
SRC Technical Note
1996 - 001

December 18, 1996

Refinement in State-Based Formalisms

Leslie Lamport

d i g i t a l
Systems Research Center

130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Copyright c
Digital Equipment Corporation 1997. All rights reserved



Refinement in State-Based Formalisms

Leslie Lamport
Digital Equipment Corporation

lamport@pa.dec.com

18 December 1996

1 A Tale of Two Clocks

A friend of ours, who was a brilliant mathematician, has been hospitalized because of
long-term abuse of hallucinogenic drugs. We decide to give him a digital clock for his
room. However, his doctor suggests that the hour and minute displays together might
be too confusing. So, we put tape over the minute display, turning our gift into a digital
hour clock.

We present the clock to our friend, who asks what it is supposed to do. Although he
has lost his memory of everyday objects, his mathematical abilities are undiminished.
So, we give him a mathematical explanation. Since the drugs have destroyed his sense
of time, we do not have to relate the behavior of the clock to real time; we need only
explain the sequence of numbers displayed by the clock. We describe the clock by
saying that this sequence must be some sequence of values for the variablehr allowed
by the temporal-logic formulaSH defined as follows.

InitH
1= hr ∈ {1, . . . ,12}

NH
1= hr ′ = (hr mod 12)+ 1

SH
1= InitH ∧ 2NH

(1)

Being an expert in temporal logic, our friend understands that the formulaInitH de-
scribes the initial state, and the formula2NH asserts that every successive pair of states
satisfies the relationNH , where unprimed values refer to the first state and primed val-
ues refer to the second. We end our visit, leaving him happily watching the clock and
checking that it satisfiesSH .

When we next visit the hospital, the doctor tells us that our friend has improved
considerably, so we can remove the tape and make the clock’s minute display visible.
We do so, and our friend requests a new specification that describes both the minute
and hour displays. We choose the variablemin to represent the minute display, and we

1



give him the obvious formulaSM defined as follows.1

InitM
1= (hr ∈ {1, . . . ,12}) ∧ (min ∈ {0, . . . ,59})

NM
1= ∧ min ′ = min + 1 mod 60
∧ hr ′ = if min = 59 then (hr mod 12)+ 1 elsehr

SM
1= InitM ∧ 2NM

(2)

Our friend is puzzled and asks how removing the tape could change the behavior of the
hour display. He explains that if removing the tape didn’t change the hour display’s
behavior, then its sequence of values should still satisfy the original specificationSH .
After all, SH does not imply the absence of a minute display, so it should be true
for any sequence of values forhr allowed by the new specificationSM . But it isn’t.
FormulaSH asserts that the value ofhr should change in every successive state, while
formulaSM asserts that there are fifty-nine successive states with the same value of
hr .

We realize that he is right; our specificationSH is wrong. We must modify it to
allow steps that leaveH unchanged. Because we might one day give him a new clock
with a second display, we must also modifySM to allow steps that leave bothhr and
min unchanged. To save a bit of writing, we introduce the notation that [N ]f is an
abbreviation forN ∨ (f ′ = f ), wheref ′ is the expression obtained by priming all the
free variables inf . We now redefineSH andSM by

SH
1= InitH ∧ 2[NH ]hr

SM
1= InitM ∧2[NM ]〈hr ,min 〉

Our mathematician friend understands that〈hr ,min 〉′ = 〈hr ,min 〉 iff hr ′ = hr and
min ′ = min, so the subscript〈hr ,min 〉means thatSM allows steps that leave bothhr
andmin unchanged. He knows that the new specificationSH describes the behavior
that he has already observed in the clock, since by watching only the hour display,
he couldn’t possibly tell whether or not there were steps that didn’t change the hour
display.

However, our friend is sad. The new specifications allow behaviors in which, after
a while, the display stops changing, and he so enjoys watching the numbers change.
We tell him not to worry because the actual specifications are

SH
1= InitH ∧ 2[NH ]hr ∧ WFhr (NH )

SM
1= InitM ∧ 2[NM ]〈hr ,min 〉 ∧ WF〈hr ,min 〉(NM )

(3)

where the WF formulas assert that the clock keeps advancing forever. Once we explain
the precise meaning of WF, our friend is quite happy. He easily deduces the simple
theorem

SM ⇒ SH (4)

and he knows that this theorem means that if the clock satisfies the specificationSM ,
then it also satisfies the specificationSH , so the hour display does indeed continue

1He is already familiar with our notation of representing conjunctions as lists of formulas bulleted by∧.

2



to behave as before. We remind him that (4) is, by definition, what it means for the
specificationSM to implement the specificationSH .

Our friend enjoys his clock, and spends days doing little but watching it and verify-
ing that it satisfies the specificationSM . Then, one day, a violent patient at the hospital
breaks it. So, we purchase a brand new clock and send it to him. On our next visit,
we find our friend distraught. The new clock does not satisfy the specificationSM . He
explains that one time the clock changed from 7:59 to 7:00, and later it jumped directly
from 7:00 to 8:00. Examining the clock, we discover that, on the hour, both displays do
not change simultaneously. There can be a noticeable instant between when the minute
and hour displays change. To our friend, with his distorted sense of time, that instant
seems very long.

To pacify him, we must specify the new clock. We realize that, if we want to write
the same kind of specification as before, we must add another variable to distinguish
whether the clock reads 7:00 because it really is 7:00, or because it is in the middle
of changing from 7:59 to 8:00. We use the boolean variablechg that will be true iff
the clock is in the middle of changing the hour, and we present our friend with the
following specificationISL:

InitL
1= InitM ∧ ¬chg

Min
1= ∧ ¬chg ∨ (min = 59)
∧ min ′ = (min + 1) mod 60
∧ chg ′ = ¬chg ∧ (min = 59)
∧ hr ′ = hr

Hr
1= ∧ (¬chg ∧ (min = 59)) ∨ (chg ∧ (min = 0))
∧ hr ′ = (hr mod 12)+ 1
∧ chg ′ = (min = 59)
∧ min ′ = min

N L
1= Min ∨Hr

ISL
1= InitL ∧2[N L]〈hr ,min,chg 〉 ∧WF〈hr ,min,chg 〉(N L)

Our friend looks puzzled and asks us where he should look for the value ofchg . We tell
him that it’s just a specification variable, and doesn’t necessarily correspond to anything
on the actual clock. “Well, why doesn’t your specification say so?” he demands. So,
we define a new specificationSL by

SL
1= ∃∃∃∃∃∃ chg : ISL (5)

FormulaSL asserts that the clock acts as if there were a sequence of values forchg

for which ISL is satisfied; it says nothing about the actual values ofchg . (We write∃∃∃∃∃∃
instead of∃ to indicate that we are asserting the existence of a sequence of values, not
just a single value.) A clock satisfiesSL iff it acts exactly the same as the clock you
would get by building a device withhr , min, andchg displays that satisfiesISL, and
then putting tape over thechg display.

Reminded of the definition of∃∃∃∃∃∃ , our friend observes thatSH is equivalent to
∃∃∃∃∃∃min :SM . FormulaSH is indeed the specification of our first gift—the old clock
with tape over the minute display.

3



Our new specification does not make him happy. He liked the orderly progression
of times on his old clock, and a sequence like 7:59, 8:59, 8:00 seems bizarre to him.
He wishes he had his old clock back. Although we can’t replace the old clock, we can
do something almost as good: we can explain how to interpret any behavior of the new
clock as a “virtual” behavior of the old clock. We offer to do this by writing a formula
RLH that contains the variableshr andmin as well as a new variablêmin. To interpret
a sequence of values ofhr andmin produced by the new clock as a virtual behavior of
the old clock, he just has to find a sequence of values ofm̂in so thatRLH is satisfied.
He can then consider the sequence ofhr andm̂in values to be a behavior of the old
clock.

Our friend agrees that this would make him happy if formulaRLH satisfies two
conditions. The first is that, if the sequence ofhr andmin values satisfiesSL, then the
resulting sequence ofhr andm̂in values should satisfySM . Mathematically, this is
expressed by

SL ∧RLH ⇒ ŜM (6)

whereŜM is the formula obtained by substitutinĝmin for min in SM . But this condi-
tion by itself would allow us to cheat—for example, by lettingRLH beFALSE. Formula
RLH must also satisfy the condition that, for any sequence of values ofhr andmin

satisfyingSL, there must be some sequence of values of̂min satisfyingRLH . In other
words, the following must be true.

SL ⇒ ∃∃∃∃∃∃ m̂in : RLH (7)

We tell him he is right, and that when (6) and (7) hold, we say thatSL implementsSM
under the refinementRLH . We then defineRLH by

RLH
1= ∧ m̂in = min

∧2


m̂in

′ = if hr ′ 6= hr

then 0
else ifmin ′ = 0 then m̂in

else min ′

 〈hr ,min, m̂in 〉

Being a brilliant mathematician, he quickly verifies (6) and (7). In fact, he points out
that the following result, which implies (7), is true.

∃∃∃∃∃∃ m̂in : RLH (8)

Now that he understands what the refinement is, he realizes that there is another way to
obtain it. FormulaSL implies the existence of a sequence of values forchg satisfying
ISL. We can therefore usechg to definem̂in. First, definemin by

min
1= if (min = 0) ∧ chg then 59 elsemin)

and then define the virtual variablêmin to equal the expressionmin, which is a simple
function ofmin andchg . This is an easier way to define the refinement because it
requires writing no new temporal formulas.

4



Our friend is actually using the alternative refinementRLH defined by

RLH
1= (∃∃∃∃∃∃ chg : ISL ∧ 2(m̂in = min)) (9)

SinceSL equals∃∃∃∃∃∃ chg : ISL, and the variablêmin does not occur inISL, the proof
of (7) with this definition ofRLH requires no mathematical brilliance. Moreover, to
prove (6), it suffices to prove the simpler theorem

ISL⇒ SM (10)

whereSM is the formula obtained by substituting the expressionmin for the variable
min in SM . (Observe thatSM contains the variableshr , min, andchg , while formula
ŜM in (6) contains the variableshr , min, andm̂in.)

Finally, our friend notes that sincechg does not occur inSM , (10) implies

(∃∃∃∃∃∃ chg : ISL)⇒ (∃∃∃∃∃∃min : SM ) (11)

But SL is defined to equal∃∃∃∃∃∃ chg : ISL, and he already observed that∃∃∃∃∃∃min :SM is
equivalent toSH , so (11) implies thatSL implementsSM .

2 In General

Let us now leave our friend to his recovery and generalize from his clocks. Although
we have used TLA [4] to specify the clocks, everything generalizes to any method in
which the meaning of a specification is a set of sequences of states.

We are given a higher-level specificationSH and a lower-level specificationSL
defined by

SH
1= ∃∃∃∃∃∃ h : ISH

SL
1= ∃∃∃∃∃∃ l : ISL

whereh and l are sequences of variables.2 In the clock example,ISH was called
SM . We say thatSL implementsSH iff SL impliesSH . For this to make sense, a
specification needs to be invariant under stuttering, meaning that it is satisfied by a
behaviorσ iff it is satisfied by any behavior obtained fromσ by adding or deleting
steps that leave the state unchanged.

To prove thatSL impliesSH , we first rename bound variables if necessary so that
no variable ofh occurs free inISL. (In our example, we renamed the bound variable
min of SH to m̂in.) ThenSL impliesSH iff the following formula is true.

ISL ⇒ ∃∃∃∃∃∃ h : ISH (12)

To prove (12), we must show thatISL implementsISH under some refinementRLH ,
which by definition means proving

ISL ∧RLH ⇒ ISH (13)

ISL⇒ ∃∃∃∃∃∃ h : RLH (14)

2If h is the sequenceh1, . . . ,hm of variables, then∃∃∃∃∃∃h : ISH is an abbreviation for∃∃∃∃∃∃ h1, . . . , hn : ISH ,
which is in turn an abbreviation for∃∃∃∃∃∃ h1 : . . . ∃∃∃∃∃∃ hn : ISH .

5



Since no variable inh occurs free inISL, (14) is equivalent to∃∃∃∃∃∃ h : (ISL ⇒ RLH ).
Hence, by replacingRLH with ISL ⇒ RLH , we can always replace (14) by the
stronger condition

∃∃∃∃∃∃ h : RLH (15)

Proving that (13) and (14) imply (12) is a simple exercise in predicate logic. To prove
the converse, that (12) implies the existence of a refinementRLH satisfying (13) and
(14), we simply takeRLH to beISH .

The simplest type of refinement is a refinement mapping, in whichRLH equals
2(h = h), whereh is some state function not containing the variablesh. In that case,
(15) obviously holds, and (13) is equivalent to

ISL⇒ ISH (16)

whereISH is the formula obtained fromISH by replacing the variablesh with the
state functionh . All the free variables ofISH will be free variables ofISL.

The validity of (12) implies the existence of a refinementRLH , but not necessarily
the existence of a refinement mapping. The existence of an arbitrary refinementRLH

is of no help, since (14) has exactly the same form as the formula (12) that we have to
prove. So, we need a method that is more general than refinement mappings but eas-
ier than using an arbitrary refinement. We generalize the alternative clock refinement
defined in (9), replacingchg by an arbitrary sequencea of new variables andISL by
some formulaISaL which implementsISH under a refinement mapping. It must be
easy to prove

ISL⇒ ∃∃∃∃∃∃ a : ISaL (17)

and we must be able to find a refinement mapping for which we can prove

ISaL⇒ ISH (18)

(Even though no refinement mapping exists under whichISL implementsISH , a re-
finement mapping satisfying (18) can exist because it can mention the variablesa.)
Predicate logic reasoning shows that, if the variablesa do not occur free inISL, then
(17) and (18) imply (12). This approach is equivalent to defining

RLH
1= (∃∃∃∃∃∃ a : ISaL ∧ 2(h = h))

If ∃∃∃∃∃∃ a : ISaL is equivalent toISL instead of just implied by it, then we say thatISaL is
obtained fromISL by adding the auxiliary variablesa.

The most common type of auxiliary variable is a history variable, in which the
value ofa at any point in a behavior depends only on the current and previous values
of the free variables ofISL. Simple rules for adding auxiliary variables—that is, rules
for constructingISaL from ISL so that∃∃∃∃∃∃ a : ISaL is equivalent toISL—have been used
for decades [5]. Another kind of auxiliary variable is a stuttering variable, which adds
steps that do not change any of the variables ofISL. In our clock example, we would
use a stuttering variable to prove thatSH implies ∃∃∃∃∃∃min :SM . A more complicated
type of auxiliary variable is a prophecy variable, whose value can depend on future
values of the variables ofISL.

6



A theorem of [1] asserts that, under certain conditions, fairly simple rules for adding
auxiliary variables suffice to guarantee the existence of a refinement mapping for prov-
ing any valid formula of the form (12). More complicated rules allow those conditions
to be weakened [2, 3]. However, there do not yet exist rules for adding auxiliary vari-
ables that are both simple and sufficiently general to handle all known examples.

Acknowledgments

Stephan Merz found errors in an earlier version.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.Theo-
retical Computer Science, 82(2):253–284, May 1991.

[2] Kai Engelhardt and Willem-Paul de Roever. Generalizing Abadi & Lamport’s
method to solve a problem posed by A. Pnueli. In J. C. P. Woodcock and P. G.
Larsen, editors,FME ’93: Industrial Strength Formal Methods, volume 670 of
Lecture Notes in Computer Science, pages 294–313. Springer-Verlag, 1993.

[3] Bengt Jonsson. Simulations between specifications of distributed systems. In Jos
C. M. Baeten and Jan Frisco Groote, editors,CONCUR ’91, 2nd International
Conference on Concurrency Theory, volume 527 ofLecture Notes in Computer
Science, pages 346–360. Springer-Verlag, 1991.

[4] Leslie Lamport. The temporal logic of actions.ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

[5] Susan Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach.Communications of the ACM, 19(5):279–284, May 1976.

7


