
30 July 2001

SRC
Research
Report 171

Denali: a goal-directed superoptimizer

Rajeev Joshi
Greg Nelson

Keith Randall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.compaq.com/SRC/

Compaq Systems Research Center

SRC’s charter is to advance the state of the art in computer systems by doing
basic and applied research in support of our company’s business objectives. Our
interests and projects span scalable systems (including hardware, networking,
distributed systems, and programming-language technology), the Internet (in-
cluding the Web, e-commerce, and information retrieval), and human/computer
interaction (including user-interface technology, computer-based appliances, and
mobile computing). SRC was established in 1984 by Digital Equipment Corpo-
ration.

We test the value of our ideas by building hardware and software prototypes and
assessing their utility in realistic settings. Interesting systems are too complex
to be evaluated solely in the abstract; practical use enables us to investigate
their properties in depth. This experience is useful in the short term in refining
our designs and invaluable in the long term in advancing our knowledge. Most
of the major advances in information systems have come through this approach,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical character. Some
of that lies in established fields of theoretical computer science, such as the anal-
ysis of algorithms, computer-aided geometric design, security and cryptography,
and formal specification and verification. Other work explores new ground mo-
tivated by problems that arise in our systems research.

We are strongly committed to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences, while our technical note series allows timely dissemina-
tion of recent research findings. We seek users for our prototype systems among
those with whom we have common interests, and we encourage collaboration
with university researchers.

Denali: a goal-directed superoptimizer

Rajeev Joshi, Greg Nelson, and Keith Randall

30 July 2001

Abstract

This paper provides a very preliminary report on a research project
that is just getting under way that aims to construct a code generator that
uses an automatic theorem-prover to produce very high-quality (in fact,
nearly mathematically optimal) machine code for modern architectures.
The code generator is not intended for use in an ordinary compiler, but
is intended to be used for inner loops and critical subroutines in those
cases where peak performance is required, no available compiler generates
adequately efficient code, and where current engineering practice is to
use hand-coded machine language. The paper describes the design of the
superoptimizer, and presents some encouraging preliminary results.

1 Introduction

1.1 Goals

Automatic code generation is not a young subject, but after all these decades
it still happens in many programming projects that for some portion of the
program, the code generated by the best compiler available is not adequately
efficient. When this happens, current engineering practice is to find a senior
engineer with intimate knowledge of the relevant processor architecture and
assign this unlucky individual the task of coding the relevant portions of the
program in machine language by hand. This generally does produce the required
efficient code, but since senior engineers have many pressing demands on their
time, it is an expensive way to get the job done, and software productivity would
be increased if automatic code generation could match or beat the best code of
the machine language guru.

This problem is not one of automating the invention of algorithms or the
design of loops, which even we shy away from, but the much easier problem of
automating the tedious backtracking search to find a straight-line machine code
sequence that computes a given vector of expressions in the minimum number
of cycles, achieving multiple issue whenever possible, respecting the latency
constraints of memory and the various functional units, doing an optimal job of
common subexpression elimination, and so on.

This is not a busy research area, perhaps for the following reason: Most
programmers spend most of their day executing an edit-compile-debug loop;
and most automatic code generators (even “optimizers”) are designed to run as
part of a compiler that is used in this manner, and therefore are constrained by
the requirement that they be able to generate hundreds, thousands, or millions
of instructions per second. Such a code generator has little hope of generating
code that will be good enough for our purpose. Consequently a great deal is
known about quickly generating indifferent code; and very little is known about
generating optimal code, which is our goal. Indeed, the label “optimization”
has been given to a field that does not aspire to optimize but only to improve.
This misnomer presented a difficulty to Henry Massalin, who invented the only
other code generation technique that we know of that aimed at our goal [8]:

1

the difficulty was that if Massalin called his system an optimizer, people would
assume that it was only a code improver. So Massalin called his system a
superoptimizer. In our title, we have adopted his nomenclature.

Massalin’s approach was bold and creative, and an amazing example of Ken
Thompson’s principle “When in doubt, use brute force”. His superoptimizer
performed an exhaustive enumeration of all possible code sequences in order of
increasing length. For each sequence, the superoptimizer executed the sequence
against a suite of tests, and a sequence that passed all tests was printed as a
candidate.

Massalin’s original implementation was for the 68000 only, but his method
has been employed by Granlund and others to produce superoptimizers for
several different CPU architectures [4].

Our system, Denali, improves on Massalin’s method in several ways.

• Massalin’s approach finds the shortest program. On Massalin’s 68000, the
shortest would also be the fastest, but on multiple-issue architectures this
need not be so.

• To require the user to prepare a bank of tests for each fragment of code
to be generated is painfully onerous. By contrast, the input to Denali is
similar to the input to a conventional code generator.

• Passing tests is not the same as being correct, so the output of Massalin’s
superoptimizer must be studied carefully to check that it is correct. By
constrast, the output of Denali is correct by design.

• Since executing random code could have undesirable effects, the enumer-
ation of candidate sequences must be limited to some repertoire of suffi-
ciently safe instructions, so that executing the candidates doesn’t crash the
program or interfere with the code generator itself. It would appear from
his paper that Massalin generated only register-to-register computations
that performed no stores to memory. Denali has no such limitation.

• Brute-force enumeration of all code sequences is glacially slow. Massalin
succeeded in finding impressive short code sequences, but his method
seems to be limited to sequences of around half-a-dozen instructions. And
it seems he was willing to let his code generator run for a week. Denali
substitutes goal-directed search for brute-force enumeration, for an enor-
mous gain in efficiency. We expect an overnight run to be able to generate
an optimal sequence of several dozen instructions.

We have been experimenting with the idea behind Denali for a little over a
year. Our current prototype generates code for the most recent implementation
of the Compaq Alpha processor. The prototype consists of some 15,000 lines
of C and Java and some 700 lines of axioms. We are currently making the
changes necessary to target the Intel Itanium architecture. It appears that this
shift will not require any radical changes (and the changes will mostly be to
the axioms), but this very short and preliminary note will describe the Alpha
version of Denali only.

2

1.2 The search principle

It may seem to some readers that an automatic theorem-prover is an unlikely
engine to use as a code generator. In an effort to correct this misperception, we
would like to emphasize an important principle:

The search principle a refutation-based automatic theorem-prover is in fact
a general-purpose goal-directed search engine, which can perform a goal-
directed search for anything that can be specified in its declarative input
language. Successful proofs correspond to unsuccessful searches, and vice-
versa.

A refutation-based prover is a prover that attempts to prove a conjecture C by
establishing the unsatisfiability of its negation ¬C. The search principle is not
true of all refutation-based provers, but it is true of an important kind of prover
with which our research laboratory has much experience [9, 1].

As an example of the search principle, to search for errors in a computer
program, we express in formal logic the conjecture that there are no errors, and
give this conjecture to a refutation-based automatic theorem-prover. If the proof
succeeds, the search for errors has failed. If the proof fails, embedded within
the failed proof is the error (or errors) that caused the proof to fail, which can
be extracted and presented to the user of the program checker. This approach
has been used by the Extended Static Checking research project [2, 7].

A second example of the principle was Tracy Larrabee’s 1990 dissertation
research on a hardware test vector generator that would find a test vector for a
given fault by refuting the conjecture that no test vector for that fault existed,
using a propositional automatic theorem-prover [5].

1.3 The obvious approach

The search principle suggests an obvious way to build the code generator we
desire. To generate optimal code for a program fragment P , we express in formal
logic a conjecture of the following form:

conjecture No program of the target architecture computes P in at most 8 cy-
cles.

and submit the conjecture to an appropriate automatic theorem prover. If the
proof succeeds, then 8 cycles are not enough, and we try again, with, say, 16
cycles. On the other hand, if the proof of the conjecture fails, then embedded in
the failed proof is an (at most) 8-cycle program that computes P . We extract
that program, and try again with 4 cycles. Continuing with binary search, we
eventually find, for some K, a K-cycle program that computes P , together with
a proof that K−1 cycles are insufficient: that is, an optimal program to compute
P on the given architecture.

3

1.4 The problem with the obvious approach

It is easier to describe the obvious approach than to make it work. If carried
out naively, the conjectures submitted to the prover become unwieldy. Suppose,
for example, that we proceeded by defining in formal logic the two functions

exec(M, i) The machine state produced by executing the machine code se-
quence M on the input state i.

meaning(P) The meaning of a program (or program fragment) P as a function
from input states to output states.

Then the conjecture that no machine code sequence M computes a given pro-
gram fragment P in K cycles becomes:

¬(∃M : M a K cycle program :
(∀ i : i an input state :

exec(M, i) = meaning(P)(i)))

Conjectures of this form are daunting for two reasons: First, the universal
quantifier nested within the existential quantifier is difficult for automatic the-
orem provers to handle. Second, the many cases in the definitions of exec and
meaning tend to lead automatic theorem provers into a morass of case analyses.

1.5 The solution to the problem

Luckily, the alternating quantifiers and the full definitions of exec and meaning
are unnecessary. For a sufficiently simple program fragment P , the equivalence
of M and P for all inputs is essentially the universal validity of an equality be-
tween two vectors of terms, the vector of terms that M computes and the vector
of terms that P specifies must be computed. Such equivalences can be proved
using matching, a well-understood automatic theorem-proving technique. For
example, how do we prove that the program fragment reg6 := 2*reg7 is equiv-
alent, for all inputs, to the one-instruction machine program

leftshift reg7,1,reg6

(Where we assume a three-operand assembly language with the destination
given in the third argument.) Denali’s matcher will prove this equivalence by
instantiating the algebraic identity

(∀x : 2 ∗ x = x << 1)

with the instantiation x := reg7.
So, instead of introducing an explicit quantifier over all inputs, we will accept

the limitation that the only proofs of equivalence for all inputs that we will
consider between a program fragment and a machine code sequence are proofs
by matching. If this limitation caused a valid proof of equivalence to be missed,
then Denali might miss the most efficient way of computing some term, and its

4

output might fail to be optimal, but its output would still be a correct way to
compute its input.

For the kinds of conjectures that we must prove or refute in code genera-
tion, it turns out, as the rest of this paper will explain, that, once the proof
of equivalence for all inputs is handled by matching, all that remains of the
proof can be handled by purely propositional reasoning, which boils down to
boolean satisfiability solving (SAT solving). The matcher finds all possible ways
of computing the result, and the SAT solver selects from these the fastest, con-
sidering common subexpressions, delay constraints of the architecture, multiple
issue constraints, and so forth. Roughly speaking, the matcher solves the un-
decidable part of the optimal code generation problem, and the satisfiability
solver solves the NP-complete part. It is an effective division of labor. Our cur-
rent (very limited) experience suggests that in practice, the most expensive step
is the satisfiability solver. But the architecture of Denali separates this solver
so effectively from the rest of the code generator that we can easily substitute
the current champion satisfiability solver and use it instead of its predecessor.
Indeed, as short as the project’s history is, we have already made several sub-
stitutions of this sort. The solver used by default by our current prototype is
the CHAFF SAT solver [12].

The remaining sections of this paper describe in order

• The input to Denali

• how Denali’s matcher works,

• how the propositional constraints are generated,

• some additional issues whose solutions are beyond the scope of this short
paper, and finally

• some very preliminary results.

2 The input to Denali

The input to Denali is a program in a low-level language fairly close to C.
In addition to the usual low-level language constructs, the language includes
features by which the programmer can indicate that certain loops are to be
unrolled or that certain memory references are likely to miss in the cache, or
that the code generator should trust the programmer that certain conditions
hold at certain control points in the program. The language is not intended
for writing programs of any size directly; it is intended to be useful for writing
the body of an inner loop, for example, or for writing short test programs.
The Denali prototype translates its input into an equivalent assembly language
source file. The translation strategy is as follows: Each procedure in the input
is converted into a set of guarded multi-assignments, which are the inputs to the
crucial inner subroutine of the code generator.

5

Constraint
generator

Matcher

Egraph

axioms

GMA

architectural
constraints

Sat
solver

clausal constraints
on boolean unknowns

Figure 1: To compile a guarded multiassignment, the matcher instantiates the
axioms of the theory of those operators that are computable by the target
architecture, thereby determining all possible ways of using those operators to
compute the goal terms of the GMA. The matcher determines all possible ways
(all possible expression trees built from the operations available on the target
architecture) of computing the goal terms. The constraint generator translates
into a SAT problem the question of whether any of these ways can be computed
within the cycle budget. Finally, the satisfiability solver finds a solution or
determines that no solution exists.

6

A guarded multi-assignment (or GMA) is determined by a sequence targets
of designators (also called or L-values), an equally long sequence newvals of
expressions (also called R-values), a boolean expression G called the guard, and
an exit label L. The meaning of the GMA is:

if G then
(targets) := (newvals)

else
goto L

end

We generally write G → (targets) := (newvals) to denote this GMA, leaving
the exit label to be determined by the context. For example, before unrolling,
the GMA for the inner loop of a copy routine might be:

reg1 < reg3 → (M[reg1], reg1, reg2) := M[reg2], reg1+ 8, reg2+ 8

with an exit label appropriate for an exit from the copy loop. Because auto-
matic theorem-provers treat entire arrays as values, the update to M[reg1] is
transformed in an early pass of Denali into an update to M, namely the update
M := store(M, reg1, M[reg2]).

The Denali prototype converts each procedure in its input into a set of GMAs,
and then uses the crucial inner subroutine to convert each GMA into near-
optimal machine code, using the search principle as modified to rely on matching
and satisfiability search. Our efforts have been concentrated on improving this
inner subroutine rather than on improving the factorization of a procedure body
into a collection of GMAs, where many conventional techniques could usefully
be applied. Figure 2 illustrates the crucial inner subroutine that translates a
single GMA into optimal code in two phases: matching and satisfiability search.

The matcher emits an E-graph, which is a data structure that compactly
represents all possible ways of computing the goal terms. It remains to be de-
termined whether any of these ways can be computed by the target architecture
within the cycle budget K. The constraint generator formulates this remaining
question as a boolean satisfiability problem, and then a conventional boolean
satisfiability solver is used to find a solution or determine that no solution ex-
ists. The constraint generation and satisfiability solution steps are repeated for
various cycle budgets until an optimal machine program is found.

The matcher and the constraint generator are the subjects of the next two
sections of this report.

3 Matching

The purpose of the matching phase of Denali is to use algebraic identities to
identify all of the possible ways in which the expressions in the input can be
computed. Since the number of ways may be enormous (exponentially larger
than the size of the expressions) it is important to choose a data structure care-
fully. The matching phase of Denali uses the E-graph data structure introduced

7

+

*

 reg6 4

1

(a)

+

*

 reg6 4

1

**

2 2

(b)

+

*

 reg6 4

1

**

2 2

<<

2

(c)

+

*

 reg6 4

1

**

2 2

<<

2

s4addl

(d)

Figure 2: Solid arrows represent term DAG edges and dashed arcs represent
equivalences in this illustration of matching in the E-graph.

8

in the Ph.D. work [9, 11] of one of the authors (Nelson), and refined extensively
since then [1]. The crucial congruence closure algorithm used with the E-graph
is the work of Tarjan and his colleagues [3].

An E-graph is a conventional term DAG augmented with an equivalence
relation on the nodes of the DAG; where two nodes are equivalent if the terms
they represent are identical in value. Hence the value of an equivalence class
can be computed by computing any term in the class; having selected a term
in the class, the values of each argument of the term likewise can be computed
by selecting any term equivalent to the argument term, and so forth. Thus an
E-graph of size O(n) can represent Θ(2n) distinct ways of computing a term of
size n.

The machine code for a GMA must evaluate the boolean expression that is
the guard of the GMA, and must also evaluate the expressions on the right side of
the assignment statement. Let us call all these expressions the goal expressions,
since the essential goal of the required machine code is to evaluate them.

Typical GMAs have several goal terms, but Figure 2 illustrates Denali’s
matcher for the artificially simplified situation of a single goal term, namely
the term reg6*4+1, which we have chosen to illustrate several points about
matching. The first step in the matching phase is to construct an E-graph
that represents all the goal terms. Figure 2(a) shows the initial E-graph of our
simple example. It is a conventional term DAG: that is, a term of the form
f(t1, t2, . . . , tn) is represented by a node labelled f with an outgoing sequence
of edges pointing to the nodes that represent the t’s. If no matching were
performed at all, so that Figure 2(a) were the final E-graph, then the only way
to compute the goal term would be by a multiply followed by an add.

The operations that are relevant for a particular version of Denali are the
operations of the Denali source language together with the operations that can
be computed by the target architecture of that version. The matcher relies on a
background file that declares useful facts (axioms) about the relevant operations.
The matcher repeatedly transforms the E-graph by instantiating a relevant and
useful fact and asserting the fact in the E-graph. This is repeated until a
quiescent state is reached in which the E-graph records all useful instances of
all relevant facts in the background file. In the case of our example, the first
relevant and useful fact that we will add to the graph is the fact 4 = 22. When
this fact is added, the E-graph is changed by adding a new node to represent
the term 22 (or 2 **2) and adding this new node to the equivalence class of the
existing node for “4”. Figure 2(b) shows the result of this transformation. (We
use dashed edges to connect nodes that are equivalent.) Of course, the Alpha
does not have an instruction for computing **, so this match has not directly
introduced any new ways of computing the goal term: if matching terminated
with the E-graph of Figure 2(b), the only way to compute the goal term would
be by the same multiply and add sequence available already in the initial graph.
But this does not mean the change to the E-graph was useless, because it enables
new matches. Specifically, matching now continues by finding a relevant and

9

useful instance of the fact

∀k, n :: k ∗ 2n = k <<n

namely the instance with (k, n) := (reg6, 2). (An ordinary matcher would fail
to match the pattern k ∗ 2 **n against the term-DAG node reg6 ∗ 4 because
the node labelled “4” is not of the form 2n, but an E-graph matcher will search
the equivalence class and find the node 2 ** 2 and the match will succeed.) The
resulting E-graph is shown in Figure 2(c). If matching were terminated at this
point, then in addition to the multiply-add sequence there would be a shift-
and-add sequence (which is faster and therefore would probably be selected).
Finally, the Alpha contains an instruction called s4addl which scales by four
and adds. The background facts for Denali therefore include the fact

∀k, n :: k ∗ 4 + n = s4addl(k, n) .

When the matcher instantiates this with (k, n) := (reg6, 1) and updates the E-
graph, the result is the graph shown in Figure 2d. This adds a new possibility
for computing the goal term (superior to both of the other possibilities) using
a single s4addl instruction.

Here are three comments about this example.
First, the order in which the matches would occur in this example might very

well be different than the order described: s4addl could have been introduced
immediately. However, the << node could not be introduced until the equality
of 4 with 2 **2 was introduced.

Second, we contrast E-graph matching with conventional matching. Many
conventional matchers are rewriting engines, in the sense that they directly
rewrite a term into a new form, recursively rewriting subexpressions before
rewriting a root expression. For example, they might rewrite n ∗ 2 into n<<1.
Such a rewriting engine would be unlikely to rewrite 4 as 22, since the latter
term is not an efficient way to compute the former. Similarly, a rewriting engine
that produced the fairly efficient reg6<<2 might miss the most efficient version
with s4addl, since the pattern for the fact involving s4addl most naturally
involves multiplication by four, not left-shifting by two. In general, to reach the
optimal version by a sequence of elementary rewrites may require rewriting some
subterms in ways that reduce efficiency rather than improve it, and, in general,
a transformation that improves efficiency may cause the failure of subsequent
matches that would have produced even greater gains. These are well-known
and thorny problems for rewriting engines. The E-graph doesn’t suffer from
these problems, since, instead of rewriting A as B, it records A = B in its data
structure, leaving both A and B around, where they can be used both for future
matching and as candidates for the final selection of instructions.

A third comment is that the attractive features of the E-graph approach
mentioned in the second comment are not without their price. Matching in an
E-graph is more expensive than matching a pattern against a simple term DAG.
Also, many matches are required to reach quiescence, and the quiescent state

10

may be quite a large E-graph. For example, Denali’s matcher uses the commu-
tativity and associativity of addition to find more than a hundred different ways
of computing a+ b+ c+d+ e. Nevertheless, Denali seems to be efficient enough
to be useful, and when it is painfully slow, the satisfiability solver is more often
to blame than the matcher.

In our description of Denali’s matcher, we have so far considered only facts
that are (quantified or unquantified) equalities between terms (that is, facts of
the form T = U). Two other kinds of facts that the matcher uses are (quan-
tified or unquantified) distinctions and clauses. As with equalities, quantified
distinctions and clauses are transformed into the corresponding unquantified
kind of fact by finding heuristically relevant instances, so it suffices to explain
how Denali uses unquantified distinctions and clauses.

A (binary) distinction is a fact of the form T �= U for two terms T and U .
Binary distinctions are the only kind of distinction that we will consider in this
preliminary report. A distinction T �= U is asserted in the E-graph by recording
the constraint that the equivalence classes of T and of U are uncombinable.

Equalities and Distinctions are collectively called literals. The third kind of
fact that Denali uses is a clause, which is a disjunction (“or”) of literals, that
is, a fact of the form

L1 ∨ L2 ∨ . . . ∨ Ln

where the L’s are literals. An unquantified clause is used by recording it in
a data structure and then continuing as follows. Whenever any of its literals
becomes untenable, the untenable literal is deleted from the recorded clause.
Furthermore, if the deletion of the untenable literal from a recorded clause
leaves the clause with a single literal, then that lone literal is asserted. An
equality T = U is untenable if the equivalence classes of T and of U have been
constrained to be uncombinable. A distinction T �= U is untenable if T and U
are in the same equivalence class.

We conclude this section with an example that illustrates how the matcher
uses clauses and distinctions. Denali’s standard file of background facts records
fundamental facts about the functions select and store that represent reads
and writes of arrays. One of these fundamental facts is the select-store axiom,
which says that writing element i of an array a doesn’t change any element with
an index j different from i:

(∀a, i, j, x :: i = j ∨ select(store(a, i, x), j) = select(a, j))

If a GMA involved storing some value (say x) to address p and then loading
from address p + 8, then the E-graph would include the term

select(store(mem, p, x), p + 8)

The presence of this term would cause the body of the select-store axiom to be
instantiated by (a, i, j) := (mem, p, p+8), causing the matcher to make a record
of the unquantified clause

p = p + 8 ∨ select(store(mem, p, x), p + 8) = select(mem, p + 8)

11

By mechanisms that we will not describe in this preliminary report, the literal
p = p+8 will be discovered to be untenable and deleted, leading to the assertion
of the equality

select(store(mem, p, x), p + 8) = select(mem, p + 8)

The presence of this equality in the E-graph gives the code generator the option
of doing the load and store in either order.

4 Satisfiability solving

After the matcher has reached a quiescent state, it is sound to assume that the
E-graph represents all possible ways of computing the terms that it represents.
(More precisely, it is sound to assume that this will be true if the background
facts include a complete axiomatization of the first order theory of the relevant
operations and if the matching phase is allowed to run long enough, and if the
heuristics that are designed to keep the matcher from running forever don’t
mistakenly stop it from running long enough. These caveats about the matcher
are the first reason that we call Denali’s output “near-optimal” instead of “op-
timal”) In order to obtain optimal code, it remains to formulate a conjecture of
the form

No program of the target architecture computes the values of the goal terms
within K cycles

where K is a specified literal integer constant. Happily, this can be formulated
in propositional calculus, so that it can be tested with a satisfiability solver. The
exact details are somewhat architecture-dependent, but the basic idea is simple.
To illustrate the basic idea we assume a machine without multiple issue, so that
at most one instruction is issued per cycle. The operations appearing in the E-
graph include “machine operations” that can be directly computed by the target
architecture; they may also include non-machine operations that are allowed in
the input (or in the file of universal facts) but that cannot be computed by the
machine directly. (The matching example in the previous section used the non-
machine operation **, so that universal facts could be expressed conveniently
(in particular, could mention powers of two).) We define a term (that is, a
node of the E-graph) to be a machine term if it is an application of a machine
operation, and a non-machine term otherwise.

We introduce a number of boolean unknowns. Specifically, for each cycle i of
the K cycles available, and for each machine term T , and for each equivalence
class Q, we introduce the following boolean unknowns:

L(i, T): denotes that in the desired machine program, the computation of T is
launched at the beginning of cycle i.

A(i, T): denotes that in the desired machine program, the computation of T
is completed at the end of cycle i.

12

B(i, Q): denotes that the desired machine program has computed the value of
equivalence class Q by the end of cycle i.

In terms of these boolean unknowns we can formulate the conditions under
which a K-cycle machine program exists that computes all the goal terms.

There are four basic conditions:
First, writing λ(T) for the latency of the term T , that is, the number of

cycles required to apply the root operator of T to its arguments, we observe
that the interval of time occupied by the computation of T consists of λ(T)
consecutive cycles, leading to the following obvious relation between the cycle
in which T ’s computation is launched and the cycle in which it is completed:

∧
i,T

(L(i, T) ≡ A(i + λ(T)− 1, T))

Second, writing args(T) for the set of equivalence classes of the top level
arguments of a term T , we observe that an operation cannot be launched until
its arguments are available, and therefore:

∧
i,T,Q

((L(i, T) ∧ Q ∈ args(T)) ⇒ B(i − 1, Q))

Third, the only way to compute the value of an equivalence class Q by the
end of cycle i is by computing the value of one of its machine terms T at the
end of some cycle j ≤ i and therefore:

∧
i,Q


B(i, Q) ≡ (

∨
j,T

j ≤ i ∧ T ∈ Q ∧ A(j, T))




Fourth, letting G denote the set of equivalence classes of goal terms, each of
these equivalence classes must be computed within K cycles. Numbering cycles
from zero, that would be by the end of cycle K − 1:

∧
Q∈G

B(K − 1, Q)

We need to continue adding constraints until the boolean unknowns are so con-
strained that any solution to them corresponds to a K-cycle machine program
that computes the goal terms. More constraints are needed than we have shown
so far, but we have shown enough to convey the essence of the approach.

For a fixed E-graph and a fixed cycle budget, the constraints are explicit
propositional constraints on a finite set of boolean unknowns. The assertion
that no K-cycle machine program exists is equivalent to the assertion that their
conjunction is unsatisfiable, a conjecture that can be tested with a SAT solver,
which is of all automatic theorem-provers the one that most clearly satisfies the
search principle, since it refutes the conjecture by finding explicit values for the
L’s, A’s and B’s that satisfy the constraints. The L’s that are assigned true by

13

the solver determine which machine operations are launched at each cycle, from
which the required machine program can be read off.

We conclude this section with a few remarks about latencies. The Denali
method requires that that latency λ(T) of each term T be known to the code
generator. For ALU operations, this requirement is not problematical, but for
memory accesses it may at first seem to be a showstopper. Certainly an ordinary
code generator cannot statically predict the latencies of memory accesses. But
the scenario in which Denali is designed to be used is not the scenario in which an
ordinary compiler is used. The scenario is an inner loop or crucial subroutine
whose performance is important enough to warrant hand-coding in machine
language. In this scenario, the first step is to use profiling tools to determine
which memory accesses miss in the cache (and how many levels of cache are
missed). Having found this information, the programmer can communicate it
to Denali using annotations in the Denali source program.

Since the information gleaned from profiling is statistical, not absolute, we
would still be in trouble if the correctness of the generated code depended on
the accuracy of the latency annotations, but (precisely because caching makes
memory latencies unpredictable statically) any reasonable modern processor (in-
cluding both the Alpha and the Itanium) includes hardware to stall or replay
when necessary, so that latency annotations are important for performance but
not for correctness: the code generated will be correct even if the annotations
are inaccurate. Thus we can expect some stalls or replay traps on the first few
iterations of a Denali-optimized inner loop, but to the extent that statistical
information about inner loops is reliable, the loop will soon settle into the opti-
mal computation that was modelled by the boolean constraints. The statistical
nature of profiling information is the second reason that we call Denali’s output
“near-optimal” instead of “optimal”.

5 Additional constraints

The satisfiability constraints in the previous section were simplified by the as-
sumption of a single-issue machine, since the cycle index i could also be thought
of as an index in the instruction stream. But the same approach easily acco-
modates a multiple instruction architecture where cycle indexes and instruction
indexes both appear and must be carefully distinguished.

Some expressions (in particular, memory accesses) on the right side of a
guarded multi-assignment may be unsafe to compute if the guard expression is
false. Therefore Denali generates satisfiability constraints that force the guard
to be tested before any such expressions are evaluated. It is straightforward to
add additional propositional constraints on the boolean unknowns to enforce
this order.

The expressions on the right side of a guarded multiassignment may use the
same targets that it updates; for example,

(reg6, reg7) := (reg6+ reg7, reg6) .

14

In this case, the final instruction that computes the reg6 + reg7 may not be
able to place the computed value in its final destination. In the worst case,
we may be forced to choose between adding an early move to save an input
that will be overwritten by the rest of the code sequence or computing a value
into a temporary register and adding a late move to put it finally into the
correct location. On multiple-issue architectures the choice between these two
alternatives may make a difference to performance. Denali encodes the choice
into the boolean constraints where it becomes just one more bit for the solver
to determine.

The ordering of procedure calls is more constrained than the ordering of other
operations, because in general, a procedure call is assumed to both modify and
read the memory. This circumstance leads to additional constraints that we
also encode in the propositional constraints, but we must leave the details for
future papers.

6 Preliminary results

We have implemented a prototype of Denali in Java for the most recent imple-
mentation of the Compaq Alpha, a quad-issue chip with multiple register banks
and extra delays for moving values between banks, all of which complexity is
modeled by our code generator.

One of our standard tests is the problem of reversing the byte order of a four
byte value in a register, computing the result into another register. Denali com-
putes the optimal code (which takes five cycles) in about twenty-five seconds,
most of which is spent solving a SAT system of some six thousand constraints on
twenty-five hundred variables. Other tests also give us confidence that the De-
nali approach can provide peak performance on ALU-bound register-to-register
computations.

We are less far along with memory-bound computations. We have applied
Denali to some matrix loops and to a packet checksum routine, and it seems to
work nearly as expected, but these experiments have already pointed to changes
that our prototype needs. More work and more experience are needed before
conclusions can be drawn.

References

[1] David Detlefs, Greg Nelson, and James B. Saxe. A theorem-prover for
program checking. Technical report, Compaq Systems Research Center. In
preparation.

[2] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report 159, Compaq Systems Research
Center, 1998.

15

[3] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common
subexpression problem. JACM, 27(4), 1980.

[4] Torbjorn Granlund and Richard Kenner. Eliminating branches using a Su-
peroptimizer and the GNU C compiler. Proceedings of the ACM SIGPLAN
conference on Programming Language Design and Implementation, pages
341–52, 1992.

[5] Tracy Larrabee. Efficient generation of test patterns using boolean satisfi-
ability. PhD thesis, Stanford University, 1990. Also available as a research
report [6].

[6] Tracy Larrabee. Efficient generation of test patterns using boolean satisfi-
ability. Technical Report 90/2, Western Research Lab, February 1990.

[7] K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user’s
manual. Technical Report 2000-002, Compaq Systems Research Center,
2000.

[8] Henry Massalin. Superoptimizer: a look at the shortest program. Proceed-
ings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 122–26, 1987.

[9] Charles Gregory Nelson. Techniques for Program Verification. PhD thesis,
Stanford University, 1979. A revised version of this thesis was published as
a Xerox PARC Computer Science Laboratory Research Report [10].

[10] G. Nelson. Techniques for Program Verification. Technical Report CSL-
81-10, Xerox PARC, 1981. This report is out of print, but the author still
has a couple of photocopies.

[11] Derek C. Oppen and Greg Nelson. Fast decision algorithms based on con-
gruence closure. JACM, 27(2), 1980. Also appeared in SIGACT.

[12] SAT Research at Princeton Home Page. Chaff satisfiability solver.
http://www.ee.princeton.edu/ chaff.

16

