are two edge-disjoint paths between them. Given
ann-vertex graphG, thefully dynamic 2-edge connectivity problésito maintain a data structure under an
arbitrary sequence of the following update operations:

insert(u,v): Add the edgdu, v} to G.
delete(u,v):Remove the edggu, v} from G.

guery(u,v): Return true iffu andv are 2-edge connected @.

In 1991 [5], Fredrickson introduced a data structure knowtopslogy treedor the fully dynamic 2-
edge connectivity problem with a worst case cosbgf/m) per update, whenm is the number of edges in
the graph at the time of the update. His data structure permitted 2-edge connectivity queries to be answered
in O(logn) time. In 1992, Eppstein et. al. [1, 2] improved the update tin@ tg/n) using thesparsification
technique If only edge insertions are allowed, the Westbrook-Tarjan data structure [11] maintains the 2-
edge connectivity in tim& («(m, n)) per insertion or query. If only edge deletions are allowed (“deletions-
only”), then no algorithm faster than ti§&(,/n) fully dynamic algorithm was known.

Using randomization, we give the first polylogarithmic-time algorithm for the problem: we present a
fully dynamic 2-edge connectivity problem in amortized expected eg® n) per update an®(logn)
worst case time per 2-edge connectivity query. If the problem is restricted to edge deletions only, our
algorithm runs in amortized tim®(log* n). 1

Let T be a spanning forest of the graph. An edge T is coveredff there exists a nontree edge, y}
such thae lies on the tree path betweerandy.

Two nodesu andv are 2-edge connected iff all edges on the tree path between them are covered. This
leads to a first naive approach for maintaining 2-edge connectivity dynamically: Keep for each &dge
"coverage count”, i.e., the number on nontree edges covexing T is stored in a dynamic tree data
structure with the coverage count as cost [9], then after the insertion and deletion of a nontree edge all
coverage counts can be updated in tiigogn). However when a tree edge is deleted and a nontree edge
becomes a tree edg®,(n) coverage counts can change and it is not known how to update the dynamic tree
efficiently.

We avoid this problem as follows. (1) When a tree edgedeleted, we firsswapit with a nontree edge
€ such that the cycle induced l&/in T containse. This mean®’ becomes a tree edge aadhecomes a
nontree edge. Then we delete the nontree edd2) We do not keep a coverage count, but remember for
each tree edge simply whether it is covered or not, i.eo\gerage bit This requires a more complicated

A preliminary version of this result appeared in [6].



routine for deleting nontree edges than when keeping coverage counts. However it has the advantage that the
coverage bit of tree edges are not modified during a swap. Thus we reduced the problem of arbitrary edge
deletions to the problem of maintaining the coverage bit. We show below how to solve the latter problem.

2 A Deletions-only 2-Edge Connectivity Algorithm

Let F be a spanning forest @. We give an algorithm with amortized expected ti@éog” n).

2.1 A Deletions-only Algorithm

Definitions and notationEdges ofF are calledreeedges and the tree path betweeandv is denoted by
(U, v). A nontree edgégu, v} coversa tree edge iff elies on the tree path betweerandv. A bridgeis
an edge of that is not covered by nontree edge®fTwo nodess andv are 2-edge connected iff all edges
onm(u, v) are covered [5].

Throughout the algorithm, the nontree edge&aire partitioned into levelg,, ..., E, | = [2logn].
Let F; denote a forest of subtrees Bf which are 2-edge connected @& = (V, (Uj<Ej) U F). Then
Fi € Fi;1 and an edge is a bridge @ iffitisin F \ F. Thelevel of a tree edge & defined to be the
smallest such thatis covered inG;.

If T isthe tree ofF; containing an edgeand a node, let T, \ e denote the subtree T \ e containing
u. Let theweightw(T) of a spanning tree be two times the number of nontree edges with both endpoints in
T plus the number of nontree edges with exactly one endpoiht ifhesize §T) of a spanning tree is the
number of nodes in it.

We maintain the following data structures:

e F is stored in a dynamic tree data structiré~) whose edges are labeled only while processing a
deletion [9].

e Foreach level, F is stored in a dynamic tree data struct&@) in which each edge df; has cost 1
and all others have cost 0.

e For each level, the trees of are stored in an ET-tree in which all nontree edgegoére stored,
referred to as the ET-trees of level The weight of an ET-tree is the number of nontree edge stored
there. (See appendix for a full description of ET-trees.)

e For G we keep a dynamic minimum spanning tree data struclu®! ST) in which edges are
weighted by their level number. The edges in the initial spanning féremte weighted 0. When
an edge is added tB, its weight is decreased to 0. An efficient data structure for maintaining a
minimum spanning tree with a small number of weights can be found in [6, 7].

In addition, we keep for each nontree edge a pointer to where it is stored and for each tree edge, its
level number and a pointer to its location in each data structure in which it appears. We keep the following
invariant.

Invariant:

1. InB(i) an edge of has cost 1 iff itis inF; and otherwise it has cost 0.



To initialize the data structuresnitially, put all nontree edges intg;. The remainingdsj, j # i are empty.
Compute the 2-edge connected componentS .ol et F; be the 2-edge connected subforestof Then
F1 = F, = ... = F. Construct the data structures accordingly.

To answer the query: “Are u and 2-edge connected?"To test ifu andv are 2-edge connected, output
“yes” iff every edge on the path betweenandv has weight greater than 0 B(l). This test takes time
O(logn).
To update the data structure after a deletion of edge f, v}:
Case A:ec F : If e ¢ F (theneis a bridge), remove from all data structures representikg Otherwise,
leti be the level ok. Use DM ST) to find a replacement ed@ein E; for e, makee a nontree edge d;
and€ an edge of by callingswap(e, €) and continue as in Case B.
CaseB:ec Ej :

The Delete Nontree(e, i) algorithm keeps a list. of edge disjoint paths oF containing possible
bridges. InitiallyL is empty.
Delete Nontree (g, i)

1. Deleteefrom the ET-tree in which it is stored if it is present.
2. Addm(u,v) to L.
3. while L # @, remove any path (a, b) from L and doTest Path(a, b, i).

4. if 7(u, v) was not covered on levelandi < |, doDelete Nontree(e, i + 1).

The procedurdest Path(u, v, i) either determines that all edgesi(u, v) are covered by a sequence of
random samples; or finds one tree edge leveli which is suspected of being “sparsely covered” by edges
in E;. Ifindeed, f is sparsely covered, the algorithm removiefom F; and moves tds; 1 those nontree
edges which cross the cut induced bg removal. The edges in paths Bfcovered by these nontree edges
are in turn marked as possible bridges. Thus the trég @ontainingf is split into two subtree3, T,, and
the data structures representifigare modified accordingly. With very low prohiéity, f is not sparsely
covered. In this casé is not removed fronk. In either case, the smaller ®f, T, is searched exhaustively
to determine which of its edges have become bridgés;inAll paths in L contained in the searched tree
are removed fronk; the one path containing is replaced by its subpath in the lighter component.

Test Path (u, v, i)
Let T denote the tree df; containingu andv.

1. iy =0andi, =0;
2. Repeat untiiy andi, are both greater than ig(T) — 1 or the algorithm stops.

(a) Find the furthest edgg from u onm(u, v) such thatw(Ty\ &) < 2'v. If this cut was previously
examined, increment and repeat. _
Find also the closest edgg to u onz (u, v) such thatw(Ty \ €,) > 21,

(b) Ifiy <lgw(T) — 1thenifSample(, v, €, &, i ) returnsfalse, stop.

(c) Find the furthest edge, from v onx(u, v) such thaw (T, \ e,) < 2'. If this cut was previously
examined, increment and repeat. _
Find also the closest edggto v onz(u, v) such thatw(T, \ €) > 21,
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(d) Ifi, <lgw(T) — 1thenifSample, u, €, e,, i) returnsfalse, stop.

3. ifiy > lgw(T) —1andi, > Ilgw(T) — 1then{x(u, v) is covered; Remover (u, v) from L.

Sample(z, w, €, &, i) requires that the path connectiggande, (including€e, ande,) is in F; and that
€, ande; belong torr(z, w). Letc andc’ be constants to be determined later. ketndy be the endpoints
of &, ande, which are furthest from each other such tkas closer toz thany. Let T denote the tree of;
containingx andy.

Sample(z, w, €, €, 1):

1. Choose a sample set X:w(Ty \ &) < clog? n then letX be the set of all nontree edges incident to
Ty \ &. Otherwise the seX is built by samplingslog? n times from the set of edges & incident to
nodes ofT, \ e,. Each edge with endpointsiry \ e, is picked with probability between/1v(Ty \ €,)
and Zw(Tx \ &)

2. Testif alltree edges in leviebn the pathr (x, y) are covered by edges Kby performingest cover(z (X, y), i —
1, X). If so, increment;, and returrtrue.

3. Elseletf = {x/, y’} be the uncovered such edge nearest.to

(a) ConstructS = {edges ofE; connectingTy \ f andTy \ f}: For each edgein E; incident to
Tx \ f, dotest(e, f,i) to determine ife connectsTy \ f andTy \ f. If so, addeto S.
(b) IfO < |9 < w(Tx\ f)/(15¢ logn) then{f is sparsely covered,
i. Doremove(f,i) toremovef from F;
ii. Foreachedge={a,b}inS:
A. Do move_up(e, i) to movee from E; to Ej, 1;
B. Add suitable subpaths of the patlta, b) to L by callingadd L(a, b).
(c) If s(Tx\ f) > s(Ty\ f)thenletT’' beTy \ f and doaddL(z, x');
else sefl’to Ty \ f and doadd L(y’, w).
Docheckbridgedi, T') to find all edges o’ which are no longer 2-edge connecteinand
remove all paths il. which are contained i’ from L.

(d) Returnfalse

2.2 Proof of Correctness

We show first that if, > Igw(T) — 1 andi, > Igw(T) — 1 then indeed all edges af(u, v) are covered.
This implies the correctness dést Path.

Lemma 2.1 If in Test Pathi, and i, are greater thag w(T) — 1 then all edges om (u, v) are covered.

Proof: We have to show that all edges atiu, v) have been covered. Lef be the furthest edge
fromv onx (v, u) such thatv(T,\e,) < w(T)/2. Letg, be the furthest edge fromonz (u, v) such
thatw(T,\e&,) < w(T)/2 and letg, be its incident edge closer to Note thatw(Ty\ €,) > w(T)/2.
Thusw(T, \ €) < w(T)/2, i.e., either, = e, or g, is further fromv thane€/,. Thus, the longest
path tested “fou” and the longest path tested “fot either touch or overlap. I



We next show that all nontree edges are contained inE;, i.e., whenT estPath(u, v, 1) is called,
and Step 3 of Sample is executed, no nontree edge is insertelf intoThis fact implies that the trees of
F span the 2-edge connected components.of

Lemma 2.2 With probability at least 1 — 1/n?, when Step 3 irfampleis executed, thefS| < w(T; \
f)/(15c" logn).

Proof: For each edge’ € 7 (X, y) note thatw(Ty \ &,)/2 < w(Ty \ €). Thus, when we sample from
Tx \ €;, we are sampling frory \ € with probability at least 1/2. Thesach nontree edge is sampled
with probability at least (2w (T \ €)). Let us test the hypothesis th& < w(Tx\ €)/(15¢ logn).
The error probability, i.e., the probability theg| > w(Tx \ €)/(15¢"logn), but no edge ofSis
selected is

(1— 1/(30¢ logn))®'°%° " = O(1/n5)

for c > 150c'.

Thus the probability thatS| > w(Tx \ €)/(15¢"logn) for any of the at most edges onr (X, y) is
at most ¥n*, implying that that the probability is at most? that it happens at any deletion. |l

Thus with high probability step (3a) of sample is carried out only once for a subtree before it is split off

from its tree. In the following we denofg \ f by T;. Note thatw(T1) < w(T)/2. Letm; be the number
of edges ever ifk;.

Lemma 2.3 For all smaller trees Ton level i,)  w(T1) < 15m; logn.

Proof: We use the “bankers view” of amortization: Every edgeEpfreceives a coin whenever it
is incident to the smaller tre€,. We show that the maximum number of coins accumulated by the
edges ofE; is 15m; logn.

Each edge oE; has two accounts,start-up accounand aregular account Whenever an edge
of E; is moved to level > 1, the regular account balance of the two edges on ievgh maximum
regular account balance is set to 0 and all their coins are pai@'gtart-up account. Whenever an
edge ofE; is incident to the smaller treg, in a split of T, one coin is added to its regular account.

We show by induction on the steps of the algorithm that a start-up account contains at most
10logn coins and a regular account contains at most filogins. The claim obviously holds at the
beginning of the algorithm. Consider steg- 1. If it moves an edge to leve) then by induction the
maximum regular account balance is at most Sl@d, thus, the start-up account balance of the
new edge is at most 10 log

Consider next the case that step 1 splits treeT; off T and charges one coin to each edgs
E; incidenttoT. Letwg be the weight off whenT was created. We show that if there exists an edge
e such thak's regular account balance was not reset since the creationtbienw(Ty) < 3wg/4.
This implies that at most 2lggn < 5logn splits can have charged &oafter €'s last reset. The
lemma follows.

Edges incident td at its creation are reset before edges added to ide¢ér on. Sinces was
not reset, at mosip/2 many inserts into level can have occurred since the creatiorTef Thus,
immediately before the splity(T) < 3wg/2. Sincew(T;) < w(T)/2, the claim follows. |

2The probability can be increased for-11/n“ for any constantl by increasing the number of sampled edges by a constant
factor



Lemma 2.4 Foranyi,m < m/c'—1.

Proof: We show the lemma by induction. It clearly holds fo= 1. Assume it holds folg;_;.
When summed over all smaller tre€g Y w(T1)/(15¢'logn) edges are added . By Lemma
2.3,> w(Ty) < 15m;_3logn. This implies that the total number of edgesHnis no greater than
m/c/i—l- I

Choosingt’ = 2 gives the following corollary.
Corollary 2.5 All nontree edges of G are contained in somddti <, i.e. E1 is empty.

The following relationship, which will be useful in the running time analysis, is also evident.
Corollary 2.6 >, mj = O(m).
Finally we show that the invariant is maintained.

Theorem 2.7 In B(i) a tree edge has cost 1 iff itis in Bnd otherwise has cost 0.

Proof: The correctness of the invariant depends on the fact that two nodes are 2-edge connected iff
they are joined by a path of spanning tree edges which are covered by nontree edges.

When a tree edgeis swapped, if the tree edge is not a bridge, thei ket the minimum index
such that is contained inF;. Since the endpoints & are 2-edge connected F, the DM ST)
returns a replacement edgen E;.

ForFj, j <, the swap causes no change to the coveragejsmot contained in anf;, j > i,
and there is no change to the structurd-phs the two subtrees &f joined bye remain in separate
components of;.

For levelsj > i, eachG; contains the fundamental cycle formeddywith edges ofF. Hence
we observe that whea is swapped with its replacement edge€’ is covered and all other tree
edges’ coverage remains unchanged.

When a nontree edgg is deleted, we observe that the only path in which coverage may change
is the tree path betweedis endpoints. Our deletions algorithm either finds edges covering the path
or removes from the appropriakg those edges in the path which are no longer coverel.

2.3 Details of the Implementation

We describe the basic operations available on the two types of data structures we use: dynamic trees, ET-
trees, and thie-weight MST dynamic data structure.
For dynamic trees, we can do the following, eacl®ifilog n) time:

e link(e): links two trees with a new tree edge
e cut(e): removes from a tree, splitting it into two.
e incrementa, b): adds 1 to the cost of each edgerofa, b).

e decrementa, b): subtracts 1 from the cost of each edgerdn, b).
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e add(p, x): addsx to each edge on paih

e subtract(p, x): subtracts from each edge on path

e min(P): returns the first minimal cost edge on the p&th
e max(P): returns the first maximal cost edge on the pRth
e label(e): returns the cost of edge

e midpoint(u, v): returns the middle edge af(u, v). This is not a standard dynamic tree operation,
but can be easily implemented by storing, in each node of the balanced search tree used to implement
dynamic tree, the number of leaves in its subtree.

In addition, in timeO(log? n), we can do:

e pathwt(u, v, wt): returns the furthest edgefrom u onx (u, v) such thatw(Ty \ € < wt. This can
be implemented it (log? n) time by performing a binary search eriu, v) using no more than Ig
applications ofmidpointand tests comparing (T, \ €) to wt.

We use ET-trees to represent dynamically changing tree€ TAsequencis a sequence generated from
a tree by listing each vertex each time it is encountered (“an occurrence of the vertex”) as a tree is searched
depth-first. Each ET-sequence is stored in a balanced binary tree. For each vertex we choose one designated
occurrence of the vertex in the sequence and call iathiwe occurrenceEach nontree edge is stored twice,
with the active occurrence of each of its two endpoints. At each internal node of the ET-tree, we keep the
number of nontree edges incident to active occurrences in its subtree and the number of active occurrences
contained in the subtree. The ET-tree imposes an ordering on the edges of the tree being represented, and
on the nontree edges as well. Using ET-trees, we can do the following, each i®tiogn):

e link(e): inserts a tree edgewhich links up the two ET-trees containing its endpoints.

cut(e): removes a tree edge, splitting an ET-tree into two.

e insertnontrede): inserts nontree edgeinto an ET-tree which contains an endpoint of the edge.

deletenontrede): remove a nontree edggrom the ET-tree in which it is stored.

find_nontredi, T): return tha'" nontree edge stored in the ET-trEe

e test(a, b, i): tests if nodes andb are in the same tree 5.

The D(M ST) maintains a minimum spanning tree while allowing two operations:

e insert(e, w): inserts an edge of weightw and returns the replaced edge, if an edge is replaced.

e deletde): deletes an edgefrom the graph and returns the edge which replacesthe MST, ifeis
replaced.

For each edge which is deleted or inserted or whose weight is changed by a combination of these opera-
tions, the amortized expected update cost of the fully dynamic MST algorithm when thérevarghts is
O(klog? n), so that the cost per deletion@(log® n) (see [6, 7]).

To maintainL we use a dynamic tre@ (F) representing-. All edges in paths of have labels naming
the path itis in.



e addLl(a, b): adds toL the maximal subpaths af(a, b) which are edge-disjoint from the other ele-
ments ofL. It is implemented by repeatedly applyingn andmaxto find the start and end of each
subpath ofz (a, b) with cost 0 inD(F). These subpaths are added_toEach edge in a subpaghis
labeled inD(F) with the namex of the subpath by doingdd(p, x). The cost ofadd L is O(logn)
times to number of subpaths added_to

We describe how to implement the operations specified in the algorithm.

e swap(e, €) swaps a tree edgewith a nontree edge’: For each dynamic tree and each ET-tree
containinge, docut(e), link(€'),give€ cost 1 inB(i), and givee’ weight 0 inD(M ST). Eachswap
operation cost®(logn) per level orO(log? n) in total.

e testcover(p, j, X) covers the patlp in B(j) with edges ofX and returns the first edge in the path
which is notinF; and is not covered, if there is such an edge. To implemenBupe For each edge
{a, b} in X, doincrementa, b); then domin(p). If the cost of the edge returned lyin(p) is O,
return that edge. To restoB(j), reverse the process by decrementing the costs on each path. The
cost oftestcover is O(] X|logn).

e remave( f, i) removesf from F;. Rundecrementf) in B(i).
Do cut(f) on the ET-tree containind for F. Decrement the weight of in D(MST). The cost is
O(log®n).

e move_up(e, i) moves a nontree edgefrom E; to Ej,1. Do deletenontrede) from the ET-tree
containinge for F; andinsertnontrede) on the ET-tree for_; which containse’s endpoints.
Increment the weight of the edge in the connectivity data stru@¢M ST). The cost is dominated
by the cost of the last operation, which@glog® n).

e checkbridgedi, T’) checks every tree edge T to determine if it has become a bridge@®;.

1. For each edgg, b} in Ej which is incidentto a node i/, doincrementa, b) in B(i — 1).
For each (tree) edgan T/, if label(e) #£ 0, then removéabel(e) from L and desubtractlabel(e), label(e)).
3. For each (tree) edgein T’ which has cost 0 ilB(i — 1) (itis a bridge inG;) doremave(e, i).

N

4. RestoraéB(i —1) by decrementing the paths which were previously incrementeldeckbridges

The costisO((s(T) + w(T’)) logn) plus O(log® n) for each bridge ifT".

2.4 Analysis of Running Time

We show that the amortized cost per edge deletigd(isg® n) if there arem + n deletions.

The cost of initializing data structures ©(nlogn) per level plusO(mlogn), for a total cost of
O(nlog?n + mlogn).

The cost of Case A is dominated by the cBgtog® n) of finding a replacement edge ferplus the cost
of Case B.

For Case B, the cost of the callsTest Path dominate the running time.

In the case where the path is completely covered by a sequence of sampled &egeRath runs
to completion), there are less than 21o@r') points in the path during which the nontree edges are sam-
pled. Each point is discovered usipgthwtin O(log®n) time. At each point, the sampling and testing



involve O(min(w(T), log? n)) edges at a cost dd(logn) per edge, for a total cost, for the whole path, of
O(logw(T)(log? n + logn min(w(T), log? n)) = O(min(w(T), log? n) log? n).
To analyze the number of tim@gst Path runs to completion, we need the following:

Lemma 2.8 Let s be the number of times add L is called in one cdllétete Nontree. Let t be the number
of subpaths added to L during that call Belete Nontree. Thent< 2s — 1.

Proof: To see this, let be the number of connected component§ éfiduced by the labeled edges
in D(F). Considet + v. Initially, v =t = 0. When two components are disconnected they are not
reconnected and may be regarded as the same component for the purpose of this analysis.

If addL(a, b) results inr subpaths added tb thenx(a, b) connects up — 1 labeled subtrees,
reducingv byr — 2. Hence eachddL adds at most 2 to+ v. Sincev > 1,t <2s—1. |

Consider a fixed levdl. Procedurelest Path is run once for each path removed frdm Hence, the
number of calls talest Path on leveli, is no greater than the numberof paths added td during a call
to Delete Nontree (e, i). From the lemma we know thatis at most twice the number of callsaald L on
leveli minus 1. We show below that the number of callatbd L on leveli is bounded by the number of
edges moved to levéH 1 plus one. Thugy, and hence the calls fest Path, is at most twice the number
of edges moved to levél+ 1 plus one. If subsequentyelete Nontree(e, i + 1) is called, then at least one
of the calls toTest Path on leveli did not run to completion and thus the number of calls that did run to
completion is at most twice the number of edges moved to ieyel. Thus the cost ofest Path on all
levels running to completion i®(log* n) per deletion andd(m; log* n) for each level during all deletions,
for a total of O(log*n 3", m) = O(mlog* n) during all deletions.

Consider next the case where the path is not completely coveredeseRath does not run to com-
pletion. Letf be the first uncovered edge in step 3. Det= Ty \ f. We claim that the cost of all the
successful sampling up to the point of the exhaustive sea®ligT1) log?n). LetTO, TD .. TP be
the sequence of subtreesTinpreviously sampled. Now (T1) < w(TU*2)/2, andw(T®) < w(Ty).
The successful sampling i) has cosO(w(T 1)) log? n). Thus the total cost of successful sampling is
O(X; w(TW)log?n) = O(w(Ty) log? n).

When f is indeed sparsely covered, is split into two trees and an exhaustive searchlofusing
checkbridgesis carried out, wher@’ is the smaller in size ofy \ f andTy \ f. ThenTest Path stops.
The cost ofcheckbridgesis O((s(T’) + w(T’)) logn) plus O(log®n) for each new bridge. Note that
w(T1) < w(T)/2 and thereforew(T’) > w(Ty). Thus, the cost of the successful sampling up to the time
the splitis made plus the cost ofieckbridgesis O(w(T’) log? n + s(T’) logn) plus O(log®n) for each
new bridge.

Now each time a node is in a componentrpfwhich is exhaustively searched and split, the size of its
component is at least halved. Hence, it can be in no more thaiig. Similarly, the endpoints of an edge
can be in no more than [y T"’s. Hence,> '+ s(T’) + w(T’) < (n + m;)logn so that the total cost of all
check path's on leveli is bounded above b@((nlog?n + m; log®n) plus O(log®) for each new bridge.
Noting that an edge of; can become a bridge only once, this implies a boun®6flog®n + m; log® n)
per level orO(nlog*n + mlog®n) over all.

As shown in Lemma 2.1, the probability that during the course of the algorithm, an fedigat is
suspected of being sparsely covered is not sparsely covered is no greatefrthafHus this case adds no
more thanO((n + m) log? n/n?) = O(log? n) to the expected cost of the algorithm.

We conclude that the total cost over the course of the algorithm for deleting edggssrO((n +
m) log* n).



3 A Dynamic 2-Edge Connectivity Algorithm

The basicidea is to insert edges into the last levelrahdildlevels as necessary. This follows the technique
used in the fully dynamic connectivity algorithm of [6].

Let F be a spanning forest @&. We defind, E;, andF; as in the deletions-only section. Initially, all
nontree edges d& are put intoE; and the otheE; are empty.

We represent; for each leveli as labeled subtrees in a dynamic tree data structure represénting
Unlike the deletions-only algorithm, we also keep a compressed veFsiaf F; with size proportional to
the size ofE;, so that the ET-trees for a level represgfif rather tharf;. The node set oF¢ is calledV,
its edges are callesliperedges

Initially and duringeach rebuild of level, the compressed fore§{® = (V¢, E) is constructed using
E;. For each edgéx, y} in Ej, we mark the patlix, y} in F and call the resulting marked subforést.
Let V¢ contain all nodes which are leaves and all nodes which have degree at least ffe\isuperedge
{x,y}isin FCiff x,y € V¢, the path betweer andy is in F™ and there are no other nodes\ifi which
are on the path (x, y).

We note that a component 6f may contain several componentskff. As the algorithm proceeds, we
allow there to be additional superedges in lewhich cover paths covered i, j < i, and which are not
covered by edges i&;. We describe below which exact invariants hold ft.

We say thapathm (X, y) is represented bguperedgéx, y}. We say anode is represented inHf it is
contained in a path which is representedfn The node need not be °. Theweightw(T) of a spanning
treeT in F° is two times the number of nontree edges with both endpoirifsptus the number of nontree
edges with exactly one endpointTh Thesize T) of a spanning tree is the number of node¥6fin it.

We keep for each levél

e a dynamic tree data structuité(i) storing F, where each tree edgewhich is represented by a
superedge oF‘ is labeled with its name.

e a dynamic tree data structuN!(i) storingF, where each node € V which is not inV¢, but is
represented by a superedge is labeled with the name of the superedge.

Note that this means that in the dynamic tree data strudt(ii¢ vertices rather than edges have costs.
Operations analogous to those defined for dynamic trees with edge costs can be implemented with the
same time bounds [10].

e adynamic tree data structutgi) storingF where an edge has cost; (e) if it is represented by; (e)
superedges iftj, j <i.

o for each 2-edge connected componenEpf an ET-tree data structure in which all nontree edges of
E; are stored, referred to as the ET-trees of Ievel

In additon, we keep a dynamic tree data structured=pb (F) which is only marked during the course
of a deletion, and a fully dynamic minimum spanning tree data struéiM ST). Both are used as in
the deletions-only algorithm. We also keep for each nontree edge a pointer to where it is stored, for each
tree edge, its level number and a pointer to its location in each data structure in which it appears, for each
superedge a pointer to its location in each ET-tree in which it appears, and a list of all nodes in\feach

We keep the following invariants.

Invariants:

10



1. For each edgein E;, all edges of which are covered bg are represented iR°.

2. V¢ contains every node which is representedrfrby more than one superedge and the endpoints of
every edge irE;. The intermediate nodes in a path that is represented by a superedge canngt.be in
(Consequently, each edgefnis represented by at most one superedge.)

3. All edges ofF which are represented by a superedgEfrmust be inF;.

4. If two nodes ofV® are connected i, they remain connected iR° until either they are no longer
connected irF or level j, j < is rebuilt.

5. InC(i), an edge of has cost(e) if it is represented by exactly(e) superedges ifk®, j <.

3.1 Subroutines

In addition to the basic operations on dynamic trees, ET-trees, and the dynamic minimum spanning tree data
structure, in the fully dynamic data structure,
We introduce the following subroutines for operations on compressed forests:

e remweS(e, i): This assumes = {u, v} is a superedge iR and removes it fronf°.

1. Removee from the ET-tree representirfgf.
2. Forj > i, decrementr(u, v) in C(j).
3. Remove the name effrom r(u, v) in N(i) andN’(i).
e insertSe, i): This inserts the superedge= {u, v} into F°. It assumes no intermediate node of
m(u, v) is represented ifr® andu andv are inV°.
1. Insert the tree edgeinto the ET-tree representirfgf.
2. Forj =i, incrementr(u, v) in C(j).
3. Labelr(u, v) with its name inN(i) andN’(i).

e insertV(u,i):

1. If uisrepresented ifr® andu ¢
() Let{x,y} =label(u);
(b) DoremaeS({x, y}, i); addu to V%; insertS{x, u}, i); insert{u, y}, i).
2. Elseifu ¢ V&
(a) Create an ET-tree containing only
e connecte, i): Lete = {u, v}. This routine either inserts a superedge betweandv into F° or, if

m(u, v) is partially represented by superedge& fnthe whole path is now represented, by connecting
up the represented segments by new superedges. ltah to V, if they are not already iV°.

1. DoinsertV(u,i).
2. If u = v stop.
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3. If the first edge of the patfu, v} is represented i, then find the first edgés, t} in 7 (u, v)
which is not represented. Dmnnect{s, v}, i).

4. Else{the first edge of the patfu, v} is not representefddo:

(a) Ifthere is no next node im(u, v) which is represented then
doinsertV(v, i) andinsertS{u, v}, i).
(b) Else leta be the next node (u, v) which is represented.
i. DoinsertV(a,i).
i. DoinsertS{u, a},i).
iii. Do connect{a, v}, i).

e insertF(e): connects two previously unconnected components bl inserting a new tree edge
This operation appligénk(e) to each data structure containifgandinsert(e, 0) to D(MST). The
cost ofinsert F(e) is dominated by the last operation which has ®@gdbg® n).

e deleteRe, i): splits a tree ofF into two trees by deleting edge This operation involvesut(e)
applied to each data structure containikhgn levelsj > i and doesleletge) onD(MST). The cost
of deleteRe, i) is dominated by the last operation which has @@gbg® n).

3.2 Insertions

When edgee is inserted intoG then if e connects two unconnected components-ofe is inserted into
the data structures representifgisinginsertF(e). If eis a nontree edge then dosert nontrede, |) to
inserte into an ET-tree on levdt connecte, 1); inserteinto theD (M ST) by callinginsert(e, 1).

After each operation, we incremehtthe number of operations moduld?®9" since the start of the
algorithm. Letj be the greatest integkrsuch that 8|1 . After an edge is inserted, a rebuild of leVel j —1
is executed. If we represehtas a binary counter whose bits &xe ..., bj_1, whereb; is the most significant
bit, then a rebuild of level occurs each timé; bit flips to 1. Note that levdl is emptied of nontree edges
every time an edge is inserted, and fot |, no more than'2'~1 operations occur before a rebuild on level
i orlower occurs.

3.3 Rebuilding leveli:

During a leveli rebuild, we remove all nontree edges frdfn j > i and put them intd;. For each such
nontree edge, we increase its weighOOM ST) toi. ThenF = F, i.e., it is the 2-edge connected forest
of G.

For each levef > i, for all superedgesin ch doremaweSe, j); also discard the ET-trees. Construct
the new compressed graptt by applyingconnecte, i) for each edge oE;. We construct the compressed
graphF? in the same way at the start of the algorithm.

3.4 Deletions

e TestPath(u, v, i) runs onF¢ rather thanF; which implies that only subtrees of the trég in F;
may be represented If°. In Delete Nontree(e, i) we may need to add superedgesfoin order to
connect portions of the path(u, v) which were (before the deletion) connectedHn

Thus, we add the following tDelete Nontree(e, i):
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0. connecte,i).

e In Sample we reset’ to 4. Consequently, each level receives no more than 1/4 of the edges in the
previous level, and we prove a lemma analogous to Lemma 2.4 below.

e addL(a, b) is unchanged. We note that the endpoints of subpaths addedrca leveli are inV,,
so that all edges represented by the same superedge are labeled the same.

e swap(e, €): Leti be the level of the tree edge. Let {s, t}.

1. deletenontredé€, i)

2. Ifthereis asuperedge = {u, v} in ch which represents a path containgghen daoemaweSg;, j)
forall j > i; doconnectu, s) andconnectt, v).

DodeleteRe, i) to deletee from F.
DoinsertF(€) to inserte’ into F.
Doinsertnontrede, i).

o ok~ w

Doconnecte, j) forall j > i.
e Sampling is unchanged.

e Intestcover we useC(j) instead ofB(j). In C(j) a tree edge has cost greater than Qiff it is covered
onalevelj, j > i. The only difference is that costs greater than 0 may also be greater than 1.

e remave( f, i) removes a supereddgefrom F°. DoremoeS(f, i).

e move_up(e, i) moves a nontree edgefrom E; to Ej, 1. Do the same operation as in the deletions-
only version, followed byonnecte, i).

e checkbridgeqi, T®) checks every superedgeTi to determine if it contains a bridge ;.
1. For each superedge, b} in F° which is incident to a node ii¢, doincrementa, b) in C(i —
1).

2. For each superedgsn T°¢, let€ be any edge represented dyif label(¢') > 0, then remove
label(€¢’) from L and dosubtractlabel(€), label(¢)). (Recall that all the edges represented
by a superedge have the same label.)

3. For each superedgsn T° which represents a path that contains an edge of cos€Qiin- 1)
(the edge is a bridge iB;) doremaweSe, i).

4. Restore€e(i—1) by decrementing the paths which were previously incrementeldleéck bridges

The costisO((s(T®) + w(T¢)) logn) plus O(log® n) for each bridge ifT °.

3.5 Queries

To test whetheu andv are 2-edge connected: Find the path frorto v in F as stored irC(l) and output
“yes” iff c(e) > O for all ein the path.
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3.6 Proof of correctness

We first show:
Lemma 3.1 Forany i, m < (5/4)n%/2'.

Proof: When leveli is rebuilt, since no more thaT|12/_2i operations have occurred, no more than
n?/2' new edges are added 9 and no more tham/4' edges are already containedn, so that
m; < (5/4)n?/2',

|
Corollary 3.2 All nontree edges of G are contained in somddti <, i.e. E1is empty.

ThereforeG) = G andF spans the 2-edge connected componenG.of
We show next that the invariants hold.

Lemma 3.3 For each edge e in Eall edges of F which are covered by e are represented‘in F

Proof: Note that if the claim holds before a call¢onnecte, i), it will also hold afterwards. Note
further that after the call teonnectall edges on the path i between the endpoints efare
represented by a superedge and the endpoirgsi added t&/,° if they are not already there.

During aninsertion of a nontree edgeeis inserted intdg; andconnecte, 1) is called, ensuring
the invariant holds for levél The other levels are unchanged.

Sinceconnectis called for each edge iB; during a rebuild of levei, it follows that the claim
holds right after rebuilding level

Consider next a deletion. There are three cases to consider: moving down anEdgstiating
whenever a tree edgds swapped witle', and removing a superedge frdfi. In move_down(e, i),
connecte, i) is called and the claim holds.

When a tree edge = is swapped with a nontree edgeeiis represented by a superedgeb},
{a, b} is removed fromF¢, e becomes a nontree edge armhnecte, i) is called. The calls to
connectensures that the remaining tree edges previously representgd ligyare again covered
and that the path now covered bys represented by superedges.

We next consider the case when a superegige {u, v} is removed fromF°. This occurs
during aDelete Nontree. By the invariants, we know that no nontree edgeg&irwhich cover an
edge inst(u, v) have endpoints which are intermediate nodes (n, v) or which are in subtrees
of intermediate nodes in(u, v). Otherwise there would be a nodesiriu, v) which is either an
endpointof a nontree edge or represented by two superedges and thersfar&lius, each nontree
edge covering edges af(c, d) covers all edges of(c, d). We show next thatest Path removes
all such edges. The lemma follows.

By connectingu andv in DeleteNontree, we ensure thaTest Path runs on treeT$ which
containsu andv and represents a subtreeTof Since the pathr (u, v) is represented ifi ¢, every
nontree edge which covers a portion of the path, v) is incident to the tred ¢, by Invariant (1).
Thus, Ty \ f andTy \ f, wheref is the set of edges in(c, d), contain all the edges which might
covern(c, d). It follows that the seS connectingT¢ \ f and T;,: \ f is exactly the set of edges
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crossing the cut betwediy \ f andTy\ f. WhenSis removed, the edges in(c, d) are not covered
by any nontree edges ;.

Lemma 3.4 V¢ contains every node which is represented fnkly more than one superedge and the end-
points of every edge in;EThe intermediate nodes in a path that is represented by a superedge cannot be in
V¢, (Consequently, each edge in F is represented by at most one superedge.)

Proof: Each time a nontree edge is addedsfoconnectputs its endpoints itV,® if they are not
already there. Each time a superedge is adddtf tdf the path covered by the superedge contains
a node which is already represented, it is addedt@nd the superedges containing that node are

split. 1

Lemma 3.5 In C(i), an edge of F has coste) if it is represented by exactlye) superedges inJF, j <i.

Proof: Note that every time an edge is added to or removed ﬂFg'an(i) is updated accordingly.
The lemma follows by induction over the steps of the algorithnfi

Lemma 3.6 All edges of F that are represented by a superedge‘imigst be in |

Proof: Superedges are added bgannecte, i) operation which adds superedges which cover only
paths between the endpointsef New superedges may also be created by splitting old ones, but
these do not change the edges representétf.inThe operatiorconnecte, i) is called where is
added toE; during the execution afwap, move_up(e,i — 1), or in E; during a rebuild. In these
cases, clearly, the invariant is not violated sie@®vers the edges represented by the newly created
superedges.

The operatiortonnect{u, v}, i) is also called before a call ftest Path(u, v, i). Immediately,
Test Path either covers the patfu, v} or removes any superedges representing an edge with cost 0
in C(i — 1) and not covered by edges . An edge has cost greater than 146 — 1) only if it
is covered by a superedge ij j > i. If we assume the invariant held true f6f , then we can
conclude that all superedges which are not removed cover paths whichFre # i which implies
they are inF;.

Lemma 3.7 If two nodes in Y are connected in F, they remain connected until either they are no longer
connected in For level j, j <, is rebuilt.

Proof: Note that neither amnsertSe, i) nor aconnecte, i) disconnects previously connected
nodes inFS, only aremaeS(e, i) does. AremaeS(e, i) is executed either (a) during a rebuild on
level j <i, (b) when removing a superedge from levg(c) during a swap, or (d) imsertV. In

case (b), the path between the endpoints of the superedge is no lofgelrirtase (c), as shown in

the proof of Lemma 3.3, any edges which were represented before are still represented. In case (d),
the endpoints oé are immediately reconnected by twusert Soperations. Therefore, until level

j < i isrebuilt, the endpoints must remain disconnected to preserve the previous invarjant.
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3.7 Analysis of the Running Time.

The cost of initializing data structures is the same as for the deletions-only algo@ttmng? n+mlogn).

The routinesinsertS(e,iJand removeS(e,iJake O(logn) time per level orO(log?n) time. Routine
insertV(v,i)takes timeO(log®n). The routineconnect(e,itakesO(log® n) time per superedge which is
inserted. The number of superedges inserted is proportional to a constant plus the number of components of
F¢ connected up.

Insertions take tim@(log?’ n) plus the cost ofonnectwhich isO(Iog2 n) times the number of compo-
nents of ¢ connected up. If a tree edge is inserted thesert F is called for a cost 00(log®n).

A rebuild on leveli requires aemave Sfor each superedge on level> i, aconnectfor each edge in
the newE; and a weight change to the edgelDiiM ST). We will show the number of superedgesHfiis
proportional tom;. Thus the total cost i©((log® n)m;).

The analysis offest Path is almost the same as in the deletions-only algorithm, except for the costs of
connectwhich is analyzed below.

As in the deletions-only analysis, the costTelst Path’'s which run to completion i©(m; log* n) per
level andO(log”* n) per deletion.

We next analyze the cost wh&ast Path does not run to completion. It is possible that when we search
a component of, we are searching only a portion of the component since that is all that is connected in
FC, and we may in fact be searching a portion of the larger componédt odther than the smaller. Yet the
size of this portion must be no greater than the size of the smaller comporigntioérefore the number of
times the coverage of a nontree edge is looked at is bounded as in the deletions-only algorithm.

Thus the analysis of the amortized costs of splits charged to ail&etiveen two consecutive rebuilds
of levelsi or lower is the same as in the deletions-only algorithm except that the maximum number of nodes
and superedges on a levés O(m;) rather tham. Therefore the cost per level @(m; log® n).

The total cost offest Path's is thusO(m; log”* n) for leveli plus O(log* n) per deletion, plus the cost
of connects.

The cost ofconnects on a level isO(log? n) times the number of superedges inserted on this level.

Lemma 3.8 The total number t of superedges inserted into a level i between two consecutive rebuilds of
any levels j j’ <iislinear in m plus the number of operations since the rebuild.

Proof: Lets be the number of timesonnecton leveli is called between two consecutive rebuilds
of any levelsj, j* <i. Then we show < 4s — 3. To see this, let be the number of connected
components of-°. Considet + 3v.

Note that initially,v = 0 and that by Invariant 4, when two components are disconnected they
are not reconnected and may be regarded as the same component for the purpose of this analysis. If
connectr(a, b), i) resultsirr additional new superedges the(a, b) connects up at leagt—1)/3
components oF’, reducingv by (r —1)/3— 1. Hence eachonnectadds at most 4 tb+ 3v. Since
v>1,t<4s-3.

The number of timesonnectis called on levei is proportional to the number of operations
between rebuilds (once pBrelete Nontree, once per edge insertions, and three timesspep)
plus the number of nontree edges moved to lewslO(m;).

After an edge is inserted int@, it participates at most once per level in a rebuild of a level. Thus,
each edge may be charged for the cost of the number of levels frtleg* n) to pay for the amortized
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costs ofTest Path, giving a total amortized cost per insertion®flog® n), over a sequence 6f(n + mg)
operations, wherm is the initial number of edges in the graph.
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5 Appendix

We encode an arbitrary tréle with n vertices using a sequence af 2 1 symbols, which is generated as
follows: Root the tree at an arbitrar y vertex. Then &l (root), whereET is defined as follows:

ETX)
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visit X;

for each childc of x do
ET(c);
visit X.

Each edge of is visited twice and every degrekvertexd times, except for the root which is visited
d + 1 times. Each time any vertexis encountered, we call this atcurrenceof the vertex and denote it
by oy.

New encodings for trees resulting from splits and joins of previously encoded trees can easily be gener-
ated. LetET(T) be the sequence representing an arbitraryTree

Procedures for modifying encodings

1. To delete edgda, b} from T: LetT; andT; be the two trees which result, whexes T; andb € T,. Let
0a,, Op,, Oa,, Op, represent the occurrences encountered in the two traverdalsaf If o, < op, and
Op, < Op, theno,, < Op, < Oy, < 0a,. THUSET(TY) is given by the interval oET(T) 0p,, ..., Op,
andET(Ty) is given by splicing out oE T (T) the sequencey,, .. ., Oa,.

2. To change the root ofT from r to s: Let os denote any occurrence ef Splice out the first part of the
sequence ending with the occurrence befmtgemove its first occurrencey(), and tack it on to the
end of the sequence which now begins vathAdd a new occurrenoe; to the end.

3. To join two rooted treesT and T’ by edgee: Lete = {a,b} witha € T andb € T’. Given any
occurrence®, andoy, rerootT’ atb, create a new occurrenog, and splice the sequen&el (T')0,,
into ET(T) immediately aften,.

If the sequenc& T(T) is stored in a balanced search tree of dedyeend heightO(logn/logb) then
one may insert an interval or splice out an interval in ti@é logn/ logb), while maintaining the balance
of the tree, and determine if two elements are in the same tree, or if one element prece des the other in the
ordering in timeO(logn/b).
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