
SRC Technical Note
1997 - 001
April 30, 1997

Virginity: A contribution to the specification of
object-oriented software

K. Rustan M. Leino and Raymie Stata

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved

Abstract

In object-oriented programs built in layers, an object at a higher level of abstrac-
tion is implemented by objects at lower levels of abstraction. It is usually crucial to
correctness that a lower-level object not be shared among several higher-level ob-
jects. This paper unveils some difficulties in writing procedure specifications strong
enough to guarantee that a lower-level object can be used in the implementation of
another object at a higher level of abstraction. To overcome these difficulties, the
paper presentsvirginity, a convenient way of specifying that an object is not glob-
ally reachable and thus can safely be used in the implementation of a higher-level
abstraction.

Keywords:Program specification, object-oriented programming, program verifica-
tion, specification languages, formal semantics, static program checking.

0

0 Introduction

The Extended Static Checking project [0] is building static program checkers that find
errors in object-oriented software. Our checkers take as input an annotated program and
produce as output the discovery of errors in the program. One way to view our checkers
is as “lightweight program verifiers”. They are “lightweight” in the sense of being about
the same as type checkers when it comes to performance and annotation effort. The are
like program verifiers in being capable of reasoning about specifications and checking
assertions in a program.

Well-designed large programs are built in layers: lower levels of abstraction are used
in the implementations of higher levels of abstraction. Apivot fieldis an object field in
the implementation of a higher-level object that refers to a lower-level object, where the
state of the lower-level object is an integral part of the state of the higher-level object.
For example, a stack object may have a pivot field pointing to an unbounded-buffer
object that contains the contents of the stack.

While sharing of objects is an important feature of modern programming languages,
sharing of objects in pivot fields is dangerous and seldom desired. In this paper, we
unveil some difficulties in writing procedure specifications strong enough to guarantee
to a checker that an object can be assigned to a pivot field without introducing sharing.
Overcoming these difficulties is important when designing the annotation language for
a programming tool like ESC; otherwise, the checker would produce spurious warnings,
which discourage programmers from using it.

Before continuing, let us say a little more about the kind of program checker we
have in mind. The checker’s annotation language includes the declarations of program
invariants and procedure specifications. We use a Larch-like notation for procedure
specifications [1]; a procedure specification like

requires pre modifiesm ensurespost

says that, if the procedure is started in a state satisfying preconditionpre, the procedure
terminates in a state satisfying the postconditionpost (if it terminates at all), having
modified only the values of the designator expressions listed inm.

We’re interested in modular checking. This means that one should be able to check
the implementation of a procedure using only the declarations that are in the scope
at the implementation. That is, declarations given in other scopes —in particular, the
implementations of procedures called by the procedure being checked— should not be
visible to the checker.

The outline of the paper is as follows. Section 1 introduces an example that we will
use to motivate and explain the problem. Section 2 describes common programming

1

patterns that cause difficulties for a programmer who hopes the checker will check the
initialization of pivot fields. Section 3 describes how we use the concept ofvirginity to
solve these difficulties. The remaining brief sections describe our experience using our
checker and offer some concluding remarks.

1 Sharing of pivots

To motivate and explain the problem of sharing the values of pivot fields, we show a
program example taken from the Modula-3 library [2].

A readeris an input stream that gives access to a source of characters. Afile reader
is a reader whose source is a file in a file system. The implementation of a file reader
contains a pointer to afile object. A file object can be thought of as a file handle capable
of communicating with the underlying file system. A file reader satisfies its reader
requests by calling appropriate operations on its associated file object. The pointer to
the file object is stored in the object fieldsourceH, so sourceH is a pivot field. We
write rd.sourceH to denote thesourceH field of a file readerrd .

It is an invariant that thesourceH field of an open file reader points to an open file
object. Closing a file reader closes the associated file object, which means that read
operations can no longer be applied to it. It would be a bad idea for two file readers
to share the same file object, since closing one of these readers would end up closing
the file object of the open reader as well, falsifying our invariant that open readers are
associated with open files. It would also be a bad idea if the file object underlying some
file reader were part of the implementation of some other higher-level object, since this
would lead to similar unexpected side effects.

In the axiomatic semantics used by the checker (cf. Ecstatic [3]), a fieldf is treated
as a map mapping each object to the value off for that object. If one views pivot fields
in this way, that is, as maps from higher-level objects to lower-level objects, then the
lack of sharing among pivot fields corresponds to injectivity within a map and disjoint
ranges across maps. These properties can be described by program invariants. A pro-
gram invariant is an assertion that is checked to hold in the initial program state and on
every procedure boundary. For example, to record the design decision thatsourceH is
injective, a program may contain the program invariant

〈 ∀ rd0, rd1:FileRdp T F
rd0.alloc ∧ rd1.alloc ∧ rd0 6= nil ∧ rd1 6= nil ∧
rd0.sourceH 6= nil ∧ rd1.sourceH 6= nil
⇒ rd0= rd1 ∨ rd0.sourceH 6= rd1.sourceH〉

2

placed in the scope that declaressourceH. The typeFileRdpT is the type of file readers
(FileRd is the name of the file reader module andT is the name of the principal type
exported by that module). The special object fieldalloc is used to model which objects
have been allocated and which have not. In a program, objects are allocated by calling
new. From the axiomatic semantics point of view,new selects an objecto whose
alloc field is false and returns it after setting itsalloc field to true. The only way to
directly changealloc is to invoke new, so the language guarantees that only objects
whosealloc field is true are reachable from an executing program.

Recording that the range of a pivot field is disjoint from the ranges of other pivot
fields requires some help from the checker, since it is not known in one scope what
other pivot fields the program contains. Because the details of how that is done are not
directly relevant to the current discussion, let us instead focus on the injectivity property
for the rest of this paper. The solution we will describe applies equally well to the
ensuring that the disjoint ranges property is maintained as a program invariant.

2 Initializing pivot fields

In this section, we describe two common patterns of initializing pivot fields in
Modula-3 and show why a checker cannot establish the injectivity property from a na¨ıve
specification.

During the initialization of a file reader, a file object is created and assigned to the
reader’ssourceH field. There are two conventions for object creation in the Modula-
3 library. (Unlike some other object-oriented programming languages, Modula-3 does
not feature object constructors that are automatically invoked when a new object is al-
located. However, the problem we are about to describe arises in the presence of such
constructors, too.)

The first convention uses a procedureNew that initializes and returns a newly allo-
cated object. This might be used as follows in the initialization of a file reader:

rd.sourceH:= File pNew(filename) . (0)

However, to maintain the injectivity ofsourceHamong all file readers, the specification
of New must ensure that its result is assignable to a pivot field. Stated differently,New
must ensure that its result is an object suitable for use in the implementation of a higher-
level abstraction.

The second convention for object creation uses a procedureInit that initializes and
returns its first parameter. This might be used as follows in the initialization of a file

3

reader:

rd.sourceH:= File pInit(new(File pT), filename) . (1)

The type File pT is the type of file objects. In this case, to maintain the injectivity of
sourceH, the specification ofInit must imply the preservation of the property that its
first parameter is assignable to a pivot field (because procedureFile pInit is called before
the new object is assigned tord.sourceH). Stated differently,Init must ensure that it
does not introduce any sharing of its parameter that would make the object unsuitable
for use in the implementation of a higher-level abstraction.

2.0 Ensuring assignability to pivot fields

Let us investigate what the specification ofFile pNew must guarantee in order to satisfy
the needs of common clients like (0).

One might propose the following specification forFile pNew:

proc File pNew(filename: text): File pT
requires filename6= nil
ensures fresh(result) ∧ result.isOpen′ ,

(2)

where text is the type of text strings,isOpen is the field that istrue exactly for those
file objects that are open,isOpen′ refers to the value of theisOpen field in the post-
state of the procedure,result refers to the value returned by the procedure, andfresh
is the macro defined, for any objecto , as

fresh(o) ≡ ¬o.alloc ∧ o.alloc′

and used to indicate in postconditions that an object is newly allocated.
Unfortunately, freshness is not sufficient to ensure that an object can be assigned to a

pivot field: trying to check that the assignment (0) preserves the injectivity ofsourceH,
using (2) as the specification ofFile pInit , will cause an automatic checker to dream up
the following implementation ofFile pNew:

impl File pNew(filename: text): File pT is
var r: FileRdpT in

r := new(FileRdpT) ;
r.sourceH:= new(File pT) ;
return File pInit(r.sourceH, filename)

end .

(3)

4

This implementation meets the specification (2) (in our methodology, any procedure is
implicitly allowed to allocate new objects and modify their fields). The implementation
also maintains the program invariant thatsourceH is injective. However, it returns a
file object that, despite being fresh, is already used as thesourceH field of another
file reader. Hence, one cannot infer from specification (2) that the result of procedure
File pNew is appropriate for assignment to thesourceH field of an object. In other
words, the specification ofFile pNew fails to ensure that, in the post-state,result is not
the value of thesourceH field of any allocated file reader.

While programmers may not be very likely to write code like (3), the checker has
no way of knowing from specification (2) that implementation (3) hasn’t been given.
Thus, if we are to support modular checking, a different specification is required: with a
specification like (2), clients ofFile pNew would get spurious warnings when using the
checker.

One might try to fix specification (2) by strengthening itsensuresclause with the
conjunct:

〈 ∀ r: FileRdpT F r.alloc ∧ r 6= nil ⇒ r.sourceH 6= result 〉 .

This conjunct guarantees that the assignment (0) keepssourceH injective, but it is not
modular: the specification ofFile pNew is found in an interface where, in the interest of
data hiding,sourceH is not and should not be visible.

We have shown how a na¨ıve specification ofFile pNew does not allow its clients to
assign the result value to a pivot field. A similar problem exists for parameters: with a
naı̈ve specification, one cannot ensure that a parameter to a procedure is assignable to a
pivot field. For example, the implementer of a procedure like

impl P(file: File pT) is
var rd: FileRdpT in

rd := new(FileRdpT) ;
rd.sourceH:= file ;
...

end ,

(4)

has no way of giving a precondition that ensures that it is safe to assignfile to sourceH.
This problem could be a real source of errors, so addressing it is important to finding
those error, as opposed to just reducing spurious warnings as is the case withFile pNew
above.

5

2.1 Preserving assignability to pivot fields

Let us turn to the use ofFile pInit to initialize sourceH, see (1). The specification of
File pInit raises a different issue regarding pivot fields.

One might propose the following specification forFile pInit :

proc File pInit(file: File pT, filename: text): File pT
requires file 6= nil ∧ filename6= nil
modifiesfile.isOpen
ensures result.isOpen′ ∧ result = file .

The problem is that this specification allows the implementation to allocate a new file
readerr and assignfile to r.sourceH, similar to what the problematic implementation
of File pNew does above. Where the issue above was ensuring that results and parameters
are assignable to pivot fields, the issue here is specifying procedures thatpreservethe
property that one of its parameters is assignable to a pivot field.

3 Virginity

We now present a solution to the specification problems revealed in the previous section.
A global locationis a global variable or an object field. Thereference countof an

object is the number of allocated global locations that reference the object. An object is
said to bevirgin just when its reference count is and has always been 0.

We now show how to extend a given proof system to an equivalent one in which one
can reason about virginity. First, we introduce a special fieldvirgin (some may call it a
ghost variable) and letnew return fresh, virgin objects. Every program statement

x := o ,

wherex denotes a global location ando an object, is treated as

x := o ; x.virgin := false .

Other than through such assignments, a program cannot directly changevirgin . This
approach ensures that, for any object typeT with a field f , the property

〈 ∀ t: T F t.alloc ∧ t 6= nil ∧ t.f 6= nil ⇒ ¬ t.f .virgin 〉 (5)

is always true, and similarly for other global locations. Hence, we allow any verification
to make use of this property as a given axiom.

6

To use virginity in our examples, we conjoin

result.virgin′

to the ensures clause ofFile pNew. This and the axioms about virginity ensure that
the result is indeed assignable to a pivot field and rule out implementations like (3).
Similarly, for procedureP in (4), we can say

requires file.virgin

to ensure that the parameterfile can be assigned to a pivot field.
The specification ofFile pInit remains as before. Because of the lack of a clause like

modifiesfile.virgin ,

objects passed in as virgins will remain virgin. This ensures that (1) will verify correctly.

3.0 Ease of specification

It is worth comparing virginity to using reference counts directly, a solution we rejected.
To model reference counts, one can introduce a special fieldrc . Invocations ofnew
would guarantee thatrc is 0 for the object returned. Every statement

x := o ,

wherex denotes a global location ando an object, is treated as

x.rc := x.rc − 1 ; x := o ; x.rc := x.rc + 1 .

In our examples, procedureFile pNew would be specified to ensureresult.rc′ = 0 ,
and file.rc would be absent from themodifies clause ofFile pInit .

Reference counts are not an attractive solution for several reasons. First, we need a
way to deduce that client programs (0) and (1) are correct. This can be done in one of
two ways. One is to provide an axiom like (5), but witht.f .rc = 0 instead oft.f .virgin .
This allows reasoning about the reference count being 0, but says nothing about other
reference counts. Writing axioms for reference counts greater than 0 is much more
complicated. If one chooses not to provide such complicated axioms, it seems that
one gives up the precision that reference counts provide. Another way to deduce the
correctness of client programs like (0) and (1) is to treat pivot fields in a special way and
require u.rc = 0 for any u assigned into a pivot field. This is a simple approach, but
it does not make use of the precision provided by reference counts—only a reference
count of 0 can be used.

7

A more disturbing problem of reference counts is that they place too much of a
burden on specifiers. A specification would need to mention every reference count that
a procedure might change in themodifies clause of that procedure’s specification. With
several levels of abstraction, each changingrc at its constituent objects, this proposal
becomes unmanageable. Alternatively, one may consider granting procedures the right
to modify rc for many objects without having to be explicit about all such modifications.
A sample proposal would be to let a procedure modifyrc for any object, provided
modifications ofrc for parameters are explicitly given. This would solve the problem
with (1), since file is given as a parameter. However, with this proposal, a program
fragment like

var x: File pT in
x := new(File pT) ;
Q() ;
rd.sourceH:= x

end

would fail to verify, because the specification ofQ does not guarantee thatx.rc is
unchanged (despite the fact thatQ cannot possibly reach the valuex).

In conclusion, keeping track of reference counts provides more precision than keep-
ing track of virginity. However, we have argued that not only does specifying what
reference counts a procedure might change become infeasible, the extra precision of
reference counts is hard to make use of. Virginity, on the other hand, lacks this preci-
sion, yet it is strong enough to solve the problems we have described. In addition, the
beauty of the virginity proposal is that the burden on specifiers is reduced to a minimum,
as we argue next.

3.1 Virginity in specifications

As we showed above, a problem with reference counts is that they change so often that
they become a burden to the specifier. Virginity is certainly better, because an object’s
virginity state changes at most once. However, virginity has another property that makes
it even less of a burden to the specifier: Ifo denotes a global location, theno.virgin
is, and will remain,false, so mentioningo.virgin in a specification is not particularly
interesting. For that reason,o.virgin is usually mentioned in a specification only when
o denotes a parameter or a result value.

8

4 Experience

We have introduced virginity into the annotation language used by the Modula-3 Ex-
tended Static Checker. In our experience, virginity has allowed us to annotate and check
programs for which the checker would otherwise have produced spurious warnings. The
burden of annotation goes mostly unnoticed in the checking of programs where virginity
is not a necessary ingredient of the annotation language.

5 Conclusion

We have unveiled a specification problem that arises in the context of object-oriented
programs that are built in layers: Since it is not desirable to allow sharing of a lower-
level object that is part of the implementation of a higher-level object, procedure spec-
ifications must be strong enough to say whether an object is shared or can be used as
an integral part of another. To solve this problem, we defined virginity for objects: an
object is virgin if it is not, and has never been, reachable from a global location. To
reason about virginity, we introduced a special fieldvirgin , which can be mentioned in
specifications and which is automatically updated with every assignment of an object to
a global location. We argued, and our experience with a static checker confirms, that
the use of virginity in specifications reduces spurious warnings while placing a minimal
burden on specifiers.

6 Acknowledgements

We are grateful to Greg Nelson for comments on a previous version of this write-up.
Dave Detlefs implemented virginity in the Modula-3 Extended Static Checker. An
anonymous reviewer helped improve the paper.

9

References

[0] Extended Static Checking home page, Digital Equipment Corporation Systems Re-
search Center. On the Web athttp://www.research.digital.com/SRC/
esc/Esc.html .

[1] John V. Guttag and James J. Horning. With Stephen J. Garland, Kevin D. Jones,
Andrés Modet, and Jeannette M. Wing.Larch: Languages and Tools for Formal
Specification. Springer-Verlag, Texts and Monographs in Computer Science, 1993.
ISBN 0–387–94006–5, QA76.6.H66 1993.

[2] Jim Horning, Bill Kalsow, Paul McJones, and Greg Nelson. Some useful Modula-3
interfaces. Research Report 113, Digital Equipment Corporation Systems Research
Center, 130 Lytton Ave., Palo Alto, CA 94301, U.S.A., December 1993. Available at
http://www.research.digital.com/SRC/publications/src-rr.html .

[3] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. InThe Fourth International Workshop on Founda-
tions of Object-Oriented Languages, January 1997. Proceedings available at
http://www.cs.indiana.edu/hyplan/pierce/fool/ .

