
March 5, 1998

SRC
Research
Report 152

Fairness and Hyperfairness

Leslie Lamport

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Fairness and Hyperfairness

Leslie Lamport

March 5, 1998

c©Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

ii

Author’s Abstract

The notion of fairness in trace-based formalisms is examined. It is argued that, in
general, fairness means machine closure. The notion of hyperfairness introduced
by Attie, Francez, and Grumberg is generalized to arbitrary action systems. Also
examined are the fairness criteria proposed by Apt, Francez, and Katz.

iii

iv

Contents

1 Introduction 1

2 Fairness and Machine Closure 1

3 Fairness for Action Systems 3

4 Generalizing Weak and Strong Fairness 4

5 The Criteria of Apt, Francez, and Katz 8
5.1 The Criteria Redefined. 8
5.2 The Criteria Re-examined. 9
5.3 Hyperfairness and the AFK Conditions 11

6 Conclusion 11

vi

1 Introduction

Fairness in concurrent systems has been discussed for decades. There is even a
book on the subject [8]. The best-known attempt to characterize fairness was prob-
ably Apt, Francez, and Katz’s definition of three criteria for fairness notions [5].
We have learned much about trace-based formalisms since then, and I believe the
definition of fairness is now fairly obvious. While any precise formalization of
a vague concept is open to dispute, there does seem to be only one language-
independent definition that distinguishes fairness from liveness. That definition
appears to have been mentioned only by Abadi and Lamport [2, page 89] and
Schneider [15, pages 254–257]. My purpose here is to re-examine the question of
fairness in light of what has been learned in the last ten years.

Fairness for properties in an arbitrary trace-based formalism is defined in Sec-
tion 2. Fairness usually appears in the guise of fairness conditions on actions in
action systems. Section 3 reviews action systems—a simple abstraction that cov-
ers programs and many kinds of specifications—and recalls the definition of weak
and strong fairness for actions. Section 4 generalizes weak and strong fairness and
defines hyperfairness, a very strong form of fairness for actions. Hyperfairness
generalizes the concept of the same name introduced by Attie, Francez, and Grum-
berg [6]. Section 5 extends the criteria of Apt, Francez, and Katz to arbitrary action
systems and discusses these criteria. A concluding section muses upon what it all
means.

Much of the material presented here is a review of well-known concepts; its
presentation is quite terse. More loquacious expositions can be found in the cited
literature. Proofs of the new results are not hard and are left mostly to the reader.

2 Fairness and Machine Closure

I assume a trace-based semantics in which a behavior is a sequence1 of states and
a property is a predicate on behaviors. Everything translates easily to a formalism
(such as I/O automata) in which a behavior has action names attached to each
state transition.2 In the informal discussion, I identify a property with the set of
behaviors satisfying it, soR ⇒ T andR ⊆ T are two ways of asserting that if a
behavior satisfies propertyR, then it satisfies propertyT .

The meaning of a system specification3 is a property—namely, the set of behav-

1Infinite sequences must be allowed; it doesn’t matter if finite sequences are.
2An easy way to make the translation is to introduce a state variable whose value is the name of

the transition just completed.
3I take the termspecificationto include any kind of precise description of a reactive system. For

example, a program is a specification of what it means for the program to be executed correctly on a

1

iors representing a correct system execution. Any statement about specifications
that is independent of the particular language in which the specification is written
must be a statement about properties.

A safety propertyis one that is satisfied by an infinite behavior iff it is satisfied
by each finite prefix of the behavior [4].4 With the standard topology on sequences,
safety properties are closed sets. LetC(R) be the closure of propertyR in this
topology, soC(R) is the strongest safety property implied byR.

A propertyL is aliveness propertyiff any finite behavior can be extended to an
infinite behavior that satisfiesL. In the standard topology on sequences, liveness
properties are dense sets. A theorem of topology implies that every property can
be written as the conjunction of a safety property and a liveness property [4].

A pair 〈S ,L〉 of properties ismachine closed[1] iff S is equivalent toC(S∧L).
This means that〈S ,L〉 is machine closed iff every finite sequence satisfyingS can
be extended to an infinite sequence satisfyingS ∧ L.

Most methods for writing specifications, including CCS, Unity, and I/O au-
tomata, use some form of automaton to specify a safety property. The automaton
asserts the propertyS consisting of all state sequences that the automaton can gen-
erate. In some of these methods, one also specifies a liveness propertyL—either
implicitly through the semantics of the automaton (as in Unity), or by writingL ex-
plicitly (as in I/O automata). I will call the specification machine closed iff〈S ,L〉
is machine closed.

Machine closure of an automaton-based specification means that, as long as
the automaton behaves correctly (keeps its safety propertyS satisfied), it can never
reach a state in which it is impossible to satisfyS∧L. In other words, the automaton
can never “paint itself into a corner.” A specification that purports to describe an
implementation should be machine closed. However, one sometimes writes high-
level specifications that are not machine closed. (An example is the specification
of a serializable database in [10].)

In a number of methods, liveness is specified with so-called fairness conditions
on the automaton. The common feature of all these conditions is that they pro-
duce machine-closed specifications. The only sensible definition of fairness that is
independent of any specification language seems to be:

Definition 1 A liveness propertyL is a fairness property forpropertyS iff 〈S ,L〉
is machine closed.

computer.
4In a formalism where behaviors are infinite sequences, a finite sequence satisfies a propertyR

iff it is the prefix of some infinite sequence that satisfiesR.

2

3 Fairness for Action Systems

An action system5 consists of an initial state predicateInit and a set of predicates
Ai on pairs of states. TheAi are calledsystem actions. An action system expresses
the safety property consisting of every behavior〈s0, s1, . . .〉 whose initial states0

satisfiesInit and whose every pair〈sn , sn+1〉 of successive states satisfies some
system action.

I will describe action systems in terms of TLA (The Temporal Logic of Ac-
tions) [12]; it should be easy to translate the definitions and results into any other
suitably expressive formalism. TLA assumes an underlying logic for writing state
predicates and actions. An actionA (which is a predicate on pairs of states) is
defined to be a predicate on behaviors by letting〈s0, s1, . . .〉 satisfyA iff its initial
step〈s0, s1〉 satisfiesA. TLA includes the usual2 (forever) operator of linear-time
temporal logic [13].

The safety property of an action system with initial predicateInit and system
actionsAi is written in TLA asInit ∧ 2[∃ i : Ai]v , wherev is the tuple of all
relevant variables. For example, consider the action system with initial condition
x = y = 0 and the two actionsA1, which incrementsx by 1, andA2, which
incrementsy by 1. These actions are defined formally by:

A1
1= (x ′ = x + 1) ∧ (y ′ = y) A2

1= (y ′ = y + 1) ∧ (x ′ = x) (1)

The safety property specified by this action system is:

(x = y = 0) ∧ 2[A1 ∨A2]〈x ,y 〉

The subscriptv (which equals〈x , y 〉 in the example) permits “stuttering” steps
that do not change any relevant variables. Stuttering steps are crucial for refine-
ment, but they are irrelevant when considering only a single specification. I will
therefore omit all subscripts. The reader familiar with TLA should be able to figure
out how to re-introduce them.

For the rest of this section and for Section 4, let us assume a fixed action system
with initial predicateInit and system actionsAi , and let us defineN andS by

N 1= ∃ i : Ai S 1= Init ∧2[N] (2)

FormulaS is the system’s safety property, and actionN is called itsnext-state
relation.

5The term “action system” was introduced in 1983 by Back and Kurki-Suonio [7], but the concept
is much older.

3

An action A is enabledin a states iff there exists a statet such that〈s, t 〉
satisfiesA. The operators WF and SF are defined by

WF(A) 1= 32(ENABLED A)⇒ 23A
SF(A) 1= 23(ENABLED A)⇒ 23A

where ENABLED A is the predicate asserting thatA is enabled. Formula WF(A),
calledweak fairnesson A, asserts that ifA eventually becomes enabled forever,
then infinitely manyA steps must occur. Formula SF(A), calledstrong fairnesson
A, asserts that ifA is infinitely often enabled—even though it may also be infinitely
often disabled—then infinitely manyA steps must occur. Since eventually forever
implies infinitely often, SF(A) implies WF(A) for any actionA, so strong fairness
is stronger than weak fairness.

Most fairness conditions for action systems can be expressed as weak or strong
fairness on actions. For example, the requirement

If any of the actionsA1, . . . , Ak is ever enabled infinitely often, then
one of those actions must eventually be executed.

is just SF(A1 ∨ . . . ∨ Ak). The following proposition, proved by Abadi and Lam-
port [3], shows that ifA implies the next-state relationN , then weak and strong
fairness onA are indeed fairness properties.

Proposition 1 If S is defined by (2) andL is a finite or countably infinite conjunc-
tion of formulas of the formWF(A) and/orSF(A), where eachA impliesN , then
〈S ,L〉 is machine closed.

4 Generalizing Weak and Strong Fairness

Operators GWF and GSF that generalize weak and strong fairness can be defined
by replacing ENABLED A with an arbitrary predicateP in the definitions of WF
and SF:

GWF(P ,A) 1= 32P ⇒ 23A
GSF(P ,A) 1= 23P ⇒ 23A

(The concept of generalized fairness seems to have been defined first by Francez
and Kozen [9].) Although these operators are not used in ordinary TLA specifica-
tions, they occur implicitly in TLA reasoning. When proving that a specification
T 1 implies another specificationT 2, we must substitute state functions for bound
(hidden) variables ofT 2. Let F denote the result of performing such a substitution
on a formulaF . ProvingT 1⇒ T 2 requires proving that the fairness conditions of

4

T 1 imply the barred fairness conditions ofT 2, which may include formulas like
WF(B). This formula equals GWF(ENABLED B,B); it need not equal WF(B)
becauseENABLED B does not necessarily equal ENABLED B [12]. The same situ-
ation arises with SF formulas. Hence, we must prove that the WF and SF properties
of T 1 imply the GWF and GSF properties ofT 2. The standard TLA rules for rea-
soning about WF and SF contain the appropriate barred formulas [12, Figure 5].
Those rules have straightforward generalizations in which all formulas of the form
WF(C) and SF(C) are replaced by formulas GWF(P ,C) and GSF(P ,C), for
arbitrary predicatesP .

The properties GWF(P ,A) and GSF(P ,A) are not always fairness properties,
even whenA implies the next-state relationN . For example, GWF(TRUE,A) and
GSF(TRUE,A) equal23A. This property, called “unconditional fairness” onA,
is not, in general, a fairness property. For example,〈S ,23FALSE〉 is machine
closed iffS equalsFALSE.

I now give some necessary and sufficent conditions for GWF and GSF formulas
to yield fairness properties. These conditions are not pretty, and expressing them
requires some additional notation. Let “·” be action composition, defined by letting
〈s, t 〉 satisfyA · B iff there exists a stateu such that〈s, u 〉 satisfiesA and〈u, t 〉
satisfiesB . DefineA∗ · B by

A∗ · B 1= B ∨ (A · B) ∨ (A ·A · B) ∨ (A ·A · A · B) ∨ . . .

We now define three operators:6

h(N ,A) 1= ENABLED (N ∗ · (N ∧A))
gw(P ,N ,A) 1= P ⇒ (h(N ,A) ∨ ENABLED (N ∗ · ¬P))
gs(P ,N ,A) 1= P ⇒ (h(N ,A) ∨ ENABLED (N ∗ · ¬ENABLED (N ∗ · P)))

Since P implies ENABLED (N ∗ · P), the monotonicity of ENABLED implies
gs(P ,N ,A)⇒ gw(P ,N ,A).

The following proposition provides a necessary and sufficient condition for a
GWF or GSF formula to be a fairness property.

Proposition 2 If S is defined by (2) and L equals eitherGWF(P ,A) or
GSF(P ,A), for state predicateP and actionA, then 〈S ,L〉 is machine closed
iff S implies2gw(P ,N ,A).7

6The “P ⇒” in the definition ofgw is redundant and is included for symmetry. All these opera-
tors can be expressed in terms of the weakest invariant operatorwin [11], since ENABLED (N ∗ ·B)
is equivalent to¬win(N , ¬ENABLED B), for any actionB . A state predicateQ is considered to be
an action by letting〈s, t〉 satisfyQ iff s does.

7For a state predicateQ , the formulaS ⇒ 2Q asserts thatQ holds for every state of every
behavior satisfyingS .

5

While not difficult, the proof of this proposition may help explain the rather obscure
definitions ofh andgw , so we sketch it here.

1. If 〈S ,GSF(P ,A)〉 is machine closed, then so is〈S ,GWF(P ,A)〉.
PROOF: By the general result that〈S ,F 〉 machine closed andF ⇒ G imply
〈S ,G 〉machine closed.

2. If 〈S ,GWF(P ,A)〉 is machine closed, thenS ⇒ 2gw(P ,N ,A).
PROOF: AssumeS does not imply2gw(P ,N ,A). Then there exists a finite be-
haviorτ satisfyingS whose last stateτ f satisfies¬h(N ,A)∧¬ENABLED (N ∗ ·
¬P). Sinceτ f satisfies¬h(N ,A), the definition ofh this implies that ev-
ery extension ofτ satisfying 2N has no moreA steps. Sinceτ f satisfies
¬ENABLED (N ∗ · ¬P), predicateP is forever false in every extension ofτ
satisfying2N . Hence every extension ofτ satisfyingS satisfies¬GWF(P ,A),
contradicting the machine-closure assumption.

3. If S ⇒ 2gw(P ,N ,A), then〈S ,GSF(P ,A)〉 is machine closed.
Let τ be a finite behavior satisfyingS , with last stateτ f . The assumption means
that τ f satisfies either (i)¬P ∨ ENABLED (N ∗ · ¬P) or (ii) ENABLED (N ∗ ·
(N ∧ A)). In case (i), we can extendτ to a behavior satisfyingS ∧GSF(P ,A)
by taking a finite (possibly null) sequence ofN steps, and then stutering forever.
In case (ii), we can extendτ with a finite sequence ofN steps followed by an
N ∧ A step, and then repeat the construction, obtaining an infinite extension
satisfyingS ∧GSF(P ,A).

A specification usually requires the conjunction of fairness conditions for a set of
actions, not just fairness for a single action. There seems to be no simple, weak-
est requirement for an arbitrary conjunction of GWF and GSF formulas to be a
fairness property. However, the following is a rather powerful generalization of
Proposition 1. Its proof is based on essentially the same construction used in step 3
in the proof above, except thatτ must be repeatedly extended to satisfy the fair-
ness properties for the different actions. This means that the stuttering construction
can’t be used, so we need the strongergs formula for GSF properties. The detailed
proof is similar to that of Proposition 1 and is omitted.

Proposition 3 If S is defined by (2) andL is a finite or countably infinite conjunc-
tion of formulas, each of which is either (i) of the formGWF(P ,A)whereS implies
2gw(P ,N ,A) or (ii) of the formGSF(P ,A)whereS implies2gs(P ,N ,A), then
〈S ,L〉 is machine closed.

It would seem appropriate to reserve the term hyperfairness for the strongest gen-
eral fairness condition on an action that is a fairness property. This would mean
finding, for an actionA, the weakest predicateP for which GSF(P ,A) is a fairness

6

property. However, such aP does not, in general, exist. For example, define

S 1= (x = 0) ∧ 2(x ′ = x + 1)

A 1= x ′ = −7

Q(i) 1= x < i
Q 1= ∃ i ∈ Nat : Q(i)

Any finite behavior satisfyingS can be extended to one satisfyingS ∧32¬Q(i),
hence satisfyingS ∧ GSF(Q(i),A), for any numberi . Thus, GSF(Q(i),A) is a
fairness property. Suppose there were a weakestP such that GSF(P ,A) is a fair-
ness property. Then eachQ(i)must implyP , soQ impliesP . Hence, GSF(P ,A)
implies GSF(Q,A), so GSF(Q,A) must be a fairness property. (See step 1 in the
proof of Proposition 2.) But,S implies2Q ∧2¬A, which implies¬GSF(Q,A),
so GSF(Q,A) is not a fairness property. Hence, there can be no weakestP for
which GSF(P ,A) is a fairness property.

While there is no strongest fairness property GSF(P ,A) for an arbitraryA,
Proposition 2 and the definition ofgw suggest takingP to beh(N ,A). We there-
fore define thehyperfairnessoperator HF by

HF(N ,A) 1= GSF(h(N ,A),A)

While not in general the strongest possible fairness property for actionA, it is
still quite strong. It asserts that infinitely manyA steps must occur if, infinitely
often, a state is reached in which some possible sequence ofN steps could enable
A. Proposition 3 implies that the conjunction of any finite or countably infinite
collection of hyperfairness properties is a fairness property.

The definitions ofS and h(N ,A) imply that for any behavior〈s0, s1, . . .〉
satisfyingS and for anyn, if sn satisfiesh(N ,A), thensm satisfiesh(N ,A) for
everym < n. This implies:

Proposition 4 If S is defined by (2), thenS implies that23h(N ,A) is equivalent
to 2h(N ,A), for any actionA.

This proposition shows thatS implies the equivalence of GSF(h(N ,A),A) and
GWF(h(N ,A),A), so it doesn’t matter whether we use GSF or GWF in the defi-
nition of HF.

Attie, Francez, and Grumberg defined a tiny toy programming language called
IP , based on multi-party CSP-style synchronization, and they defined hyperfair-
ness for IP programs as follows [6]:

Definition (Hyperfairness). IfP is anIP program in which every top-
level interaction is conspiracy-resistant, then an infinite computationπ

is hyperfair iff If P is anIP program in which not every top-level
interaction is conspiracy-resistant, then every computationπ of P is
hyperfair.

7

The “. . . ” is a condition that, in the context of the definition, is equivalent to the
conjunction of hyperfairness properties for certain actions. It is in this sense that
HF generalizes their definition of hyperfairness.

5 The Criteria of Apt, Francez, and Katz

Apt, Francez, and Katz (henceforth called AFK) gave three “appropriateness” cri-
teria for fairness notions in a programming language: feasibility, equivalence ro-
bustness, and liveness enhancement [5]. Although their abstract promised to con-
sider “relations among various languages and models for distributed computation”,
they discussed mainly programs written in CSP-like languages with multi-party
interactions. I now generalize their criteria to arbitrary action systems, remaining
as faithful as possible to AFK’s intentions and notation. Afterwards, I discuss the
criteria and show that they are satisfied by a large class of hyperfairness properties.

5.1 The Criteria Redefined

For any action systemP, let N P andSP be the actionN and propertyS defined
by (2), and letcomp(P) be the propertySP ∧WF(N P). Assume some classA of
action systems. Afairness notionF is a mapping that assigns a propertyF(P) to
every systemP in A.

AFK defined the fairness notionF to befeasibleiff 〈SP, WF(N P)∧ F(P)〉 is
machine closed, for everyP in A.

AFK defined their second criterion, equivalence robustness, only when all
system actions are deterministic and mutually disjoint. In that case, a behavior
〈s0, s1, . . .〉 in SP is uniquely determined by the initial states0 and the sequence
〈Ak(0), Ak(1), . . .〉 of system actions such that〈sn , sn+1〉 satisfiesAk(n), for each
n. We can therefore consider a behavior to consist of an initial state and a sequence
of system actions. For behaviorsπ andρ, AFK defined

π ≡ ρ iff π can be obtained fromρ by (possibly infinitely many)
simultaneous transpositions of two independent [system] actions.

where system actionsAi and Aj are independentiff they commute—that is, iff
Ai ·Aj is equivalent toAj ·Ai . We can then define a propertyR to be equivalence
robust for the systemP iff, for any pair of behaviors〈π, ρ 〉 such thatπ ≡ ρ,
behaviorπ satisfiesR iff behaviorρ does. AFK definedF to be equivalence robust
iff F(P) is equivalence robust forP, for all P in A.

To extend this definition to arbitrary action systems, we need to generalize
AFK’s definition of≡. Without the assumption that system actions are pairwise

8

disjoint and deterministic, it is not obvious what is meant by the simultaneous
transpositions of infinitely many actions. I will defineπ � ρ to mean thatπ differs
from ρ by the transposition of two adjacent actions, defineπ → ρ to mean that
ρ is obtained fromπ by a convergent sequence of such transpositions, and define
π ≡ ρ to meanπ → ρ andρ → π .

Let σ i denote statei of a behaviorσ , soσ equals〈σ 0, σ 1, . . .〉. Defineπ � ρ

to mean that there exists a natural numbern such that, (i)πm = ρm for all m 6=
n + 1, and (ii) for any system actionsA and B , if 〈ρn , ρn+1〉 satisfiesA and
〈ρn+1, ρn+2〉 satisfiesB , then〈πn, πn+1〉 satisfiesB and〈πn+1, πn+2〉 satisfies
A. This definition is illustrated pictorially below.8

πn = ρn πn+2 = ρn+2

ρn+1

πn+1

��*
A

HHj
B

HHj
B

��*
A

πn−1 = ρn−1 -· · · · · ·

Let � mean� or=. Defineπ → ρ to be true iff there exists an infinite sequence
σ (0), σ (1), . . . of behaviors such that (i)σ (0) = π , (ii) σ (k) � σ (k+1) for all k , and
(iii) for every n there exists anm such thatσ (k)n = ρn for all k ≥ m. Finally, let
π ≡ ρ equal(π → ρ) ∨ (ρ → π)

Having defined≡ for an arbitrary action system, we can define equivalence
robustness as before: propertyR is equivalence robust forP iff π ≡ ρ implies that
π satisfiesR iff ρ does; andF is equivalence robust iffF(P) is equivalence robust
for P, for all P in A.

AFK’s third criterion, liveness enhancement, essentially asserts that there is
someP in A such thatcomp(P) ∧ F(P) is not equivalent tocomp(P).9

5.2 The Criteria Re-examined

Feasibility ofF is almost the same as requiring thatF(P) be a fairness property
for SP, for all P in A. The two requirements are not the same because AFK
made WF(N P) an intrinsic assumption about an action system rather than just a
particularly weak fairness property. This accords with the common practice of
calling “unfair” an execution of a multi-process program that satisfies only this
fairness property. While it is fruitless to argue with a definition, I believe that the

8This condition implies thatA andB commute for the pair〈ρn , ρn+2〉 of states. We could further
require thatA andB simply commute—that is, commute for all pairs of states. It makes no difference
to the ensuing discussion whether or not we change the definition of�, and hence of≡, in this way.

9AFK actually stated liveness enhancement in terms of terminating programs. As they observed,
their definition is equivalent to this one for the particular class of programs they were considering.

9

fundamental nature of safety and machine closure suggests that it is unproductive
to distinguish WF(N P) from other fairness properties. Indeed, defining fairness to
mean machine closure makes evenTRUE a fairness property.Ad hocrestrictions to
rule out such “trivial” fairness properties seem pointless.

Equivalence robustness ofF requires thatF(P) be equivalence robust forP,
for everyP in A. Unlike fairness, equivalence robustness depends on the actual
action systemP, not just on its safety propertySP. To show this dependence, I
now construct two action systemsP1 andP2 with equivalent safety properties (so
the systems are semantically equivalent) and a propertyL that is equivalence robust
for one and not the other.

Let P1 be the action system considered in Section 3 that has initial predicate
x = y = 0 and actionsA1 andA2 defined by (1); letA2> be the action(x >

y) ∧ A2; and letL be the property23A2>. Let π be the behavior obtained by
alternately performingA1 andA2 actions, starting with anA1 action; and letρ be
the same asπ , except starting with anA2 action. Sinceπ can be obtained from
ρ by interchanging eachA1 action with the followingA2 action, we haveρ ≡ π .
Sincex > y holds inπ at the beginning of eachA2 step and never holds inρ,
behaviorπ satisfiesL and behaviorρ does not. Hence,L is not equivalence robust
for P1.

Let P2 be the system with the same initial predicatex = y = 0 and the four
actionsA1≤, A1>, A2≤, andA2>, where the three new actions are defined by:

A1≤
1= (x ≤ y) ∧A1 A1>

1= (x > y) ∧A1 A2≤
1= (x ≤ y) ∧A2

PropertyL, which asserts that infinitely manyA2> actions occur, is obviously
equivalence robust forP2.

SinceN P1
is equivalent toN P2

, the systemsP1 andP2 have the same safety
property. Thus, we have two semantically equivalent action systems and a property
that is equivalence robust for one but not the other.

Under extremely weak hypotheses, we can show that for any action system
P, there exists a semantically equivalent action system such that every property is
equivalence robust for̂P. We simply definêP to have a separate system action for
every pair of states that satisfiesN P.

Since equivalence robustness is not a semantic property of a system, but de-
pends on how the system is represented, it is unlikely to be a useful concept—
except perhaps for action systems expressed in a language that severely restricts
how they can be represented.

Liveness enhancement ofF, AFK’s final criterion, asserts that there exists some
P in A for which F(P) is stronger than WF(N P). It rules out the fairness notion
that assigns WF(N P) to every systemP, reflecting AFK’s decision not to consider

10

WF(N P) to be a fairness property. They may also have been trying to rule out
trivial ways of defining a fairness notion that satisfies all three criteria. However,
Attie, Francez, and Grumberg’s definition of hyperfairness shows that there is a
simple way to defineF to satisfy all the criteria: (i) find a subclass of action systems
for which there exists some equivalence-robust fairness property, and (ii) define
F(P) to be that property ifP is in the subclass, and to equalTRUE otherwise. For
example, take the subclass consisting of thoseP for which SP implies that every
system action is always enabled, and defineF(P) to equal∀ i : 23Ai for all P in
this subclass.

5.3 Hyperfairness and the AFK Conditions

Attie, Francez, and Grumberg proved that their definition of hyperfairness satisfies
the three AFK conditions. Let’s see if this is true of my definition of hyperfairness.

Feasibility follows directly from Proposition 3. To satisfy liveness enhance-
ment, we would have to define a class of action systems and some particular con-
junction of hyperfairness formulas for each action system in that class. This is a
simple and pointless exercise that can be omitted.

We are left with equivalence robustness. The conjunction of properties is equiv-
alence robust if each conjunct is, so we need consider only individual hyperfairness
formulas. For an arbitrary actionA, the hyperfairness formulah(N P,A) need not
be equivalence robust for action systemP. For example,H (N P1

,A2>) is not
equivalence robust forP1, whereP1 andA2> are the system and action defined
above. However, we can prove the following result:

Proposition 5 If P is an action system andA is the disjunction of system actions
of P, thenHF(N P,A) is equivalence robust forP.

To prove the proposition, we assumeπ → ρ andπ satisfies HF(N P,A), and we
proveρ satisfies HF(N P,A). We do this by proving (i) ifπ satisfies23h(N P,A)
then so doesρ and (ii) if ρ satisfies23A then so doesπ . Result (i) follows easily
from Proposition 4; (ii) follows from the observation that, for any system action
Ai and behaviorsσ andτ with σ � τ , if infinitely many τ steps satisfyAi , then
infinitely manyσ steps also satisfyAi . The details are left as an exercise for any
reader who cares about equivalence robustness.

6 Conclusion

Fairness conditions are a way of expressing liveness properties, and liveness prop-
erties are inherently problematic. The question of whether a real system satisfies

11

a liveness property is meaningless; it can be answered only by observing the sys-
tem for an infinite length of time, and real systems don’t run forever. Liveness is
always an approximation to the property we really care about. We want a program
to terminate within 100 years, but proving that it does would require the addition
of distracting timing assumptions. So, we prove the weaker condition that the pro-
gram eventually terminates. This doesn’t prove that the program will terminate
within our lifetimes, but it does demonstrate the absence of infinite loops.

In practice, almost all reactive systems can be specified using action systems
together with simple weak and strong fairness properties.10 Most specifications are
machine closed. A machine-closed specification can always be written as an action
system together with fairness properties only on disjunctions of system actions.
However, in some cases, this requires a complicated representation of each system
operation as the disjunction of infinitely many actions. For those cases, as well
as for writing non-machine-closed specifications, we can use formulas of the form
WF(A) or SF(A)whenA is not simply the disjunction of system actions. The more
general properties expressible with the GWF and GSF operators are rarely needed.
A hyperfairness formula HF(N ,A) is a particularly obscure example of such a
property, sinceh(N ,A) will be impossible to compute in any practical situation,
if hyperfairness differs from strong fairness. It therefore seems safe to predict that
hyperfairness will be of at most theoretical interest.

Acknowledgments

Martı́n Abadi helped me formulate the definition of≡. He and Fred Schneider
suggested improvements to the presentation. Nissim Francez pointed out to me the
earlier definition of generalized fairness.

References

[1] Martı́n Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, May 1991.

[2] Martı́n Abadi and Leslie Lamport. Composing specifications.ACM Transac-
tions on Programming Languages and Systems, 15(1):73–132, January 1993.

10Formally, they can be specified only with action-system formalisms that have some way of hid-
ing internal state. Without such hiding, it is impossible to specify even simple FIFO buffering [16].
This theoretical impossibility does not seem to be a practical obstacle [14].

12

[3] Martı́n Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–
1571, September 1994.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness.Information Pro-
cessing Letters, 21(4):181–185, October 1985.

[5] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in
languages for distributed programming.Distributed Computing, 2:226–241,
1988.

[6] Paul C. Attie, Nissim Francez, and Orna Grumberg. Fairness and hyperfair-
ness in multi-party interactions.Distributed Computing, 6(4):245–254, 1993.

[7] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. InProceedings of the SEcond Annual ACM Symposium
on Principles of Distributed Computing, pages 131–142. The Association for
Computing Machinery, 1983.

[8] Nissim Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986.

[9] Nissim Francez and Dexter Kozen. Generalized fair termination. InProceed-
ings of the Eleventh Annual ACM Symposium on Principles of Programming
Languages, pages 46–53, January 1984.

[10] Leslie Lamport. A simple approach to specifying concurrent systems.Com-
munications of the ACM, 32(1):32–45, January 1989.

[11] Leslie Lamport.win andsin: Predicate transformers for concurrency.ACM
Transactions on Programming Languages and Systems, 12(3):396–428, July
1990.

[12] Leslie Lamport. The temporal logic of actions.ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872–923, May 1994.

[13] Zohar Manna and Amir Pnueli.The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, New York, 1991.

[14] Jayadev Misra. Specifying concurrent objects as communicating processes.
Science of Computer Programming, 14(2–3):159–184, 1990.

[15] Fred B. Schneider.On Concurrent Programming. Graduate Texts in Com-
puter Science. Springer, 1997.

13

[16] A. P. Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can message
buffers be axiomatized in linear temporal logic?Information and Control,
63(1/2):88–112, October/November 1984.

14

