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Abstract

We discuss abstractions for protection and the correctness of their imple-
mentations. Relying on the concept of full abstraction, we consider two
examples: (1) the translation of Java classes to an intermediate bytecode
language, and (2) in the setting of the pi calculus, the implementation of
private channels in terms of cryptographic operations.
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1 Introduction

Tangible crimes and measures against those crimes are sometimes explained
through abstract models—with mixed results, as the detective Erik Lönnrot
discovered [Bor74]. Protection in computer systems relies on abstractions
too. For example, an access matrix is a high-level specification that de-
scribes the allowed accesses of subjects to objects in a computer system;
the system may rely on mechanisms such as access lists and capabilities for
implementing an access matrix [Lam71].

Abstractions are often embodied in programming-language constructs.
Recent work on Java [GJS96] has popularized the idea that languages are
relevant to security, but the relation between languages and security is much
older. In particular, objects and types have long been used for protection
against incompetence and malice, at least since the 1970s [Mor73, LS76,
JL78]. In the realm of distributed systems, programming languages (or their
libraries) have sometimes provided abstractions for communication on se-
cure channels of the kind implemented with cryptography [Bir85, WABL94,
vDABW96, WRW96, Sun97b].

Security depends not only on the design of clear and expressive abstrac-
tions but also on the correctness of their implementations. Unfortunately,
the criteria for correctness are rarely stated precisely—and presumably they
are rarely met. These criteria seem particularly delicate when a principal
relies on those abstractions but interacts with other principals at a lower
level. For example, the principal may express its programs and policies in
terms of objects and remote method invocations, but may send and receive
bit strings. Moreover, the bit strings that it receives may not have been the
output of software trusted to respect the abstractions. Such situations seem
to be more common now than in the 1970s.

One of the difficulties in the correct implementation of secure systems is
that the standard notion of refinement (e.g., [Hoa72, Lam89]) does not pre-
serve security properties. Ordinarily, the non-determinism of a specification
may be intended to allow a variety of implementations. In security, the non-
determinism may also serve for hiding sensitive data. As an example, let us
consider a specification that describes a computer that displays an arbitrary
but fixed string in a corner of a screen. A proposed implementation might
always display a user’s password as that string. Although this implementa-
tion may be functionally correct, we may consider it incorrect for security
purposes, because it leaks more information than the specification seems to
allow. Security properties are thus different from other common properties;
in fact, it has been argued that security properties do not conform to the
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Alpern-Schneider definition of properties [AS85, McL96].
Reexamining this example, let us write P for the user’s password, I(P )

for the proposed implementation, and S(P ) for the specification. Since the
set of behaviors allowed by the specification does not depend on P , clearly
S(P ) is equivalent to S(P ′) for any other password P ′. On the other hand,
I(P ) and I(P ′) are not equivalent, since an observer can distinguish them.
Since the mapping from specification to implementation does not preserve
equivalence, we may say that it is not fully abstract [Plo77]. We may explain
the perceived weakness of the proposed implementation by this failure of full
abstraction.

This paper suggests that, more generally, the concept of full abstraction
is a useful tool for understanding the problem of implementing secure sys-
tems. Full abstraction seems particularly pertinent in systems that rely on
translations between languages—for example, higher-level languages with
objects and secure channels, lower-level languages with memory addresses
and cryptographic keys.

We consider two examples of rather different natures and review some
standard security concerns, relating these concerns to the pursuit of full
abstraction. The first example arises in the context of Java (section 2). The
second one concerns the implementation of secure channels, and relies on
the pi calculus as formal framework (section 3). The thesis of this paper
about full abstraction is in part a device for discussing these two examples.

This paper is rather informal and partly tutorial; its contributions are
a perspective on some security problems and some examples, not new theo-
rems. Related results appear in more technical papers [SA98, AFG98].

Full abstraction, revisited

We say that two expressions are equivalent in a given language if they yield
the same observable results in all contexts of the language. A translation
from a language L1 to a language L2 is equationally fully abstract if (1) it
maps equivalent L1 expressions to equivalent L2 expressions, and (2) con-
versely, it maps nonequivalent L1 expressions to nonequivalent L2 expres-
sions [Plo77, Sha91, Mit93]. We may think of the context of an expression as
an attacker that interacts with the expression, perhaps trying to learn some
sensitive information (e.g., [AG97a]). With this view, condition (1) means
that the translation does not introduce information leaks. Since equations
may express not only secrecy properties but also some integrity properties,
the translation must preserve those properties as well. Because of these con-
sequences of condition (1), we focus on it; we mostly ignore condition (2),
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although it can be useful too, in particular for excluding trivial translations.
Closely related to equational full abstraction is logical full abstraction.

A translation from a language L1 to a language L2 is logically fully abstract
if it preserves logical properties of the expressions being translated [LP98].
Longley and Plotkin have identified conditions under which equational and
logical full abstraction are equivalent. Since we use the concept of full ab-
straction loosely, we do not distinguish its nuances.

An expression of the source language L1 may be written in a silly, in-
competent, or even malicious way. For example, the expression may be a
program that broadcasts some sensitive information—so this expression is
insecure on its own, even before any translation to L2. Thus, full abstraction
is clearly not sufficient for security; however, as we discuss in this paper, it
is often relevant.

2 Objects and Mobile Code

The Java programming language is typically compiled to an intermediate
language, which we call JVML and which is implemented by the Java Virtual
Machine [GJS96, LY96]. JVML programs are often communicated across
networks, for example from Web servers to their clients. A client may run
a JVML program in a Java Virtual Machine embedded in a Web browser.
The Java Virtual Machine helps protect local resources from mobile JVML
programs while allowing those programs to interact with local class libraries.
Some of these local class libraries perform essential functions (for example,
input and output), so they are often viewed as part of the Java Virtual
Machine.

2.1 Translating Java to JVML

As a first example we consider the following trivial Java class:

class C {
private int x;
public void set x(int v) {

this.x = v;
};

}

This class describes objects with a field x and a method set x. The method
set x takes an integer argument v and updates the field x to v. The keyword
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this represents the self of an object; the keyword public indicates that any
client or subclass can access set x directly; the keyword private disallows
a similar direct access to x from outside the class. Therefore, the field x can
be written but never read.

The result of compiling this class to JVML may be expressed roughly as
follows. (Here we do not use the official, concrete syntax of JVML, which is
not designed for human understanding.)

class C {
private int x;
public void set x(int) {
.framelimits locals = 2, stack = 2;
aload 0; // load this
iload 1; // load v
putfield x; // set x

};
}

As this example indicates, JVML is a fairly high-level language, and in
particular it features object-oriented constructs such as classes, methods,
and self. It differs from Java in that methods manipulate local variables,
a stack, and a heap using low-level load and store operations. The details
of those operations are not important for our purposes. Each method body
declares how many local variables and stack slots its activation may require.
The Java Virtual Machine includes a bytecode verifier, which checks that
those declarations are conservative (for instance, that the stack will not
overflow). If undetected, dynamic errors such as stack overflow could lead
to unpredictable behavior and to security breaches.

The writer of a Java program may have some security-related expec-
tations about the program. In our simple example, the field x cannot be
read from outside the class, so it may be used for storing sensitive informa-
tion. Our example is so trivial that this information cannot be exploited
in any way, but there are more substantial and interesting examples that
permit controlled access to fields with the qualifier private and similar
qualifiers. For instance, a Java class for random-number generation (like
java.util.Random) may store seeds in private fields. In these examples, a
security property of a Java class may be deduced—or presumed—by con-
sidering all possible Java contexts in which the class can be used. Because
those contexts must obey the type rules of Java, they cannot access private
fields of the class.
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When a Java class is translated to JVML, one would like the resulting
JVML code to have the security properties that were expected at the Java
level. However, the JVML code interacts with a JVML context, not with a
Java context. If the translation from Java to JVML is fully abstract, then
matters are considerably simplified—in that case, JVML contexts have no
more power than Java contexts. Unfortunately, as we point out below, the
current translation is not fully abstract (at least not in a straightforward
sense). Nevertheless, the translation approximates full abstraction:

• In our example, the translation retains the qualifier private for x. The
occurrence of this qualifier at the JVML level may not be surprising,
but it cannot be taken for granted. (At the JVML level, the qualifier
does not have the benefit of helping programmers adhere to sound
software-engineering practices, since programmers hardly ever write
JVML, so the qualifier might have been omitted.)

• Furthermore, the bytecode verifier can perform standard typechecking,
guaranteeing in particular that a JVML class does not refer to a private
field of another JVML class.

• The bytecode verifier can also check that dynamic errors such as stack
overflow will not occur. Therefore, the behavior of JVML classes
should conform to the intended JVML semantics; JVML code can-
not get around the JVML type system for accessing a private field
inappropriately.

Thus, the bytecode verifier restricts the set of JVML contexts, and in ef-
fect makes them resemble Java contexts (cf. [GJS96, p. 220]). As the set
of JVML contexts decreases, the set of equivalences satisfied by JVML pro-
grams increases, so the translation from Java to JVML gets closer to full
abstraction. Therefore, we might even view full abstraction as the goal of
bytecode verification.

Recently, there have been several rigorous studies of the Java Virtual Ma-
chine, and in particular of the bytecode verifier [Coh97, SA98, Qia97, FM98].
These studies focus on the type-safety of the JVML programs accepted by
the bytecode verifier. As has long been believed, and as Leroy and Rouaix
have recently proved in a somewhat different context [LR98], strong typing
yields some basic but important security guarantees. However, those guaran-
tees do not concern language translations. By themselves, those guarantees
do not imply that libraries written in a high-level language have expected
security properties when they interact with lower-level mobile code.
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2.2 Obstacles to full abstraction

As noted, the current translation of Java to JVML is not fully abstract. The
following variant of our first example illustrates the failure of full abstraction.
We have no reason to believe that it illustrates the only reason for the
failure of full abstraction, or the most worrisome one; Dean, Felten, Wallach,
and Balfanz have discovered several significant discrepancies between the
semantics of Java and that of JVML [DFWB98].

class D {
class E {

private int y = x;
};
private int x;
public void set x(int v) {

this.x = v;
};

}
The class E is an inner class [Sun97a]. To each instance of an inner class
such as E corresponds an instance of its outer class, D in this example. The
inner class may legally refer to the private fields of the outer class.

Unlike Java, JVML does not include an inner-class construct. Therefore,
compilers “flatten” inner classes while adding accessor methods. Basically,
as far as compilation is concerned, we may as well have written the following
classes instead of D:

class D {
private int x;
public void set x(int v) {

this.x = v;
};
static int get x(D d) {

return d.x;
};

}

class E {
... get x ...

}
Here E is moved to the top level. A method get x is added to D and used in
E for reading x; the details of E do not matter for our purposes. The method
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get x can be used not just in E, however—any other class within the same
package may refer to get x.

When the classes D and E are compiled to JVML, therefore, a JVML
context may be able to read x in a way that was not possible at the Java
level. This possibility results in the loss of full abstraction, since there is
a JVML context that distinguishes objects that could not be distinguished
by any Java context. More precisely, a JVML context that runs get x and
returns the result distinguishes instances of D with different values for x.

This loss of full abstraction may result in the leak of some sensitive
information, if any was stored in the field x. The leak of the contents of a
private component of an object can be a concern when the object is part of
the Java Virtual Machine, or when it is trusted by the Java Virtual Machine
(for example, because a trusted principal digitally signed the object’s class).
On the other hand, when the object is part of an applet, this leak should
not be surprising: applets cannot usually be protected from their execution
environments.

For better or for worse, the Java security story is more complicated and
dynamic than the discussion above might suggest. In addition to protection
by the qualifier private, Java has a default mode of protection that protects
classes in one package against classes in other packages. At the language
level, this mode of protection is void—any class can claim to belong to any
package. However, Java class loaders can treat certain packages in special
ways, guaranteeing that only trusted classes belong to them. Our example
with inner classes does not pose a security problem as long as D and E are
in one of those packages.

In hindsight, it is not clear whether one should base any security expecta-
tions on qualifiers like private, and more generally on other Java constructs.
As Dean et al. have argued [DFWB98], the definition of Java is weaker than
it should be from a security viewpoint. Although it would be prudent to
strengthen that definition, a full-blown requirement of full abstraction may
not be a necessary addition. More modest additions may suffice. Section 4
discusses this subject further.

3 Channels for Distributed Communication

In this section, we consider the problem of implementing secure channels
in distributed systems. As mentioned in the introduction, some systems
for distributed programming offer abstractions for creating and using secure
channels. The implementations of those channels typically rely on cryptog-
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raphy for ensuring the privacy and the integrity of network communication.
The relation between the abstractions and their implementations is usually
explained only informally. Moreover, the abstractions are seldom explained
in a self-contained manner that would permit reasoning about them without
considering their implementations at least occasionally.

The concept of full abstraction can serve as a guide in understanding se-
cure channels. When trying to approximate full abstraction, we rediscover
common attacks and countermeasures. Most importantly, the pursuit of full
abstraction entails a healthy attention to the connections between an imple-
mentation and higher-level programs that use the implementation, beyond
the intrinsic properties of the implementation.

3.1 Translating the pi calculus to the spi calculus

The formal setting for this section is the pi calculus [Mil92, MPW92, Mil93],
which serves as a core calculus with primitives for creating and using chan-
nels. By applying the pi calculus restriction operator, these channels can
be made private. We discuss the problem of mapping the pi calculus to a
lower-level calculus, the spi calculus [AG97b, AG97c, AG97a], implementing
communication on private channels by encrypted communication on public
channels. Several low-level attacks can be cast as counterexamples to the full
abstraction of this mapping. Some of the attacks can be thwarted through
techniques common in the literature on protocol design [MvOV96]. Some
other attacks suggest fundamental difficulties in achieving full abstraction
for the pi calculus.

First we briefly review the spi calculus. In the variant that we consider
here, the syntax of this calculus assumes an infinite set of names and an
infinite set of variables. We let c, d, m, n, and p range over names, and let
w, x, y, and z range over variables. We usually assume that all these names
and variables are different (for example, that m and n are different names).
The set of terms of the spi calculus is defined by the following grammar:

L,M,N ::= terms
n name
x variable
{M1, . . . ,Mk}N encryption (k ≥ 0)

Intuitively, {M1, . . . ,Mk}N represents the ciphertext obtained by encrypting
the terms M1, . . . ,Mk under the key N (using a symmetric cryptosystem
such as DES or RC5 [MvOV96]). The set of processes of the spi calculus is
defined by the following grammar:
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P,Q ::= processes
M〈N1, . . . , Nk〉 output (k ≥ 0)
M(x1, . . . , xk).P input (k ≥ 0)
0 nil
P | Q composition
!P replication
(νn)P restriction
[M is N ] P match
case L of {x1, . . . , xk}N in P decryption (k ≥ 0)

An output process M〈N1, . . . , Nk〉 sends the tuple N1, . . . , Nk on M . An in-
put process M(x1, . . . , xk).Q is ready to input k terms N1, . . . , Nk on M , and
then to behave as Q[N1/x1, . . . , Nk/xk]. Here we write Q[N1/x1, . . . , Nk/xk]
for the result of replacing each free occurrence of xi in Q with Ni, for i ∈ 1..k.
Both M(x1, . . . , xk).Q and case L of {x1, . . . , xk}N in P (explained below)
bind the variables x1, . . . , xk. The nil process 0 does nothing. A composi-
tion P | Q behaves as P and Q running in parallel. A replication !P behaves
as infinitely many copies of P running in parallel. A restriction (νn)P makes
a new name n and then behaves as P ; it binds the name n. A match process
[M is N ] P behaves as P if M and N are equal; otherwise it does nothing.
A decryption process case L of {x1, . . . , xk}N in P attempts to decrypt L
with the key N ; if L has the form {M1, . . . ,Mk}N , then the process behaves
as P [M1/x1, . . . ,Mk/xk]; otherwise it does nothing.

By omitting the constructs {M1, . . . ,Mk}N and case L of {x1, . . . , xk}N
in P from these grammars, we obtain the syntax of the pi calculus (more
precisely, of a polyadic, asynchronous version of the pi calculus).

As a first example, we consider the trivial pi calculus process:

(νn)(n〈m〉 | n(x).0)

This is a process that creates a channel n, then uses it for transmitting the
name m, with no further consequence. Communication on n is secure in
the sense that no context can discover m by interacting with this process,
and no context can cause a different message to be sent on n; these are
typical secrecy and integrity properties. Such properties can be expressed as
equivalences (in particular, as testing equivalences [DH84, BN95, AG97a]).
For example, we may express the secrecy of m as the equivalence between
(νn)(n〈m〉 | n(x).0) and (νn)(n〈m′〉 | n(x).0), for any names m and m′.

Intuitively, the subprocesses n〈m〉 and n(x).0 may execute on differ-
ent machines; the network between these machines may not be physically
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secure. Therefore, we would like to explicate a channel like n in lower-
level terms, mapping it to some sort of encrypted connection multiplexed
on a public channel. For example, we might translate our first process,
(νn)(n〈m〉 | n(x).0), into the following spi calculus process:

(νn)(c〈{m}n〉 | c(y).case y of {x}n in 0)

Here c is a distinguished, free name, intuitively the name of a well-known
public channel. The name n still appears, with a restriction, but it is used
for a key rather than for a channel. The sender encrypts m using n; the
recipient tries to decrypt a ciphertext y that it receives on c using n; if the
decryption succeeds, the recipient obtains a cleartext x (hopefully m).

This translation strategy may seem promising. However, it has numerous
weaknesses; we describe several of those weaknesses in what follows. The
weaknesses represent obstacles to full abstraction and are also significant in
practical terms.

3.2 Obstacles to full abstraction

Leak of traffic patterns

In the pi calculus, (νn)(n〈m〉 | n(x).0) is simply equivalent to 0, because
the internal communication on n cannot be observed. On the other hand, in
the spi calculus, (νn)(c〈{m}n〉 | c(y).case y of {x}n in 0) is not equivalent
to the obvious implementation of 0, namely 0. A spi calculus process that
interacts with (νn)(c〈{m}n〉 | c(y).case y of {x}n in 0) can detect traffic on
c, even if it cannot decrypt that traffic.

The obvious way to protect against this leak is to add noise to communi-
cation lines. In the context of the spi calculus, we may for example compose
all our implementations with the noise process !(νp)c〈{}p〉. This process con-
tinually generates keys and uses those keys for producing encrypted traffic
on the public channel c.

In practice, since noise is rather wasteful of communication resources,
and since a certain amount of noise might be assumed to exist on commu-
nication lines as a matter of course, noise is not always added in implemen-
tations. Without noise, full abstraction fails.

Trivial denial-of-service vulnerability

Consider the pi calculus process

(νn)(n〈m〉 | n(x).x〈〉)

10



which is a small variant of the first example where, after its receipt, the
message m is used for sending an empty message. This process preserves
the integrity of m, in the sense that no other name can be received and used
instead of m; therefore, this process is equivalent to m〈〉.

The obvious spi calculus implementations of (νn)(n〈m〉 | n(x).x〈〉) and
m〈〉 are respectively

(νn)(c〈{m}n〉 | c(y).case y of {x}n in c〈{}x〉)

and c〈{}m〉. These implementations can be distinguished not only by traffic
analysis but also in other trivial ways. For example, the former implementa-
tion may become stuck when it interacts with c〈p〉, because the decryption
case y of {x}n in c〈{}x〉 fails when y is p rather than a ciphertext. In
contrast, the latter implementation does not suffer from this problem.

Informally, we may say that the process c〈p〉 mounts a denial-of-service
attack. Formally, such attacks can sometimes be ignored by focusing on pro-
cess equivalences that capture only safety properties, and not liveness prop-
erties. In addition, the implementations may be strengthened, as is com-
monly done in practical systems. For example, as a first improvement, we
may add some replication to (νn)(c〈{m}n〉 | c(y).case y of {x}n in c〈{}x〉),
obtaining:

(νn)(c〈{m}n〉 | !c(y).case y of {x}n in c〈{}x〉)

This use of replication protects against c〈p〉.

Exposure to replay attacks

Another shortcoming of our implementation strategy is exposure to replay
attacks. As an example, we consider the pi calculus process:

(νn)(n〈m1〉 | n〈m2〉 | n(x).x〈〉 | n(x).x〈〉)

which differs from the previous example only in that two names m1 and
m2 are transmitted on n, asynchronously. In the pi calculus, this process is
equivalent to m1〈〉 | m2〈〉: it is guaranteed that both m1 and m2 go from
sender to receiver exactly once.

This guarantee is not shared by the spi calculus implementation

(νn)

 c〈{m1}n〉 | c〈{m2}n〉 |
c(y).case y of {x}n in c〈{}x〉 |
c(y).case y of {x}n in c〈{}x〉


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independently of any denial-of-service attacks. When this implementation
is combined with the spi calculus process c(y).(c〈y〉 | c〈y〉), which duplicates
a message on c, two identical messages may result, either c〈{}m1〉 | c〈{}m1〉
or c〈{}m2〉 | c〈{}m2〉.

Informally, we may say that the process c(y).(c〈y〉 | c〈y〉) mounts a replay
attack. Standard countermeasures apply: timestamps, sequence numbers,
and challenge-response protocols. In this example, the addition of a minimal
challenge-response protocol leads to the following spi calculus process:

(νn)

 c(z1).c〈{m1, z1}n〉 | c(z2).c〈{m2, z2}n〉 |
(νp1)(c〈p1〉 | c(y).case y of {x, z1}n in [z1 is p1] c〈{}x〉) |
(νp2)(c〈p2〉 | c(y).case y of {x, z2}n in [z2 is p2] c〈{}x〉)


The names p1 and p2 serve as challenges; they are sent by the subpro-
cesses that are meant to receive m1 and m2, received by the subprocesses
that send m1 and m2, and included along with m1 and m2 under n. This
challenge-response protocol is rather simplistic in that the challenges may
get “crossed” and then neither m1 nor m2 would be transmitted successfully;
it is a simple matter of programming to protect against this confusion. In
any case, for each challenge, at most one message is accepted under n. This
use of challenges thwarts replay attacks.

Leak of message equalities

In the pi calculus, the identity of messages sent on private channels is con-
cealed. For example, an observer of the process

(νn)(n〈m1〉 | n〈m2〉 | n(x).0 | n(x).0)

will not even discover whether m1 = m2. (For this example, we drop the
implicit assumption that m1 and m2 are different names.) On the other
hand, suppose that we translate this process to:

(νn)

 c〈{m1}n〉 | c〈{m2}n〉 |
c(y).case y of {x}n in 0 |
c(y).case y of {x}n in 0


An observer of this process can tell whether m1 = m2, even without knowing
m1 or m2 (or n). In particular, the observer may execute:

c(x).c(y).([x is y] d〈〉 | c〈x〉 | c〈y〉)
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This process reads and relays two messages on the channel c, and emits
a message on the channel d if the two messages are equal. It therefore
distinguishes whether m1 = m2. The importance of this sort of leak depends
on circumstances. In an extreme case, one cleartext may have been guessed
(for example, the cleartext “attack at dawn”); knowing that another message
contains the same cleartext may then be significant.

A simple countermeasure consists in including a different confounder
component in each encrypted message. In this example, the implementation
would become:

(νn)

 (νp1)c〈{m1, p1}n〉 | (νp2)c〈{m2, p2}n〉 |
c(y).case y of {x, z1}n in 0 |
c(y).case y of {x, z2}n in 0


The names p1 and p2 are used only to differentiate the two messages being
transmitted. Their inclusion in those messages ensures that a comparison
on ciphertexts does not reveal an equality of cleartexts.

Lack of forward secrecy

As a final example, we consider the pi calculus process:

(νn)(n〈m〉 | n(x).p〈n〉)

This process transmits the name m on the channel n, which is private until
this point. Then it releases n by sending it on the public channel p. Other
processes may use n afterwards, but cannot recover the contents of the first
message sent on n. Therefore, this process is equivalent to

(νn)(n〈m′〉 | n(x).p〈n〉)

for any m′. Interestingly, this example relies crucially on scope extrusion, a
feature of the pi calculus not present in simpler calculi such as CCS [Mil89].

A spi calculus implementation of (νn)(n〈m〉 | n(x).p〈n〉) might be:

(νn)(c〈{m}n〉 | c(y).case y of {x}n in c〈{n}p〉)

However, this implementation lacks the forward-secrecy property [DvOW92]:
the disclosure of the key n compromises all data previously sent under n.
More precisely, a process may read messages on c and remember them, ob-
tain n by decrypting {n}p, then use n for decrypting older messages on c.
In particular, the spi calculus process

c(x).(c〈x〉 | c(y).case y of {z}p in case x of {w}z in d〈w〉)
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may read and relay {m}n, read and decrypt {n}p, then go back to obtain
m from {m}n, and finally release m on the public channel d.

Full abstraction is lost, as with the other attacks; in this case, however,
it seems much harder to recover. Several solutions may be considered.

• We may restrict the pi calculus somehow, ruling out troublesome cases
of scope extrusion. It is not immediately clear whether enough expres-
siveness for practical programming can be retained.

• We may add some constructs to the pi calculus, for example a construct
that given the name n of a channel will yield all previous messages
sent on the channel n. The addition of this construct will destroy the
source-language equivalence that was not preserved by the translation.
On the other hand, this construct seems fairly artificial.

• We may somehow indicate that source-language equivalences should
not be taken too seriously. In particular, we may reveal some aspects
of the implementation, warning that forward secrecy may not hold.
We may also specify which source-language properties are maintained
in the implementation. This solution is perhaps the most realistic one,
although we do not yet know how to write the necessary specifications
in a precise and manageable form.

• Finally, we may try to strengthen the implementation. For example,
we may vary the key that corresponds to a pi calculus channel by, at
each instant, computing a new key by hashing the previous one. This
approach is fairly elaborate and expensive.

The problem of forward secrecy may be neatly avoided by shifting from
the pi calculus to the join calculus [FG96]. The join calculus separates the
capabilities for sending and receiving on a channel, and forbids the commu-
nication of the latter capability. Because of this asymmetry, the join calculus
is somewhat easier to map to a lower-level calculus with cryptographic con-
structs. This mapping is the subject of current work [AFG98]; although still
impractical, the translation obtained is fully abstract.

4 Full Abstraction in Context

With progress on security infrastructures and techniques, it may become
less important for translations to approximate full abstraction. Instead, we
may rely on the intrinsic security properties of target-language code and on
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digital signatures on this code. We may also rely on the security properties
of source-language code, but only when a precise specification asserts that
translation preserves those properties. Unfortunately, several caveats apply.

• The intrinsic security properties of target-language code may be ex-
tremely hard to discover a posteriori. Languages such as JVML are
not designed for ease of reading. Furthermore, the proof of those prop-
erties may require the analysis of delicate and complex cryptographic
protocols. Certifying compilers [NL97, MWCG98] may alleviate these
problems but may not fully solve them.

• Digital signatures complement static analyses but do not obviate them.
In particular, digital signatures cannot protect against incompetence
or against misplaced trust. Moreover, digital signatures do not seem
applicable in all settings. For example, digital signatures on spi calcu-
lus processes would be of little use, since these processes never migrate
from one machine to another.

• Finally, we still have only a limited understanding of how to specify
and prove that a translation preserves particular security properties.
This question deserves further attention. It may be worthwhile to ad-
dress it first in special cases, for example for information-flow proper-
ties [Den82] as captured in type systems [VIS96, Aba97, ML97, HR98].

The judicious use of abstractions can contribute to simplicity, and thus to
security. On the other hand, abstractions and their translations can give rise
to complications, subtleties, and ultimately to security flaws. As Lampson
wrote [Lam83], “neither abstraction nor simplicity is a substitute for getting
it right”. Concepts such as full abstraction should help in getting it right.
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Vogel, Jean-Jacques Lévy, and Enric Vallduv́i, editors, The
Tbilisi Symposium on Logic, Language and Computation: Se-
lected Papers, pages 333–352. CSLI Publications and FoLLI,
1998.

[LR98] Xavier Leroy and François Rouaix. Security properties of typed
applets. In Proceedings of the 25th ACM Symposium on Prin-
ciples of Programming Languages, pages 391–403, 1998.

[LS76] Butler W. Lampson and Howard E. Sturgis. Reflections on
an operating system design. Communications of the ACM,
19(5):251–265, May 1976.

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[McL96] John McLean. A general theory of composition for a class
of “possibilistic” properties. IEEE Transactions on Software
Engineering, 22(1):53–66, January 1996.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-
Hall International, 1989.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures
in Computer Science, 2:119–141, 1992.

19



[Mil93] Robin Milner. The polyadic π-calculus: a tutorial. In Bauer,
Brauer, and Schwichtenberg, editors, Logic and Algebra of
Specification. Springer-Verlag, 1993.

[Mit93] John C. Mitchell. On abstraction and the expressive power of
programming languages. Science of Computer Programming,
21(2):141–163, October 1993.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model
for information flow control. In Proceedings of the 16th ACM
Symposium on Operating System Principles, pages 129–142,
1997.

[Mor73] James H. Morris, Jr. Protection in programming languages.
Communications of the ACM, 16(1):15–21, January 1973.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, parts I and II. Information and Compu-
tation, 100:1–40 and 41–77, September 1992.

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of Applied Cryptography. CRC Press, 1996.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew.
From System F to Typed Assembly Language. In Proceedings
of the 25th ACM Symposium on Principles of Programming
Languages, pages 85–97, 1998.

[NL97] George C. Necula and Peter Lee. The design and implementa-
tion of a certifying compiler. To appear in the proceedings of
PLDI’98, 1997.

[Plo77] Gordon Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223–256, 1977.

[Qia97] Zhenyu Qian. A formal specification of Java(tm) Virtual
Machine instructions (draft). Web page at http://www
.informatik.uni-bremen.de/~qian/abs-fsjvm.html, 1997.

[SA98] Raymie Stata and Mart́ın Abadi. A type system for Java byte-
code subroutines. In Proceedings of the 25th ACM Symposium
on Principles of Programming Languages, pages 149–160, Jan-
uary 1998.

20



[Sha91] Ehud Shapiro. Separating concurrent languages with cate-
gories of language embeddings. In Proceedings of the Twenty
Third Annual ACM Symposium on the Theory of Computing,
pages 198–208, 1991.

[Sun97a] Sun Microsystems, Inc. Inner classes specification. Web pages
at http://java.sun.com/products/jdk/1.1/docs/guide/
innerclasses/, 1997.

[Sun97b] Sun Microsystems, Inc. RMI enhancements. Web pages
at http://java.sun.com/products/jdk/1.2/docs/guide/
rmi/index.html, 1997.

[vDABW96] Leendert van Doorn, Mart́ın Abadi, Mike Burrows, and Ed-
ward Wobber. Secure network objects. In Proceedings 1996
IEEE Symposium on Security and Privacy, pages 211–221,
May 1996.

[VIS96] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound
type system for secure flow analysis. Journal of Computer
Security, 4:167–187, 1996.

[WABL94] Edward Wobber, Mart́ın Abadi, Michael Burrows, and But-
ler Lampson. Authentication in the Taos operating system.
ACM Transactions on Computer Systems, 12(1):3–32, Febru-
ary 1994.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed ob-
ject model for the Java system. Computing Systems, 9(4):265–
290, Fall 1996.

21


