
1

November 16, 2001

 Research

 Report

The Link Database: Fast Access to Graphs of the Web

Keith H. Randall, Raymie Stata,
Rajiv Wickremesinghe, Janet L. Wiener

__

Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301

http://www.research.compaq.com/SRC/

175SRC

2

Abstract

The Connectivity Server is a special-purpose database whose schema models the Web as a graph
graph where URLs are nodes and hyperlinks are directed edges. The Link Database provides fast
access to the hyperlinks. To support a wide range of graph algorithms, we find it important to fit
the Link Database into memory. In the first version of the Link Database, we achieved this fit by
using machines with lots of memory (8GB), and storing each hyperlink in 32 bits. However, this
approach was limited to roughly 100 million Web pages. This paper presents techniques to
compress the links to accommodate larger graphs. Our techniques combine well-known
compression methods with methods that depend on the properties of the web graph. The first
compression technique takes advantage of the fact that most hyperlinks on most Web pages point
to other pages on the same host as the page itself. The second technique takes advantage of the
fact that many pages on the same host share hyperlinks, that is, they tend to point to a common
set of pages. Together, these techniques reduce space requirements to under 6 bits per link.
While (de)compression adds latency to the hyperlink access time, we can still compute the
strongly connected components of a 6 billion-edge graph in under 20 minutes and run
applications such as Kleinberg’s HITS in real time. This paper describes our techniques for
compressing the Link Database, and provides performance numbers for compression ratios and
decompression speed.

3

1 Introduction

The Connectivity Server is a special-purpose database whose schema models the Web as a graph
where URLs are nodes and hyperlinks are directed edges. The Link Database is the portion of the
Connectivity Server that provides fast access to the hyperlink data. It allows us to run arbitrary
graph algorithms over the Web graph in real time, usually by writing textbook implementations
of the algorithms. Applications of the Link Database include PageRank [BP98], which ranks the
importance of web pages based on their inlinks; Kleinberg’s HITS [K98], which refines web
query results by examining local subgraphs of the web; mirror detection, which uses links and
URLs to find web sites that mirror each other’s contents [BBDH99]; and studies of web structure
[BKM00]. While the Link Database is critical for each of these applications, we know of no
other database that can store as many links in as little space.

We have developed three versions of the Link Database over the last four years. The first
version, Link1 [BBH98], encodes adjacency lists in 32 bits per link, or approximately 68 bytes
per URL. (In our data, URLs have an average of 17 links.) With 8 GB of memory, Link1 allows
experiments on collections of 100 million Web pages, which contained much of the Web in
1998. To scale with the growth of the Web since 1998, we considered switching the Link
Database to a disk-based approach. Although there is active research in disk-based graph
algorithms [CGG95, KS96, ABW98], memory-based graph algorithms tend to be simpler, easier
to understand, and easier to implement. Therefore, we developed compression techniques to keep
the Link Database in memory.

Many compression techniques currently exist. These include both symbolwise methods, such as
Huffman codes, that replace symbols with (hopefully) shorter symbols, and dictionary methods,
such as Lempel-Ziv, that replace sets of symbols with a single new symbol [WMB99]. We use
both types of methods in the second and third versions of the Link Database, Link2 and Link3, as
well as other special-purpose methods that depend on the properties of hyperlinks. Link3 reduces
the original 32 bits per link to less than 6, while still providing fast decompression speeds. For
example, we can compute the strongly connected components of the web graph, using an
algorithm that accesses 6 billion hyperlinks in random order, in less than 20 minutes.

This paper describes our Link Database implementations. Sections 2, 3, and 4 describe Link1,
Link2, and Link3, respectively. Section 5 presents measurements that show both the compression
achieved by the various techniques and also their impact on performance. Section 6 describes
related work and we conclude in Section 7.

2 Background and Link1

The Connectivity Server is a collection of three databases: the URL Database, the Host Database,
and the Link Database. The URL Database contains a set of URLs and mappings from URLs to
fingerprints (a hash of the URL) and to URL-ids (sequentially ordered integers). The Host
Database contains a partitioning of the URL-ids in the URL Database into groups called "hosts"
based on the hostname portion of the URLs. (The Host Database is not considered further in this
paper.) The Link Database contains two adjacency lists for all URL-ids in the URL Database.
For each URL-id, the outlinks adjacency list contains the list of URL-ids of other URLs which
appear as hyperlinks on its web page, and the inlinks adjacency list contains the list of URL-ids

4

of all URLs that have hyperlinks to it. This section provides background on the URL Database
and the first version of the Link Database and also describes the input used to build them.

2.1 Links files

The Connectivity Server is built from a collection of links files. Each links file is a sequence of
records; each record consists of a source URL followed by a sequence of destination URLs. A
fragment from a typical links file might look like:

http://www.foo.com/
 http://www.foo.com/css/foostyle.css
 http://www.foo.com/images/logo.gif
 http://www.foo.com/images/navigation.gif
 http://www.foo.com/about/
 http://www.foo.com/products/
 http://www.foo.com/jobs/

http://www.foo.com/about/
 http://www.foo.com/css/foostyle.css
 http://www.foo.com/images/logo.gif
 http://www.foo.com/directions.html
 http://www.foo.com/about/
 http://www.foo.com/products/
 http://www.foo.com/jobs/

The order of destination URLs should match the order in which they appear on the HTML page.
Although the Connectivity Server is independent of the source of the links files, we typically
generate them in our crawler, Mercator [HN99], or by extracting them from HTML pages stored
on disk.

If a page is crawled multiple times, it may appear as the source URL for multiple records.
Therefore, the software that builds the Connectivity Server reads the links file in reverse
chronological order, and only processes each source URL the first time it is encountered, which
should be the most recent record for that URL.

2.2 The URL Database

The URL Database contains all source URLs that appear in the links files, plus any URLs that
appear more than some threshold T number of times as destination URLs. By ignoring URLs that
do not appear either as sources or in more than T pages, we avoid cluttering the Connectivity
Server with non-existent URLs that are simply misspellings on the part of authors. The
parameter T is set when the URL database is created; a typical value is 4.

The URL Database represents each URL in three ways: as text; as a 64-bit hash of the URL text
which we call a fingerprint; and as a 32 bit integer URL-id. The URL Database provides six
functions to map between all pairs of representations; that is, to map from text to fingerprints and
back again, from fingerprints to URL-ids and back again, and from URL-ids to text and back
again.

Before being hashed to fingerprints, the URL text is normalized, by converting hostnames to
lower case, cannonicalizes port numbers, re-introducing them where needed, and adding a
trailing slash to all URLs that do not have them. Normalizing increases the likelihood that two

5

URLs for the same page will have the same fingerprint. Functions that take URL text always
normalize it. However, when returning text, the URL database always returns the stored version
of the URL text, which is a version of the text as it appears in the links files. If the URL appears
in the source field of the links files, then that version of the text will be stored; otherwise, one of
its destination URLs is picked arbitrarily.

The URL-ids are sequentially assigned integers from 1 to N. This dense assignment is useful
both in the Connectivity Server implementation and when writing applications, because URL-ids
can serve as indexes into arrays. URL-ids are assigned to URLs as follows. First, we divide the
URLs into three partitions based on their degree. The indegree of a URL is the number of inlinks
it has; the outdegree is the number of outlinks it has. If the indegree or outdegree is higher than
254, we put the URL in the high-degree partition; if it is between 24 and 254, we put it in the
medium-degree partition; otherwise we put it in the low-degree partition. (We chose 254 so that
bookkeeping of the indegree could be stored in 1 byte; we chose 24 because 23 is the maximum
number of links whose compressed form can be stored in 255 nybbles (see Section 3.3.) Within
each partition, we sort URLs lexicographically. We then assign URL-ids first by partition and
then by lexicographic order. Thus, the high-degree URL which sorts first lexicographically is
assigned URL-id 1. If there are H high-degree URLs, then the medium-degree URL which sorts
first lexicographically is assigned URL-id H+1. As we will show in Section 3.3 and Section 5,
the URL partitioning has important consequences for our compression.

On disk, the URL database consists of the set of URLs in compressed form and three indices,
one from fingerprints to URL-ids, another from URL-ids to fingerprints, and the last from URL-
ids to URLs. On average, storing each URL requires 9 bytes for the compressed URL and 5, 8,
and 0.5 bytes for the three indices, respectively.

2.3 The Link Database

The Link Database maps from each URL-id to the sets of URL-ids that are its outlinks and its
inlinks. In the terminology of graph theory, these sets are the adjacency lists of two directed
graphs. The outlinks are the adjacency lists of the Web graph as we usually think about it: the
links are directed in the way that Web surfers follow them. The inlinks are the adjacency lists of
the transpose of that graph: the links are directed in the opposite direction of the outlinks.

The Link Database provides two functions that take a URL-id as input and returns the URL-ids
in an adjacency list. Inlink adjacency lists are returned in ascending order of URL-ids. Outlink
adjacency lists can be stored and returned in the original order of the corresponding destination
URLs. However, we typically use ascending URL-id order because it compresses better.

The Link Database is not designed to allow modification of the graph. Crawling the web to
produce the Connectivity Server input files takes weeks or months whereas building the
Connectivity Server database takes hours. Therefore, we assume that we may always create the
Link Database in batch mode.

6

104
105
106
107

adjacency data

...
...

starts

...
... 101

132
174
 101
168
174

url-id

...
...

...
...

104
105
106
107

adjacency data

...
...

starts

...
... -3

31
42
 -5
67
6

url-id

Figure 1: Simple encoding of adjacency lists Figure 2: Delta encoding of adjacency lists

The original version of the Link Database [BBH98], Link1, stores the outlink and inlink
adjacency lists as two arrays each (four arrays total). The first array, called starts, is indexed by
URL-id and contains an index into the second array. The second array, called adjacency data,
contains the URL-ids in the adjacency lists. Each array element is 32 bits long. The length of a
URL’s adjacency list is determined by subtracting the URL’s entry in the starts array from the
subsequent entry. Figure 1 shows a few hypothetical adjacency lists. In the figure, URL-id 104
has an adjacency list of length 3, containing the URL-ids 101, 132, and 174. URL-id 105 has an
empty adjacency list.

3 Link2: single list compression and starts compression

Our first compression technique is single list compression, which compresses the representation
of each adjacency list individually. We take advantage of two facts to achieve good compression.
First, the vast majority of links on a page are local in that they point to other URLs on the same
host. We have found empirically that 80% of all links are local. Second, the assignment of URL-
ids to URLs respects, in large part, the lexicographic order of the URLs themselves. This URL-id
ordering means that URL-ids on the same host tend to be close to one another in the URL-id
space, and URLs that share a longer common prefix have even closer URL-ids. Combined, these
facts mean that URL-ids in the same adjacency list tend to be close together in the URL-id space.

3.1 Delta values

Single list compression takes advantage of these facts. First, rather than storing absolute URL-ids
in each adjacency list, we store the differences between neighbors of the list, which are called
delta (or gap) values [WMB99]).

Figure 2 shows how the absolute values in Figure 1 are replaced by delta values. The first value
in the adjacency list for URL-id 104, 101, is replaced by 101-104=-3. The second value, 132, is
replaced by 132-101=31 and the third value, 174, is replaced by 174-32=42. In general, the first
absolute value ai,1 in each adjacency list for URL-id i is replaced by delta value ai,1-i. Each
subsequent absolute value ai,j is replaced by delta value ai,j - ai,(j-1).

7

-20 -10 0 10 20
Bucket

1
10

100
1000

10000
100000

1000000
10000000

100000000
1000000000

D
en

si
ty

inlinks
outlinks

Figure 3: Distribution of delta values

Delta values tend to be small, much smaller than the corresponding absolute values. This point is
illustrated in Figure 3, which contains a histogram of delta values. In this figure, delta values are
put into buckets of exponentially increasing size: bucket 1 contains the delta value 1; bucket 2
contains the values 2 and 3; bucket 4 contains 4, 5, 6, and 7; and bucket i contains the delta
values 2(i-1) to 2i-1. (We eliminate reflexive and duplicate links from our data set, so the delta
value zero never appears.) The x-axis of Figure 2 gives the bucket number, and the y axis shows
the density of each bucket, that is, the number of delta values in each bucket divided by the range
of the bucket. In this data set, both inlinks and outlinks are stored in ascending order, so only the
first delta of an adjacency list can be negative. Therefore, there are many fewer negative deltas
than positive ones. (When outlinks are stored in original order, any delta can be negative, but a
similar histogram applies and we get similar, although not quite as good, compression.)

3.2 Variable-length nybble codes

As illustrated in Figure 2, the distribution of delta values is highly concentrated and biased
toward small numbers. We then store the delta values using a variable-length format that uses
fewer bits for smaller values. Many symbolwise codes provide variable-length encodings, e.g.,
Huffman, Golomb, and arithmetic codes [WMB99]. However, these codes are optimized for
large quantities of data. Our adjacency lists average only 68 bytes. Therefore, we experimented
with the following two encodings.

The first encoding is a Huffman code (with a table of 20,000 delta values and an escape for
values beyond that). The second encoding is a nybble code, which consists of strings of nybbles
(4-bit quantities). The low-order bit of each nybble, called the stop bit, indicates whether or not
there are more nybbles in the string; the remaining bits provide an unsigned number. Multi-
nybble strings are combined in little-endian fashion. Where a negative number is possible, we
use a sign/magnitude encoding in which the least-significant bit encodes the sign. For example,
the nybble encoding of the delta value 28 is 0111 1000. If the same value could have been
negative, then the lowest data bit would be an additional 0, resulting in the string 1111 0000. The
delta value -6 is represented by the string 0011 1010. As the performance numbers in Section 5
will show, the nybble code does not achieve quite as good compression as Huffman coding, but
is much faster at decompression.

8

3.3 Starts array compression

In Link2, we also developed a mechanism for compressing the starts array. For each of the three
URL partitions mentioned in Section 3.1, we use a different number of bits to encode the starts
entries. For the high degree URL partition, the starts array consists of 32-bit indices as before.
For the medium-degree partition, the starts array is divided into records consisting of a 32-bit
base index, plus P 16-bit offsets from the previous index. The average size of an index is thus (32
+ 16*P)/P bits. The starts array for the small-degree partition is similar to the medium-degree
partition except that the offsets are stored in 8 bits instead of 16. Since adjacency lists start and
end on nybble boundaries, in Link2, elements of starts are indices to nybbles (rather than indices
to 32-bit integers as in Link1). As described in [BKM00], indegrees and outdegrees in the Web
graph are distributed exponentially. Thus, most of the URLs (74% in our dataset) are contained
in the small-degree partition. In other words, the majority of entries in the starts array are in the
small-degree partition where indices take a little over 8 bits each. As a result, with P=16, the
average size of an entry in the compressed starts array is 12 bits, rather than 32 bits as in Link1.

4 Link3: interlist compression

Our second compression technique, interlist compression, describes each adjacency list as a
modification to a representative list. As in dictionary codes [WMB99], sets of symbols
(adjacency lists) may refer to other sets. Unlike in dictionary coding, the other set need not ever
appear in the data, and the two sets need not be exactly the same: we also encode the differences
between the two lists. Interlist compression saves space because many redundancies exist across
adjacency lists. Hyperlinks in the Web graph are not uniformly distributed. Some URLs are very
popular, meaning they appear in many outlink adjacency lists [BKM00], while others are not.
More generally, URLs on the same host tend to have many outlinks and inlinks in common. This
section presents data showing that the redundancies exist and then describes our techniques for
taking advantage of them.

4.1 Adjacency list redundancy and ordering

20 40 60 80 100
Distance between URL-ids

0.2

0.4

0.6

A
ve

ra
ge

 s
im

ila
ri

ty inlinks
outlinks

20 40 60 80 100
Distance between URL-ids

0.4

0.6

A
ve

ra
ge

 s
im

ila
ri

ty Grey code ordering
URL-id ordering

Figure 4: Similarity between
neighboring adjacency lists

Figure 5: Similarity of outlinks given
different node orderings

9

Figure 4, which contains a plot of the similarity between pairs of adjacency lists, shows that there
is significant redundancy across adjacency lists and that this redundancy is easy to find. The x-
axis of Figure 4 is the absolute value of the difference between pairs of URL-ids (e.g., the URL-
id-pair consisting of 106 and 116 appears at x=10). The y-axis is the average similarity over all
URL-id pairs at a given difference. We define similarity as the size of the intersection of the two
lists divided by the size of their union; similarity 1 means the lists are identical; 0.5 means they
have two-thirds of their elements in common, and 0.33 means that they have half of their
elements in common.

As Figure 4 demonstrates, the adjacency lists of URL-ids with a distance of 1 have significant
overlap, and the overlap decreases with increasing URL-id distance. The similarity of inlinks is
both lower and decreases faster than the similarity of outlinks. We believe that there is less
similarity among inlinks because there is more "entropy:" outlinks on a host are often controlled
by an organization’s policies, while inlinks are a product of millions of uncoordinated
organizations. For any given x-value (distance) in Figure 4, the distribution of overlap
measurements is bimodel; that is, URL-ids close to each other tend to have either very similar or
very different adjacency lists.

Figure 5 shows that ordering adjacency lists by URL-id clusters adjacency lists with similar
content. To determine whether other orders based on the contents of the adjacency lists would
produce better clustering, we sorted adjacency lists by Grey code [L92] order and by
lexicographic order. As shown for outlinks in Figure 5, Grey code ordering does slightly better
than the URL-id ordering. (Lexicographic ordering, which is not shown, does slightly worse than
Grey code ordering.) However, the difference is small, and there are significant practical
advantages to using the URL-id ordering: it is easy to compute; it allows compression of the
starts array, and it makes it easier to implement the Host Database. Thus, we chose URL-id
ordering.

4.2 Select and Union compression

We explored two general methods for interlist compression. In our first method, Select, the
representative list is a previous adjacency list. In our second method, Union, the representative
list is the union of a set of adjacency lists. Both methods encode an adjacency list either as a
reference to a representative plus a set of additions and deletions from the representative, or
using the absolute encoding described in Section 3, whichever uses fewer bits. Note that
deletions are cheaper to encode than additions because the space of possible deletions is small
(the length of the representative list) relative to the space of possible additions (the set of all
URL-ids)..

Select produces good compression, but may create chains of encodings that can increase
decompression time. A chain is created when an adjacency list i is encoded relative to another
list j, which is encoded relative to a third list k, and so forth. Although these chains are
guaranteed to terminate (because we only look backwards for representative lists), they can get
long. Therefore, we considered a few variations of Select. Select-K, chooses the best
representative adjacency list from among the previous K URL-ids’ adjacency lists. BlockSelect-
K-B limits chains by grouping URL-ids into blocks of size B and only considering
representatives from the same block. LimitSelect-K-L only allows chains of fewer than L hops.

10

Union-B groups URL-ids into blocks (as in BlockSelect-K-B) and creates the representative for
each block as the union of all adjacency lists in that block. Union-B can be generalized to choose
a representative list which contains a subset of the URL-ids in the union, e.g., only those that
appear in at least 2 of the block’s adjacency lists.

4.3 Performance model results

We built a model to predict the compression achieved by each method, so that we could explore
many values for K, B, and L. The model predicts the amount of space required by the adjacency
data (but not the starts data), but does not actually build the encoded database. The model
assumes additions are encoded using a Huffman code.

Algorithm Bits/link Algorithm Bits/link Algorithm Bits/link

Select-2 4.77 LimitSelect-2-4 4.95 Union-5 4.55

Select-4 4.34 LimitSelect-4.4 4.51 Union-10 4.34

Select-8 4.17 LimitSelect-8-4 4.30 Union-20 4.33

Select-16 4.03 LimitSelect-16-4 4.14 Union-40 4.42

BlockSelect-5.5 5.07 LimitSelect-8-2 4.42

BlockSelect-10-10 4.67 LimitSelect-8-4 4.30

BlockSelect-20-20 4.36 LimitSelect-8-8 4.23

BlockSelect-40-40 4.16 LimitSelect-8-16 4.20

Table 1: Simulated interlist compression results

Table 1 contains results from this model for different parameter values of all four method
variations. This table shows that all of the interlist compression schemes can achieve roughly the
same level of compression, with high enough values of K, B, and L. In Link3, we chose to
implement LimitSelect-K-L because it avoids the open-ended chain problem of Select and
achieves better compression with short chains than Block-Select-K-B and Union. (Union gets
worse as B grows because the representative lists become very large.)

4.4 LimitSelect-K-L implementation and results

Our implementation of LimitSelect-K-L uses two arrays, one for starts and one for adjacency
data. The starts array is compressed as described in Section 3. The adjacency data is stored in
records that have three fields, each encoded in a variable-length format. The first field, ref, is the
relative index of the representative adjacency list. The ref field must be between 0 and K. If ref is
0 then the adjacency list uses absolute encoding and the deletes field is omitted. The second
field, deletes, encodes the set of URL-ids to delete from the representative list. The deletes field

11

consists of a length followed by a delta-encoded sequence of indices of representative list
elements to omit. The third field, adds, encodes the set of URL-ids to add to the representative
list. The length of this field is determined implicitly by looking at the starts array to determine
where the next adjacency-data record starts. The adds field is encoded as in Link2 (see
Section 3). These adjacency-data records use up to four Huffman codes: one for ref; two for
deletes (one for the length of deletes and one for the values themselves); and possibly one for
adds. (Adds may instead use the nybble code.) Each of these codes has its own code table.

104
105
106
107

adjacency data

...
...

starts

...
...

ref = 0
adds = {-3,31,42}

ref = 2
deletes = {1}
adds = {168}

Figure 6. Interlist compression.

In Figure 6 we show the example adjacency lists from Figure 2 again, this time using the
LimitSelect-K-L method for interlist compression.

Figures 7 and 8 show the effects of changing K and L in our implementation of LimitSelect-K-L.
Figure 7 shows that once K=8, increasing K has only a slight effect on the database size but
continues to increase the access time per link. Similarly, Figure 8 shows that increasing L
beyond 4 has a slight effect on the database size, but results in a large increase in link access
time. Based on these results, we chose K=8 and L=4 as our default parameters for Link3. (It
would be interesting to see the performance measurements for K=2 and L=2, however.)

Figure 7: LimitSelect-K-4 space vs time Figure 8: LimitSelect-8-L space vs time

5 Measurements

In this section we empirically compare the three implementations of the Link Database. We
compare both the space requirements and the access times. Our dataset was produced by a 58

12

day Mercator [HN99] crawl in the summer of 2000. This crawl downloaded 332 million unique
pages. The Link Database for it contains 351,546,665 URLs and 6,078,085,908 links. . A recent
paper on Mercator [NW01] suggests that taking the first N days of a crawl is a good way to limit
the amount of data to consider. Table 2 presents the results for the first 7 days of this crawl. This
dataset contains 61 million URLs and 1 billion links.

Size (avg bits/link) Time (avg ns/link) Time (s)Algorithm

Inlinks Outlinks

Max DB
(M
pages) Seq Rand SCC

Link1 34.00 24.00 214 13 72 187

Link2 8.90 11.03 546 47 109 217

Link2-1part 9.02 12.81 488 49 117 217

Link2+huff 7.92 10.8 583 117 195 287

Link3 5.66 5.61 862 248 336 414

Link3+huff 5.39 5.55 868 278 367 451

Table 2. Space and time measurements for implementations of 7 day crawl dataset.

Table 2 presents the results. Each row presents data for a different implementation of the Link
Database. Link1 uses no compression; Link2 uses single list compression and starts array
compression as described in Section 3; Link3 uses the implementation of LimitSelect-8-4
described in Section 4. . The "-1part" version of Link2 creates a database with 1 URL partition
instead of 3. The "+huff" versions of Link2 and Link3 use Huffman codes rather than nybble
codes to encode additions. (Link3 always uses Huffman codes to encode deletes.)

The first two data columns of Table 2 contain the sizes of the databases, reported as the total
number of bits used by the link data, including the starts array and any Huffman tables, divided
by the total number of links. The third data column contains an approximation of the maximum
database size (in millions of Web pages) that each technique can support on a machine with 16
GB of RAM. This approximation assumes an average of 17 outlinks per URL, which is what we
measured in our crawls. It also assumes that for a typical algorithm to run, such as SCC, (only)
the inlinks must fit in memory, in addition to 8 bytes of algorithm-specific data per URL.

The last three columns contain timing data. All timing was done on a Compaq Alpha ES40
21264A with 2 667 Mhz CPUs and 16 GB of RAM. All measurements are the average of at least
three runs with the Link Database in memory. The first two timing columns reports the time per
link to complete a sequential scan and a random scan of all inlink adjacency lists. The last
column contains the time to run a strongly connected components (SCC) algorithm. (A strongly
connected component on the Web is a set of mutually-reachable pages: from any page in the
component there is a path of hyperlinks to each other page. Our SCC algorithm [Tar72] finds all
such components.)

13

Table 2 makes very clear the space-time tradeoff we face: each step from Link1 to Link2 to
Link3 approximately doubles the number of pages we can handle on our 16 GB machine, but
each step also costs us in access time. The timing results tell an interesting story. On modern
machines, cache misses often dominate performance. In Link1 and Link2, the sequential scan is
optimal with respect to caching behavior: the processor picks up on the sequential scan and reads
ahead in memory, hiding the latency of cache misses. In this case, Link1 is clearly fastest
because it requires very little processing. Link3 does not exhibit this good cache behavior
because it goes marching back through memory to look at representative lists, and thus performs
much worse.

When we switch to random access, at least two cache misses are introduced (one for the starts
array, and one for the adjacency data), which are expensive. When this overhead is added, the
relative performance gap between Link1 and Link2 begins to close. We suspect that the
significant performance gains of Link2 relative to Link1 are because the compression of Link2
reduces the number of cache misses, making up for time spent decoding. The difference in
performance between Link1 and Link2-1part also supports this suspicion. The overhead of the
SCC algorithm itself (which includes even more cache misses) further closes the relative gap
between Link1 and Link2, so much so that they are now fairly comparable. The relative
performance gap between Link2 and Link3 also closes as we add more overhead, but not nearly
as much.

Table 2 also illustrates why we do not use a Huffman code in practice. It saved 3-11% of space,
but cost up to a factor of 2.5 in acocess time. We chose the faster option. Further, Table 2 also
shows that using 3 URL partitions saves space, primarily because the starts array can be
compressed.

Table 3 contains measurements for the full 58 day crawl for Link2 and Link3. (The Link1
implementation cannot support 6 billion links.) Although the details of the numbers in Table 3
differ from Table 2, the overall and relative trends remain the same. The timing measurements
are over the inlink database. The build time for Link2 is about 30 hours, including building the
URL Database. Link3 builds from Link2 in an additional 4 hours.

Size (avg bits/link) Time (avg ns/link) Time (s)Algorithm

Inlinks Outlinks Seq Rand SCC

Link2 8.51 11.08 45 119 1281

Link3 5.27 5.44 221 308 2509

Table 3. Space and time measurements for 58 day crawl dataset.

6 Related work

Many compression techniques exist [BYRN99, WMB98]. However, nearly all algorithms for
general data compression are optimized for sequential access: in order to decompress any portion
of the data, it must all be decompressed. Our goal is to support fast decompression for random

14

access algorithms. Similarly, most algorithms are optimized for large datasets, while adjacency
lists are quite small at less than 100 bytes.

Our work borrows from known techniques, such as delta codes, variable-length bit encoding, and
dictionary codes. However, we also introduce novel measures specific to the Web graph dataset,
such as partitioning adjacency lists into groups by the number of links they contain to compress
pointers to them (the starts array). We also allow backward references (representative lists)
which are not exact.

Although inverted list compression sounds similar – it compresses lists of document references –
many techniques, like block addressing that coalesces multiple list elements, do not apply
because the adjacency list of URL-ids must be exact. (Other techniques, like delta codes, we
borrow.) Similarly, papers on general database compression focus on reducing disk-space and
I/O requirements of disk-based databases [GRS98, WKHM00], not on memory requirements

While search engines such as Google [Google] must use compression techniques to store the
Web graph, they are unpublished. Altavista [AV] has used our Link2 in production since 1999.
Two other groups have published research on compressing the Web graph.

Adler and Mitzenmacher [AM01] contains a theoretical study of Web-graph compression. As in
our Select method, they encode lists relative to representative lists chosen from among the
adjacency lists of other nodes in the graph. However, rather than search locally to find
representative lists, they formulate an optimization problem that minimizes the cost of encoding
adjacency lists. They then reduce this optimization problem to finding a spanning tree of what
they call the "affinity graph" of the Web. While their technique is not practical for use on the
Web as a whole, it might be feasible if applied on a per-host basis, since our measurements show
that the best representative list is likely to be the adjacency list of another URL on the same host.

Suel and Yuan [SY01] describe a Link Database with similar functionality to ours, although they
only consider outlinks. They partition every adjacency list into two components, one containing
global links (that cross host boundaries) and the other containing local links. For the global links,
they use a Huffman code for a large number of the most popular destinations, and Golomb
coding for the rest. For local links, they also use a Huffman code for the most popular
destinations, and a delta code for the others. They report that this scheme requires around 14 bits
per link. Although our approach does better than Suel and Yuan's, it might be interesting to see if
our approach can be improved further by treating the most popular global destinations separately.

7 Conclusion

This paper describes methods for compressing the graph of URLs and hyperlinks on the Web.
We present two techniques for compressing lists of hyperlinks. These techniques combine
existing compression methods with new ideas to reduce the amount of space required from 32
bits to less than 6 bits per link – better than a ¼ compression ratio. Our techniques are effective
on the small amounts of data in an adjacency list (an average of 68 bytes), allow random access
to individual lists, and provide fast decompression speed. Using one technique, we can
sequentially scan a graph of 6 billion hyperlinks in 4.5 minutes, and compute the strongly
connected components (SCCs) of the graph using a depth-first search traversal in 22 minutes.
Using both techniques, we can complete the sequential scan in 25 minutes, and compute the

15

SCCs in 42 minutes. That is, as we improve our graph compression, we increase access time, but
can still compute complex algorithms over the graph quickly.

References

[ABW98] J. Abello, A. Buchsbaum, and J. Westbrook. A Functional Approach to External
Graph Algorithms. Proc. Annual European Symposium on Algorithms, pages 332-343, 1998.

[AM01] M. Adler and M. Mitzenmacher. Towards Compressing Web Graphs. Proceedings of
IEEE Data Compression Conference (DCC), March 2001.

[AV] AltaVista Company, http://www.altavista.com/

[BBDH99] K. Bharat, A. Broder, J. Dean, and M. Henzinger. A comparison of techniques to
find mirrored hosts on the WWW. Proceedings of the ACM Conference on Digital Libraries,
1999.

[BBH98] K. Bharat, A. Broder, M. Henzinger, P. Kumar and S. Venkatasubramanian. The
Connectivity Server: Fast access to linkage information on the Web. Proc. of 7th Intl World
Wide Web Conference, 1998.

 [BK91] A. Bookstein and S. Klein. Compression of correlated bit-vectors. Information Systems,
16(4), 1991.

[BKM00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopolan, R. Stata, A.
Tomkins, and J. L. Wiener. Graph structure in the Web. Proceedings of 9th Intl World Wide Web
Conference, May 2000.

[BP98] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proceedings of the 7th Intl World Wide Web Conference, April 1998.

[BYRN99] R. Baeza-Yates and B. Tibeiro-Neto. Modern Information Retrieval. Addison-
Wesley, NY, 1999.

[CGG95] Y. Chiang, M. Goodrich, E. Grove, R Tamassia, D Vengroff, and J. Vitter. External-
Memory Graph Algorithms. Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 139-
149, January 1995.

 [Google] http://www.google.com

[GRS98] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indexes.
Proceedings of the IEEE Conference on Data Engineering, pages 370-379, 1998.

[HN99] A. Heydon and M. Najork. Mercator: A scalable, extensible Web crawler. World Wide
Web, 2(4), December 1999.

 [K98] J. Kleinberg. Authoritative sources in a hyperlinked environment. Proceedings of the 9th

ACM-SIAM Symposium on Discrete Algorithms, January 1998.

16

[KS96] V. Kumar and E. Schwabe. Improved Algorithms and Data Structures for Solving Graph
Problems in External Memory. Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing, 1996.

[L92] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers, San Mateo, California 1992.

 [NW01] M. Najork and J. L. Wiener. Breadth-first search crawling yields high-quality pages.
Proceedings of the 10th International World Wide Web Conference, May 2001.

 [SY01] T. Suel and J. Yuan. Compressing the Graph Structure of the Web. Proceedings of the
IEEE Data Compression Conference (DCC), March 2001.

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing,1(2), 1972.

 [WKHM00] T. Westmann, D. Kossman, S. Helmer, G. Moerkotte. The implementation and
performance of compressed databases. Sigmod Record, 29 (3), Sept., 2000, pp 55-67.

[WMB99] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann Publishing, San Francisco, 1999.

