SRC Technical Note
1997-004
June 12, 1997

Fully Dynamic 2-Edge Connectivity Algorithm in
Polylogarithmic Time per Operation

Monika Rauch Henzinger and Valerie King

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright© Digital Equipment Corporation 1997. All rights reserved

Abstract

This paper presents the first dynamic algorithm that maintains 2-edge connectivity in polylogarithmic
time per operation. The algorithm is a Las-Vegas type randomized algorithm.

For a sequence a2(mp) operations, whereny is the number of edges in the initial graph, the
expected time fop insertions or deletions of edges@ plog® n) and the worst-case time for a query
is O(logn). If only deletions are allowed then the cost foupdates iO(plog* n) expected time.

1 Introduction

We consider the problem of maintaining a 2-edge connectivity during an arbitrary sequence of edge inser-
tions and deletion. Given amvertex graphG with edge weights, th&ully dynamic 2-edge connectivity
problemis to maintain a data structure under an arbitrary sequence of the following update operations:

insert(u,v): Add the edgdu, v} to G.
delete(u,v): Remove the edggu, v} from G.
guery(u,v): Return true iffu andv are 2-edge connected @.

In 1991 [5], Fredrickson introduced a data structure knowtopslogy treedor the fully dynamic 2-
edge connectivity problem with a worst case cosbagf,/m) per update, whenm is the number of edges in
the graph at the time of the update. His data structure permitted 2-edge connectivity queries to be answered
in O(logn) time. In 1992, Eppstein et. al. [1, 2] improved the update tim®¢g/n) using thesparsifi-
cation technique If only edge insertions are allowed, the Westbrook-Tarjan data structure [10] maintains
the minimum spanning forest in tim@(« (M, N)) per insertion or query. If only edge deletions are allowed
(“deletions-only”), then no algorithm faster than tQe¢,/n) fully dynamic algorithm was known.

Using randomization, we give the first polynomial-time algorithm for the problem: we present a fully
dynamic 2-edge connectivity problem in amortized ti@€log® n) per update and(logn) per 2-edge
connectivity query. If the problem is restricted to deletions-only, our algorithm runs in amortized time
O(log* n). A preliminary version of this result appeared in [6].

2 A Deletions-only 2-Edge Connectivity Algorithm

Let F be a spanning forest @&. We give an algorithm with amortized expected ti@€eog’ n).

2.1 A Deletions-only Algorithm

Definitions and notationEdges ofF are calledreeedges and the tree path betweeandv is denoted by
(U, v). A nontree edgégu, v} coversa tree edge iff elies on the tree path betweerandv. A bridgeis
an edge of that is not covered by nontree edge®fTwo nodess andv are 2-edge connected iff all edges
onm(u, v) are covered [5].

Throughout the algorithm, the nontree edge&aire partitioned into levelg,, ..., E, | = [2logn].
We letF; denote a forest of 2-edge connected componer® ef (V, Uj < E; UF), whereF; C Fi 1. The
level of a tree edge is defined to be the smalldssuch thak is covered inG;. Letl = [logm] + 2.

If T isthe tree ofF; containing an edgeand a node, let T, \ e denote the subtree T \ e containing
u. Let theweightw(T) of a spanning tree be the number of non-tree edges incidént to

We maintain the following data structures:

e F is stored in a dynamic tree data structiréF) whose edges are marked only while processing a
deletion [9].

e For each level, F; is stored in a dynamic tree data structlré). Each tree edge which is also in
Fj,] <1, is colored black; all other edges are initially white.

e For G we keep a dynamic minimum spanning tree data strucku® ST) in which edges are
weighted by their level number. The edges in the initial spanning féremte weighted 0. An ef-
ficient data structure for maintaining a minimum spanning tree with a small number of weights can
be foundin [6, 7].

To initialize the data structures: Initially, put all nontree edges int&;. The remainingg;, j # i are
empty. Compute the 2-edge connected componen dfet F; be the 2-edge connected subforestof
SetF; = F, = ... = F. Construct théD (i) accordingly.

To answer the query: "Are x and y 2-edge connected?”To test ifx andy are 2-edge connected, check
if they are connected iB (1). This test takes tim®(logn).

To update the data structure after a deletion of edgee={u,v}: Leti be the index of the graph such that
eisin leveli. Call Deletge, i).

Delete(e, i)
Case A: ec F : If e e F (theneis a bridge), remove from all data structures representikg Otherwise,

use D(MST) to find a minimum cost replacement edg®r e, makee a nontree edge d&; and€e’ an edge
of F and continue as in Case B.

CaseB:ec Ej :
1. Mark the edges of (u, v) (usingD(F)). These are the possible new bridge$-of

2. whilethere exist unmarked edgde
Leta andb be two leaves in the marked subforestaf(Initially, a andb areu andv).

Call Test.Path(i, a, b).

3. if 7 (u, v) was not covered on level incrementi, and goto Step 1.

The procedurdest Path(i, u, v) either
(1) determines that all edgessiriu, v) are covered by a sequence of random samples; or

(2) finds one tree edgé in leveli which is suspected of being “sparsely covered” by edgds in
(2A) If f is sparsely covered, the algorithm moves tp 1 those edges which cross the cut induced
by f’s removal and marks their path. Thus the tredjrcontainingf is split into two subtrees, and
the data structures representifigare modified accordingly.
(2B) With very low probability,f is not sparsely covered. In this casés not removed front;.
In either case the subtree ©f\ f which is marked inD(F) is searched exhaustively to determine
which edges have become bridges=in D(F) is unmarked.

Test Path (i, u, v)
Let T denote the tree df; containingu andv.

1. iy =0andi, =0;

2. Repeat until, andi, are both greater than ig(T) — 1 or Samplereturnsfalse

(a) Find the furthest edgg from u onm(u, v) such thatw(Ty\ &) < 2'v. If this cut was previously
examined, incremeny and repeat. _
Find also the closest edgg to u onx(u, v) such thatw(Ty \ €,) > -1,

(b) Ifiy <lgw(T) — 1 thenSample(, v, &, €,).

(c) Find the furthest edge, from v onx(u, v) such thaw (T, \ e,) < 2'. If this cut was previously
examined, increment and repeat. _
Find also the the closest edggeto v onx (u, v) such thatw(T, \ €)) > 21

(d) Ifi, <lgw(T) — 1thenSamplep, u, e,, €)).

3. ifiy > Igw(T) — 1 andi, > Igw(T) — 1thenx(u, v) is coveredUnmarks (u, v).

Sample(z, w, &, €) requires thag,, €, € n(z, w). Letc andc’ be constants to be determined later.
Sample(z, w, e, €):

1 fw(T\e) < clog2 n then the seX consists of all edges incidentTq \ e,. Otherwise the seX is
determined by samplinglog? n edges ofE; incident to nodes of;\ e,. An edge with both endpoints
in T, \ e; is picked with probability 2w(T; \ e;) and an edge with one endpointTh)\ &, is picked
with probability 1/w (T, \ &,). In this caseX consists of one edge.

2. Lete, = {X, y}, wherex is the endpoint closest to Determine (usindd (i)) if all tree edges in level
i onm(z y) betweene, ande; (includinge, ande;,) are covered by edges K. If so, increment;,
and returrtrue.

3. Elseletf = {x’, y'} be the uncovered such edge nearest té/log letx’ € w(z, y').

(a) Search all edges if; incidenttoT,\ f and determiné& = {edges of connectingl,\ f and
Tw\ f}

(b) If0 < |S| < w(T,\ f)/(15c logn), { fis sparsely coveredl, removef from D(i) updatef’s
colorinD(i + 1), and remove the elements 8from E; and insert them int&;, 1. For all edges
(a, b) in S, mark the pathr(a, b) (using data structurB (F)).

(c) Determine all tree edgesn\ f which are in level and are not covered by an edge of the new
E; (using data structurB(i)) and remove them frorfy;. Unmark all edges iif; \ f in D(F).

(d) Returnfalse

2.2 Proof of Correctness

We first show that all edges are containedjg E;, i.e., whenT est Path(u, v,| — 1) is called, and Step
3 is executed, no nontree edge is inserted Hto This fact implies that the trees & span the 2-edge
connected components Gf.

Lemma 2.1 With probability at least 1 — 1/n?, when Step 3 ilBampleis executed, thefS| < w(T; \
e,)/(15c’ logn).

The probability can be increased for-11/n¢ for any constantl by increasing the number of sampled edges by a constant
factor

Proof: For each edge € 7(z y) betweerg, ande, (includinge, ande,), 2v~1 < w(T,\ &) < 2.
Thus, each nontree edge incidenfo\ € is sampled with probability at leasy @w(T; \ €)). Let
us test the hypothesis th&| < w(T;\ €,)/(15c¢ logn). The error probability, i.e., the probability
that|S| > w(T;\ €)/(15¢ logn), but no edge oSis selected is

(1— 1/(60c logn))¢°9 " — O(1/nd)

for c > 300c.

Thus the probability thatS| > w(T, \ €)/(c’logn) for any of the at most edges onr(z, w) with
2=l < w(T,\ €) < 2 is at most ¥n3t, implying that that the probability is at mostr? that it
happens at any deletion. |

Thus with high probability a subtree is searched only once and then is split off from its tree. Note that
the weight of the subtree is at most half the weight of its tree. In the following we denote the split-off subtree
by T:. Letm; be the number of edges everk.

Lemma 2.2 For all smaller trees Ton level i,) w(T1) < 15m; logn.

Proof: We use the “bankers view” of amortization: Every edgeEpfreceives a coin whenever it
is incident to the smaller treg,. We show that the maximum number of coins accumulated by the
edges ofE; is 15m; logn.

Each edge oE; has two accounts,start-up accounand aregular account Whenever an edge
of E; is moved to level > 1, the regular account balance of the two edges on ievgh maximum
regular account balance is set to 0 and all their coins are pai@'gtart-up account. Whenever an
edge ofE; is incident to the smaller treg, in a split of T, one coin is added to its regular account.

We show by induction on the steps of the algorithm that a start-up account contains at most
10logn coins and a regular account contains at most filogins. The claim obviously holds at the
beginning of the algorithm. Consider steg- 1. If it moves an edge to leve) then by induction the
maximum regular account balance is at most Sl@d, thus, the start-up account balance of the
new edge is at most 10 loyg

Consider next the case that step- 1 splits treeTl; off To and charges one coin to each edge
of E; incident toTy. Let wg be the weight ofTg when Ty was created. We show thatd® regular
account balance was not reset since the creation,ahenw(Tg) < 3wg/4. This implies that at
most 2log ;N < 5logn splits can have charged émftere’s last reset. The lemma follows.

Edges incident td; at its creation are reset before edges added to idedkr on. Sinces was
not reset, at mosip/2 many inserts into leval can have occurred since the creatiorief Thus,
immediately before the splity(T1) < 3wp/2. Sincew(Tp) < w(Ty)/2, the claim follows. |

Lemma 2.3 Foranyi, m < m/c'—1.

Proof: We show the lemma by induction. It clearly holds foe= 1. Assume it holds folg;_;.
When summed over all smaller tre€g Y w(T1)/(15¢' logn) edges are added . By Lemma
2.2, w(T1) < 15m;_1logn. this implies that the total number of edgesHnis no greater than
m/C/i_l. I

Choosingt’ = 2 gives the following corollary.

Corollary 2.4 For| = [logm] + 2 all nontree edges of G are contained in somef@ i < I, i.e. § is
empty.

The following relationship, which will be useful in the running time analysis, is also evident.
Corollary 2.5 >, mj = O(m).
Lemma 2.6 If in Test Pathi, and i, are greater tharlogw(T) — 1 then all edges om (u, v) are covered.

Proof: We have to show that all edges atiu, v) have been covered. Lef be the furthest edge
fromv onx (v, u) such thatv(T,\e,) < w(T)/2. Letg, be the furthest edge fromonz (u, v) such
thatw(Ty\ey) < w(T)/2 and lete], be its incident edge closer to Note thatw (T \ €,) > w(T)/2.
Thusw(T, \ €) < w(T)/2, i.e., either, = e, or g, is further fromv thane€/,. Thus, the longest
path tested “fou” and the longest path tested “fot either touch or overlap. I

Theorem 2.7 The IXi) are correctly maintained, i.e., they represent theaRd a tree edge is marked iff it
isin F_1.

Proof: The correctness of the data structures depends on the the fact that two nodes are 2-edge
connected iff they are joined by a path of spanning tree edges which are covered by nontree edges.

When a tree edgeis swapped, if the tree edge is not a bridge, thei ket the minimum index
such thate is contained inF;. Since the endpoints & are 2-edge connected I, the D(MST)
returns a replacement edgen E;.

ForFj, j <, the swap causes no change to the coveragejssot contained in anf;, j > i,
and there is no change to the structurd-phs the two subtrees &f joined bye remain in separate
components of;.

For levelsj > i, eachG; contains the fundamental cycle formeddywith edges ofF. Hence
we observe that whea is swapped with its replacement edge’ 's coverage and all other tree
edges’ coverage remains unchanged.

When a nontree edgg is deleted, we observe that the only path in which coverage may change
is the tree path betweedis endpoints. Our deletions algorithm either finds edges covering the path
or removes from the appropriakg those edges in the path which are no longer coverel.

2.3 Details of the Implementation

Sampling edgesiVe keepF; in a ET-tree data structure, and with each active occurrence we store the nontree
edges inE; which are incident to corresponding vertex.

Covering pathsWe useD(i). Each edge il _1 has cost has cosb. At the start of eaciDeletg all other

tree edges (i.e. those in levglhave cost 0. We implement the following operations:

e Cover(s, t, u, v): Find the node (b) closest tcs (t) one (u, v) and add 1 to all edges org (a, b).

e Uncover(s, t, u, v): Find the node (b) closest tas (t) on g (u, v) and subtract 1 from all edges on
g (a, b).

e FirstUncovered(y, u): Return the edge on(y, u) thatis closest ty and in leveli and has cost 0.

e LastUncaeredy, u): If no edge onr(y, u) has cost 0, return the edge incidentuton = (y, u).
Otherwise, determine the edgen (Y, u) of cost greater than 0 which is closesttand return the
edge of cost 0 immediately befoeson r (y, u) (if it exists).

e Midpoint(u,v):Return the middle edge afu, v.
e Pathwiu, v, wt): Find the furthest edge, from u onx (u, v) such thatw (T, \ €, < wt).

Using dynamic trees each operation except the last can be implemented i@ tiogn). Pathwiu, v, wt)
can be implemented i®(log? n) time by performing a binary search ar(u, v) using no more than Ig
applications oMidpointand tests comparing(T, \ &) to wt.

The coverage data structure is usedsiampleto cover the edges om(u, v) with the sampled edges
and to find the first uncovered edge on level

Afterwards we uncover the edges @(u, v) again.

2.4 Analysis of Running Time

We show that the amortized cost per edge deletion on a le@{lizg* n) if there arem deletions.

For each tree edge which is deleted, the amortized expected update cost of the fully dynamic MST
algorithm when there areweights isO(k log? n), so that the cost per deletion@(log® n) (see [6, 7]).

In the case where the path is completely covered by a sequence of sampled edges, there are less than
2logw(T) points in the path during which the nontree edges are sampled. Each point is discovered using
Pathwtin O(log? n) time. At each point, the sampling and testing invo¥émin(w(T), log? n)) edges at a
cost ofO(logn) per edge, for a total cost, for the whole pathQafog w (T) (log? n+logn min(w(T), log? n)) =
O(min(w(T), log? n) log? n).

Consider next the case where the path is not completely covered. hethe first uncovered edge in
step3andlef; = T, \ f. An exhaustive search of subtrégis carried out andest Path stops. The cost
of the exhaustive search @(logn) per nontree edge, using the ET-tree data structur®(ar(Ty) logn).

(In this case sampling may cost as much as the exhaustive search.) We claim that the cost of all the suc-
cessful sampling up to the point of the exhaustive sear@(is(T1) log?n). LetTO TD . TP pe

the sequence of subtree Th previously sampled. Now(T1) < w(TU+2)/2 andw(T®) < w(Ty).

The successful sampling i) has cosO(w(T 1)) log? n). Thus the total cost of successful sampling is
O(X; w(TW)log?n) = O(w(Ty) log? n).

When f is indeed sparsely covered is split off from T,. From Lemma 2.2, we see that on level
> w(Ty) < 15m; logn. Thus the total cost dfest Path’'s which terminate with the discovery of a sparsely
covered edge is O(m; log®n). Summed over all levels this ®(mlog®n). We charge this cost to the
edges, chargin@(log®n) each.

As shown in Lemma 2.1, the probability that during the course of the algorithm, an fedigat is
suspected of being sparsely covered is not sparsely covered is no greatefrthafhus this case adds no
more thanO(mlog?n/n?) = O(log? n) to the expected cost of the algorithm.

Lemma 2.8 During a Deletethe number of time$est Path runs to completion on level i, having covered
a path by successful sampling is no greater than the number of paths marked by the algorithm, i.e., the
number of deletions on level i plus the number of edges moved to level i

Proof: Itis not hard to see that the total numl#of leaves plus number of nodes of degree 3 in the
marked subtree is no greater than twice the number of paths which has been marked. Each marked

6

path contributes at most 2 to this total. Each tihest Path runs to completion, having covered a
path by successful sampling, two leaves are removed from a marked subtree, subtracted 2 from
In addition, some degree 3 nodes may become leaves but this doesn’'tzaffé¢hile Each time

Test Path terminates without covering the complete path, a marked subtree is unmarked which does
notincreaseZ. |

We now explain how we charge for the costs on lgvel i during aDeletde, i), wheree = (u, v), i.e.,
the cost offest Path(j, u, v). If = (u, v) was successfully covered with sampled edgesdsy Path(j, u, v),
the incurred cost on levglis O(log* n) and no calls ofest Pathon levels> j occur. In this case we charge
the cost to the deletion of edgeNote that at most one level charges to d&teteoperation, i.e., the charge
per operation i€ (log* n).

If (u, v) was not successfully covered with sampled edgeBdsy Path(j, u, v), then incurred cost on
level j is O((1 4+ dj) log* n) whered; is the number of edges moved from leyeio level j 4+ 1 during the
Test Path. In this case there was a sequence of splits of theTtreentainingu andv on level j.

Consider one of these splits. L8t be the set of edges moved to leyek 1 by the split and lef; be
the subtree searched after the split. As observed earlier, the weighisodit most half the weight of its tree
before the split. We charge the cost of moving the edgés ¢ level j + 1 to the nontree edges incident to
T.. Thus, the charge per nontree edg®i§S°| log* n/w(T1)) = O(log®n). This accounts for all the cost
occurred duringestPath(j, u, v).

Since)_ w(Ty) < 8m; logn, the total expected charge that a nontree edge ever receives on isvel

O(log*n).

3 A Dynamic 2-Edge Connectivity Algorithm

The basicideais to insert edges into the last level and rebuild levels as necessarpelaspanning forest
of G. All nontree edges o& are put intoE; and the otheE; are empty. As in the deletions-only algorithm,
edges may move to higher levels.

Throughout the algorithm, the nontree edge&aire partitioned into levelg,, ..., E, | = [2logn].
We letF; denote a forest of 2-edge connected componen®; of (V, (Uj<i Ej) U F), whereF;, C Fii.
The level of a tree edgeis defined to be the smallessuch thae is covered inG;.

We represenk; for each level in as labelled subtrees in a dynamic tree data structure represénting
Unlike the deletions-only algorithm, we also keep a compressed versighwith size proportional to the
size of Ej, so that the ET-trees for a level represgfit rather thart.

The compressed foreBf* = (V°, E) is initially constructed using;. Suppose for each edge, y} in
Ei, the path{x, y} in F is marked. LetF™ denote the subforest of marked edgeginLet V;® contain all
nodes which are leaves and all nodes which have degree at least tf8e Msuperedgéx, y} is in E€
iff x, y € V¢, the path betweer andy is in F¢ and there are no other nodes\[i which are on the path
(X, y). We say thapathrw (X, y) is represented by supered{ey}.

Note that a component df; may contain several componentsif. As the algorithm proceeds, we
allow there to be additional superedges in levehich cover paths covered i j < i and which are not
covered by edges ig;.

Note that as the level number increases, the 2-edge connected componEntsaf contain more
nodes, but their compressed version, whose size is linear in the dzéso$maller.

We keep for each levél

e a dynamic tree data structufé(i) storing F, where each tree edgewhich is represented by a
superedge oF‘ is labelled with its name.

e a dynamic tree data structu@i) storing F; where an edge has cost; (e) if it is represented by
Ci(e) superedges iftj, j <i.

e for each 2-edge connected componenEdfan ET-tree in which all nontree edgessf are stored,
referred to as the ET-trees of level The weight of an ET-tree is the number of nontree edge stored
thereplusthe number of superedges contained in it.

In additon, we keep a dynamic tree data structurd=pb (F) which is only marked during the course
of a deletion, and a fully dynamic minimum spanning tree data stru@uk ST). Both are used as in the
deletions-only algorithm.

We keep the following invariants.

Invariants:
1. All edges off which are covered by edges it are represented iR°, by exactly one superedge.
2. All edges ofF which are represented by a superedgEfrmust be inF;.

3. Iftwo nodes are connectedHif they remain connected If° until either they are no longer connected
in F orlevelj, j <i isrebuilt.

4. InC(i), an edge of has cost(e) if it is represented by exactly(e) superedges ik’, j <.

3.0.1 Subroutines

We introduce the following subroutines for operations on compressed forests:
remove(i,e)This assumes = {u, v} is a superedge iR".

(1) Removee from the ET-tree representirfgf.

(2) Forj =i, decrementr(u, v) in C(j).

(3) Remove the name effrom 7 (u, v) in N(i).

insert(i,e): This inserts the superedge= {u, v} into F° and assumes no part afu, v) is represented in
FIC-
For each levej > i do
(1) Inserte into the ET-tree representirfef.
(2) Forj > i, incrementr(u, v) in C(j).
(3) Labelx (u, v) with its name inN(i).
(4) Addu andv to V¢ if they are not inv,®.
connect(i,e):Let e = {u, v}. This routine either inserts a superedge betweandv into F° or, if 7(u, v)
is partially represented by superedgesHf the whole path is now represented, by connecting up the
represented segments by new superedges.

Case A: No portion ofz (u, v) is represented in F insert(, e).

Case B: Portions ofr (u, v) are represented but not the whole path
If nodeu is not in V¢ but the edge imr(u, v) containingu is represented: Let andy be the nodes
which are inV;® and which lie closest ta on either side of the labelled path. Pemave(i, {x, y});
insert(, {x, u}); insert(, {u, y}).

Repeat the following steps until all ef(u, v) is represented:

1. Letu be the node closest o such that{u’, v’} is in 7 (u, v) and is not represented. Uf is
not in V¢, add it toV. If U’ lies on a labelled path let andy be the nodes which are in
V¢ and which lie closest ta’ on either side of the represented path. l2maei, {x, y}), do
insert(, {x, u'}), andinsert({u’, y}).

2. Find the closest nodeto U’ in a represented portion of the patiu’, v).

3. If zisnotinVE, add it toV®. Thenzlies on a labelled path. Letandy be the nodes which are
in V¢ and which lie closest ta on either side of the represented path.remave(i, {X, y}),

4. Doinsert(i, {Xx, 2}), insert({z, y}), andinsert({U/, z}).

e Repeat case B far substituted fou.

3.1 Insertions

When edgee is inserted intoG then if e connects two unconnected components-ofe is inserted into
the data structures representifgi.e., N(i), andC(i) for each leveli. If e is a nontree edge then do
insertd, e).

After each operation, we incremehtthe number of operations moduld?®9"! since the start of the
algorithm. Letj be the greatest integkisuch that 8| 1. After an edge is inserted, a rebuild of leVel j —1
is executed. If we represehtas a binary counter whose bits &g ..., bj_1, wherebg is the most significant
bit, then a rebuild of levell occurs each time thé&" bit flips to 1.

3.2 Rebuilding leveli:

During a leveli rebuild, we remove all nontree edges frén j > i and put them intd;. ThenF = R,
i.e., itis the 2-edge connected forest®f

For each level > i, for all superedgesin ch doremove(j, €); also discard the ET-trees. Construct
the new compressed grapif by applyingconnecti, e) for each edge oE;. Store the edges &; with the
appropriate nodes in the new ET-trees which result.

3.3 Deletions

Here, we may sometimes need to insert superedges onilewglonnect components & which are not
connected irF°.

e ExecutingTest Path(i,u,v):

In Sample the threshold for determining if a cut is sparse is lowered by a small factor (and the amount
sampled is increased by a small factor) so that each level receives no more than 1/4 of the edges in
the previous level. Then when leviels rebuilt, since no more thart/2'+ operations have occurred,

no more tham?/2' new edges are added B and no more tham/4' edges are already contained in
Ei, so that Ej| < (3/4)n?/2'.

Sampleuses the ET-tree foF‘ instead of the one foF;, in order to obtain nontree edges Hj.
Note that when a nontree ed@e, v} is deleted from a level, there is only one ET-tree on level
which contains edges that might cover path, v), since that path was covered by an edgg;imnd
every edge irE;j which covers a part of the path must lie in the same connected comporight I
Test Path(j,u,v) is subsequently carried out on leviel> i then we may need to add superedges to
ch in order to connect portions of the patiu, v) which were (before the deletion) connectedn
Thus, before performingest Path(j,u,v), we performconnectj, {u, v}).

In the coverage data structure usedlegt Path(i,u,v) we useC(i — 1) in place ofD(i). InC(i — 1)
a tree edge has cost greater than 0 iff it is covered on a jeviel> i. After incrementing the paths
covered by the sampled edges, we tesf(ii, v) is covered.

To implement exhaustive search of a tfeeén F°, we again us€(i — 1) and increment all paths
covered by nontree edges incidenfltoFor each superedge ihwe check if the path it represents is
covered in this augmentélli — 1). Any superedge corresponding to a path that is not wholly covered
is moved down (see below).

e Moving a superedge & {x, y} from level i: (This occurs wher (X, y) is no longer wholly covered
in Uj <i Ej. This replaces the operation in the deletions-only algorithm in which a tree edge on level
is removed fromF;.)

Doremave(i, €); connecti + 1, e).

e Moving a nontree edge & {x, y} from level i— 1 to level i: Remove the edge from the ET-tree of
leveli — 1. Doconnecti,). Add the edge to the ET - tree of level

e Updating when a tree edge= {x, y} is replaced by an edge e- {x’, y'}: Leti be the level of the
tree edge, i.e., the minimugnsuch thaeis in F;.
(1) Ifthere is asuperedgg = {u, v} in ch which represents a path containgghen daemaove(j, g)
forall j > i;
(2) Removee from F as represented i@(j) andN(j) for eachj.
(3) Add € to F as represented i@(j) andN(j) for eachj and doconnectj, €) for all j > i.

3.4 Queries

To test whetheu andv are 2-edge connected: Find the path frorto v in F as stored irC(l) and output
“yes” iff c(e) > O for all ein the path.

3.5 Proof of correctness

We will show in this section that the invariants hold.

Lemma 3.1 All edges of Fthat are covered by edges in Bre represented in Fby exactly one superedge.

Proof: Note that if the claim holds before a calltonnecti, e), it will also hold afterwards. Note
further that after the call taonnectall edges on the path i between the endpoints efare
represented by a superedge. It follows that the claim holds right after rebuilding.level

10

Consider next a deletion. There are 3 cases to consider: Adding an ed@gereamoving a
superedge fronk°, and updating whenever a tree eege is replaces.Byvhenever a nontree edge
eis added to level, connecti, e) is called and the claim holds. Whenever a superedge is removed
from leveli, all edges irE; on its cut are removed as well. Whetis replaced by, connecti,)
is called in the update#, guaranteeing that for every ed@je y} € E; that lies on the cut oé,

(X, Y) is represented by a path of superedges. Thus the claim hollis.

Lemma 3.2 All edges of F that are represented by a superedgeimiist be in

Proof: During a rebuild all superedges added3brepresent edges & covered by an edge d;.
Thus the claim holds. Assume the claim holds befoo®anecti,) operation, where = {u, v}.
Then afterwards all edges 6frepresented by a superedgeHfeither are inF; or onz(u, v). The
deletion of an edge does not add any superedgE§, texcept in the following four cases:

(A) Moving a superedge from levél— 1 to leveli. Note that the claim might not hold im-
mediately after such a move. However, for each moved superedaé either (a) there is a call
Testpath(i, a, b) with {u, v} € m(a, b) which removedu, v} if it is not covered byE; U Uj FJ-C,
or (b) a nontree edgfa, b} was moved t&E; at the same time dsl, v} and{u, v} € n(a, b).

(B) Moving a nontree edge from level- 1 to leveli. Obviously the claim holds after moving a
nontree edge to level

(C) Updating when a tree edge is replaced by an édge/'} on levelj < i. Note that all tree
edges onr(u, v) are connected on levé¢land, thus, belong t&;. As shown above, after the update
every edge of represented by a superedgdnheither is inF; or onz (u, v). Thus the claim holds.

(D) Before a call toTest Path (i, u, v). Superedges covering all edgesnaiu, v) are added.
Test Path removes all superedges afiu, v) that are not covered big; U Uj < FJ-C. |

Lemma 3.3 If two nodes are connected in°Fthey remain connected in“funtil either they are no longer
connected in For level j, j <, is rebuilt.

Proof: Note that neither aimsert(i, €) hor aconnecti,) disconnects previously connected nodes
in FC, only aremave(i,) does. Aremave(i,) is executed either (a) during a rebuild on level
j <1, (b) when moving a superedge from leveb leveli + 1, or (c) when a tree edge is replaced
by a nontree edge. In the latter case, the two nodes are reconnegiebyrthe following connect.

In case (b), the removed superedgey} is no longer covered by edges Bf U Uj - FJ-C. To finish
the proof of the lemma, we need to show in this case xhandy are no longer connected .
Assume by contradiction thatandy are still connected. Thesach edge’ of 7 (X, y) is covered

by at least one edge @jii E;. By Lemma 3.1¢ is represented by a superedgeUp<i ch or an
edge inE;. Contradiction. |

Lemma 3.4 In C(i), an edge of F has coste) if it is represented by exactlye) superedges inJF, j <.

Proof: Note that every time an edge is added to or removed ﬂFg'an(i) is updated accordingly.
The lemma follows by induction over the steps of the algorithnii

11

3.6 Analysis of the Running Time.

The routinesnsert(i,e)andremove(i,exake O(logn) time per level orO(log? n) time. The routineon-
nect(i,e)takesO(log? n) time per superedge which is inserted. The number of superedges inserted is pro-
portional to a constant plus the number of componeni“afonnected up.

Insertions take tim&®(logn) to do oneinsert(, e). If a tree edge is inserted then every dynamic tree
containingF must be modified for a total cost @ (log? n).

A rebuild requires aemave for each superedge anccannectfor each edge irk;. We will show the
number of superedges Ff is proportional to 2. Thus the total cost i©((log? n)2').

The analysis offest Path is almost the same as in the deletions-only algorithm, except that we need to
executeconnectonce. Unlike the deletions-only algorithm, we use weight of an ET-tree to mean the number
of nontree edges plus the size of the ET-tree (number of superedges in it). Here, the cost of exhaustive search
includes the cost of checking each superedge to determine itill osered after nontree edges are moved
down.

Itis possible that when we search a componerk;pfve are searching only a portion of the component
since that is all that is connectedHf, and we may in fact be searching a portion of the heavier component
of F, rather than the lighter. Yet the weight of this portion must be no greater than the weight of the smaller
component of; therefore the number of times the coverage of a nontree edge is looked at is bounded as in
the deletions-only algorithm.

Thus the analysis of the amortized costs charged to aildvetiveen two consecutive rebuilds of levels
i or lower is the same as in the deletions-only algorithm. That is, the cost is proportional to the number of
nontree edges if; plus the number of superedgeshntimes a factor o (log* n).

The cost of removing a superedge or moving a nontree edge from a lower level to a higher level is
the cost ofemave plus the cost otonnector O(log? n) plus O(log? n) times the number of superedges
inserted into the lower level.

The cost of updating when a tree edge on Iéuslswapped is the cost of doing@mave on each level
j > i and aconnecton each levej > i. The cost of theemae’s is O(log®n) plus O(log? n) times the
number of superedges added.

Lemma 3.5 The total number of superedges inserted into a level i between two consecutive rebuilds of any
levels j j’ < i is proportional to the size of Eplus the number of operations since the rebuild.

Proof: Initially, there are no more than|&; | superedges i since there are no more thafEz|

leaves in the marked tree subtreefofand every node oY, is either a leaf or has degree at least

3. Each operation adds no more than a constant number of superedges, unless it is connecting up
components of° each of which already contain superedges. By invariant (3) two components can
only be connected once iR®, as they remain connected until they are no longer connectgd in
Therefore the total number of superedges in a leigdbig— O of the number of operations executed
between rebuilds plugE;| = 02 -). 1

After an edge is inserted iniB, it participates at most once per level in a rebuild of a level. Thus, each

edge may be charged for the cost of the number of levels tirié&sy* n) to pay for the amortized costs of
Test Path, giving a total amortized cost per insertion®flog® n).

12

References

[1] D. Eppstein, Z. Galil, G. F. Italiano, “Improved Sparsification”, Tech. Report 93-20, Department of
Information and Computer Science, University of California, Irvine, CA 92717.

[2] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A Technique for Speeding up
Dynamic Graph AlgorithmsProc. 33rd Symp. on Foundations of Computer Scieh882, 60—69.

[3] S. Even and Y. Shiloach, “An On-Line Edge-Deletion Problet’ACM28 (1981), 1-4.

[4] G. N. Frederickson, “Data Structures for On-line Updating of Minimum Spanning Tr&4aM J.
Comput, 14 (1985), 781-798.

[5] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-edge-connectivitk @nthllest
spanning treesProc. 32nd Annual IEEE Symposium on Foundation of Comput.1981, 632—641.

[6] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Polylogarithmic Time
per OperationProc. 27th ACM Symp. on Theory of Computih§95, 519-527.

[7] M. R. Henzinger and M. Thorup. Improved Sampling with Applications to Dynamic Graph Algo-
rithms. To appear ifProc. 23rd International Colloquium on Automata, Languages, and Program-
ming (ICALP) Springer-Verlag 1996.

[8] H. Nagamochi and T. Ibaraki, “Linear time algorithms for finding a sp&sennected spanning
subgraph of &-connected graph’Algorithmica7, 1992, 583-596.

[9] D. D. Sleator, R. E. Tarjan, “A Data Structure for Dynamic TredsComput. System Sgi4 (1983),
362-381.

[10] J. Westbrook, R. E. Tarjan, “Maintaining Bridge-Connected and Biconnected Components On-Line”
Algorithmica7(5) (1992), 433-464.

4 Appendix

We encode an arbitrary tréle with n vertices using a sequence af 2 1 symbols, which is generated as
follows: Root the tree at an arbitrar y vertex. Then &l (root), whereET is defined as follows:

ETX)
visit x;
for each childc of x do

ET(c);

visit X.

Each edge of is visited twice and every degrekvertexd times, except for the root which is visited
d + 1 times. Each time any vertexis encountered, we call this atcurrenceof the vertex and denote it
by oy.

New encodings for trees resulting from splits and joins of previously encoded trees can easily be gener-
ated. LetET(T) be the sequence representing an arbitraryTree
Procedures for modifying encodings

13

1. To delete edgda, b} from T: LetT; andT; be the two trees which result, whexes T; andb € T,. Let
0a,, Op,, Oa,, Op, represent the occurrences encountered in the two traverdalsaf If o, < op, and
Op, < Op, theno,, < Op, < Oy, < Oa,. THUSET(TY) is given by the interval oET(T) op,, ..., Op,
andET(Ty) is given by splicing out oET(T) the sequencey,, .. ., Oa,.

2. To change the root of T from r to s: Let os denote any occurrence ef Splice out the first part of the
sequence ending with the occurrence befmtgemove its first occurrencey(), and tack it on to the
end of the sequence which now begins vathAdd a new occurrenoe; to the end.

3. To join two rooted treesT and T’ by edgee: Lete = {a,b} witha € T andb € T’. Given any
occurrences, andoy, rerootT’ atb, create a new occurrenog, and splice the sequen&eT (T')0,,
into ET(T) immediately aften,.

If the sequenc& T(T) is stored in a balanced search tree of dedreend heightO(logn/logb) then
one may insert an interval or splice out an interval in ti@é logn/ logb), while maintaining the balance
of the tree, and determine if two elements are in the same tree, or if one element prece des the other in the
ordering in timeO(logn/b).

14

