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Abstract
This paper focuses on two desired properties of cell-based switches for digital data net-
works: (1) data cells should not be detained inside the switch any longer than necessary
(the work-conserving property) and (2) data cells that have been in the switch longer
(older cells) should have priority over younger cells (the order-conserving property).  A
well-known, but expensive design of a work- and order-conserving switch is the output-
queued switch.

A different switch design is the speedup crossbar switch, in which input buffers are con-
nected to output buffers through a crossbar that runs at a multiple (called the speedup) of
the external cell rate.  A matching algorithm determines which cells are forwarded
through the crossbar at any given time.  Previous work has proposed a matching algo-
rithm called the lowest output occupancy first algorithm (LOOFA).  It is known that a
LOOFA switch with speedup at least 2 is work-conserving.

We propose a refinement of LOOFA called the lowest output occupancy and timestamp
first algorithm (LOOTFA).  The main result of this paper is that a LOOTFA crossbar
switch is work- and order-conserving provided that the speedup is at least 3.  We prove
this result and consider some generalizations.
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1. Introduction
A cell-based switch processes fixed-sized chunks of data called cells, which arrive at
switch inputs, pass through the switch proper, and depart from switch outputs.  Each cell
contains an identification of the single output to which it is destined.  For convenience,
we assume that the switch has the same number, N, of inputs and outputs and we assume
that each input and output has the same capacity in cells per second.  This capacity is
called the cell rate, and its reciprocal, the cell time.  We assume that all activities of the
switch are synchronized to slots, each of which lasts one cell time.  Figure 1 illustrates a
cell-based switch.

input 1

input 2

input N

output 1

output 2

output N

switch

cells

slot

Figure 1:  An N×N cell-based switch.

Although any realistic implementation would make extensive use of pipelining, for
convenience we model the activity in the switch during each slot as a sequence of phases:
an inhale phase, during which at most one cell from each input is accepted into the
switch; a number of transfer phases, during which cells move around inside the switch;
and an exhale phase, during which the switch emits at most one cell onto each output.
See Figure 2.  “Accepting” a cell during the inhale phase can be considered as the book-
keeping necessary to account for a cell that arrived during the previous slot, and “emit-
ting” a cell during the exhale phase can be considered as the bookkeeping necessary to
account for a cell that will depart during the following slot.  These bookkeeping activities
are covered by the pipeline delay and take no real time in an implementation.

The switch must contain buffer memory to hold temporary excesses of cells that result
from short-term fluctuations in the arrival rate of cells destined to a given output.  For
example, multiple cells destined for the same output could be inhaled into the switch
during the same slot, and the switch would have to hold these cells while the output ex-
haled them one by one.  Mechanisms to prevent buffer overflow such as flow-control
back-pressure or rate reservation are important but beyond the scope of this paper.  We
also ignore the rate- or phase-matching buffer at each input that is typically used to bring
arriving cells into synchrony with the slot time of the switch.

In this paper we focus on two desired behaviors of a cell-based switch: (1) cells should
not needlessly sit in buffers and (2) cells that have been in the switch longer (older cells)
should have priority over younger cells.
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Figure 2:  Model of the activities in a switch during a slot.

The latency of a cell is the number of slot boundaries between its inhale and its exhale.
The first desired behavior can be stated formally as: the total latency over all cells is as
small as possible.  This is equivalent to the condition that each output always exhales
some cell whenever there are any cells in the switch destined for that output.  A switch
that behaves in this manner is called work-conserving.

Whenever the switch contains multiple cells destined to the same output, the total la-
tency is unaffected by the order in which the cells are exhaled.  Given the choice, it seems
good to give older cells priority over younger cells.  Stated formally, we desire that each
time an output exhales a cell, there are no older cells in the switch destined for that out-
put.  A switch that behaves in this manner is called order-conserving.  In Section 5.3 we
revisit the notion of “order-conserving” in a more general context.

A cell-based switch that is both work- and order-conserving should rightly be called
ideal, but a more common term is the eponymous output-queued.  To avoid confusion we
refer to the behavior as ideal and the well-known implementation, described in the next
paragraph, as output-queued.

The well-known implementation of an ideal cell-based switch is the output-queued
switch, in which the switch takes cells directly into buffers local to each output, as shown
in Figure 3.  Assuming each non-empty output unit always exhales one of its oldest cells,
this design is clearly work- and order-conserving, hence ideal.  Unfortunately it also is
expensive.  Because all inputs could simultaneously inhale cells destined to the same out-
put, the connection into each output unit must have a capacity of N times the cell rate:
either N times wider (as in Figure 3), N times faster, or some combination.  None of these
alternatives scales well as N increases.
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input 1

input 2

input N

output 1

output 2

output N

output units

Figure 3:  An N×N output-queued switch.

Another cell-based switch design is the crossbar speedup switch, which is illustrated in
Figure 4.  This switch contains input units, output units, and a crossbar interconnect.
Cells are buffered at the input units and at the output units.  The actions during each slot
consist of an inhale phase, S (the speedup) transfer phases, and an exhale phase.  During
the inhale phase, each input unit inhales at most one cell and buffers it.  During each
transfer phase, the crossbar moves cells from input units to output units, subject to the
restrictions that no more than one cell can be removed from any input unit and no more
than one cell can be delivered to any output unit.  During the exhale phase, each output
unit removes at most one cell from its buffer and exhales it.

input 1 crossbar

output 1

input units output units

output 2

output N

input 2

input 3

Figure 4:  A crossbar speedup switch.

Since each connection between the crossbar and an input or output unit is required to
transfer at most one cell per transfer phase, of which there are S per slot, each such con-
nection requires a bandwidth of only S times the cell rate.

Each transfer phase proceeds in two parts: first a matching algorithm selects which
cells in the input units to transfer (the match), and then the selected cells are transferred.
We say that the cells in the input units compete for inclusion in the match.  No pair of in-
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cluded cells can conflict, either by sharing the same input (which would be an input con-
flict) or sharing the same output (which would be an output conflict).  The matching algo-
rithm typically produces a maximal match, in which no additional cell can be included
because each non-included cell has a conflict with some included cell.  Since exactly the
included cells are transferred, we also call them the transferred cells.

In the types of crossbar speedup switch we investigate, some ordering of cells is used
to determine which cells are more important and thus win the competition.  Different
matching algorithms use different orderings.

Typically, each input unit buffers its cells in a separate queue for each output, as shown
in Figure 5.  Although illustrated as separate queues, a linked-list implementation is typi-
cal, and the usual name for these structures is virtual output queues.  This design requires
that the oldest cell in each queue always be a most important cell in that queue.  Hence
the oldest cell can always be included in a match in preference to any younger cell in its
queue, and in fact the younger cells need not even be considered.

input 1
crossbar

output 1

input 2

input N

input units output units

output 2

output N

Figure 5:  A crossbar speedup switch with (virtual) output queues.

If the matching algorithm can be designed so that for each output, some cell destined to
that output (if any exist) is always present in the output unit at the beginning of the exhale
phase, then the crossbar speedup switch will be work-conserving.  Krishna et al. [1] have
developed a matching algorithm called the lowest output occupancy first algorithm
(LOOFA) that achieves this property provided that the speedup S is at least 2.  The occu-
pancy of an output is the number of cells currently buffered in the output unit.  In
LOOFA, a cell destined to an output with lower occupancy is more important than a cell
destined to an output with higher occupancy.  Intuitively, an output unit containing fewer
cells will need another cell sooner than an output unit containing more cells and hence
cells destined to the lower occupancy output should be more important.

If the matching algorithm can be designed so that for each output, an oldest cell des-
tined to that output (if any exist) is always present in the output unit at the beginning of
the exhale phase, then the crossbar speedup switch will be order-conserving in addition to
being work-conserving—that is, it will be ideal.  Prabhakar and McKeown [2] have de-
veloped a matching algorithm called the most urgent cell first algorithm (MUCFA) that
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achieves this property provided that the speedup S is at least 4.  In their design, the switch
schedules an exhale slot to each cell as it is inhaled, using the next available (not-yet-
scheduled) exhale slot for the cell’s destined output.  Lower-numbered inputs get priority
when the switch simultaneously inhales multiple cells destined to the same output.  A
cell’s urgency is the number of slot boundaries remaining until its scheduled exhale.  In
MUCFA, a cell with lower urgency is more important than a cell with higher urgency.
Clearly such a switch is ideal if it exhales each cell when its urgency is zero.

Both LOOFA and MUCFA use matching algorithms that guarantee that each non-in-
cluded cell has a conflict with some included cell that is at least as important, according
to their respective definitions of importance, as the non-included cell.  As a consequence,
their matches are maximal.

Since LOOFA takes no account of cells’ ages, there is clearly no guarantee that it is or-
der-conserving.  However, the slight modification of resolving ties in output occupancy
by favoring older cells produces an ideal switch provided that the speedup S is at least 3.
We call this refinement the lowest output occupancy and timestamp first algorithm
(LOOTFA).  The fact that a LOOTFA switch with 3≥S  is ideal is our main result.

2. Formal model of a crossbar speedup switch
In this section we present our notation and a formal model of a crossbar speedup switch.
The formal model defines the state of the switch and the allowable changes in this state
that can happen during each phase.  In a LOOFTA switch, the matcher and the output se-
lectors further constrain the behavior.  In any specific execution history, the sequence of
input data also constrains the behavior.

The formal model has two parameters, N and S:

N the number of inputs of the switch; also the number of outputs
S the crossbar speedup factor

2.1. Slot structure
Time is divided into slots.  Each slot consists of an inhale phase, S transfer phases, and an
exhale phase.  We label phase boundaries with consecutive integers starting with 0.  The
phase beginning at boundary b is called phase b.  See Figure 6.

In Section 5.2 we consider a more general phase arrangement.
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Figure 6:  Example slot structure and phase boundary labels (S=3).

2.2. Basic notational conventions
We use the following notational conventions:

i an input, 1 ≤ i ≤ N
o an output, 1 ≤ o ≤ N
h (the beginning of) an inhale phase
x (the beginning of) a transfer phase
e (the beginning of) an exhale phase
b (the beginning of) any phase
c a cell
i(c) cell c’s input
o(c) cell c’s destined output
h(c) cell c’s inhalation phase: c is inhaled during phase h(c)

2.3. State variables
The model has the following state variables:

bIB the set of cells in any input unit at time b

bOB the set of cells in any output unit at time b

2.4. Cell input or output subset notation
Given an arbitrary set C of cells, we use the following subscript notation for identifying
subsets consisting of those cells with a given input or output (regardless of whether the
cells are present in the switch at any given time):

iC =i ( ){ }iciCc =∈≡ : those cells in C with input i

iC ≠i ( ){ }iciCc ≠∈≡ : those cells in C not with input i

oC =o ( ){ }ocoCc =∈≡ : those cells in C destined to output o

oC ≠o ( ){ }ocoCc ≠∈≡ : those cells in C not destined to output o
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Here are three examples of this notation:

ibIB =i, ( ){ }iciIBc b =∈= : cells in input unit i at time b

oibIB == oi ,, ( ) ( ){ }ocoiciIBc b =∧=∈= : cells in ibIB =i,  destined to output o

obOB =o, ( ){ }ocoOBc b =∈= : cells in output unit o at time b

2.5. Conflict notation
Cells that share an input or an output are in conflict and cannot both be transferred in the
same phase.  We use the following notation for the relation of two cells in conflict:

21 ~ cc ( ) ( ) ( ) ( )2121 cococici =∨=≡ input or output conflict

2.6. Cell ordering notation
We distinguish different cell orderings using subscripts:

21 cc y< 1c  precedes (is more important than) 2c  according to ordering y

21 cc z< 1c  precedes 2c  according to z

21 cc z= 1c  ties 2c  according to z

21 cc z≤ 1c  precedes or ties 2c  according to z

In all of the orderings we use in this paper, two cells tie if and only if neither precedes the
other, and furthermore, as suggested by our notation, tying is an equivalence relation.  We
use the notation zy,<  to designate the ordering derived from y<  with ties broken by z< :

2,1 cc zy< ( )212121 cccccc zyy <∧=∨<≡ precedes according to y then z

2,1 cc zy= 2121 cccc zy =∧=≡ ties according to y then z

Next we give the initial state of the switch and the allowable changes in the state during
inhale, transfer, and exhale phases.

2.7. The initial state
Initially there are no cells in the switch.

00 =IB the input buffer initially is empty

00 =OB the output buffer initially is empty
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2.8. An inhale phase
For any inhale phase b, there exists a set of inhaled cells bH  such that:

bb OBOB =+1 the output buffer does not change

bbb HIBIB ∪=+1 inhaled cells arrive in the input buffer

1: , ≤∀ =ibHi i each input inhales at most one cell

( ) bchHc b =∈∀ : inhalation time is correct

2.9. A transfer phase
For any transfer phase b, there exists a set of transferred cells bX  such that:

bb IBX ⊆ transfer a subset of the input buffer

bbb XIBIB −=+1 transferred cells depart from the input buffer

bbb XOBOB ∪=+1 transferred cells arrive in the output buffer

1: , ≤∀ =ibXi i at most one transferred cell for each input

1: , ≤∀ =obXo o at most one transferred cell for each output

The set of transferred cells bX  is the set of cells included in the matching for phase b.  In

a LOOTFA switch, bX  also satisfies an additional condition given in Section 3.5.

2.10. An exhale phase
For any exhale phase b, there exists a set of exhaled cells bE  such that:

bb IBIB =+1 the input buffer does not change

bb OBE ⊆ exhale a subset of the output buffer

bbb EOBOB −=+1 exhaled cells depart from the output buffer

1: , ≤∀ =obEo o each output exhales at most one cell

In a LOOTFA switch, bE  also satisfies additional conditions given in Section 3.6.

3. The LOOTFA switch
In this section we present the additional conditions that a crossbar speedup switch must
satisfy in order to be a LOOTFA switch and we develop concepts specific to the
LOOTFA switch.
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3.1. Output occupancy, oob

We define the output occupancy ( )coob  of a cell c at time b as the number of cells in c’s

destined output unit at time b.  Formally,

( ) ( )cobb OBcoo =≡ o, .

3.2. Output occupancy ordering, <oo(b)

Given any two cells 1c , 2c , we say that1c  precedes 2c  according to the output occupancy

ordering at time b, written ( ) 21 cc boo< , iff at time b, the output occupancy of 1c  is less

than the output occupancy of 2c .  Formally,

( ) ( ) ( )2121 coocoocc bbboo <≡< .

3.3. Timestamp ordering, <t

Given any two cells 1c , 2c , we say that 1c  precedes 2c  according to the timestamp or-

dering, written 21 cc t< , if and only if 1c  is inhaled before 2c .  Formally,

( ) ( )2121 chchcc t <≡< .

The timestamp ordering indicates which cells are older than others.  In Section 5.3 we
consider alternative definitions of the timestamp ordering.

3.4. Transfer time ordering, <x

Given any two cells 1c , 2c , we say that 1c  precedes 2c  according to the basic transfer

time ordering, written 21 cc bx< , if and only if 1c  is transferred before 2c .  We consider

that a cell that is actually transferred is “transferred before” a cell that is never transferred.
Formally,

( ) ( )( )
221 2221221121 ::: xxxbx XcxxxXcxXcxcc ∈∃¬∨<∧∈∃∧∈∃≡< .

We resolve ties in bx<  arbitrarily to produce the total ordering x< , called the transfer time

ordering.

Note that the transfer time ordering is a property of an execution history of the switch,
and is not in general available from the switch state at any moment in time.  The transfer
time is not used in the implementation of the switch, but only in our analysis of its be-
havior.  We use x<  in the definition of the least important relevant cell in Section 4.5.

The oracular nature of x<  enables us to pick the cell that an execution history in fact

treats as less important in the event of a tie in the matching condition.

3.5. The LOOTFA matching condition and w(b)
Like LOOFA and MUCFA, in each transfer phase LOOTFA requires that each non-in-
cluded cell have a conflict with some included cell that is at least as important.  Roughly
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speaking, LOOTFA uses a definition of importance that favors cells with lower output
occupancies, breaking ties in favor of cells with earlier timestamps.

A subtlety arises at this point.  Whereas a cell’s timestamp never changes, a cell’s out-
put occupancy can change over time.  In particular, after any transfer phase, the relative
output occupancies of the cells surviving in the input buffer may be different from what
they were at the beginning of the phase.  Since rapidly constructing a match is crucial to
the performance of the switch, an implementation would most likely pipeline this process
as much as possible.  Reevaluating the relative importance of surviving cells on every
transfer phase seems like it would be bothersome.

It turns out to be sufficient for the transfer phase to construct its matching based on
output occupancies as they were at the end of the most recent inhale phase.  This has the
consequence that the relative importance of surviving cells does not change during the
transfer phases in the same slot, which seems like a property that could be exploited in a
pipelined implementation.

We define the function w(b) of time b as the time at the end of the most recent inhale
phase before b.  Formally,

( )
( )





−
−

=
=

otherwise1

phase inhalean  is 1 phase if

0 if0

bw

bb

b

bw

In Section 5.1 we consider alternative definitions of w.

(Note that since the inhale phase does not affect output occupancies, we could equiva-
lently use the “initial” output occupancies as of the beginning of the current slot.  Krishna
et al. [1] discovered that all of the transfer phases in the same slot could use initial output
occupancies when they proved that an 2≥S  LOOFA switch was work-conserving.)

Now we can define the LOOTFA matching condition.  For every transfer phase b, a
LOOTFA switch satisfies the following condition in addition to the transfer phase condi-
tions in Section 2.9:

( )( ) ccccXcXIBc tbwoobbb ,~:: ≤′∧′∈′∃−∈∀ .

That is, for each cell c in the input buffer that is not included in the match, there exists
some conflicting, included cell c′  that is at least as important as c, where a cell is more
important than another if it has a lower output occupancy at time ( )bw  or, in the event of
a tie, if it has an earlier timestamp.  Since c′  is transferred while c remains in the input
buffer, we necessarily have ( )( ) cc xtbwoo ,,<′ .  We say that c′  is transferred in preference to

c.
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3.6. The LOOTFA exhale conditions
For every exhale phase b, a LOOTFA switch satisfies the following conditions in addition
to the exhale phase conditions in Section 2.10:

00: ,, >⇒>∀ == obob EOBo oo OB work-conserving

( ) ccOBcEc tcobb ′≤∈′∀∈∀ = :: ,o  OB order-conserving

That is, each non-empty output o always exhales a cell, and the cell it exhales precedes or
ties according to the timestamp ordering all cells in the output buffer destined to o.

4. The LOOTFA theorem
We now come to our main result.

Theorem (LOOTFA):  A LOOTFA switch with speedup 3≥S  is ideal.

The rest of Section 4 is devoted to a proof of this theorem.  We assume an execution his-
tory that is a counterexample, define a number of attributes (e, fc, Rb, h, lircb, OBTb, pb, H,
X, and E) of this execution history, and finally arrive at a contradiction.

4.1. Earliest failing exhale phase, e
Recall from Section 1 that a switch is ideal if and only if it is both work-conserving and
order-conserving.  To be work-conserving, the switch must ensure that whenever there
are any cells in the switch destined to output o at the beginning of an exhale phase b, out-
put o exhales some cell during phase b.  To be order-conserving, the switch must ensure
that whenever an output o exhales some cell c, there are no cells in the switch destined to
output o that precede c according to the timestamp ordering.

Formally, a switch is ideal if, in every execution history, the following conditions both
hold for every exhale phase b:

( ) 00: , >⇒>∪∀ == obobb EOBIBo oo
work-conserving

( ) ( ) ccOBIBcEc tcobbb ′≤∪∈′∀∈∀ = ::
o

 order-conserving

We say that an exhale phase fails if it violates one or both of the above conditions.  (For
example, if at the beginning of an exhale phase b, a crossbar speedup switch has a cell
destined to o in its input buffer but no cells destined to o in its output buffer, then exhale
phase b is sure to fail.)

In our assumed counterexample execution history, there must be some exhale phase
that fails.  We define e to be the earliest such failing exhale phase.

4.2. The failing cell, fc
In order for exhale phase e to fail, there must be some cell ( )ee OBIBc ∪∈  in the switch

such that either (1) no cell is exhaled on output ( )co  (which would violate work-con-

serving) or (2) a cell is exhaled on output ( )co  that c  precedes according to the time-
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stamp ordering (which would violate order-conserving).  We pick one such cell and call it
fc , the failing cell.

We claim that at time e, cell fc must be in the input buffer and it must precede all cells
in output ( )fco  according to the timestamp ordering.  This claim follows from the
LOOTFA exhale conditions of Section 3.6.

Formally, we first prove that ( ) cfcOBc tfcoe <∈∀ = :,o .  Assuming the contrary, there

exists a cell ( )fcoeOBc =∈ o,  such that fcc t≤ .  Then from the OB work-conserving condi-

tion, output ( )fco  must exhale some cell c′ , and from the OB order-conserving condi-

tion, we have cc t≤′ , whence fcc t≤′ . This contradicts the definition of fc, so our state-

ment is proved.

Since fc does not precede itself according to the timestamp ordering, fc cannot be in

( )fcoeOB =o, , and therefore eOBfc ∉ .  By definition ( )ee OBIBfc ∪∈ , so we have eIBfc ∈ .

This completes the proof of our claim.

In summary, we have

eIBfc ∈ , and

( ) cfcOBc tfcoe <∈∀ = :,o .

The rest of the proof proceeds as follows.  We define a set of relevant cells, which are
those cells sharing the same input as fc  that contribute to allowing fc  to survive in the
input buffer until the earliest failing phase e.  We define the least important relevant cell
at time b and prove a property of its output occupancy.  We examine the output buffer
trailing cells, which are those cells in the output unit ( )fco  that are preceded by fc  ac-
cording to the timestamp ordering.  Then we define a potential at time b as a linear com-
bination of various salient quantities in the switch state at time b.  We establish a lower
bound on the potential at the inhalation of the first relevant cell, push this bound forward
phase by phase, and thus obtain a lower bound at time e.  Finally we directly compute the
potential at time e and obtain a value that violates the lower bound, thus showing a con-
tradiction.

4.3. Relevant cells, R
We define a cell c to be relevant if:

(1) fcc =  or

(2) c shares the same input as fc  and is transferred in preference to some relevant cell
during some transfer phase eb < .

Recall from Section 3.5 that a cell c is said to be transferred “in preference to” a cell c′
during transfer phase b if and only if c is transferred, c′  survives in the input buffer, c and
c′  conflict, and c is at least as important as c′ ; formally,

( )( ) ccccXIBcXc tbwoobbb ′≤∧′∧−∈′∧∈ ,~ .
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Intuitively, the relevant cells are fc  and cells that, directly or indirectly, delay the
transfer of fc  by means of input conflicts.

We define R as the set of all relevant cells.  For any time b we define bR  as the set all

of relevant cells present in the input buffer at time b.  Formally,

bb IBRR ∩≡ .

A transfer phase during which some relevant cell is transferred we call an R-transfer
phase.  A transfer phase during which no relevant cell is transferred we call a nonR-
transfer phase.

4.4. Earliest inhale of a relevant cell, h
Each relevant cell Rc ∈  has an inhalation phase ( )ch .  We define h to be the earliest in-
halation phase of any relevant cell.  Formally,

( )chh
Rc ∈

≡ min .

Since R is non-empty ( Rfc ∈ ), h is well-defined.

We claim that for any time b in the range ebh ≤< , we have 0>bR .  Clearly

01 >+hR , since the switch has just inhaled a relevant cell and has not yet had a chance to

transfer it.  An R-transfer phase eb <  transfers a relevant cell bRc ∈ , but since c cannot

be fc  (because fc  is not transferred before e), c must be transferred in preference to

some other relevant cell bRc ∈′ , and consequently we have 1+∈′ bRc .  No other phase can

remove a relevant cell from the input buffer, so the claim is proved.

4.5. Least important relevant cell, lircb

For any time b in the range ebh ≤< , we define the least important relevant cell blirc  at

time b as the maximum element of bR  according to ( )( ) xtbwoo ,,< .  That is,

( )( ) bxtbwoobbb lirccRcRlirc ,,: ≤∈∀∧∈ .

Since 0>bR  and x<  is total, the least important relevant cell exists and is unique.  Note

that the least important relevant cell is defined in terms of the output occupancy ordering
as it is at time ( )bw , which, not surprisingly, is the output occupancy ordering used in the
LOOTFA matching condition.

We now prove two useful lemmas about the least important relevant cell.  Note that
these lemmas relate to the assumed counterexample execution history with respect to
which e, Rb, h, and lircb are defined.

Lemma (lirc survival):  For any phase b in the range ebh << , we have 1+∈ bb Rlirc .
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Proof:  By definition bb Rlirc ∈ .  If b is an inhale phase, an exhale phase, or a transfer

phase that does not transfer blirc , then blirc  survives in the input buffer at time 1+b , and

consequently 1+∈ bb Rlirc .  It remains to consider the case in which b is a transfer phase

and bb Xlirc ∈ .  In this case, we must have fclircb ≠ , since fc  is not transferred before

e.  From the definition of relevance, blirc  must be transferred in preference to some other

relevant cell bRc ∈ , which means that blirc  is at least as important as c, that is

( )( ) clirc tbwoob ,≤ .  Since blirc  is transferred before c, we have clirc xb < .  But this gives us

( )( ) clirc xtbwoob ,,< , which contradicts the definition of blirc .  This completes the proof.

Lemma (lirc output occupancy):  For any phase b in the range ebh << , we have

( ) ( )bbbb lircoolircoo 111 +++ ≥ .

Proof:  Intuitively, either the choice of 1+blirc  is based on output occupancies at time

1+b  or else bb lirclirc =+1 .  By definition, 1+blirc  is the maximum element of 1+bR  under

( )( ) xtbwoo ,,1+< .  Since we have 1+∈ bb Rlirc  by the previous lemma, it follows that

( )( ) 1,,1 ++≤ bxtbwoob lirclirc  and hence ( )( ) 11 ++≤ bbwoob lirclirc .  If ( ) 11 +=+ bbw  then we are

done.  Otherwise, by the definition of w (see Section 3.5), ( ) ( )bwbw =+1  and phase b

cannot inhale any cells.  Since 1+blirc  cannot have been inhaled during phase b, it must

have been in the input buffer at time b, and consequently bb Rlirc ∈+1 .  By definition, blirc

is the maximum element of bR  under ( )( ) xtbwoo ,,< , so it follows that ( )( ) bxtbwoob lirclirc ,,1 ≤+ .

But ( ) ( )bwbw =+1 , so we have  ( )( ) bxtbwoob lirclirc ,,11 ++ ≤ .  We now have blirc  and 1+blirc

each at least as important as the other according to ( )( ) xtbwoo ,,1+< .  Since this ordering is to-

tal, it follows that bb lirclirc =+1  and we are done.

4.6. Output buffer trailing cells, OBTb

For any time b in the range ebh ≤< , we define the output buffer trailing cells bOBT  at

time b as the set of those cells in output unit ( )fco  that are preceded by fc  according to
the timestamp ordering.  Formally,

( ){ }cfcOBcOBT tfcobb <∈≡ = :,o .

4.7. Potential, pb

For any time b in the range ebh ≤< , we define the potential bp  at time b by the fol-

lowing magic formula:

( ) bbbbb ROBTlircoop ⋅−−≡ 2 .
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We establish a lower bound on the potential at time 1+h , analyze the changes in poten-
tial with each phase, and show that the resulting lower bound on potential at time e con-
tradicts the actual potential at time e.

4.8.  Lower bound on potential at time h+1
To bound the potential at time 1+h  we bound the components in its definition.

( ) 011 ≥++ hh lircoo An output occupancy cannot be negative.

01 =+hOBT Consider any cell c in output unit ( )fco  at time 1+h , that is,

( )fcohOBc =+∈ o,1 .  Cell c must be transferred during some earlier

transfer phase ( ) 1+< hcx , and since phase h is an inhale phase, we

have  ( ) hcx < .  Cell c must be inhaled before it is transferred,

hence ( ) ( ) hcxch << .  Since h is the inhalation time of the earliest

relevant cell and fc  is relevant, we have ( )fchh ≤  and thus

( ) ( ) ( )fchcxch << .  Hence from the definition of the timestamp

ordering we have fcc t≤ .  So c is not an output buffer trailing cell.

11 =+hR At time 1+h  the switch has just inhaled the earliest relevant cell.

Combining the components, we have

( ) 11111 2 +++++ ⋅−−= hhhhh ROBTlircoop

2−≥ .

Next we consider the effects of each phase as b advances from 1+h  to e.

4.9. Effect of an inhale phase
To bound the change in potential during an inhale phase b, we bound the changes of the
components.

( ) ( )bbbb lircoolircoo ≥++ 11

The output buffer is unchanged by an inhale phase, so we have
( ) ( )bbbb lircoolircoo =+1 .  Combining this with the lirc output occu-

pancy lemma (Section 4.5) we get ( )≥++ 11 bb lircoo ( )=+ bb lircoo 1

( )bb lircoo .

bb OBTOBT =+1 The output buffer is unchanged by an inhale phase.

11 +≤+ bb RR Input ( )fci  can inhale at most one cell.

Combining the components, we have

( ) 11111 2 +++++ ⋅−−= bbbbb ROBTlircoop
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( ) ( )12 +⋅−−≥ bbbb ROBTlircoo

( ) 22 −⋅−−= bbbb ROBTlircoo

2−= bp .

4.10. Effect of an R-transfer phase
To bound the change in potential during an R-transfer phase b, we bound the changes of
the components.

( ) ( )bbbb lircoolircoo ≥++ 11

No cells can depart the output buffer, so ( ) ( )bbbb lircoolircoo ≥+1 .

Combining this with the lirc output occupancy lemma (Section 4.5)
we get ( ) ( ) ( )bbbbbb lircoolircoolircoo ≥≥ +++ 111 .

11 +≤+ bb OBTOBT

There might be a new output buffer trailing cell, but there can be at
most one.

11 −=+ bb RR Exactly one relevant cell is transferred.

Combining the components, we have

( ) 11111 2 +++++ ⋅−−= bbbbb ROBTlircoop

( ) ( ) ( )121 −⋅−+−≥ bbbb ROBTlircoo

( ) 12 +⋅−−= bbbb ROBTlircoo

1+= bp .

4.11. Effect of a nonR-transfer phase
To bound the change in potential during a nonR-transfer phase b, we bound the changes
of the components.

( ) ( ) 111 +≥++ bbbb lircoolircoo

Since blirc  is relevant, blirc  is not transferred during phase b.

Therefore from the LOOTFA matching condition (Section 3.5)
there must be some cell transferred in preference to blirc .  Since

any cell transferred in preference to blirc  and sharing input

( ) ( )fcilirci b =  would by definition be relevant, and since no rele-

vant cell is transferred during a nonR-transfer phase, there must be
some cell transferred in preference to blirc  that shares output

( )blirco .  Therefore ( ) ( ) 11 +=+ bbbb lircoolircoo .  Combining this
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with the lirc output occupancy lemma (Section 4.5) we get
( ) ( ) ( ) 1111 +=≥ +++ bbbbbb lircoolircoolircoo .

bb OBTOBT =+1 Since fc is relevant, fc is not transferred during phase b.  Therefore

from the LOOTFA matching condition (Section 3.5) there must be
some cell transferred in preference to fc.  Since any cell transferred
in preference to fc and sharing input ( )fci  would by definition be
relevant, and since no relevant cell is transferred during a nonR-
transfer phase, there must be some cell transferred in preference to
fc that shares output ( )fco .  Let c be such a cell.  Since c is trans-

ferred in preference to fc, we have ( )( ) fcc tbwoo ,≤ .  Since

( ) ( )fcoco = , we have ( )( ) fcc bwoo=  and hence fcc t≤ .  Therefore c

is not an output buffer trailing cell.  Since at most one cell can be
transferred to any given output during a single transfer phase, c is
the only cell transferred to output ( )fco  during phase b.  So no
output buffer trailing cells are transferred during phase b.

bb RR =+1 No relevant cell is transferred.

Combining the components, we have

( ) 11111 2 +++++ ⋅−−= bbbbb ROBTlircoop

( )( ) bbbb ROBTlircoo ⋅−−+≥ 21

( ) 12 +⋅−−= bbbb ROBTlircoo

1+= bp .

4.12. Effect of an exhale phase
To bound the change in potential during an exhale phase b, we bound the changes of the
components.

( ) ( ) 111 −≥++ bbbb lircoolircoo

Since output ( )blirco  can exhale at most one cell, we have

( ) ( ) 11 −≥+ bbbb lircoolircoo . Combining this with the lirc output oc-

cupancy lemma (Section 4.5) we get ( )≥++ 11 bb lircoo ( )≥+ bb lircoo 1

( ) 1−bb lircoo .

bb OBTOBT =+1 Since eb <  and exhale phase e is assumed to be the earliest phase

in which the switch fails, output ( )fco  cannot exhale any member

of bOBT .

bb RR =+1 The input buffer is unchanged.
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Combining the components, we have

( ) 11111 2 +++++ ⋅−−= bbbbb ROBTlircoop

( )( ) bbbb ROBTlircoo ⋅−−−≥ 21

( ) 12 −⋅−−= bbbb ROBTlircoo

1−= bp .

4.13. Lower bound on potential at time e
To summarize the preceding sections, the effect on bp  of the phases between time 1+h

and time e is as follows: each inhale phase decreases bp  by at most 2, each transfer phase

(regardless of whether R-transfer or nonR-transfer) increases bp  by at least 1, and each

exhale phase decreases bp  by at most 1.  Let

H ≡ the number of inhale phases between time 1+h  and time e,
X ≡ the number of transfer phases between time 1+h  and time e, and
E ≡ the number of exhale phases between time 1+h  and time e.

(Note that E does not include the failing phase, which starts at time e.)  Then formally,

EXH −+⋅−≥ + 21he pp

Observe from the slot structure (Section 2.1) that in any interval starting at the end of an
inhale phase and ending at the start of an exhale phase, there are more transfer phases
than twice the number of inhale phases plus the number of exhale phases.  In particular,
we have

EHX +⋅> 2 .

Combining the above with the lower bound 21 −≥+hp  (Section 4.8), we have

EXH −+⋅−≥ + 21he pp

1+> hp

2−≥ .

4.14. The potential at time e
Now let us compute ep  directly.

( ) ( )fcoolircoo eee =
From the definition of R, each relevant cell except fc is transferred
during some transfer phase eb < .  Hence we have { }fcRe =  and

thus fclirce = .
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( )fcooOBT ee = Since by assumption exhale phase e fails, all cells in output unit

( )fco  at time e must be preceded by fc according to ( )( ) tewoo ,< , that

is, they are all output buffer trailing cells.

1=eR { }fcRe = .

Combining the components, we have

( ) eeeee ROBTlircoop ⋅−−= 2

( ) ( ) 12 ⋅−−= fcoofcoo ee

2−= ,

which contradicts the lower bound obtained in Section 4.13.  Hence the assumption of a
counterexample arrives at a contradiction, and the LOOTFA theorem is proved.

5. Generalizations
For clarity, we have presented LOOTFA with a number of concrete assumptions that are
not strictly required by our proof.  In this section we show some generalizations.

5.1. Generalized time of evaluation, w(b)
When transfer phase b decides which cells to include in the match, it evaluates the im-
portance of cells based on output occupancies as of time ( )bw .  Our original definition of
w (Section 3.5) causes each transfer phase to construct its match based on output occu-
pancies as they are at the end of the most recent inhale phase.  However, the only place in
which we use properties of w is the proof of the lirc output occupancy lemma in Section
4.5, which succeeds if w satisfies the following conditions for each phase b:

( ) ( ) ( ) 111 +=+∨=+ bbwbwbw same as previous, or become current

( ) 1101 +=+⇒>−+ bbwIBIB bb become current if any inhaled cells

The basic idea is that the switch maintains a record of output occupancies based on which
it constructs the match for a transfer phase and, from time to time, the switch updates this
record to the current output occupancies.  A LOOTFA switch must update its output oc-
cupancies at the end of every inhale phase that actually inhales a cell, and it can also up-
date whenever convenient.

For example, consider the definition ( ) bbw ≡ , which satisfies the generalized condi-
tions.  Under this definition, every transfer phase constructs its match based on current
output occupancies.  As explained in Section 3.5, this would likely be bothersome to im-
plement.  However, the resulting switch would be ideal provided 3≥S .
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5.2. Generalized phase arrangement
Our original phase arrangement was a sequence of slots each consisting of an inhale
phase, S transfer phases, and an exhale phase (Section 2.1).  However, the only place in
which we use properties of the phase arrangement is the counting argument in Section
4.13.  This argument requires that

EHX +⋅> 2 ,

for any interval starting at the end of an inhale phase and ending at the start of an exhale
phase, where

H ≡ the number of inhale phases in the interval,
X ≡ the number of transfer phases in the interval, and
E ≡ the number of exhale phases in the interval.

In addition to our original slot structure, there are many other ways of arranging phases
that satisfy this condition.  For example, we can arrange the phases into multislots, in
which each phase of a slot repeats n times, as illustrated in Figure 7.
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Figure 7:  Example multislot structure (n=2, S=3).

Since all of the transfer phases in the same multislot are allowed to use the same output
occupancies, a multislot implementation could probably be pipelined more extensively
than a single slot design.  This would achieve higher throughput at the cost of higher la-
tency in real time due to increased discrepancy between real time and model time.

5.3. Generalized timestamp ordering, <t

Our original timestamp ordering given in Section 3.3 said that a cell inhaled before an-
other must precede the other according to the timestamp ordering.  However, the only
place in which we use properties of the timestamp ordering is the lower bound calculation
in Section 4.8, which succeeds if t<  satisfies the following timestamp condition for any

cells 1c , 2c  and any transfer phase x:

( ) ( ) 2121 ccchxch t≤⇒<< .

That is, if the inhalation phases of two cells are separated by an intervening transfer
phase, the earlier cell must precede or tie the later cell according to the timestamp order-
ing.
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The timestamp controls how a LOOTFA switch orders cells destined to the same out-
put.  Provided that the speedup 3≥S , during each exhale phase each output exhales a
cell that precedes or ties, according to the timestamp order, all cells in the switch destined
to that output (if any).  That is, for every exhale phase b, we have

( ) 00: , >⇒>∪∀ == obobb EOBIBo oo
work-conserving

( ) ( ) ccOBIBcEc tcobbb ′≤∪∈′∀∈∀ = ::
o

 “order-conserving”

We could say that the timestamp ordering defines the meaning of “older” and “younger”
and therefore the meaning of “order-conserving”.  Perhaps it would be better to call the
condition timestamp-conserving.

For example, our original timestamp ordering orders cells according to their inhalation
phases.  An output of an 3≥S  LOOTFA switch using this timestamp exhales cells in
order of inhalation phase, but an arbitrary order applies to cells inhaled during the same
phase.

For a second example, consider the timestamp ordering which orders cells according to
their inhalation phases and breaks ties by ordering cells according to their input number.
Since an input can inhale at most one cell per phase, this is a total order.  An output of an

3≥S  LOOTFA switch using this timestamp exhales cells strictly according to this total
order.

For a third example, consider a multislot switch (Section 5.2) in which the timestamp
ordering orders cells according to their inhalation multislot, but arbitrarily orders cells
that are inhaled during the repeated inhale phases of the same multislot.  An output of an

3≥S  LOOTFA switch using this timestamp exhales cells according to the timestamp
ordering, which may or may not be useful.

For a fourth example, consider the trivial timestamp ordering, in which all cells tie.
The effect of such a definition is to remove from the LOOTFA switch all consideration of
the age of a cell, thus reducing it to a LOOFA switch.  In this case the order-conserving
success condition is trivially satisfied and the only interesting property is work-conserv-
ing.  We can slightly modify our proof of the LOOTFA theorem to obtain a proof of the
fact that an 2≥S  LOOFA switch is work-conserving.  Assuming a failing exhale phase
e, using the same definitions of fc, bR , h, blirc , H, X, and E, and using the modified po-

tential bp  at time b defined by

( ) bbbb Rlircoop −≡ ,

we can show that

11 −≥+hp ,

11 −≥+ bb pp   for each inhale phase b,

11 +≥+ bb pp   for each transfer phase b,

11 −≥+ bb pp   for each exhale phase b,

11 ++ >−+−≥ hhe ppp EXH , and
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1−=ep ,

which is a contradiction, hence proving that there can be no exhale phase that fails.  (Note
that under a timestamp ordering in which all cells tie, there are never any output buffer
trailing cells.)  Krishna et al. [1] proved that an 2≥S  LOOFA switch is work-conserv-
ing.  Our result here provides an alternate proof.

6. Computing a LOOTFA match
The obvious algorithm to compute a LOOTFA match is to repeatedly pick the most im-
portant non-conflicted cell until no more cells can be picked.  We call this the global
minimum greedy algorithm.  It turns out that if the timestamp is the same for all cells (as
in the fourth example of Section 5.3), then the match can also be computed by visiting the
input units in an arbitrary order picking the most important non-conflicted cell in each.

6.1. The global minimum greedy algorithm
Given two sets 1C  and 2C  of cells, we define the set 21 ~ CC  as those cells in 1C  that do

not conflict with any cell in 2C .  Formally,

21 ~ CC { }212211 ~:: ccCcCc ∈¬∃∈≡ .

The global minimum greedy algorithm computes a LOOTFA match at time b with an it-
erative sequence 0,bX , 1,bX , …, ZbX ,  starting with { }=0,bX  and producing 1, +zbX  from

zbX ,  by adding a most-important (that is, minimal) element of zbb XIB ,~  according to

( )( ) tbwoo ,< .  There may be ties, in which case the choice between the tied minimal elements

is arbitrary.  When zbb XIB ,~  is empty, we declare that zZ =  and the algorithm is done.

The result bX  is ZbX , .  Each step is called a round.  Observe that NZ ≤ .

Clearly any result of the global minimum greedy algorithm satisfies the formal model
transfer phase requirements (Section 2.9),

bb IBX ⊆ ,

1: , ≤∀ =ibXi i , and

1: , ≤∀ =obXo o .

To show that the result satisfies the LOOTFA matching condition (Section 3.5),

( )( ) ccccXcXIBc tbwoobbb ,~:: ≤′∧′∈′∃−∈∀ ,

we introduce the following invariant, which we claim holds at any round z:

( )( )( ) ( )zbbtbwoozbb XIBcccccXcIBc ,,, ~~:: ∈∨≤′∧′∈′∃∈∀ .
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For round 0=z , 0,bX  is empty, so bbb IBXIB =0,~  and therefore 0,~ bb XIBc ∈  for all

bIBc ∈ .  Assuming the invariant holds at some round Zz < , we now show it holds at

round 1+z .  Consider any cell bIBc ∈ .  We must show that

( )( )( ) ( )1,,1, ~~: ++ ∈∨≤′∧′∈′∃ zbbtbwoozb XIBcccccXc .

Case 1: Suppose ( )( ) ccccXc tbwoozb ,, ~: ≤′∧′∈′∃ . Then we are done, because

zbzb XX ,1, ⊇+ .

Case 2: Otherwise, by the invariant for round z, we have zbb XIBc ,~∈ .  Let c′  be the

unique cell in zbzb XX ,1, −+ .

Case 2a: Suppose cc ~′  (which includes the case cc =′ ).  Because the global minimum
greedy algorithm chooses a most-important not-yet-conflicted cell on each round, we
have ( )( ) cc tbwoo ,≤′ .  Thus we have 1, +∈′ zbXc  and cc ~′  and ( )( ) cc tbwoo ,≤′ , and we are

done.

Case 2b: On the other hand, if c′  does not conflict with c, we have 1,~ +∈ zbb XIBc , and

we are done.  This completes the proof of the invariant.

By the termination condition, { }=Zbb XIB ,~ , the invariant at the end of the final

round reduces to

( )( ) ccccXcIBc tbwooZbb ,, ~:: ≤′∧′∈′∃∈∀ ,

from which the LOOTFA matching condition follows immediately.

It also turns out that any legal LOOTFA match bX ′  can be produced by some run of the

global minimum greedy algorithm, by choosing the elements of bX ′  in non-decreasing

order according to ( )( ) tbwoo ,< .  Hence the possible results of the global minimum greedy

algorithm are precisely the matches that are allowed by the definition of a LOOTFA
switch.

Note that for each pair of input i and output o an implementation can ignore any cells in

oibIB == oi ,,  except for any single minimal element according to t< .  If the timestamps for

cells of input i  and output o advance monotonically with inhalation time (as in our initial
LOOTFA timestamp ordering in Section 3.3), a virtual output queue will always have a
most important cell at the front.

6.2. The per-input minimum greedy algorithm
We consider the case of the trivial timestamp ordering, in which all cells tie.  This re-
duces the LOOTFA switch to a LOOFA switch.  Observe that if an included cell c′  has
an output conflict with c, that is, ( ) ( )coco =′ , then we have ( ) ( )coocoo bb =′  and hence

( )( ) cc tbwoo ,=′ .  Because of this property, a LOOFA match can be computed by the per-in-

put minimum greedy algorithm, in which each round z consists of two parts: first choos-
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ing an input i arbitrarily, subject to the constraint that zbib XIB ,, ~=i  is non-empty; and

then producing 1, +zbX  from zbX ,  by adding a minimal element of zbib XIB ,, ~=i  according

to ( )( ) tbwoo ,< .

Regardless of the order in which the inputs are considered, the per-input minimum
greedy algorithm produces a match that satisfies the LOOTFA matching condition.  The
proof uses the same invariant as used in the previous section,

( )( )( ) ( )zbbtbwoozbb XIBcccccXcIBc ,,, ~~:: ∈∨≤′∧′∈′∃∈∀ .

The only difference occurs in the proof within Case 2a that c′  is at least as important as c,
that is, ( )( ) cc tbwoo ,≤′ .  If c′  and c share the same input, then the result follows from the

fact that the per-input minimum greedy algorithm chooses a most-important not-yet-con-
flicted cell from a chosen input.  Otherwise, c′  and c must share the same output, from
which it follows that ( )( ) cc tbwoo ,=′ , as explained above.

The per-input minimum greedy algorithm has a parallel implementation in which each
input extends a bid to the destined output of its most important non-conflicted cell, and
then each output that gets a bid accepts one and rejects the others.  Additional bid-accept
rounds handle rejected inputs.  Although typically only a few rounds are necessary, in the
worst case N rounds are required.  Krishna et al. [1] use this implementation of the per-
input minimum greedy algorithm.

Unfortunately, the per-input minimum greedy algorithm does not work for a non-trivial
timestamp ordering, which in general is the case in a LOOTFA switch.
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