
SRC Technical Note
1997 - 004
June 12, 1997

Fully Dynamic 2-Edge Connectivity Algorithm in

Polylogarithmic Time per Operation

Monika Rauch Henzinger and Valerie King

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Abstract

This paper presents the first dynamic algorithmthat maintains 2-edge connectivity in polylogarithmic
time per operation. The algorithm is a Las-Vegas type randomized algorithm.

For a sequence of�(m0) operations, wherem0 is the number of edges in the initial graph, the
expected time forp insertions or deletions of edges isO(p log5 n) and the worst-case time for a query
is O(logn). If only deletions are allowed then the cost forp updates isO(p log4 n) expected time.

1 Introduction

We consider the problem of maintaining a 2-edge connectivity during an arbitrary sequence of edge inser-
tions and deletion. Given ann-vertex graphG with edge weights, thefully dynamic 2-edge connectivity
problemis to maintain a data structure under an arbitrary sequence of the following update operations:

insert(u,v): Add the edge{u, v} to G.

delete(u,v):Remove the edge{u, v} from G.

query(u,v): Return true iffu andv are 2-edge connected inG.

In 1991 [5], Fredrickson introduced a data structure known astopology treesfor the fully dynamic 2-
edge connectivity problem with a worst case cost ofO(

√
m) per update, wherem is the number of edges in

the graph at the time of the update. His data structure permitted 2-edge connectivity queries to be answered
in O(logn) time. In 1992, Eppstein et. al. [1, 2] improved the update time toO(

√
n) using thesparsifi-

cation technique. If only edge insertions are allowed, the Westbrook-Tarjan data structure [10] maintains
the minimum spanning forest in timeO(α(m, n)) per insertion or query. If only edge deletions are allowed
(“deletions-only”), then no algorithm faster than the�(

√
n) fully dynamic algorithm was known.

Using randomization, we give the first polynomial-time algorithm for the problem: we present a fully
dynamic 2-edge connectivity problem in amortized timeO(log5 n) per update andO(logn) per 2-edge
connectivity query. If the problem is restricted to deletions-only, our algorithm runs in amortized time
O(log4 n). A preliminary version of this result appeared in [6].

2 A Deletions-only 2-Edge Connectivity Algorithm

Let F be a spanning forest ofG. We give an algorithm with amortized expected timeO(log4 n).

2.1 A Deletions-only Algorithm

Definitions and notation:Edges ofF are calledtreeedges and the tree path betweenu andv is denoted by
π(u, v). A nontree edge{u, v} coversa tree edgee iff e lies on the tree path betweenu andv. A bridgeis
an edge ofF that is not covered by nontree edge ofG. Two nodesu andv are 2-edge connected iff all edges
onπ(u, v) are covered [5].

Throughout the algorithm, the nontree edges ofG are partitioned into levelsE1, . . . , El , l = d2 logne.
We letFi denote a forest of 2-edge connected components ofGi = (V,∪j≤i Ej ∪ F), whereFi ⊆ Fi+1. The
level of a tree edgee is defined to be the smallesti such thate is covered inGi . Let l = dlogme + 2.

If T is the tree ofFj containing an edgee and a nodeu, let Tu \ e denote the subtree ofT \ e containing
u. Let theweightw(T) of a spanning tree be the number of non-tree edges incident toT .

We maintain the following data structures:

1

• F is stored in a dynamic tree data structureD(F) whose edges are marked only while processing a
deletion [9].

• For each leveli , Fi is stored in a dynamic tree data structureD(i). Each tree edge which is also in
Fj , j < i , is colored black; all other edges are initially white.

• For G we keep a dynamic minimum spanning tree data structureD(MST) in which edges are
weighted by their level number. The edges in the initial spanning forestF are weighted 0. An ef-
ficient data structure for maintaining a minimum spanning tree with a small number of weights can
be found in [6, 7].

To initialize the data structures: Initially, put all nontree edges intoE1. The remainingEj , j 6= i are
empty. Compute the 2-edge connected components ofG. Let F1 be the 2-edge connected subforest ofF .
SetF1 = F2 = ... = Fl . Construct theD(i) accordingly.
To answer the query: ”Are x and y 2-edge connected?”:To test ifx andy are 2-edge connected, check
if they are connected inD(l). This test takes timeO(logn).
To update the data structure after a deletion of edgee=fu,vg: Let i be the index of the graph such that
e is in level i . Call Delete(e, i).

Delete(e, i)

Case A: e∈ F : If e ∈ Fl (thene is a bridge), removee from all data structures representingF . Otherwise,
use D(MST) to find a minimum cost replacement edgee′ for e, makee a nontree edge ofEi ande′ an edge
of F and continue as in Case B.

Case B: e∈ Ei :

1. Mark the edges ofπ(u, v) (usingD(F)). These are the possible new bridges ofF .

2. while there exist unmarked edgesdo
Let a andb be two leaves in the marked subforest ofF . (Initially, a andb areu andv).
Call Test Path(i, a, b).

3. if π(u, v) was not covered on leveli , incrementi , and goto Step 1.

The procedureTest Path(i, u, v) either

(1) determines that all edges inπ(u, v) are covered by a sequence of random samples; or

(2) finds one tree edgef in level i which is suspected of being “sparsely covered” by edges inEi .
(2A) If f is sparsely covered, the algorithm moves toi + 1 those edges which cross the cut induced
by f ’s removal and marks their path. Thus the tree inFi containing f is split into two subtrees, and
the data structures representingFi are modified accordingly.
(2B) With very low probability,f is not sparsely covered. In this casef is not removed fromFi .
In either case the subtree ofT \ f which is marked inD(F) is searched exhaustively to determine
which edges have become bridges inFi . D(F) is unmarked.

Test Path (i, u, v)
Let T denote the tree ofFi containingu andv.

1. iu = 0 andiv = 0;

2

2. Repeat untiliu andiv are both greater than lgw(T)− 1 or Samplereturnsfalse.

(a) Find the furthest edgeeu from u onπ(u, v) such thatw(Tu\eu) ≤ 2iu . If this cut was previously
examined, incrementiu and repeat.
Find also the closest edgee′u to u onπ(u, v) such thatw(Tu \ e′u) > 2iu−1.

(b) If iu ≤ lgw(T)− 1 thenSample(u, v, eu, e′u).

(c) Find the furthest edgeev from v onπ(u, v) such thatw(Tv \ev) ≤ 2iv . If this cut was previously
examined, incrementiv and repeat.
Find also the the closest edgee′v to v onπ(u, v) such thatw(Tv \ e′v) > 2iv−1.

(d) If iv ≤ lgw(T)− 1 thenSample(v, u, ev, e′v).

3. if i u > lgw(T)− 1 andiv > lgw(T)− 1 thenπ(u, v) is covered.Unmarkπ(u, v).

Sample(z, w, ez, e′z) requires thatez, e′z ∈ π(z, w). Let c andc′ be constants to be determined later.

Sample(z, w, ez, e′z):

1. If w(Tz \ ez) < c log2 n then the setX consists of all edges incident toTz \ ez. Otherwise the setX is
determined by samplingc log2 n edges ofEi incident to nodes ofTz\ez. An edge with both endpoints
in Tz \ ez is picked with probability 2/w(Tz \ ez) and an edge with one endpoint inTz \ ez is picked
with probability 1/w(Tz \ ez). In this caseX consists of one edge.

2. Letez = {x, y}, wherex is the endpoint closest toz. Determine (usingD(i)) if all tree edges in level
i onπ(z, y) betweene′z andez (includinge′z andez) are covered by edges inX. If so, incrementiz
and returntrue.

3. Else let f = {x′, y′} be the uncovered such edge nearest toy. Wlog letx′ ∈ π(z, y′).

(a) Search all edges inEi incident toTz \ f and determineS= fedges ofF ′i connectingTz \ f and
Tw \ f g.

(b) If 0 ≤ |S| ≤ w(Tz \ f)/(15c′ logn), f f is sparsely coveredg, remove f from D(i) update f ’s
color in D(i+1), and remove the elements ofS from Ei and insert them intoEi+1. For all edges
(a, b) in S, mark the pathπ(a, b) (using data structureD(F)).

(c) Determine all tree edges inTz\ f which are in leveli and are not covered by an edge of the new
Ei (using data structureD(i)) and remove them fromFi . Unmark all edges inTz \ f in D(F).

(d) Returnfalse.

2.2 Proof of Correctness

We first show that all edges are contained in∪i≤l Ei , i.e., whenT est Path(u, v, l − 1) is called, and Step
3 is executed, no nontree edge is inserted intoEl . This fact implies that the trees ofFl span the 2-edge
connected components ofG.

Lemma 2.1 With probability at least1 1− 1/n2, when Step 3 inSample is executed, then|S| ≤ w(Tz \
ez)/(15c′ logn).

1The probability can be increased for 1− 1/nd for any constantd by increasing the number of sampled edges by a constant
factor

3

Proof: For each edgee′ ∈ π(z, y) betweene′z andez (includinge′z andez), 2iu−1 < w(Tz\e′) ≤ 2iu .
Thus, each nontree edge incident toTz \ e′ is sampled with probability at least 1/(4w(Tz \ e′)). Let
us test the hypothesis that|S| ≤ w(Tz \ ez)/(15c′ logn). The error probability, i.e., the probability
that|S| > w(Tz \ e′)/(15c′ logn), but no edge ofS is selected is

(1− 1/(60c′ logn))c log2 n = O(1/n5)

for c ≥ 300c′.

Thus the probability that|S| > w(Tu \ e′)/(c′ logn) for any of the at mostn edges onπ(z, w) with
2iu−1 < w(Tz \ e′) ≤ 2iu is at most 1/n3+, implying that that the probability is at most 1/n2 that it
happens at any deletion.

Thus with high probability a subtree is searched only once and then is split off from its tree. Note that
the weight of the subtree is at most half the weight of its tree. In the following we denote the split-off subtree
by T1. Let mi be the number of edges ever inEi .

Lemma 2.2 For all smaller trees T1 on level i,
∑
w(T1) ≤ 15mi logn.

Proof: We use the “bankers view” of amortization: Every edge ofEi receives a coin whenever it
is incident to the smaller treeT1. We show that the maximum number of coins accumulated by the
edges ofEi is 15mi logn.

Each edge ofEi has two accounts, astart-up accountand aregular account. Whenever an edgee
of Ei is moved to leveli > 1, the regular account balance of the two edges on leveli with maximum
regular account balance is set to 0 and all their coins are paid intoe’s start-up account. Whenever an
edge ofEi is incident to the smaller treeT1 in a split ofT , one coin is added to its regular account.

We show by induction on the steps of the algorithm that a start-up account contains at most
10 logn coins and a regular account contains at most 5 logn coins. The claim obviously holds at the
beginning of the algorithm. Consider stepk+1. If it moves an edge to leveli , then by induction the
maximum regular account balance is at most 5 logn and, thus, the start-up account balance of the
new edge is at most 10 logn.

Consider next the case that stepk + 1 splits treeT1 off T0 and charges one coin to each edgee
of Ei incident toT0. Letw0 be the weight ofT0 whenT0 was created. We show that ife’s regular
account balance was not reset since the creation ofT1, thenw(T0) ≤ 3w0/4. This implies that at
most 2 log4/3 n < 5 logn splits can have charged toe aftere’s last reset. The lemma follows.

Edges incident toT1 at its creation are reset before edges added to leveli later on. Sincee was
not reset, at mostw0/2 many inserts into leveli can have occurred since the creation ofT1. Thus,
immediately before the split,w(T1) ≤ 3w0/2. Sincew(T0) ≤ w(T1)/2, the claim follows.

Lemma 2.3 For any i, mi ≤ m/c′i−1.

Proof: We show the lemma by induction. It clearly holds fori = 1. Assume it holds forEi−1.
When summed over all smaller treesT1,

∑
w(T1)/(15c′ logn) edges are added toEi . By Lemma

2.2,
∑
w(T1) ≤ 15mi−1 logn. this implies that the total number of edges inEi is no greater than

m/c′i−1.

Choosingc′ = 2 gives the following corollary.

4

Corollary 2.4 For l = blogmc + 2 all nontree edges of G are contained in some Ei for i < l, i.e. El is
empty.

The following relationship, which will be useful in the running time analysis, is also evident.

Corollary 2.5
∑

i mi = O(m).

Lemma 2.6 If in Test Path iu and iv are greater thanlogw(T)− 1 then all edges onπ(u, v) are covered.

Proof: We have to show that all edges onπ(u, v) have been covered. Letev be the furthest edge
fromv onπ(v, u) such thatw(Tv\ev) ≤ w(T)/2. Leteu be the furthest edge fromu onπ(u, v) such
thatw(Tu\eu) ≤ w(T)/2 and lete′u be its incident edge closer tov. Note thatw(Tu\e′u) > w(T)/2.
Thusw(Tv \ e′u) ≤ w(T)/2, i.e., eithere′u = ev or ev is further fromv thane′u. Thus, the longest
path tested “foru” and the longest path tested “forv” either touch or overlap.

Theorem 2.7 The D(i) are correctly maintained, i.e., they represent the Fi and a tree edge is marked iff it
is in Fi−1.

Proof: The correctness of the data structures depends on the the fact that two nodes are 2-edge
connected iff they are joined by a path of spanning tree edges which are covered by nontree edges.

When a tree edgee is swapped, if the tree edge is not a bridge, then leti be the minimum index
such thate is contained inFi . Since the endpoints ofe are 2-edge connected inFi , the D(MST)
returns a replacement edgee′ in Ei .

For Fj , j < i , the swap causes no change to the coverage, ase′ is not contained in anyEj , j > i ,
and there is no change to the structure ofFj as the two subtrees ofF joined bye remain in separate
components ofFj .

For levelsj ≥ i , eachGj contains the fundamental cycle formed bye′ with edges ofF . Hence
we observe that whene is swapped with its replacement edgee′ e′ ’s coverage and all other tree
edges’ coverage remains unchanged.

When a nontree edgee′ is deleted, we observe that the only path in which coverage may change
is the tree path betweene′’s endpoints. Our deletions algorithm either finds edges covering the path
or removes from the appropriateFi those edges in the path which are no longer covered.

2.3 Details of the Implementation

Sampling edges:We keepFi in a ET-tree data structure, and with each active occurrence we store the nontree
edges inEi which are incident to corresponding vertex.
Covering paths:We useD(i). Each edge inFi−1 has cost has cost∞. At the start of eachDelete, all other
tree edges (i.e. those in leveli) have cost 0. We implement the following operations:

• Cover(s, t, u, v): Find the nodea (b) closest tos (t) onπF̄ (u, v) and add 1 to all edges onπF̄ (a, b).

• Uncover(s, t, u, v): Find the nodea (b) closest tos (t) onπF̄ (u, v) and subtract 1 from all edges on
πF̄ (a, b).

• FirstUncovered(y, u): Return the edge onπ(y, u) that is closest toy and in leveli and has cost 0.

5

• LastUncovered(y, u): If no edge onπ(y, u) has cost 0, return the edge incident tou on π(y, u).
Otherwise, determine the edgee onπ(y, u) of cost greater than 0 which is closest toy and return the
edge of cost 0 immediately beforee onπ(y, u) (if it exists).

• Midpoint(u,v):Return the middle edge ofπu, v.

• Pathwt(u, v, wt): Find the furthest edgeev from u onπ(u, v) such thatw(Tu \ ev ≤ wt).

Using dynamic trees each operation except the last can be implemented in timeO(logn). Pathwt(u, v, wt)
can be implemented inO(log2 n) time by performing a binary search onπ(u, v) using no more than lgn
applications ofMidpointand tests comparingw(Tu \ ei) towt .

The coverage data structure is used inSampleto cover the edges onπ(u, v) with the sampled edges
and to find the first uncovered edge on leveli .

Afterwards we uncover the edges onπ(u, v) again.

2.4 Analysis of Running Time

We show that the amortized cost per edge deletion on a level isO(log4 n) if there arem deletions.
For each tree edge which is deleted, the amortized expected update cost of the fully dynamic MST

algorithm when there arek weights isO(k log2 n), so that the cost per deletion isO(log3 n) (see [6, 7]).
In the case where the path is completely covered by a sequence of sampled edges, there are less than

2 logw(T) points in the path during which the nontree edges are sampled. Each point is discovered using
Pathwtin O(log2 n) time. At each point, the sampling and testing involveO(min(w(T), log2 n)) edges at a
cost ofO(logn) per edge, for a total cost, for the whole path, ofO(logw(T)(log2 n+logn min(w(T), log2 n)) =
O(min(w(T), log2 n) log2 n).

Consider next the case where the path is not completely covered. Letf be the first uncovered edge in
step 3 and letT1 = Tz \ f . An exhaustive search of subtreeT1 is carried out andTest Path stops. The cost
of the exhaustive search isO(logn) per nontree edge, using the ET-tree data structure, orO(w(T1) logn).
(In this case sampling may cost as much as the exhaustive search.) We claim that the cost of all the suc-
cessful sampling up to the point of the exhaustive search isO(w(T1) log2 n). Let T (0), T (1), . . . , T (p) be
the sequence of subtree inTz previously sampled. Noww(T (j)) ≤ w(T (j+2))/2, andw(T (p)) ≤ w(T1).
The successful sampling inT (j) has costO(w(T (j)) log2 n). Thus the total cost of successful sampling is
O(
∑

j w(T
(j)) log2 n) = O(w(T1) log2 n).

When f is indeed sparsely covered,T1 is split off from Tz. From Lemma 2.2, we see that on leveli ,∑
w(T1) ≤ 15mi logn. Thus the total cost ofTest Path’s which terminate with the discovery of a sparsely

covered edgef is O(mi log3 n). Summed over all levels this isO(m log3 n). We charge this cost to the
edges, chargingO(log3 n) each.

As shown in Lemma 2.1, the probability that during the course of the algorithm, an edgef that is
suspected of being sparsely covered is not sparsely covered is no greater than 1/n2. Thus this case adds no
more thanO(m log2 n/n2) = O(log2 n) to the expected cost of the algorithm.

Lemma 2.8 During a Deletethe number of timesTest Path runs to completion on level i, having covered
a path by successful sampling is no greater than the number of paths marked by the algorithm, i.e., the
number of deletions on level i plus the number of edges moved to level i+ 1.

Proof: It is not hard to see that the total numberZ of leaves plus number of nodes of degree 3 in the
marked subtree is no greater than twice the number of paths which has been marked. Each marked

6

path contributes at most 2 to this total. Each timeTest Path runs to completion, having covered a
path by successful sampling, two leaves are removed from a marked subtree, subtracted 2 fromZ.
In addition, some degree 3 nodes may become leaves but this doesn’t affectZ. While Each time
Test Path terminates without covering the complete path, a marked subtree is unmarked which does
not increaseZ.

We now explain how we charge for the costs on levelj ≤ i during aDelete(e, i), wheree= (u, v), i.e.,
the cost ofTest Path(j , u, v). If π(u, v)was successfully covered with sampled edges byTest Path(j , u, v),
the incurred cost on levelj is O(log4 n) and no calls ofTest Pathon levels> j occur. In this case we charge
the cost to the deletion of edgee. Note that at most one level charges to thedeleteoperation, i.e., the charge
per operation isO(log4 n).

If π(u, v) was not successfully covered with sampled edges byTest Path(j , u, v), then incurred cost on
level j is O((1+ dj) log4 n) wheredj is the number of edges moved from levelj to level j + 1 during the
Test Path. In this case there was a sequence of splits of the treeT containingu andv on level j .

Consider one of these splits. LetSc be the set of edges moved to levelj + 1 by the split and letT1 be
the subtree searched after the split. As observed earlier, the weight ofT1 is at most half the weight of its tree
before the split. We charge the cost of moving the edges ofSc to level j +1 to the nontree edges incident to
T1. Thus, the charge per nontree edge isO(|Sc| log4 n/w(T1)) = O(log3n). This accounts for all the cost
occurred duringTest Path(j , u, v).

Since
∑
w(T1) ≤ 8mi logn, the total expected charge that a nontree edge ever receives on leveli is

O(log4 n).

3 A Dynamic 2-Edge Connectivity Algorithm

The basic idea is to insert edges into the last level and rebuild levels as necessary. LetF be a spanning forest
of G. All nontree edges ofG are put intoE1 and the otherEi are empty. As in the deletions-only algorithm,
edges may move to higher levels.

Throughout the algorithm, the nontree edges ofG are partitioned into levelsE1, . . . , El , l = d2 logne.
We let Fi denote a forest of 2-edge connected components ofGi = (V, (∪j≤i Ej) ∪ F), whereFi ⊆ Fi+1.
The level of a tree edgee is defined to be the smallesti such thate is covered inGi .

We representFi for each leveli in as labelled subtrees in a dynamic tree data structure representingF .
Unlike the deletions-only algorithm, we also keep a compressed version ofFc

i with size proportional to the
size ofEi , so that the ET-trees for a level representFc

i , rather thanFi .
The compressed forestFc

i = (Vc
i , Ec) is initially constructed usingEi . Suppose for each edge{x, y} in

Ei , the path{x, y} in F is marked. LetFm denote the subforest of marked edges inF . Let Vc
i contain all

nodes which are leaves and all nodes which have degree at least three inFm. A superedge{x, y} is in Ec

iff x, y ∈ Vc
i , the path betweenx andy is in Fc and there are no other nodes inVc

i which are on the path
π(x, y). We say thatpathπ(x, y) is represented by superedgefx,yg.

Note that a component ofFi may contain several components ofFc
i . As the algorithm proceeds, we

allow there to be additional superedges in leveli which cover paths covered inFj j < i and which are not
covered by edges inEi .

Note that as the level number increases, the 2-edge connected components ofFi may contain more
nodes, but their compressed version, whose size is linear in the size ofEi is smaller.

We keep for each leveli :

7

• a dynamic tree data structureN(i) storing F , where each tree edgee which is represented by a
superedge ofFc

i is labelled with its name.

• a dynamic tree data structureC(i) storing Fi where an edgee has costci (e) if it is represented by
ci (e) superedges inFj , j ≤ i .

• for each 2-edge connected component ofFc
i an ET-tree in which all nontree edges ofEi are stored,

referred to as the ET-trees of leveli . The weight of an ET-tree is the number of nontree edge stored
thereplusthe number of superedges contained in it.

In additon, we keep a dynamic tree data structure forF , D(F) which is only marked during the course
of a deletion, and a fully dynamic minimum spanning tree data structureD(MST). Both are used as in the
deletions-only algorithm.

We keep the following invariants.

Invariants:

1. All edges ofFi which are covered by edges inEi are represented inFc
i , by exactly one superedge.

2. All edges ofF which are represented by a superedge inFc
i must be inFi .

3. If two nodes are connected inFc
i they remain connected inFc

i until either they are no longer connected
in Fi or level j , j ≤ i is rebuilt.

4. In C(i), an edge ofF has costc(e) if it is represented by exactlyc(e) superedges inFc
j , j ≤ i .

3.0.1 Subroutines

We introduce the following subroutines for operations on compressed forests:

remove(i,e):This assumese= {u, v} is a superedge inFc
i .

(1) Removee from the ET-tree representingFc
i .

(2) For j ≥ i , decrementπ(u, v) in C(j).
(3) Remove the name ofe from π(u, v) in N(i).

insert(i,e): This inserts the superedgee = {u, v} into Fc
i and assumes no part ofπ(u, v) is represented in

Fc
i .

For each levelj ≥ i do
(1) Inserte into the ET-tree representingFc

i .
(2) For j ≥ i , incrementπ(u, v) in C(j).
(3) Labelπ(u, v) with its name inN(i).
(4) Addu andv to Vc

i if they are not inVc
i .

connect(i,e):Let e= {u, v}. This routine either inserts a superedge betweenu andv into Fc
i or, if π(u, v)

is partially represented by superedges inFc
i , the whole path is now represented, by connecting up the

represented segments by new superedges.

Case A: No portion ofπ(u, v) is represented in Fci : insert(i, e).

8

Case B:Portions ofπ(u, v) are represented but not the whole path.
If nodeu is not inVc

i but the edge inπ(u, v) containingu is represented: Letx andy be the nodes
which are inVc

i and which lie closest tou on either side of the labelled path. Doremove(i, {x, y});
insert(i, {x, u}); insert(i, {u, y}).
Repeat the following steps until all ofπ(u, v) is represented:

1. Let u′ be the node closest tou such that{u′, v′} is in π(u, v) and is not represented. Ifu′ is
not in Vc

i , add it toVc
i . If u′ lies on a labelled path letx and y be the nodes which are in

Vc
i and which lie closest tou′ on either side of the represented path. Doremove(i, {x, y}), do

insert(i, {x, u′}), andinsert({u′, y}).
2. Find the closest nodez to u′ in a represented portion of the pathπ(u′, v).

3. If z is not inVc
i , add it toVc

i . Thenz lies on a labelled path. Letx andy be the nodes which are
in Vc

i and which lie closest toz on either side of the represented path. Doremove(i, {x, y}),
4. Do insert(i, {x, z}), insert({z, y}), andinsert({u′, z}).

• Repeat case B forv substituted foru.

3.1 Insertions

When edgee is inserted intoG then if e connects two unconnected components ofF , e is inserted into
the data structures representingF , i.e., N(i), andC(i) for each leveli . If e is a nontree edge then do
insert(l , e).

After each operation, we incrementI , the number of operations modular 2d2 logne since the start of the
algorithm. Letj be the greatest integerk such that 2k|I . After an edge is inserted, a rebuild of levell − j −1
is executed. If we representI as a binary counter whose bits areb0, ..., bl−1, whereb0 is the most significant
bit, then a rebuild of leveli occurs each time thei th bit flips to 1.

3.2 Rebuilding leveli :

During a leveli rebuild, we remove all nontree edges fromEj j > i and put them intoEi . ThenFi = Fl ,
i.e., it is the 2-edge connected forest ofG.

For each levelj ≥ i , for all superedgese in Fc
j do remove(j , e); also discard the ET-trees. Construct

the new compressed graphFc
i by applyingconnect(i, e) for each edge ofEi . Store the edges ofEi with the

appropriate nodes in the new ET-trees which result.

3.3 Deletions

Here, we may sometimes need to insert superedges on leveli to connect components ofFi which are not
connected inFc

i .

• ExecutingTest Path(i,u,v):

In Sample, the threshold for determining if a cut is sparse is lowered by a small factor (and the amount
sampled is increased by a small factor) so that each level receives no more than 1/4 of the edges in
the previous level. Then when leveli is rebuilt, since no more thann2/2i+ operations have occurred,

9

no more thann2/2i new edges are added toEi and no more thanm/4i edges are already contained in
Ei , so that|Ei | < (3/4)n2/2i .

Sampleuses the ET-tree forFc
i instead of the one forFi , in order to obtain nontree edges inEi .

Note that when a nontree edge{u, v} is deleted from a leveli , there is only one ET-tree on leveli
which contains edges that might cover pathπ(u, v), since that path was covered by an edge inEi and
every edge inEi which covers a part of the path must lie in the same connected component ofFc

i . If
Test Path(j,u,v) is subsequently carried out on levelj > i then we may need to add superedges to
Fc

j in order to connect portions of the pathπ(u, v) which were (before the deletion) connected inFj .
Thus, before performingTest Path(j,u,v), we performconnect(j , {u, v}).
In the coverage data structure used byTest Path(i,u,v) we useC(i − 1) in place ofD(i). In C(i −1)
a tree edge has cost greater than 0 iff it is covered on a levelj , j > i . After incrementing the paths
covered by the sampled edges, we test ifπ(u, v) is covered.

To implement exhaustive search of a treeT in Fc
i , we again useC(i − 1) and increment all paths

covered by nontree edges incident toT . For each superedge inT we check if the path it represents is
covered in this augmentedC(i−1). Any superedge corresponding to a path that is not wholly covered
is moved down (see below).

• Moving a superedge e= {x, y} from level i: (This occurs whenπ(x, y) is no longer wholly covered
in ∪j≤i Ej . This replaces the operation in the deletions-only algorithm in which a tree edge on leveli
is removed fromFi .)

Do remove(i, e); connect(i + 1, e).

• Moving a nontree edge e= {x, y} from level i− 1 to level i: Remove the edge from the ET-tree of
level i − 1. Doconnect(i, e). Add the edge to the ET - tree of leveli .

• Updating when a tree edge e= {x, y} is replaced by an edge e′ = {x′, y′}: Let i be the level of the
tree edge, i.e., the minimumj such thate is in Fj .
(1) If there is a superedgeej = {u, v} in Fc

j which represents a path containinge, then doremove(j , ej)

for all j ≥ i ;
(2) Removee from F as represented inC(j) andN(j) for eachj .
(3) Adde′ to F as represented inC(j) andN(j) for each j and doconnect(j , e′) for all j ≥ i .

3.4 Queries

To test whetheru andv are 2-edge connected: Find the path fromu to v in F as stored inC(l) and output
“yes” iff c(e) > 0 for all e in the path.

3.5 Proof of correctness

We will show in this section that the invariants hold.

Lemma 3.1 All edges of Fi that are covered by edges in Ei are represented in Fci by exactly one superedge.

Proof: Note that if the claim holds before a call toconnect(i, e), it will also hold afterwards. Note
further that after the call toconnectall edges on the path inFi between the endpoints ofe are
represented by a superedge. It follows that the claim holds right after rebuilding leveli .

10

Consider next a deletion. There are 3 cases to consider: Adding an edge toEi , removing a
superedge fromFc

i , and updating whenever a tree eege is replaced bye′. Whenever a nontree edge
e is added to leveli , connect(i, e) is called and the claim holds. Whenever a superedge is removed
from level i , all edges inEi on its cut are removed as well. Whene is replaced bye′, connect(i, e)
is called in the updatedF , guaranteeing that for every edge{x, y} ∈ E; that lies on the cut ofe,
π(x, y) is represented by a path of superedges. Thus the claim holds.

Lemma 3.2 All edges of F that are represented by a superedge in Fc
i must be in Fi .

Proof: During a rebuild all superedges added toFc
i represent edges ofF covered by an edge ofEi .

Thus the claim holds. Assume the claim holds before aconnect(i, e) operation, wheree= {u, v}.
Then afterwards all edges ofF represented by a superedge inFc

i either are inFi or onπ(u, v). The
deletion of an edge does not add any superedges toFc

i , except in the following four cases:

(A) Moving a superedge from leveli − 1 to level i . Note that the claim might not hold im-
mediately after such a move. However, for each moved superedge{u, v} either (a) there is a call
Test path(i, a, b) with {u, v} ∈ π(a, b) which removes{u, v} if it is not covered byEi ∪ ∪j≤i Fc

j ,
or (b) a nontree edge{a, b} was moved toEi at the same time as{u, v} and{u, v} ∈ π(a, b).

(B) Moving a nontree edge from leveli − 1 to leveli . Obviously the claim holds after moving a
nontree edge to leveli .

(C) Updating when a tree edge is replaced by an edge{x′, y′} on level j ≤ i . Note that all tree
edges onπ(u, v) are connected on levelj and, thus, belong toFi . As shown above, after the update
every edge ofF represented by a superedge inFc

i either is inFi or onπ(u, v). Thus the claim holds.

(D) Before a call toTest Path (i, u, v). Superedges covering all edges ofπ(u, v) are added.
Test Path removes all superedges onπ(u, v) that are not covered byEi ∪ ∪j≤i Fc

j .

Lemma 3.3 If two nodes are connected in Fc
i , they remain connected in Fc

i until either they are no longer
connected in Fi or level j , j ≤ i, is rebuilt.

Proof: Note that neither aninsert(i, e) nor aconnect(i, e) disconnects previously connected nodes
in Fc

i , only a remove(i, e) does. Aremove(i, e) is executed either (a) during a rebuild on level
j ≤ i , (b) when moving a superedge from leveli to level i + 1, or (c) when a tree edge is replaced
by a nontree edge. In the latter case, the two nodes are reconnected inFc

i by the following connect.
In case (b), the removed superedge{x, y} is no longer covered by edges ofEi ∪

⋃
j<i Fc

j . To finish
the proof of the lemma, we need to show in this case thatx and y are no longer connected inFi .
Assume by contradiction thatx andy are still connected. Theneach edgee′ of π(x, y) is covered
by at least one edge in

⋃
j≤i Ej . By Lemma 3.1e′ is represented by a superedge in

⋃
j<i Fc

j or an
edge inEi . Contradiction.

Lemma 3.4 In C(i), an edge of F has cost c(e) if it is represented by exactly c(e) superedges in Fcj , j ≤ i.

Proof: Note that every time an edge is added to or removed fromFi
j , C(i) is updated accordingly.

The lemma follows by induction over the steps of the algorithm.

11

3.6 Analysis of the Running Time.

The routinesinsert(i,e)andremove(i,e)take O(logn) time per level orO(log2 n) time. The routinecon-
nect(i,e)takesO(log2 n) time per superedge which is inserted. The number of superedges inserted is pro-
portional to a constant plus the number of components ofFc

i connected up.
Insertions take timeO(logn) to do oneinsert(l , e). If a tree edge is inserted then every dynamic tree

containingF must be modified for a total cost ofO(log2 n).
A rebuild requires aremove for each superedge and aconnectfor each edge inEi . We will show the

number of superedges inFc
i is proportional to 2l−i . Thus the total cost isO((log2 n)2l−i).

The analysis ofTest Path is almost the same as in the deletions-only algorithm, except that we need to
executeconnectonce. Unlike the deletions-only algorithm, we use weight of an ET-tree to mean the number
of nontree edges plus the size of the ET-tree (number of superedges in it). Here, the cost of exhaustive search
includes the cost of checking each superedge to determine if it is still covered after nontree edges are moved
down.

It is possible that when we search a component ofFi , we are searching only a portion of the component
since that is all that is connected inFc

i , and we may in fact be searching a portion of the heavier component
of Fi , rather than the lighter. Yet the weight of this portion must be no greater than the weight of the smaller
component ofFi ; therefore the number of times the coverage of a nontree edge is looked at is bounded as in
the deletions-only algorithm.

Thus the analysis of the amortized costs charged to a leveli between two consecutive rebuilds of levels
i or lower is the same as in the deletions-only algorithm. That is, the cost is proportional to the number of
nontree edges inEi plus the number of superedges inFi times a factor ofO(log4 n).

The cost of removing a superedge or moving a nontree edge from a lower level to a higher level is
the cost ofremove plus the cost ofconnector O(log2 n) plus O(log2 n) times the number of superedges
inserted into the lower level.

The cost of updating when a tree edge on leveli is swapped is the cost of doing aremove on each level
j ≥ i and aconnecton each levelj ≥ i . The cost of theremove’s is O(log3 n) plus O(log2 n) times the
number of superedges added.

Lemma 3.5 The total number of superedges inserted into a level i between two consecutive rebuilds of any
levels j, j ′ ≤ i is proportional to the size of Ei plus the number of operations since the rebuild.

Proof: Initially, there are no more than 4|Ei | superedges inFc
i since there are no more than 2|Ei |

leaves in the marked tree subtree ofF and every node ofVc
i is either a leaf or has degree at least

3. Each operation adds no more than a constant number of superedges, unless it is connecting up
components ofFc

i each of which already contain superedges. By invariant (3) two components can
only be connected once inFc

i , as they remain connected until they are no longer connected inFi .
Therefore the total number of superedges in a leveli is big−O of the number of operations executed
between rebuilds plus|Ei | = O(2l−i).

After an edge is inserted intoG, it participates at most once per level in a rebuild of a level. Thus, each
edge may be charged for the cost of the number of levels timesO(log4 n) to pay for the amortized costs of
Test Path, giving a total amortized cost per insertion ofO(log5 n).

12

References

[1] D. Eppstein, Z. Galil, G. F. Italiano, “Improved Sparsification”, Tech. Report 93-20, Department of
Information and Computer Science, University of California, Irvine, CA 92717.

[2] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, “Sparsification - A Technique for Speeding up
Dynamic Graph Algorithms”Proc. 33rd Symp. on Foundations of Computer Science, 1992, 60–69.

[3] S. Even and Y. Shiloach, “An On-Line Edge-Deletion Problem”,J. ACM28 (1981), 1–4.

[4] G. N. Frederickson, “Data Structures for On-line Updating of Minimum Spanning Trees”,SIAM J.
Comput., 14 (1985), 781–798.

[5] G. N. Frederickson, “Ambivalent Data Structures for Dynamic 2-edge-connectivity andk smallest
spanning trees”Proc. 32nd Annual IEEE Symposium on Foundation of Comput. Sci., 1991, 632–641.

[6] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Polylogarithmic Time
per Operation.Proc. 27th ACM Symp. on Theory of Computing, 1995, 519–527.

[7] M. R. Henzinger and M. Thorup. Improved Sampling with Applications to Dynamic Graph Algo-
rithms. To appear inProc. 23rd International Colloquium on Automata, Languages, and Program-
ming (ICALP), Springer-Verlag 1996.

[8] H. Nagamochi and T. Ibaraki, “Linear time algorithms for finding a sparsek-connected spanning
subgraph of ak-connected graph”,Algorithmica7, 1992, 583–596.

[9] D. D. Sleator, R. E. Tarjan, “A Data Structure for Dynamic Trees”J. Comput. System Sci.24 (1983),
362–381.

[10] J. Westbrook, R. E. Tarjan, “Maintaining Bridge-Connected and Biconnected Components On-Line”
Algorithmica7(5) (1992), 433–464.

4 Appendix

We encode an arbitrary treeT with n vertices using a sequence of 2n− 1 symbols, which is generated as
follows: Root the tree at an arbitrar y vertex. Then callET(root), whereET is defined as follows:

ET(x)

visit x;
for each childc of x do

ET(c);
visit x.

Each edge ofT is visited twice and every degree-d vertexd times, except for the root which is visited
d + 1 times. Each time any vertexu is encountered, we call this anoccurrenceof the vertex and denote it
by ou.

New encodings for trees resulting from splits and joins of previously encoded trees can easily be gener-
ated. LetET(T) be the sequence representing an arbitrary treeT .

Procedures for modifying encodings

13

1. To delete edge{a, b} from T : Let T1 andT2 be the two trees which result, wherea ∈ T1 andb ∈ T2. Let
oa1, ob1, oa2, ob2 represent the occurrences encountered in the two traversals of{a, b}. If oa1 < ob1 and
ob1 < ob2 thenoa1 < ob1 < ob2 < oa2. ThusET(T2) is given by the interval ofET(T) ob1, . . . , ob2

andET(T1) is given by splicing out ofET(T) the sequenceob1, . . . , oa2.

2. To change the root ofT from r to s: Let os denote any occurrence ofs. Splice out the first part of the
sequence ending with the occurrence beforeos, remove its first occurrence (or), and tack it on to the
end of the sequence which now begins withos. Add a new occurrenceos to the end.

3. To join two rooted treesT and T ′ by edgee: Let e = {a, b} with a ∈ T and b ∈ T ′. Given any
occurrencesoa andob, rerootT ′ atb, create a new occurrenceoan and splice the sequenceET(T ′)oan

into ET(T) immediately afteroa.

If the sequenceET(T) is stored in a balanced search tree of degreeb, and heightO(logn/ logb) then
one may insert an interval or splice out an interval in timeO(b logn/ logb), while maintaining the balance
of the tree, and determine if two elements are in the same tree, or if one element prece des the other in the
ordering in timeO(logn/b).

14

