April 30, 1998

SRC e

A Comparison of Two Distributed Disk Systems

Edward K. Lee
Chandramohan A. Thekkath
Chris Whitaker
Jim Hogg

dliloli|tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of itis
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

A Comparison of Two Distributed Disk Systems

Edward K. Lee
Chandramohan A. Thekkath
Chris Whitaker

Jim Hogg

April 30, 1998

Author Affiliations

Chris Whitaker and Jim Hogg are members of DIGITAL's OpenVMS engineering
group at Livingston, Scotland. They can be reachaxthas.whitaker@digital.com
andjim.hogg@edo.mts.dec.com

©Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

As the storage needs of computer applications and users become more sophisti-
cated and increase beyond what can easily be satisfied by a few disk array con-
trollers, aggregating and managing the many disparate components of the storage
system become severe problems. Distributed disk systems, which manage collec-
tions of disks shared by or partitioned across multiple nodes, may offer a solution
to this problem by automating the management of these storage resources. Such
systems can automatically tolerate and recover from component failures, gracefully
scale in capacity and performance as components are added, allow the storage dis-
tributed across multiple nodes to be managed as a single system, and provide useful
management abstractions suclvasial disksandsnapshots

This paper describes the different architectural and design alternatives embod-
ied in Snappy Disk and Petal, two distributed disk systems that have similar exter-
nal features but have radically different internal structures, and studies the effect of
these differences on the systems’ performance, availability, and manageability.

Client0 Clientl Client2 Client3 Client0 Clientl Client2 Client3

‘ General Purpose Network ‘ General Purpose Network

Server0 ‘

Serverl ‘ Server2 ‘ Server3 ‘ Server0 Serverl Server2 Server3

e 111

Figure 1: Shared-Disk Architecture Figure 2: Partitioned-Disk Architecture

1 Introduction

As the storage needs of computer applications and users become more sophisti-
cated and increase beyond what can easily be satisfied by a few disk array con-
trollers, managing the many disparate components of the storage system becomes
a severe problem. There has been considerable research devoted to designing large
scale storage systems [1-3, 5, 8, 10, 14, 18, 19}is&ibuted disk systelis a class

of storage system that can reduce the complexity of building and managing large
scale storage systems. Distributed disk systems manage collections of disks shared
by, or partitioned across, multiple nodes as a single logical storage system that is
highly available, scales gracefully, and is easy to manage. Such systems can serve
disk storage over a network to multiple file servers, database servers, and desktop
machines. They can also be used for high-performance cluster-aware applications
such as parallel databases and cluster file systems.

There are several ways to build distributed disk systems, but we know of no
systematic study that compares the relative merits of the various architectural and
design alternatives. Three important alternatives that distinguish these systems are
how disks are physically connected to the nodes, how the system manages the
bookkeeping information associated with the disks, and how users view the collec-
tion of disks. These alternatives can have a significant impact on the availability,
performance, and manageability of the overall system.

As illustrated by Figure 1 and Figure 2, Distributed disk systems can be catego-
rized asshared-diskor partitioned-diskarchitectures depending on how the disks
are connected to the server nodes. In a shared-disk architecture, all server nodes
can directly access all disks in the system with equal speed. In a partitioned-disk ar-

chitecture each server node is directly attached to a subset of all the disks. Accesses
to locally attached disks are significantly faster than accesses to remote disks.

Another distinguishing feature of distributed disk systems is the way they main-
tain bookkeeping information ametadataabout the data stored on the various
disks in the system. In shared-metadataystem, metadata can be accessed by
all server nodes with equal ease. lpartitioned-metadatasystem, each node is
responsible for maintaining a subset of the metadata that is stored locally.

Finally, distributed disk systems can be distinguished by how the users of the
system view the collection of disks. Some systems support high-level abstractions
calledvirtual disks which use tables to flexibly map users’ logical view of storage
onto the physical disk resources, while other systems use less-flexible but more
compact algorithmic mappings.

This paper attempts to describe and analyze the alternatives for distributed disk
systems based on our personal experience in designing, implementing, and using
two distributed disk systems: Snappy Disk [7] and Petal [13]. Snappy Disk and
Petal provide similar functionality. Both support virtual disks and provide useful
storage management features such as snapshots which allow system administra-
tors to create nearly instantaneous copies of a virtual disk. The two systems differ
significantly, however, in their architecture and design, and we believe that they
occupy two near diametrical positions in the spectrum of architectural and design
alternatives. Throughout this paper, we use comparisons between these two sys-
tems to drive our discussions. Section 2 provides a brief background and overview
of Snappy Disk and Petal, Section 3 discusses the architectural and design issues
embodied by Snappy Disk and Petal, and Section 4 analyzes the availability of
shared-disk versus partitioned-disk architectures.

2 Snappy Disk and Petal

This section provides background information and a high-level overview of Snappy
Disk and Petal. The next section will discuss the architectural and design differ-
ences between Snappy Disk and Petal in detail.

Snappy Disk is a shared-disk, shared-metadata distributed disk system that pro-
vides three main services. First, multiple nodes can share and simultaneously ac-
cess a common pool of physical disks over a dedicated storage network. Second,
clients can create virtual disks on demand. Third, nearly instantaneous copies of
virtual disks, called snapshots, can be created on demand.

Snappy Disk does not directly implement mirroring, RAID [17], or other data
redundancy schemes. However, Snappy Disk can easily manage disks that are
already mirrored by separate software or exported by a RAID controller. Multiple

Snappy Disk nodes coordinate concurrent access to the shared disks by acquiring
locks from a distributed lock manager that executes on one or more of the server
nodes. Applications can either access Snappy Disk directly by running on the same
nodes as the Snappy Disk subsystem, or over a general purpose network using a
specialized network protocol. In either case, disks exported by Snappy Disk look
just like locally attached disks to applications. Snappy Disk is currently available
as a DIGITAL product that runs on OpenVMS and Windows NT.

Petal is a partitioned-disk, partitioned-metadata distributed disk system that
currently runs on DIGITAL Unix and Windows NT. Similar to Snappy Disk, Petal
also supports virtual disks and snapshots, although, unlike Snappy Disk, Petal
snapshots are read-only. Petal is a research prototype for studying scalable dis-
tributed disk systems. A typical Petal system consists of several closely cooperat-
ing server nodes that communicate with each other over a network to implement a
single logical storage system that is highly-available, scales easily in capacity and
performance, and is easy to manage. Clients access Petal over a network using a
custom RPC protocol. As with Snappy Disk, clients can run on the same nodes
as the Petal servers, but because the disks are not shared between nodes, and most
nodes cannot directly access a given disk, there is no compelling performance rea-
son for doing so. In short, Petal is designed as a dedicated disk storage system that
serves data blocks over a network to clients such as file systems and databases.

Hot-standby systems, such as Microsoft Wolfpack, are sometimes referred to
as “clustered” systems, and fall between the spectrum covered by Snappy Disk
and Petal. In these systems, several nodes simultaneously connect to a collection
of disks via a shared storage interconnect. However, under normal operation, a
designated node services all accesses to a particular disk. If the designated node
fails, another node takes over its disks and duties by using the shared storage in-
terconnect. However, a crucial distinction between these systems and shared-disk
systems like Snappy Disk, is that they do not allow multiple nodes to access the
same disk at the same time. This paper does not discuss hot-standby systems any
further.

3 Architecture and Design

3.1 Shared- Versus Partitioned-Disks

The hardware structure of most distributed disk systems can be classified as ei-
ther a shared-disk or a partitioned-disk architecture. In a shared-disk architecture,
illustrated by Figure 1, the disks are attached to the server nodes via a storage
area network. Any server node can access any disk directly over the storage area
network. Because of its special purpose nature, the storage area network is often

3

an interconnect, such as FibreChannel, that is optimized for transferring blocks of
data, and support significantly higher data rates with lower CPU overheads than
most general purpose networks. On the other hand, such interconnects often have
limited scalability and are not as flexible as general purpose networks.

Figure 2 illustrates a partitioned-disk architecture in which a collection of client
nodes access storage managed by a collection of server nodes. A system without
distinct client nodes, in which applications run directly on the server nodes, is also
feasible. In both cases, each disk is attached to a particular server node and only
the node to which a particular disk is attached can directly access that disk. A node
can access data on a disk attached to a different node only by transferring it across
the general purpose network.

The type of hardware architecture used by a distributed disk system can have
enormous implications for the system’s software structure. Shared-disk systems
such as Snappy Disk assume that unless a disk has failed, it is accessible from
every server node. That s, the failure of one server node, does not affect the ability
of another server node to access a given disk. To tolerate failures in the storage
area network, the storage area network is often replicated and each server node
and each disk redundantly connected to both storage area networks. The redundant
data paths ensure that no single hardware failure, other than the failure of the disk
itself, will make a disk inaccessible to a particular server node. Partitioned-disk
systems such as Petal, on the other hand, typically identify and handle transient
failures such as node crashes and communication failures that may make certain
disks inaccessible for short periods of time. This can make software for partitioned-
disk architectures more complex than software for shared-disk architectures.

Shared-disk systems often perform better than partitioned-disk systems con-
structed with similar disks and nodes because of the additional faster data paths
offered by the storage area network. This is particularly true if the data are gener-
ated and consumed by applications running on the server nodes rather than being
served to clients on the general purpose network. Also, when configured with
redundant storage area networks, a shared-disk system can tolerate a wider com-
bination of component failures than partitioned-disk systems. On the other hand,
the additional networking hardware and the multiple data paths needed by shared-
disk systems make such systems more expensive, harder to configure, and difficult
to distribute over multiple geographic sites. In contrast, partitioned-disk systems
are more easily distributed over multiple sites because they only require access to
a general purpose network and, by necessity, are designed to handle intermittent
communication failures between nodes.

3.2 Address Mapping

Storage systems that manage multiple disks typically support virtual disk abstrac-
tions to simplify management [6,19]. A virtual disk can span multiple physical
disks for performance, mirror data for reliability, and can implement a variety of
administrative policies. When clients access a virtual disk, the virtual disk ad-
dresses must be mapped to the corresponding physical disk addresses. Most stor-
age systems use simple mathematical equations to map virtual addresses to phys-
ical addresses [12]. Mappings based on mathematical equations are compact and
simple to maintain but are inflexible. The mapping as well as the physical disks
over which the mapping applies must be specified when the virtual disk is created.
New physical disks cannot easily be added to existing virtual disks and the creation
of new virtual disks usually requires adding physical disks.

An alternative to using mathematical equations is to use tables to map individ-
ual pagesof storage. Mappings based on tables are more difficult for the system
to maintain and can become quite large, but are much more flexible. The physical
disks in the system are usually organized into storage pools that any virtual disk
can draw on as needed. New disks can be added to the storage pool without dis-
rupting existing virtual disks. The mapping between virtual to physical addresses
can be done on demand as in modern virtual memory systems, reducing the amount
of physical storage that would otherwise be over-allocated to a virtual disk while
waiting for users or applications to fill up the space over time.

Another important advantage of table-based mapping is its ability to efficiently
snapshotvirtual disks using copy-on-write techniques currently used by virtual
memory systems. When a virtual disk is snapshot, an identical copy of the virtual
disk is created nearly instantaneously. Once a snapshot has been made, it behaves
as an independent copy of the original. In particular, modifications to the original
have no effect on the snapshot and modifications to the snapshot have no effect on
the original. In some cases, snapshots may be read-only and cannot be modified.

Both read-only and writable snapshots are highly useful for managing large-
scale storage systems. For example, a snapshot copy can be used for making con-
sistent backups while applications continue using the original copy of the data.
The snapshots can also be kept on-line so that users can easily restore accidentally
deleted files and directories. Additionally, writable snapshots can be used to test
new software using a copy of the actual data without investing a lot of time and
resources in making a separate physical copy of the data.

The advantages of table-based mapping and snhapshots are not free. Space is
needed to store the mapping tables, and operations such as writing a block of data
to a virtual disk may incur additional overheads, including additional disk writes,
if mapping tables must be updated. For example, if we map a virtual disk using

64KB pages and each page requires 16 bytes of mapping data, then 1)Bof10
physical storage would require 256 MB of mapping data. A key consideration in
the design of distributed disk systems, is how this mapping data will be stored and
accessed, particularly in the face of node and network failures.

3.3 Shared- Versus Partitioned-Metadata

Distributed disk systems that use simple mathematical equations to map virtual
disks have the advantage that the mapping information is compact and rarely changes.
This information, therefore, can be efficiently replicated and kept up-to-date across
all the server nodes in the system. In contrast, systems that use table-based map-
pings must manage much larger amounts of mapping information, which may
change frequently.

In ashared-metadataystem, the information that maps virtual disks to physi-
cal disks is directly accessible to all server nodes in the storage system. The server
nodes typically synchronize access to the metadata using a distributed lock man-
ager. In apartitioned-metadataystem, most of the mapping information is parti-
tioned across the server nodes, and each node may only access the particular piece
of metadata for which it is responsible. Even in a partitioned-metadata system,
however, a small amount of the mapping information must be shared and glob-
ally available to all the server nodes in the system, if only to determine how the
metadata is to be partitioned across the nodes. Snappy Disk is an example of a
shared-metadata system while Petal is an example of a partitioned-metadata sys-
tem.

Snappy Disk stores all its metadata including mapping information redundantly
on shared disks. Server nodes coordinate accessing and caching this information
using a fault-tolerant distributed lock manager. This allows the system to use a
simple programming model that is similar to that used by shared-memory multi-
threaded programs that synchronize using in-memory locks. The main design issue
is in selecting an appropriate locking granularity. A granularity that is too coarse
will limit throughput by restricting concurrency and generate false lock conflicts
while a very fine locking granularity will generate large amounts of lock traffic.

As an optimization, Snappy Disk updates to data structures can be piggy-backed
on to lock acquisition and release messages [15]. When a lock is released, any
modifications to the locked data structure are piggy-backed onto the lock using
a “change record”. When another node acquires this lock, the node applies any
change records associated with the lock before allowing access to the data. This
technique allows the use of a few locks to efficiently protect large tables, where
only a few entries change between lock acquisitions. Without this technique, one
would have to reload the entire table every time a lock changed possession even if

only a few entries in the table had changed.

Petal distinguishes between two types of metadateal metadatanakes up
the bulk of the metadata in Petal and includes any information that is needed only
by a single node and therefore does not need to be shared with other nodes. In par-
ticular, the loss of local metadata affects only the node on which that information
is stored. Because Petal partitions its mapping information across nodes such that
each node only contains the mapping information for the disks that it manages, all
the mapping information is treated as local metadata.

Global metadatancludes information such as which server nodes are currently
a member of the Petal system and how the local metadata is partitioned across the
nodes. Global metadata is frequently read by all the server nodes in the system,
but is infrequently updated. Leslie Lamport's Paxos algorithm [11] is used to con-
sistently replicate and update the global metadata across all server nodes in the
system.

3.4 Data Access and Redundancy

This section examines the issues in providing data redundancy in shared-disk and
partitioned-disk systems. Although the discussions focus on mirroring-based data
redundancy, most of it applies to other redundancy schemes such as parity.

Consider the problem of providing single copy semantics while reading and
writing mirrored data. Single copy semantics requires that the system behave as if
it were operating on a single copy of the data. If read and write requests execute
sequentially, achieving single copy semantics is straightforward. Each write re-
guest updates both copies of data and a read request may read from either copy of
data. However, if read and write requests can execute concurrently, things are not
so simple. Without explicit synchronization, certain orderings of disk reads and
writes will violate single copy semantics. One could easily end up in a state where
the two copies of data are different.

To provide single copy semantics in the general case, shared-disk systems ac-
quire a global lock from a distributed lock manager to prevent a write request from
executing at the same time as another write request or read request to the same
data. Acquiring a global lock may require exchanging messages over a network.
In partitioned-disk systems, because the two copies of data may only be accessed
by the two nodes to which each of the two disks is attached, only local locks are
needed. In Petal, for example, reads can be satisfied by either copy of data and
acquire a reader lock for the duration of the operation. For writes, one copy is
designated the primary, and writes must initiate at the node containing the primary
copy. That node acquires a local writer lock and concurrently writes the data to its
disk and to the node containing the secondary copy, which in turn acquires a local

writer lock while writing its local disk. The node containing the primary copy then
waits for both disk writes to complete before releasing its lock and acknowledging
completion of the request.

In certain circumstances, it is not necessary to perform synchronization in the
distributed disk system to ensure single image semantics. One such circumstance
is when it is known that the distributed disk system itself is not performing any
read or write requests to reorganize disk storage, and it is known that the applica-
tion using the virtual disk never issues concurrent disk requests to the same data.
The buffer cache manager for many file systems provide this guarantee as well as
certain parallel database programs that do their own distributed locking.

For both shared-disk and partitioned-disk systems, adding non-volatile RAM
(NVRAM) can improves the latency to perform client write operations and any
operations that require updating persistent metadata. In both cases, for availability
reasons, data must be stable on the NVRAM of at least two nodes before a write
can be acknowledged as completed. In partitioned-disk systems, since only a sin-
gle node can access a particular disk, and the data being written must go to the two
nodes containing the primary and secondary copies, NVRAM can be transparently
added to accelerate writes to a node’s local disks. With shared-disk systems, things
are a little more complicated. Because a single node would usually perform both
disk writes, the data being written usually never reaches another node. Thus, addi-
tional communication with a second node is needed to guarantee two copies of the
data in the NVRAM of two different nodes.

Also, a partitioned-disk systems may release its local locks as soon as the data
has been written to NVRAM. In contrast, any global locks held by a shared-disk
system to guarantee single copy semantics must be held until the data has been
written to the disks or a mechanism must be provided whereby other nodes that try
to access the same data are notified that the most recently written data may still be
in NVRAM. Finally, in a shared-disk system, some coordination between nodes is
needed to manage the allocation of NVRAM buffers. There are efficient ways to
do this, however, which does not require additional messages.

3.5 Communication Overheads

This section discusses the communication overheads among disks and server nodes
in shared-disk and partitioned-disk architectures. For the purposes of the com-
parison, we will assume a redundant configuration in which data is mirrored on
two disks. As previously mentioned, shared-disk architectures tend to have lower
communication overheads than partitioned-disk architectures due to the additional
communication paths offered by the storage area network and the fact that the stor-
age area network is often an interconnect that is optimized for transferring blocks

of data with low CPU utilization. Because of this, we will assume in our discus-
sions that it is preferable to use the storage area network in place of the general
purpose network whenever possible.

We consider what happens in each architecture when the 1/O is performed by
applications running remotely on separate client nodes and when the I/O is per-
formed locally by applications running on the server nodes. We are mainly inter-
ested in the number of messages and the number of times that data must be trans-
ferred over the general purpose and storage area networks. Table 1 summarizes the
results.

A remote read in a shared-disk architecture is initiated by sending a read re-
guest message from a client node to a server node. Since all the server nodes are
connected to all the disks, the request message may be sent to any of the server
nodes, although to improve caching, it may be desirable to restrict requests for par-
ticular data to particular server nodes. The server node that receives the request
then reads the data from an appropriate disk and returns the data to the client node.
The entire transaction requires a minimum of fouessagesa request-response
pair over the general purpose network and a similar request-response pair over the
storage area network. Furthermore, the above transaction includes a minimum of
two data transfers: once over the storage area network and once over the general
purpose network. Here, we assume that the data is piggybacked with the reply
messages rather than being sent in separate messages. Depending on the physical
networking technology and communication protocols, the exact number of mes-
sages needed to perform a remote read operation may vary from system to system;
however, the above analysis is still useful for comparing architectures.

A remote read in a partitioned-disk architecture is processed in the same way
as a remote read in a shared-disk architecture and incurs the same communication
overheads. In a partitioned-disk architecture, however, server nodes access disks
over individual local storage links rather than a unified storage area network. To
simplify terminology, we refer to the collection of local storage links as a degen-
erate form of storage area network. The read request in a partitioned-disk system
cannot be sent to any server node as in a shared-disk architecture, but must be sent
to a server node that stores a copy of the requested data.

A remote write in a shared-disk architecture is initiated by sending a write
request from a client node to any server node. The server node then writes the
data to the two designated disks and acknowledges the request. This results in a
total of two messages and one data transfer over the general purpose network and
four messages and two data transfers over the storage area network. If NVRAM is
supported, the data must also be sent to and acknowledged by a second server node,
increasing the number of messages by two and the number of data transfers by one.
Although these additional messages and data transfer may be performed across

9

9 B

=

=

Client0 Clientl Client2 Client3 Client0 Clientl Client2 Client3
N N
GPN ‘ F GPN ‘F
5b
1 4 1 4 1 4 1
2b
J J 41 44 4]
ServerQ Serverl Server2 Server3 ServerQ Serverl Server2 Server3
i sav | I o | b3 2a<] | Psa 3o< | Pab
2 3 2a| Ba sb
2b
N N

Figure 3: Shared-Disk Read and Write Figure 4: Partitioned-Disk Read and Write

Remote Access Local Access
GPN SAN GPN SAN
msgs| data| msgs| data msgs| data| msgs| data
Read Snappy Disk 2 1 2 1 Read Snappy Disk 0 0 2 1
Read Petal 2 1 2 1 Read Petal 2 1 2 1
Write Snappy Disk| 2 1 |4(@6) | 2(@) || Write Snappy Disk 0 0 [4(6)]| 2@
Write Petal 4 2 4 2 Write Petal 4 2 4 2

Table 1: Communication Overheadm the remote case, applications run on client nodes which request
data from a server node over a network. In the local case, applications run directly on the server nodes. All
overheads assume that data is mirror&PNdenotes a General Purpose Netwo8AN denotes a Storage

Area Network. In the case of Petal, the collection of local storage links are treated as a degenerate storage
area network. Numbers in th@sgscolumns denote the number of required messages. Numbers in the
datacolumns denote the number of required data transfers. Numbers in parenthesis denote overheads with
NVRAM support at the server nodes. In the remote case, Snappy Disk is more efficient for write requests than
Petal. When supporting NVRAM, both Snappy Disk and Petal require the same total number of messages
and data transfers. In the local case, Snappy Disk has a significant performance advantage for all cases
because any server node can directly access any disk.

either network, in most systems, it is preferable to use the storage area network.

A remote write in a partitioned-disk architecture is initiated by sending a write
request from a client node to a particular server node. The server node then writes
the data to its local disk and sends a write request to the server node containing the
second copy. The server node acknowledges the request when both the local disk
write and the write to the second server node have completed. This requires a total
of four messages and two data transfers over the general purpose network, and an-
other four messages and two data transfers over the storage area network. Because
the data must be sent to two different nodes in the normal course of performing
writes, supporting NVRAM in a partitioned-disk architecture does not incur any
additional communication overheads.

Local read and write requests in shared-disk architectures have the advantage
that all communication over the general purpose network can be eliminated with
no additional communication over the storage area network. In partitioned-disk
architectures, the communication overhead for local accesses is the same as that
for remote accesses, unless the application happens to be collocated on the same
server node as the data that it is accessing. This is unlikely in practice.

In the above discussion, we have ignored the issues of synchronization traffic
and metadata updates that may be triggered by some I/O operations. A shared-disk
architecture will typically use a distributed lock manager to synchronize read and
write operations and updates to its metadata while a partitioned-disk architecture
requires only local locks. Also, metadata updates in shared-disk architectures must
be mirrored across multiple disks in order for the system to tolerate the failure of
a disk containing the metadata, while in a partitioned-disk architecture, mirroring
the metadata is not required since the loss of metadata stored at a particular node
only affects that node, that is, the loss of metadata can be treated as a node failure.
The amount of synchronization traffic over the network in a shared-disk system is
highly dependent on the workload and the synchronization scheme. In practice,
“well-behaved” workloads are unlikely to generate large amounts of synchroniza-
tion traffic.

3.6 Summary and Conclusions

The separate storage area network and multiple disk paths give shared-disk archi-
tectures a performance advantage over partitioned-disk architectures. This advan-
tage is most significant when applications run directly on the server nodes. The
densely connected storage area network, however, can make shared-disk architec-
tures difficult to distribute across multiple sites.

Table-based virtual to physical mappings are more flexible than algorithmic
mappings for allocating physical disk storage and can be used to efficiently support

11

Client0 Clientl Client2 Client3

General Purpose Network

Server0 Serverl Server2 Server3

| Replicated Storage Area Network

Figure 5: Redundant Shared-Disk Architecture

functionality such as snapshots. Table-based mappings, however, require maintain-
ing significant amounts of mapping metadata.

Shared-metadata systems allow any server node to access any metadata and
coordinate accesses using a fault-tolerant distributed lock manager. Partitioned-
metadata systems, on the other hand, split the responsibility for managing this
metadata across the server nodes in the system. Shared-metadata systems are con-
ceptually simpler to design and program but their performance can be highly sen-
sitive to the locking granularity and the workload. Partitioned-metadata systems
find it easier to support fine-granularity locking and are much less sensitive to in-
teractions between the locking strategy and the workload.

In conclusion, we believe that shared-disk, shared-metadata architectures such
as Snappy Disk are most suitable for high-performance clustered systems where
applications are expected to run on the server nodes. Partitioned-disk, partitioned-
metadata systems, on the other hand, are most suitable for implementing stand-
alone storage subsystems where flexibility and manageability are more important.

4 Availability Analysis

This section analyzes the availability of shared-disk and partitioned-disk architec-
tures that use mirroring to protect data. Informally, a storage system is considered
availableif clients can access the data stored on the system; otherwise, the system
is consideredinavailable Sometimes we will refer to the state in which a system

is unavailable as aystem failure Many highly-available storage systems require

a short period of time, around fifteen seconds to a couple of minutes in order to

12

ready = no failed components

Dn = number of disks 5 tailed disk
Di = MTTF of adisk o = Onefa_'l ed d_'sk
D, = MTTR of adisk = twotalled disks
N = one failed storage network

S, = number of server nodes NN oo failed st wwrork
S = MTTF of a server node s - ° fal.leds orage nz works
S = MTTR of a server node s - t(?;efa_lled server node
N = MTTF of a storage area network - © al_e S(_erver nodes)

DN = one failed disk and one failed network
N = MTTR of a storage area network)))

DS = one failed disk and one failed node

Figure 6: Availability Parameters Figure 7: Markov Chain States

D¢ 2N;? Di%S?

MT T Fpga =~
DnDr N2 + 2N, D2 P DD S 2+ $:S D%+ DD S (Dr +)

MTT Fsga =~

Figure 8: Shared-Disk Availability ModelTermi- Figure 9 Partitiongd-[?isk Avai'labi'li.ty ModelTer-
nal states resulting in unavailability are shaded. ~ Minal states resulting in unavailability are shaded.

13

detect and adapt to failed components. We will not consider thesefattieiver
intervalsas system failures.

Distributed disk systems can be made unavailable by a variety of causes in-
cluding software crashes, disk failures, and network failures. Some of these causes
such as disk failures are permanent and may result in data loss, but other causes
such as software crashes may only make the system unavailable for short periods of
time. In theory, systems without non-volatile memory can suffer data loss only as
a result of disk failures. Other hardware components can be transparently replaced
because they do not store persistent information; however, doing so in a real system
can be difficult.

The rest of this section analyzes the availability of shared-disk versus partitioned-
disk architectures using Markov chains. For the purposes of this analysis, we will
assume a shared-disk architecture with replicated storage area networks as illus-
trated by Figure 5. The primary purpose of this analysis is to gain insight into
the factors that affect the availability of each type of system rather than to accu-
rately determine the availability of real storage systems. First consider the types
of component failures that can affect the availability of distributed disk systems.
As listed in Figure 7, these include server nodes, the storage area network, links
to the storage area network, and disks. Both the shared-disk and partitioned-disk
architectures protect against all single component failures, requiring multiple com-
ponent failures to make data unavailable.

Figure 8 depicts a simplified Markov chain model that illustrates the major fail-
ure modes of a shared-disk architecture. This model ignores server node failures
since in a shared-disk architecture, all server nodes must fail, a highly unlikely
event, to prevent clients from accessing data. The model also ignores the failure
of cables or links associated with the storage area network because this is highly
dependent on the topology and, therefore, the implementation of the storage area
network. The model illustrates the two failure modes that result in the vast ma-
jority of system failures. The first is the loss of two disks that contain the same
copy of data, and the second is the loss of both storage area networks. The approx-
imate mean time to system failure predicted by the model is displayed beneath the
Markov state diagram.

Figure 9 presents the availability model for partitioned-disk architectures. There
are three failure modes that result in the bulk of system failures. The firstis the fail-
ure of two disks that contain the same copy of data. The second is the failure of
two server nodes that contain the same copy of data. The third is the failure of a
disk and a server node that contain the same copy of data. This model assumes that
a disk on one server is mirrored by a corresponding disk on another server. That is,
we assume that the data stored on a disk is not spread across a large collection of
disks on another server; otherwise, the overall availability of the system could be

14

Dn = 100

D = 1,000 000 hrs
D = 1hr

S = 4

S = b5yrs

S = 1lday

N = b5yrs

N, = 1lday

MTT FRga = 4544years
MTTFyga = 1065years

Figure 10: Sample Availability CalculationsGiven a shared-disk system and a
partitioned-disk system, each with a hundred disks and four server nodes, and the
above values for the reliability of system components, the shared-disk system has
an MTTF that is 4.3 times as large as the MTTF of the partitioned-disk system.

significantly reduced.

The state diagrams ard T T F equations in Figure 8 and Figure 9 have simi-
lar structures. This is because server nodes in partitioned-disk systems and storage
area networks in shared-disk systems play a similar role in providing clients a path-
way to data. If we replaced each occurrencéNah Figure 8 with anS, both the
state diagrams and the equations would look very similar. A notable difference is
that the failure of an appropriate disk and server node in a partitioned-disk archi-
tecture results in system failure, that 3Sis a terminal state, whereas the failure
of a disk and a storage area network in a shared-disk architecture does not result
in system failure, that i®N is not a terminal state. This is because the disks in
the shared-disk architecture are dual-ported and can therefore be accessed via ei-
ther storage area network whereas the disks in a partitioned-disk architecture are
single-ported and can only be accessed via a particular server node. This accounts
for the additionalD, Dt S (Dy 4+) term in theMT T Fyga equation. We con-
sider this the architectural availability advantage of shared-disk architectures when
compared with partitioned-disk architectures.

Figure 10 compares the availability of the two architectures for representative
values of the availability parameters.

15

e D, is the mean time required to reconstruct data stored on a failed disk.

o & is the mean time between server node failures. These are typically hard-
ware failures for which immediately rebooting the server node does not fix
the problem.

e S isthe mean time required to reconstruct data stored on a failed server node
in partitioned-disk systems.

e N is the mean time between persistent failures of the storage area network.
Actual values for this parameter will vary depending on the size, topology,
and technology of the storage area network. We assume that its value is five
years, which, in this case, is equal3p.

e N; is the mean time to manually replace a failed storage area network. We
assume that its value is twenty-four hours, which, in this case, is eg8al to

Based on these assumptions and parameter values, the models predict MTTF's of
4544 years for the shared-disk system and 1065 years for the partitioned-disk sys-
tem. These numbers may sound large but consider that if system failures are expo-
nentially distributed, an MTTF of 1065 years still means that there is a one percent
chance of system failure in 10 years. The models’ predictions are also based on
the assumption that component failures are independent. Real systems, however,
suffer from correlated component failures that significantly reduce the availability
of the system. Examples of events that can cause correlated failures include, power
failures, natural disasters, bad batches of disks with systematic manufacturing de-
fects, and operators bumping into racks of equipment.

To close, we would like to reiterate that the primary purpose of this section has
been to gain insight into the factors that affect the availability of shared-disk and
partitioned-disk architectures rather than to derive models that accurately predict
the availability of actual systems. Because of the factors already mentioned, esti-
mating the availability of a particular distributed disk system is a complicated task
that must include many intangible factors.

5 Summary and Conclusions

As storage systems become larger to meet the increasing storage needs of both
existing and new applications, aggregating and managing the many disparate com-
ponents of the system become severe problems. Distributed disk systems attempt
to address this problem by automating the management of disks distributed across
multiple server nodes. They automatically tolerate and recover from component

16

failures, gracefully scale in capacity and performance as components are added,
and allow multiple server nodes to be managed as a single system.

This paper has described the architectural and design alternatives for distributed
disk systems as embodied in Snappy Disk and Petal, and studied the effect of these
alternatives on the systems’ availability and performance. In particular, we have
examined shared-disk versus partitioned-disk architectures, shared-metadata ver-
sus partitioned-metadata approaches to managing bookkeeping information, the
advantages and disadvantages of table-based virtual address mappings, and the
mechanisms for synchronizing activity across multiple server nodes. The follow-
ing paragraphs summarize our conclusions.

Most shared-disk systems use a separate storage area network to interconnect
all disks and server nodes. The storage area network typically uses a different net-
working technology than the general purpose network. This technology is often
optimized for transferring large blocks of data and provides higher-performance at
the cost of limited scaling and decreased flexibility when compared with general
purpose networks. Because of this separate high-performance storage area net-
work, shared-disk systems can provide a significant performance advantage over
partitioned-disk system. This is particularly true when applications run locally on
the server nodes, where they can access disks directly over the storage area network
without communicating with other nodes. Setting up and maintaining a separate
storage area network, however, make shared-disk systems more expensive and dif-
ficult to partition across multiple geographic sites for disaster tolerance.

The performance advantage of shared-disk systems is reduced if the server
nodes are required to support NVRAM (non-volatile RAM) buffers. To mirror data
on a second server node, shared-disk systems must incur additional communication
overheads, whereas partitioned-disk systems already incur this overhead in normal
operation. As a result, if both systems are accessed remotely over a network, they
will process the same number of messages and data transfers for each read and
write request.

Shared-disk and partitioned-disk systems are likely to use very different syn-
chronization strategies. For example, Snappy Disk shares all metadata between
server nodes and uses a distributed lock manager with piggybacked metadata up-
dates, while Petal partitions most of its metadata, uses only local locks, and relies
on Leslie Lamport's Paxos algorithm for managing a small amount of metadata
that must be shared across all the nodes. Partitioning the disks and metadata places
restrictions on the choice of server nodes that a client must contact to access data,
while sharing the disks and metadata without such restrictions may generate signif-
icant lock and metadata traffic as well as less effective data caching due to duplicate
cache entries. The cost of acquiring locks over a network from a lock manager is
much higher than acquiring a local lock. This makes the performance of shared-

17

disk systems more sensitive to locality in the workload.

To tolerate all single component failures, shared-disk systems replicate the
storage area network and attach each disk and server node to both storage area

networks. Although more expensive, dual-porting all disk allows shared-disk ar-
chitectures to tolerate a greater combination of multiple component failures than
partitioned-disk architectures and gives shared-disk architectures an architectural
advantage in system availability.

6 Acknowledgements

The authors would like to thank Mike Schroeder for his comments on earlier drafts
of this paper.

References

[1]

2]

[3]

[4]

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patter-
son, Drew S. Roselli, and Randolph Y. Wang. Serverless network file systems.
ACM Transactions on Computer Systeii¥(1):41-79, February 1996.

Luis-Felipe Cabrera and Darrel D. E. Long. Swift: Using distributed disk
striping to provide high 1/O data rateACM Computing System4.405—-436,
Fall 1991.

Pei Cao, Swee Boon Lim, Shivakumar Venkataraman, and John Wilkes. The
TickerTAIP parallel RAID architectureACM Transactions on Computer Sys-
tems 12(3):236—-269, August 1994.

Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Ken Lutz, Ethan L. Miller,
Srinivasan Seshan, Ken Shirriff, David A. Patterson, and Randy H. Katz. Per-
formance and design evaluation of the RAID-II storage sendeurnal of
Distributed and Parallel Database2(3):243-260, July 1994.

[5] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The logical

disk: A new approach to improving file systems. Rroceedings of the 14th
ACM Symposium on Operating Systems Principbeges 15-28, December
1989.

[6] Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The logical

disk: A new approach to improving file systems.Rroceedings of the ACM
Symposium on Operating Systems Princippegyes 1528, 1989.

18

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Dewar, J. Hogg, C. Morrison, K. Playford, and C. Whitakenap Capable
Disk: Version 1.0 Design SpecificatioDpenVMS File System Technologies,
August 1997.

Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Eugene M.
Feinberg, Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David
Rochberg, and Jim Zelenka. File server scaling with network-attached secure
disks. InProceedings of the ACM International Conference on Measurement
and Modeling of Computer Systempages 272—-284, June 1997.

Jim Gray and Andreas Reutefransaction Processing: concepts and tech-
niques Morgan Kaufmann, 1993.

John H. Hartman and John K. Ousterhout. The Zebra striped network file
system. ACM Transactions on Computer Systerh3(3):274-310, August
1995.

Leslie Lamport. The Part-Time Parliament. Technical Report 49, Digital
Equipment Corporation, Systems Research Center, 130 Lytton Ave., Palo
Alto, CA 94301-1044, September 1989.

Edward K. Lee and Randy H. Katz. The performance of parity placements in
disk arrays.IEEE Transactions on Computer2(6):651-664, June 1993.

Edward K. Lee and Chandramohan A. Thekkath. Petal: Distributed virtual
disks. InProceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systpages 84-92,
October 1996.

Timothy Mann, Andrew D. Birrell, Andy Hisgen, Chuck Jerian, and Garret
Swart. A coherent distributed file cache with directory write-behidd@M
Transactions on Computer Systerh2(2):123-164, May 1994.

C. Mohan and I. Narang. Recovery and coherency-control protocols for fast
intersystem page transfer and fine-granularity locking in a shared disks trans-
action environment. IfProceedings of the 17th International Conference on
Very Large Data Basepages 193—-207, September 1991.

P. O'Niel. The Escrow transaction mod@&CM Transactions on Distributed
Systemsl1, December 1986.

David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). Rroceedings of the ACM SIGMQD
pages 109-116, June 1988.

19

[18] M. Satyanarayanan. Scalable, secure, and highly available distributed file
access|EEE Computer23(5):9—-21, May 1990.

[19] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP Au-
toRAID hierarchical storage system. Rroceedings of the 15th ACM Sym-
posium on Operating Systems Principlpages 96-108, December 1995.

20

