
March 9, 2001

SRC
Research
Report 168

The Vesta Approach to
Software Configuration Management

Allan Heydon
Roy Levin

Timothy Mann
Yuan Yu

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.compaq.com/SRC/

Compaq Systems Research Center

SRC’s charter is to advance the state of the art in computer systems by doing basic
and applied research in support of our company’s business objectives. Our interests
and projects span scalable systems (including hardware, networking, distributed
systems, and programming-language technology), the Internet (including the Web,
e-commerce, and information retrieval), and human/computer interaction (includ-
ing user-interface technology, computer-based appliances, and mobile computing).
SRC was established in 1984 by Digital Equipment Corporation.

We test the value of our ideas by building hardware and software prototypes and
assessing their utility in realistic settings. Interesting systems are too complex
to be evaluated solely in the abstract; practical use enables us to investigate their
properties in depth. This experience is useful in the short term in refining our
designs and invaluable in the long term in advancing our knowledge. Most of the
major advances in information systems have come through this approach, including
personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical character. Some of
that lies in established fields of theoretical computer science, such as the analysis
of algorithms, computer-aided geometric design, security and cryptography, and
formal specification and verification. Other work explores new ground motivated
by problems that arise in our systems research.

We are strongly committed to communicating our results; exposing and testing our
ideas in the research and development communities leads to improved understand-
ing. Our research report series supplements publication in professional journals
and conferences, while our technical note series allows timely dissemination of re-
cent research findings. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

The Vesta Approach to
Software Configuration Management

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu

March 9, 2001

Publication History

An earlier version of this report appeared as Compaq Systems Research Center
Technical Note 1999-01, c©1999 Compaq Computer Corporation.

Allan Heydon is no longer with Compaq. He can be reached by electronic mail
at the address caheydon@yahoo.com.

c©Compaq Computer Corporation 2001

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Compaq Computer Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

Vesta is a system for software configuration management. It stores collections of
source files, keeps track of which versions of which files go together, and automates
the process of building a complete software artifact from its component pieces.
Vesta’s novel approach gives it three important properties. First, every build is
repeatable, because its component sources and build tools are stored immutably
and immortally, and its configuration description completely specifies what com-
ponents and tools are used and how they are put together. Second, every build is
incremental, because results of previous builds are cached and reused. Third, ev-
ery build is consistent, because all build dependencies are automatically captured
and recorded, so that a cached result from a previous build is reused only when
doing so is certain to be correct. In addition, Vesta’s flexible language for writing
configuration descriptions makes it easy to describe large software configurations
in a modular fashion and to create variant configurations by customizing build pa-
rameters. This paper gives a brief overview of Vesta, outlining Vesta’s advantages
over traditional tools, how those benefits are achieved, and the system’s overall
performance.

.

1 Introduction

This paper describes Vesta, a software configuration management (SCM) system
for managing and building software, designed to extend from small systems to very
large ones (tens of millions of lines of source code).1 Vesta addresses the following
four core SCM problems:

Version management. Version management is the process of assigning names
(typically sequential numbers) to a series of related source files and supporting
retrieval of those files by name.

Source control. Source control is the process of controlling or regulating the pro-
duction of new versions of source files. Operations commonly associated with
source control include checkout and checkin, which respectively reserve a new ver-
sion and supply the data for a previously reserved version. Source control may be
coupled with concurrency control as well, so that checking out a particular version
limits the ability of other users to check out related versions.

System modeling. A system model is both a static description of a system’s con-
figuration and a recipe for producing a software artifact. It names the (versions of)
software components that are to be combined to produce larger components or en-
tire systems, names the tools that are to be used to combine them, and specifies how
the tools are to be applied. System models are also sometimes called configuration
descriptions.

Building. Building is the process of evaluating a system model so as to construct
a complete system according to the model’s instructions. It may also include other
activities, such as running regression tests on the resulting artifact.

Version management, source control, system modeling, and building are four
parts of the larger SCM problem. Considered broadly, SCM is often taken to in-
clude such areas as process management, software life-cycle management (e.g.,
bug tracking, testing), and even the specific tools used to develop and evolve soft-
ware components. We hold the view that these aspects of SCM, although impor-
tant to the overall software development process, are secondary to the core issues
listed above. We have therefore focused the Vesta project on solving those core
problems, constructing a solid base upon which we believe solutions to the other
problems can be built.

1Throughout this paper we use the name “Vesta” to refer to Vesta-2, the second complete SCM
system based on the Vesta approach. Vesta-1 was implemented in the early 1990’s and saw extensive
use within our research center [2, 3, 8, 14]. Vesta-2 is a complete redesign and reimplementation
based on our experience with Vesta-1, retaining the same fundamental approach but correcting the
deficiencies of the earlier system.

1

Some form of SCM is almost always a necessary part of software development.
SCM is useful whenever multiple source files, multiple developers, or multiple
releases and/or target platforms are involved. Moreover, the larger the number
of source files, developers, or releases, the larger the configuration management
problem.

A good SCM system can greatly reduce these problems. Version management
can ease the problem of managing multiple source files by keeping related versions
of files together. Source control can help multiple developers work productively in
parallel. Together, system modeling and building can help manage multiple re-
leases by accurately selecting the right sources to use for each release and by au-
tomatically managing the machine-generated files created during a build (derived
files), so that users need only concern themselves with source files.

Several difficulties stand in the way of designing and implementing an SCM
system that addresses these problems. First, handling large-scale software is diffi-
cult, because it usually involves large numbers of source files and developers. The
rapid growth of today’s software makes this an even more pressing problem. Un-
like most other SCM systems in use today, Vesta was specifically designed to work
with very large projects—millions of lines of code and beyond. Second, with larger
numbers of developers comes the need to support parallel development across sites
that are often geographically separated, which introduces the problem of keeping
replicated copies consistent. Finally, for building to be efficient, it must work in-
crementally, re-using the results of previous builds whenever possible. However,
when multiple versions, multiple target platforms, and multiple releases are in-
volved, sound incremental building is a non-trivial problem.

The rest of the paper is organized as follows. We first consider the strengths
and weaknesses of several widely-used SCM systems. Section 3 then describes the
Vesta approach, focusing on the main ideas in the Vesta system and the benefits
they provide. In Section 4, we describe how those ideas are realized in practice,
with an emphasis on the user’s view of the system. We describe the performance
of our implementation in Section 5. Finally, Section 6 lists some additional tech-
nical issues that could not be presented fully in this brief paper, summarizes our
experience in using the system, and offers our conclusions.

2 Previous Approaches

In this section, we review related work by assessing several popular SCM systems.
Some systems, like the Revision Control System (RCS) and the Concurrent Version
System (CVS) address only version management and source control, while others
like Make address only system modeling and building. RCS, CVS, and Make are

2

rather old, of course, but they remain useful points of comparison for Vesta for
two reasons: they are still widely used, and many newer systems approach the core
SCM problems in essentially the same way that they do. We also consider Clear-
CASE, which takes a more ambitious, integrated approach to solving the core SCM
problems.

2.1 RCS and CVS

RCS is a system for maintaining multiple versions of individual files [16, 17]. Its
main strengths are that it is easy to use, well-understood, and well-documented.
Its main disadvantages are two. First, it does not provide transparent access to
individual file versions. That is, an explicit checkout step is required to access an
older version of a file. Hence, to build an older version of a system, the developer
must first explicitly check out the correct versions of each source file required
by the build. Second, sources are versioned at the granularity of individual files.
Although RCS provides tagging facilities for grouping related files, those facilities
are awkward to use.

Like RCS, CVS is relatively easy to use and well-supported [6]. It also suf-
fers RCS’s problem of not allowing transparent access to file versions. However,
unlike RCS, CVS allows related files to be grouped together into modules. CVS
also includes an optimistic concurrency control methodology that allows multiple
developers to work on the same file concurrently. However, allowing concurrent
modifications is not without its costs, since conflicting edits must be detected and
resolved. CVS’s conflict detection is simple-minded (i.e., purely line-based), so
semantic conflicts between changes in disjoint lines may go undetected. When
conflicts occur, they must be resolved manually, which can be a time-consuming
process.

2.2 Make

Make is a widely-used tool for building software [4]. It is easy to use and the syntax
of its system models (i.e., Makefiles) is simple, if somewhat cryptic. Moreover,
Make can also be used for tasks other than building software, such as running
regression tests. Many extended versions of Make have been developed over the
years, but few have addressed the shortcomings we discuss in this section.

There are several major problems with the Make approach to software con-
struction. In this approach, dependencies between derived files and the inputs used
to produce them must be specified explicitly by the user, and Make relies on time-
stamps to decide when it is safe to reuse a derived file in a subsequent build. A
build based on incorrect dependency information or incorrect timestamps can pro-

3

duce an inconsistent result, in which parts of the resulting system incorrectly in-
clude stale derived files. Inconsistent builds can produce programs that fail to link
or run, or that exhibit bizarre, unexplainable bugs. Developers often must resort to
performing a scratch build to correct such problems.

Inconsistent builds are not uncommon in Make. Specifying dependencies ex-
plicitly is an inherently error-prone task. There are tools such as makedepend for
generating certain kinds of dependencies automatically, but again, such tools must
be run by hand, so they may not be run as often as necessary. Another problem
is that some dependencies are inexpressible or too costly to express. For example,
dependencies on the values of environment variables cannot be expressed in Make,
and dependencies on the Makefile itself are too costly because they would result in
a scratch build whenever the Makefile was changed. Make’s use of timestamps is
also problematic. For example, when building a system from older sources, Make
may incorrectly conclude that the system is up-to-date because the timestamps as-
sociated with the older file versions are in the past; again, a scratch build is often
the developer’s only recourse in such situations.

Finally, Make scales poorly. Make does its dependency analysis from the
leaves of the build tree, working its way up to the final result. Hence, the cost
of an incremental build in Make is proportional to the total number of sources con-
tributing to the build, not the number of sources that have changed. Moreover,
although it is possible to structure a software system hierarchically by arranging
for Make to invoke itself recursively on sub-components, doing so is awkward and
performs poorly.

Bell Laboratories’ Nmake [5] addresses most of these problems with Make, as
well as others, though it does not fully solve them. Nmake includes a built-in static
dependency generator that does its own parsing of source files (looking, for exam-
ple, for #include statements in C code); this greatly reduces the likelihood of
omitted dependencies, but the dependencies generated can be overly conservative,
increasing the amount of rebuilding work needed, and new parsing support has to
be written whenever Nmake is used on code written in a new language. Nmake
includes an improved timestamp checking algorithm that fails only when an erro-
neous system clock gives two different versions of a file the same timestamp, and it
caches timestamps and other state to speed up its dependency analysis somewhat.

2.3 ClearCASE

Perhaps the biggest problem with the systems discussed so far is that they are not
integrated. Building a particular version of a system requires two steps: checking
out the correct versions of the sources, and then building them. As described pre-
viously, the first build of an older version must be performed from scratch, since

4

Make does not have any knowledge about which versions it is building, so it cannot
tell when it is safe to reuse a derived file from a different build.

ClearCASE is a commercial SCM system that integrates version management
with building, and that addresses many of Make’s shortcomings [1]. It is based
on many of the ideas in the earlier DOMAIN Software Engineering Environment
(DSEE) system [12, 13].

ClearCASE provides access to file versions primarily through its view mech-
anism. A view is a set of rules that transparently map unversioned file names to
versioned names. The rules governing a view can be specified in a variety of ways.
They include provisions for always accessing the latest version of a file, the lat-
est version along a specified branch of development, the version current as of a
specified time, and others.

For building, ClearCASE provides its own version of Make called clearmake.
Thus developers do not have to learn a new system modeling language, and their
existing Makefiles continue to work. Unlike Make, clearmake does automatic (al-
though somewhat incomplete) dependency detection by monitoring and recording
the files accessed during a build. It also manages derived files for potential later
reuse.

There are several problems with ClearCASE. The problem with the view ap-
proach to version management and building is that the meaning of a name can
change over time. In particular, the actions taken by someone else can cause one’s
own build to suddenly fail; for example, when your view is configured to use the
latest version of a file, someone else may check in a new version with changes that
are incompatible with your work. This shortcoming is an impediment to effective
parallel development. There are also problems with the clearmake builder. First,
because clearmake is Make-based, it suffers from the same scalability problems
as Make. Second, because its dependency detection is incomplete, clearmake can
produce inconsistent builds. Third, clearmake’s mechanism for allowing develop-
ers to reuse the derived files produced by others—called winking in—is based on
heuristics that can fail to capitalize on valid reuse opportunities. Finally, anec-
dotal evidence suggests that the overheads introduced by clearmake are large, so
some development organizations choose to use ordinary Make for improved per-
formance, despite Make’s shortcomings.

3 The Vesta Approach

As described earlier, Vesta’s goals are to address the core SCM problems of ver-
sion management, source control, system modeling, and building. It is meant to
provide a firm technical base on which solutions to the other SCM problems can

5

be built. Vesta is also explicitly designed to scale up to large code bases, which
means it must effectively support parallel development. Of course, it must be an
open system that works with standard development tools. Finally, it must perform
well and be easy to use.

The Vesta approach is based on the following foundations:

• Immutable, immortal, versioned storage of all sources and tools. Unlike
ClearCASE, Vesta uses explicit version numbers rather than views.

• Complete, source-based configuration descriptions. By complete, we mean
that the descriptions name all elements contributing to a build. Every as-
pect of the computing environment, including tools, libraries, header files,
and environment variables, is fully described and controlled by Vesta.2 By
source-based, we mean that configuration descriptions specify how to build
a system from scratch using only immutable sources (i.e., non-derived files).
The descriptions themselves are versioned and immutable sources, and their
meaning is constant; a particular top-level description always describes pre-
cisely the same build using the same sources, even after new versions of
sources and descriptions have been created.

• Automatic derived file management. The storage and naming of derived files
is managed automatically by the Vesta storage repository, thereby easing the
burden of building multiple releases or building for multiple target platforms.

• Site-wide caching of all build work. Vesta features a shared site-wide cache
of build results so developers can benefit from each others’ builds.

• Automatic dependency detection. The Vesta builder dynamically detects and
records all dependencies, so none can be omitted by human error. By dynam-
ically, we mean that the builder detects which sources are actually used in
the process of constructing a build result and records dependencies only on
them. Vesta’s dependency analysis does not make use of any knowledge of
how the build tools work; it is thus semantics-independent in the terminol-
ogy of Gunter [7]. For example, if a compiler reads file foo.h in the process
of compiling file foo.c, Vesta will assume that the compiler’s output depends
on all of foo.h, even though a tool with knowledge of C might be able to find
individual items in foo.h that could be changed without changing the result
of the compilation.

2Ultimately, of course, every build is also dependent on the operating system platform on which
it is performed, and it is possible in principle to write tools that depend on features of the operating
system that we do not encapsulate. However, we have not encountered any such dependencies in the
standard construction tools we have used.

6

At this point, the reader may well be wondering what it is like to use Vesta
in practice. How can any sources be edited if all sources are stored immutably?
If system models must name the version of every source file, isn’t the overhead of
maintaining those references overwhelming? We address these questions and other
practical aspects of using Vesta in Section 4 below.

We first point out that these foundations provide several valuable benefits:

Repeatable builds. The immutability and immortality of sources combined with
the completeness of build descriptions together mean that every Vesta build is re-
peatable. That is, any build performed in the past can be exactly reproduced at any
time in the future.

Incremental builds. Although the system models describe how to build a software
system from scratch, the Vesta builder uses the site-wide cache of previous builds to
avoid redoing work, so good incremental build performance is the norm. The time
required to perform an incremental build is generally proportional to the amount of
new work to be done, not to the size of the system being built.

Consistent builds. Because every build is conceptually performed from scratch,
and because Vesta’s automatic dependency detection means that a cached result is
used only when it is correct to do so, all Vesta builds are guaranteed to produce
consistent results. Hence, there is never any need to do scratch builds to correct for
an errant build in which a stale derived file was used.

Parallel development. Several features of the Vesta system enable parallel de-
velopment. For one, the Vesta repository supports concurrency control, version
branching, and partial replication across geographically distributed sites. But per-
haps more important is the fact that a user must take explicit action to build with a
newer version of someone else’s code. Hence, it is impossible for one developer’s
action to break another’s build. This feature makes developers more productive by
allowing them to work independently.

The entire Vesta system was designed and implemented with an eye toward
scalability. Our design goal was to support systems containing 20 million lines
of code or more. This emphasis is visible in several respects. To organize the
construction of large-scale software, system models can be arranged as a modular
hierarchy. During a build, caching is done top-down rather than bottom up. Hence,
cache hits often occur on larger units of work than individual tool invocations, such
as the construction of an entire library or collection of libraries. This top-down
caching avoids the scalability problem of incremental builds suffered by Make.
Finally, because the repository itself implements the file systems containing both
checked-in and checked-out files, it is able to make checkout and checkin almost

7

instantaneous, thereby eliminating one of the burdens of working with large source
trees.

4 A User’s View of Vesta

The discussion so far has been fairly abstract. In this section, we provide a user’s
view of Vesta to make the ideas more concrete. We start by describing Vesta’s
components. We then consider Vesta’s source control tools and their effects on
the repository. Finally, we present some sample system models to give a sense for
Vesta’s system modeling language.

4.1 Vesta Components

Figure 1 shows the main components of the Vesta system.
The bottom half of the figure shows the repository and function cache servers.

One instance of each server is run at each site. The repository server manages the
storage of both sources and derived files. It provides both a standard NFS interface
to sources and a remote procedure call (RPC) interface that is used by other Vesta
tools. The function cache server stores the results of previous builds. Both servers
use a normal file system for backing storage.

The top half of Figure 1 shows the Vesta components that run on each client
host. The main client programs are the repository tools and the evaluator. The
repository tools provide checkout, checkin, and other source control operations.
The evaluator is the Vesta builder. It reads user-written system models and a set of
system-supplied models comprising the standard construction environment. Not
shown in the figure are standard development tools such as text editors and the
like, which can be used to access sources via the repository’s NFS interface in the
usual way.

During a build, the evaluator will often be called on to run an external tool like
a compiler or linker. To do so, the evaluator makes a remote procedure call to a
runtool server process. As indicated by the dashed vertical line in the figure, the
runtool server may or may not be running on the same client host as the evaluator.
Decoupling the runtool server from the evaluator allows for tools to be invoked
on different machine platforms (e.g, for cross development), for multiple clients to
share one runtool server running on a powerful machine, or for one client to use
multiple runtool servers in parallel.

Before it contacts the runtool server to launch a tool, the evaluator calls the
repository to create a special directory tree in which the tool will be run. The
runtool server then launches the tool in an encapsulated environment that causes

8

System
Models

Standard
Construction
Environment

Evaluator

Runtool
Server

Tools

Repository
Server

Function
Cache
Server

Backing
File

System

Repository
Tools

Client
Host

Per−Site
Servers

Figure 1: Vesta’s main components.

all of the tool’s file references to go to this tree, where they are trapped and reported
back to the evaluator. The evaluator records these references as the dependencies
for the tool invocation.

During the build, the evaluator also contacts the function cache server to deter-
mine if each piece of the build it is about to execute has been performed before (by
any user). If so (a cache hit), the function cache returns the corresponding result.
If not (a cache miss), the evaluator performs the work and then calls the cache to
create a new cache entry for possible reuse in the future.

Figure 1 omits several administrative tools. Among these is a tool called the
weeder that is used to delete unwanted derived files from the repository and un-
wanted cache entries from the function cache. The weeder reads a description file
that says which build versions should be kept; it then uses a concurrent mark-and-
sweep garbage collection algorithm to identify all derived files and cache entries
that are safe to delete. The description file uses a simple but powerful pattern lan-
guage; such rules as “keep builds of the last two versions” are easily expressed.

Parameterizing the weeder with an explicit instruction file gives each organi-
zation the flexibility to keep the builds it considers important. Deciding what to

9

weed is a time-space tradeoff. Even if a useful build is inadvertently left out of
the weeder instructions and deleted, Vesta’s repeatability guarantees that it can be
reproduced, albeit more slowly, and re-cached.

4.2 Repository Operations

The Vesta repository is a general-purpose file system with special support for im-
mutability. It provides three types of directories, each with distinct mutability rules:
mutable, immutable, and appendable. We will briefly explain the semantics and
purpose of each type in the course of this section.

Unlike most file system implementations, the repository does not directly man-
age a disk. Instead, it maintains its own tree of directories, but stores the files that
they point to in an underlying conventional file system. This implementation detail
is not generally visible to users. The repository also maintains the site-wide pool
of cached derived files, storing them in the same underlying file system.

/vesta/src.dec.com

common cxx vesta

text tablethread

1 2

2.fast

3 4

0 1 2
thread.c

thread.h
build.ves

 = Immutable
 = Appendable
 = Stub

repos eval

doc

Figure 2: Naming convention assumed by the Vesta repository tools.

Figure 2 illustrates the naming convention we use for source code kept in the
repository. This naming convention is imposed not by the repository server itself,
but by the much smaller client-side repository tools. Thus a different source control
paradigm could be implemented simply by modifying the repository tools; changes
to the repository proper would not be required.

• Related sources are grouped into arbitrary directory trees called packages.
Versioning and checkout are done at the package granularity, not on individ-

10

ual files. As shown in version 3 of the common/thread package, each
package version may contain arbitrary files and nested directories.

• To support large-scale software, the package namespace is hierarchical. For
example, the packages of Figure 2 are arranged in a two-level hierarchy, with
package names like common/thread and vesta/repos.

• Version numbers appear as explicit pathname arcs. For example, version 3
of the common/thread package is named common/thread/3.

• The root directory of each package version is immutable. Hence, the con-
tents of a package version cannot be changed. The directories that form the
package hierarchy, such as common and common/thread, are append-
able. The only operation allowed on such directories is the insertion of new
items, such as new packages or package versions.

• Checkout uses pessimistic concurrency control (locking).3 By default, check-
ing out a package reserves the next unused version number, for use by the
new version that is to be checked in later. For example, in Figure 2, a user
has checked out the common/thread package and version 4 has been re-
served for his use. If a second user tries to check out the same package, the
checkout tool will report a conflict, and the user can either negotiate with
the first user to check in his changes before proceeding, choose to do an un-
locked scratch checkout that cannot be directly checked back in, or create a
branch in the version sequence and check out the branch.

• Branches are exactly like new, independent packages, except that a branch
is named as a subdirectory of its parent package, and its initial version (0)
is identical to the version of the parent package from which it branched. In
Figure 2, the branch common/thread/2.fast has three versions named
0, 1, and 2, the first of which is an exact copy of common/thread/2.

As shown in Figure 3, the repository exports two NFS file systems, which are
made visible to the client through two mount points, typically named /vesta and
/vesta-work. The directory tree rooted at /vesta consists only of appendable
and immutable directories, while the one rooted at /vesta-work is an ordinary
mutable directory, in which arbitrary additions, deletions, and changes are permit-
ted. There is a mutable directory in /vesta-work for each user, and edits are
performed in subtrees of those directories.

3However, an optimistic, CVS-like scheme where conflicts are detected only at checkin time
could be implemented with only minor changes to the repository tools.

11

 = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout2 3

2 3

0 1
2 0 1

2

/vesta−work

jones

thread

Figure 3: The working directory and checkout sessions of the common/thread
package.

Vesta records an immutable version of a package not only when the package is
checked in, but also each time the checked-out package is modified and rebuilt (and
even more often, if the user chooses). It is necessary to create these intermediate
versions in order to support Vesta’s repeatability guarantee, which requires that
all builds be performed against immutable sources. Thus a user does not have to
carefully consider which builds might be useful in the future and be sure to check
in the sources used in those builds; Vesta automatically records them all.

To avoid cluttering the namespace, the intermediate versions that are created
between checkout and checkin are stored in separate directories called checkout
sessions. Each package contains a subdirectory called checkout to hold such
sessions. In the example of Figure 3, the subdirectory checkout/2 holds inter-
mediate versions leading up to version 2, while checkout/3 holds intermediate
versions leading up to version 3. Each time a package is checked out, a checkout
session is created for it. The act of creating a new version within a session is called
advancing the session.

The typical development cycle can be viewed as a nested loop:

• Check out the package using vcheckout

• Modify the package:

– Edit using your favorite text editor
– Advance the session using vadvance

12

4

4

0

thread

copy

copy = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout3

3

1
2 3

/vesta−work

jones

Figure 4: The effects of vcheckout common/thread.

– Build the package using vesta
– Test
– Repeat as necessary

• Check in the package using vcheckin

• Repeat as necessary

The outer loop consists of three steps: check out the package using vcheckout,
modify it, and check it back in using vcheckin. The inner loop is the familiar edit-
compile-test sequence, but with the extra vadvance step added. This step takes
a snapshot of the current state of the package and records it as a new immutable
version within the current checkout session.4 We now describe these tools and their
effect on the repository in more detail.

Figure 4 shows the effects of the command vcheckout common/thread. In
this figure and the next two, bold lines denote newly created elements. The steps of
each command illustrated are perform atomically. Assuming that the latest version
of the common/thread package was version 3, this command would first create
a special element called a stub named common/thread/4. The stub reserves a
name under which the package will be checked back in; attempting to check out the

4Since vadvance and vesta are usually run together, we provide a simple shell script that runs
them in sequence as a single command. vadvance can also be used independently as a means of
checkpointing a user’s current sources.

13

snapshot

1

 = Immutable
 = Appendable
 = Stub
 = Mutable

/vesta/src.dec.com

common

thread

checkout3

3

/vesta−work

jones

4

4

0

thread

Figure 5: The effects of vadvance.

copy

 delete

 = Immutable
 = Appendable
 = Stub
 = Mutable

thread

/vesta/src.dec.com

common

thread

checkout3

3

/vesta−work

jones

4

4

0 1 2 3

Figure 6: The effects of vcheckin.

14

package again will fail because a stub for version 4 already exists. Next, the new
appendable directory common/thread/checkout/4 is created, and the latest
version of the package is copied into that checkout directory as checkout version
0. Finally, a mutable copy of the package is made in the user’s working directory
under /vesta-work.

Files in the working directory may then be freely edited. Before building them,
the user invokes vadvance. As shown in Figure 5, vadvance simply creates an im-
mutable snapshot of the working directory in the appropriate part of the package’s
checkout directory. Builds are then performed using these immutable sources.

Finally, once the user is satisfied with the state of the package, vcheckin is
used to check the package back into the main line of the package version space. As
shown in Figure 6, vcheckin replaces the previously created version stub by the
latest sub-version of the checkout session, and deletes the user’s working version
of the package from /vesta-work.

We do not currently have any Vesta-specific tools for merging branches back
into the main line. Our existing tools do keep careful track of the history of all
versions and branches, so it would be a simple matter to write a tool that finds the
common ancestor of any two versions, and either automatically merges the changes
along one branch into the other (perhaps using existing Unix tools like diff and
patch), or presents them to the user for manual merging (using a text-based tool
like diff3 or equivalent graphical tools).

4.3 System Modeling Language

We now consider typical client system descriptions. A complete discussion of
Vesta’s system modeling language is beyond the scope of this overview, so we
confine ourselves to motivating and describing its main features here. We describe
the language fully in a separate paper [9].

Across different development organizations, there is a rather wide variation
in build processes, including the size and scope of the systems being built, the
structure and methodology of the organization, and the degree of parameterization
required. Vesta therefore supports varied descriptions through a general-purpose
language that supports abstraction. Abstraction permits the construction of exten-
sions that adapt the language to each organization’s development methodology. As
a proof of concept, we have built one fairly comprehensive extension called the
standard construction environment.

The system modeling language itself is a full-fledged functional programming
language with a C-like syntax. The functional nature of the language is important,
since each function call represents a unit of work appropriate for caching. The lan-
guage uses strong, dynamic typing: program variables do not have static types, but

15

files
h = [date.h];
c = [date.c, calendar.c];

{
libs = < ./C/libc >;
return ./C/program("cal", h, c, libs);

}

Figure 7: A build.ves system model for building a sample application.

the run-time types of arguments to all built-in operations are checked for correct-
ness. The main aspect of the language that is specialized for software construction
is a primitive to run external tools like compilers and linkers in an encapsulated
environment (i.e., to invoke the runtool server of Figure 1). The language also in-
cludes an import statement that supports modular, hierarchical system modeling.

Figure 7 shows a sample model for building an application. By convention,
the model responsible for building all the components of a package is named
build.ves. The files clause binds the program variables h and c to the listed
files in the package. The body of the model then binds the variable libs to a
singleton list containing the standard C library, and returns the result of invoking
the program function supplied by the standard environment. It is the program
function that is responsible for compiling the necessary sources and linking the
program.

Before a model like the one shown in Figure 7 can be invoked, the environment
in which the build is performed must be created and bound to the special variable
named “.” (dot). The variable “.” is special because it is passed as an implicit
argument on all function calls. Hence, assignments or changes to “.” are visible in
all descendant functions of the function call graph. This feature of Vesta’s function
call semantics makes it easy to define customizations that affect all relevant parts
of a build.

The build environment embodies not only the complete set of functions, tools,
libraries, and header files needed by the build (all versioned and stored in the Vesta
repository), but also any requested build customizations. Such customizations are
typically injected “from the outside”; that is, a developer considers them as param-
eters of a particular build rather than inherent details of the system being built. It
is thus appropriate to include them in the top-level (outermost) system model. In-
deed, such a model does nothing more than import a particular version of the build
environment, set parameter values, and invoke the build procedure for a package
or collection of packages. A top-level model can therefore be readily constructed
by a graphical “control panel” program: the user specifies desired customizations

16

from /vesta/src.dec.com/common import
std_env = std_env/23/build.ves;

import
calendar = build.ves;

{
. = std_env()/env_build("DU4.0");
// build customizations would go here...
return calendar();

}

Figure 8: A top-level .main.vesmodel for establishing the build environment.

from /vesta/src.dec.com/microcommerce import
wallet = wallet/12/build.ves;
vendor = vendor/20/build.ves;
broker = broker/7/build.ves;

{
return wallet() ++ vendor() ++ broker();

}

Figure 9: An umbrella system model for building a collection of components and
combining their results.

in the control panel window, and the program writes a stylized top-level model for
the build.5 By convention, top-level models are named .main.ves.

Figure 8 shows an example. The model begins with two imports. One import
is of the non-local model common/std env/23/build.ves (bound to the
variable std env), and the other is of the local model build.ves (bound to
calendar). The model body consists of two statements. The first invokes the
env build function returned by the std env model, and binds the result to the
special variable “.”. The second statement then invokes and returns the result of the
package’s own build.ves model shown in Figure 7. This example shows that a
model can be called like a function.

Figure 9 shows a system model for building what we call an umbrella package.
Such packages do not contain any sources or build anything directly. Instead, they
import a collection of packages, build them, and then combine the results together
into a single result. Umbrella packages illustrate how to structure build descriptions
in a modular fashion. In this example, the umbrella package serves to record the

5We have not implemented a general-purpose control panel as yet, so we currently write our own
top-level models by hand. However, an engineering group that we are working with has successfully
developed a specialized control panel for their large, complex, highly parameterized application.

17

information that versions 12, 20, and 7 of the wallet, vendor, and broker
components go together to make one coherent version of the microcommerce
system.

We are now prepared to address the point raised in Section 3: If system models
must name the version of every source file, isn’t the overhead of maintaining those
references overwhelming? Three factors make the overhead tractable. First, many
references are local to the model’s containing package, and hence do not require
explicit version numbers; for example, the references to files in Figure 7 and the
import setting calendar = build.ves in Figure 8. Second, we structure our
models so that most explicit version numbers appear only in the small tree of um-
brella models that make up the standard environment. A top-level .main.ves
model typically contains only one import with a version number, to select a partic-
ular version of the standard environment. Third, we provide a tool called vupdate
that a user can invoke at will to automatically update some or all of the imports in
a model to the most recent versions.

The brief examples presented here cannot fully illustrate the power of the Vesta
system modeling language or the wide variety of build customizations supported
by the standard construction environment. The system models that make up the
standard environment are rather complicated, but we believe that the investment by
a modeling language “wizard” in creating them is more than offset by the resulting
simplicity in the far more numerous user models.

5 Performance

If Vesta’s performance were significantly worse than that of alternative SCM sys-
tems, it would be of little practical interest. We have worked hard to make the
system efficient. In fact, in this section we show that Vesta’s overall performance
on scratch builds is as good as Make’s, and that Vesta’s caching makes it signifi-
cantly faster than Make on incremental builds.

To compare Vesta with Make, we ran tests on the hardware configuration shown
in Figure 10. Client processes (the builder and tools) were run on a 333MHz Alpha-
Station 500 5/333. Server processes (the repository and function cache in the case
of Vesta, and the NFS server in the case of Make) were run on a 233MHz Alpha-
Station 400 4/233. In both cases, the server processes used the same AdvFS file
system residing on a local disk, and the client and server machines communicated
via a high-speed ATM network called AN2. All machines were running version
4.0D of Compaq’s Tru64 Unix operating system.

We measured builds of software systems of varying sizes. The characteristics
of these systems are shown in Table 1. The columns of this table indicate the total

18

Eval

RunTool
Server

tool

Repository
Server

Function
Cache
Server

Make tool

NFS
Server

Client
AlphaStation

500 5/333

Server
AlphaStation

400 4/233

AN2
Network

AdvFS
File System

Vesta Make

Local
Disk

Local
Disk

Figure 10: The experimental setup for our performance measurements.

number of lines of source code, the number of C/C++ source files to be compiled,
the number of tool invocations necessary, and the number of packages across which
the sources reside.

The Hello test is a simple “hello world” program consisting of a single 10-
line source file. It requires two tool invocations: one to compile the file, and one
to link it. This test is included mainly to provide a baseline measurement. The
Evaluator test consists of building all of the Vesta libraries and the Vesta evaluator
application. The sources for this test are contained in 10 library packages and the
evaluator package itself. Finally, the Release test consists of building the entire
Vesta release. In addition to building the evaluator, this includes building all the

Test Lines Files Tool Runs Pkgs
Hello 10 1 2 1
Evaluator 53,304 103 117 11
Release 119,602 255 333 16

Table 1: Characteristics of three build tests.

19

Test Vesta Make
Hello 3.3s 3.4s
Evaluator 310s 318s
Release 912s 960s

Table 2: The elapsed time in seconds required by Vesta and Make to build the three
test cases of Table 1 from scratch.

Test Vesta Make One Make All
Hello 3.3s 3.4s 3.4s
Evaluator 12.5s 15.1s 23.3s
Release 13.1s 15.1s 32.1s

Table 3: The elapsed time in seconds required by Vesta and Make to perform in-
cremental builds of the three test cases of Table 1.

Vesta tools, servers, and documentation.
Table 2 shows the elapsed time (in seconds) required by Vesta and Make to

perform each of the three test builds from scratch. These data show that scratch
Vesta builds are somewhat faster than Make builds, but not appreciably so, since
most of the time is spent compiling and linking.

To measure the time required to perform incremental builds, we modified one
of the source files in each build test and rebuilt. In the case of the Release test, we
modified the same evaluator source file as in the Evaluator test.

Table 3 shows the elapsed time (in seconds) to perform each incremental build.
For Make builds, we report two values. The “Make One” column reports the time
required to run Make in the single directory containing the modified source file.
This is what developers typically do when working on a set of sources. However,
if a source in another package were modified, the resulting build might be incon-
sistent. To get closer to a consistent build, the Make user would need to run Make
in each of the other directories, or packages, contributing to the build. The “Make
All” column reports the elapsed time required to run Make in all such packages.
The extra time in the case of the Evaluator and Release tests is the time required
by Make to determine that all the other packages were up to date. Note that Vesta
provides even stronger consistency guarantees than the “Make All” approach, yet
it is significantly faster, primarily due to top-down caching.

20

6 Conclusions

This brief overview paper has omitted discussion of many of the detailed technical
issues in Vesta. We list some key points here, then go on to summarize our experi-
ence in using Vesta and present our conclusions. Additional papers [9, 11, 15] and
a forthcoming book-length report [10] give a more complete treatment.

Repository. The repository is a general-purpose file system with support for Vesta-
specific features, but making that file system visible via an NFS interface was
non-trivial. Also, the repository supports partial replication of sources across geo-
graphically distributed sites [15]. All packages that exist in all Vesta repositories
are named in a single global namespace, and each repository can store any subtree
of that namespace. Replication exists when the subtrees stored by two different
repositories overlap. Thus the subtree /vesta/src.dec.com shown in Fig-
ure 2 might be stored (in whole or in part) not only at SRC, but at other cooperating
sites as well. The append-only nature of the repository simplifies the problem of
defining and maintaining consistency between partial replicas.

Caching. The main challenge in caching (parts of) builds is forming cache entries
whose dependencies are as fine-grained as possible [11]. For example, we do not
want the compilation of a C file to appear dependent on every header file available
in its environment, but only on those that were actually read when compiling it.
This requires some non-trivial dynamic dependency analysis in the Vesta evaluator,
as well as support for dynamic, fine-grained dependencies in the function cache.
Also, to make incremental builds fast, the evaluator creates some special cache
entries to get cheap high-level cache hits.

System Modeling Language. The main virtue of Vesta’s system modeling lan-
guage [9] is that it supports flexible, modular build descriptions that can be highly
parameterized. The main challenge was designing a general-purpose language
amenable to efficient execution and caching that supports a variety of methodolo-
gies and build customizations.

Overall, Vesta handles the core SCM problems of version control and build-
ing quite well. It provides repeatable, incremental, and consistent builds. It also
supports parallel development through several features, such as branching, explicit
versioning, and partial replication. Vesta’s system modeling language is general
enough to support different development organizations, and it encourages modular
software descriptions. On both scratch and incremental builds of the sizes we have
tested, Vesta performs better than Make, while providing much stronger consis-
tency guarantees. Finally, we have found the system easy to use; once we switched
over from building the system with Make to building it with Vesta, we never wanted

21

to go back. The advantages provided by being able to exactly name and reproduce
any past build are difficult to fully appreciate until they are available, but difficult
to live without thereafter.

We have gained additional experience with Vesta over the last two years by
demonstrating it to a Compaq engineering group and helping them to install and
use it for their project. Vesta is currently in daily use by over 100 developers in this
group. The code base they are writing is expected to exceed 700,000 lines by the
time it is complete. They have adapted Vesta to their application and development
environment by writing a small number of “wrapper scripts,” a domain-specific
control panel application to generate top-level models, and (with some initial help
from us) additional system models to add their specialized build tools to the stan-
dard environment. Overall, they have found Vesta to be a substantial improvement
over their previous version and build management tools; in fact, they believe that
Vesta’s strong support for independent parallel development has put them 3 to 6
months ahead on the first phase of their project.

However, despite these successes, there are still some open questions. The
first relates to scalability. Vesta was designed to build much larger systems than
we have tested it on thus far. An earlier Vesta prototype (Vesta-1) saw use by 25
programmers maintaining, extending, and porting a 1.4 million line code base for
over a year [14]. We designed the current Vesta-2 system to overcome the scaling
bottlenecks we observed at that time, but we have not yet used it to build anything
quite so large. Our Compaq engineering users have not encountered hard scaling
limits, though we have had to fix a few performance bugs in the implementation as
they have ramped up their use.

Another question relates to ease of use. Our experiences have been positive,
but as the developers of the system, we are obviously biased. Our users seem to be
pleased as well, although their custom wrappers and control panel are undoubtedly
important factors in making the system easier for them to use.

Finally, for Vesta to be adopted by any organization, some technical and non-
technical hurdles must be overcome. Users of other SCM systems need to convert
their code bases and descriptions to Vesta, which may require specialized tools
that understand their existing development methodology. Perhaps a more substan-
tial problem is the need to overcome the psychological barrier created by Vesta’s
radically different approach to SCM. New users thus require training, not just in a
different set of tools, but in a different way of thinking about the software develop-
ment process.

22

7 Acknowledgements

Vesta is a large system that has evolved over many years, and many of our col-
leagues have helped along the way. Butler Lampson, Chris Hanna, and Jim Horn-
ing were major participants in the early design and implementation of the version
of Vesta described here (Vesta-2). We are also indebted to Martı́n Abadi, An-
drei Broder, Mike Burrows, Mark Lillibridge, Bill McKeeman, Jeff Mogul, Matt
Reilly, Ken Schalk, Gün Sirer, Neil Stratford, Chandu Thekkath, and Caroline Tice
for many diverse contributions, and we wish to thank Bob Ayers, Mark R. Brown,
Sheng-Yang Chiu, John Ellis, Chris Hanna, and Paul McJones for their pioneering
work on Vesta-1.

References

[1] Atria Software, Inc., 24 Prime Park Way, Natick, MA 01760. ClearCase
Concepts Manual, 1992.

[2] M. R. Brown and J. R. Ellis. Bridges: Tools to extend the Vesta configuration
management system. SRC Research Report 108, Digital Equipment Corpora-
tion, Systems Research Center, June 1993. http://gatekeeper.dec.com/pub/DEC/
SRC/research–reports/abstracts/src–rr–108.html.

[3] S.-Y. Chiu and R. Levin. The Vesta repository: A file system extension for
software development. SRC Research Report 106, Digital Equipment Cor-
poration, Systems Research Center, June 1993. http://gatekeeper.dec.com/pub/
DEC/SRC/research–reports/abstracts/src–rr–106.html.

[4] S. I. Feldman. Make—A program for maintaining computer programs.
Software—Practice and Experience, 9(4):255–265, Apr. 1979.

[5] G. Fowler. A case for make. Software—Practice and Experience,
20(S1):S1/35–S1/46, June 1990.

[6] D. Grune, B. Berliner, and J. Polk. cvs(1) manual page. Free Software Foun-
dation.

[7] C. A. Gunter. Abstracting dependencies between software configuration
items. ACM Transactions on Software Engineering and Methodology,
9(1):94–131, January 2000.

[8] C. B. Hanna and R. Levin. The Vesta language for configuration manage-
ment. SRC Research Report 107, Digital Equipment Corporation, Systems

23

Research Center, June 1993. http://gatekeeper.dec.com/pub/DEC/SRC/research–
reports/abstracts/src–rr–107.html.

[9] A. Heydon, J. Horning, R. Levin, T. Mann, and Y. Yu. The Vesta-2 software
description language. SRC Technical Note 1997–005c, Digital Equipment
Corporation, Systems Research Center, June 1998. http://gatekeeper.dec.com/
pub/DEC/SRC/technical–notes/abstracts/src–tn–1997–005c.html.

[10] A. Heydon, R. Levin, T. Mann, and Y. Yu. Vesta: A System for Software
Configuration Management. In preparation.

[11] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise de-
pendencies. In Proceedings of the ACM SIGPLAN 2000 Conference on Pro-
gramming Language Design and Implementation, June 2000.

[12] D. B. Leblang and R. P. Chase, Jr. Computer-aided software engineering in
a distributed workstation environment. SIGPLAN Notices, 19(5):104–112,
May 1984.

[13] D. B. Leblang, R. P. Chase, Jr., and G. D. McLean, Jr. The DOMAIN soft-
ware engineering environment for large-scale software development efforts.
In Proceedings of the 1st International Conference on Computer Worksta-
tions, pages 266–280, San Jose, CA, Nov. 1985. IEEE Computer Society,
IEEE Computer Society Press. ISBN 0-8186-0649-5, IEEE Catalog Number
85CH2228-5.

[14] R. Levin and P. R. McJones. The Vesta approach to precise configuration
of large software systems. SRC Research Report 105, Digital Equipment
Corporation, Systems Research Center, June 1993. http://gatekeeper.dec.com/
pub/DEC/SRC/research–reports/abstracts/src–rr–105.html.

[15] T. Mann. Partial replication in the Vesta software repository. In preparation.

[16] W. Tichy. Design, implementation, and evaluation of a revision control sys-
tem. In Proceedings of the 6th International Conference on Software Engi-
neering, pages 58–67. IEEE Computer Society Press, 1982.

[17] W. Tichy. RCS—A system for version control. Software—Practice and Ex-
perience, 15(7):637–654, July 1985.

24

