
February 19, 1998

Smooth Scheduling in a Cell-Based
Switching Network

Thomas L. Rodeheffer
and

James B. Saxe

Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301

http://www.research.digital.com/SRC/

150SRCResearch
Report

Smooth Scheduling in a Cell-Based
Switching Network

Thomas L. Rodeheffer and James B. Saxe

February 19, 1998

© Digital Equipment Corporation 1998

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of the Sys-
tems Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgement of the authors and individual contributors to the work; and all appli-
cable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

Abstract

This report describes a method for scheduling data cell traffic through a crossbar switch
in such a way as to guarantee that the time slots for each flow, and optionally for certain
aggregates of flows, are approximately uniformly distributed throughout the duration of
the scheduling frame. Such a “smooth” schedule achieves reductions both in the latency
of data flows and in the need for associated memory buffers. Our method, called recur-
sively balanced scheduling, can be used to compute smooth schedules even under condi-
tions of maximum load, where the bandwidth requirements of the flows to be scheduled
are sufficient to consume the entire capacity of the switch. This method has been imple-
mented for a working high-speed ATM switching network, AN2. We describe the im-
plementation, its performance, and possible future improvements.

Contents
1. Introduction... 1

2. Background... 1

3. The basic recursively balanced scheduling method.. 5

3.1. Recursive splitting of the scheduling frame.. 6

3.2. The splitting step ... 7

3.3. An example of the splitting step.. 9

4. Degree of smoothness achieved by the basic method... 12

4.1. Maximum scheduling discrepancy in a given schedule .. 14

4.2. Maximum scheduling discrepancy in legal schedules... 16

4.3. A bound for msd in recursively balanced schedules ... 16

4.4. Actual msd values for certain loads .. 19

5. Output link smoothness .. 21

6. Odd-size frames .. 23

7. Implementation ... 24

7.1. Hardware description .. 24

7.2. Software environment ... 25

7.3. Implementation overview.. 26

7.4. Implementation details .. 28

7.5. Slot extraction algorithm... 29

7.6. Performance .. 31

7.7. An additional constraint .. 33

8. Potential improvements .. 33

8.1. Parallelism... 33

8.2. Aggregating flows ... 34

8.3. Shift in strategy for small subframes... 34

9. Conclusions... 35

Acknowledgments... 35

References ... 35

1

1. Introduction
This report describes a method for scheduling data cell traffic through a crossbar switch
so that the cells for each flow are forwarded with little variation in latency. The method
takes a set of bandwidth requests and prepares a schedule for a sequence of time slots
called a scheduling frame. The schedule specifies which flows may forward cells in
which time slots. This schedule is then applied to actual cell traffic, repeating over and
over until a change in the set of bandwidth requests triggers the preparation of a new
schedule. We view preparation of the schedule as a policy and application of the sched-
ule as a mechanism. Typically software will implement the policy and hardware the
mechanism. The property of having little variation in latency we informally call smooth-
ness; schedules whose flows are smooth we call smooth schedules. We call our method
for preparing smooth schedules recursively balanced scheduling. It works by recursively
halving the scheduling frame while splitting the bandwidth requests as evenly as possible.

We assume a simple crossbar switch that can accept only one cell on each input port
and emit only one cell on each output port during each time slot. Hence the scheduling
plan must not contain any time slots with conflicts, in which the same input or output
would be used more than once. This requirement creates interactions between flows and
makes it difficult to construct a smooth schedule.

Any scheduling plan that satisfies the bandwidth requests will provide each flow’s re-
quested bandwidth over the duration of the scheduling frame. However, if a flow’s time
slots are clustered together, that flow will experience a large variation in latency. In the
worst case the variation in latency can approach the duration of the frame and the buffer-
ing required just to cover this variation in latency can approach the flow’s bandwidth per
frame. A smooth schedule reduces both the latency of data flows and the need for associ-
ated memory buffers.

The recursively balanced scheduling algorithm can be used to compute smooth
schedules even under conditions of maximum load, where the bandwidth requirements of
the flows to be scheduled are sufficient to consume the entire capacity of the switch. The
method described here has been implemented for a working high-speed ATM switching
network, AN2, which has been in service at our laboratory since 1994. We describe the
implementation, its performance, and possible future improvements.

2. Background
A crossbar switch is a device that has some number of input ports, some number of out-
put ports, and a connection mechanism that can be dynamically configured to connect any
input to any output, allowing simultaneous transmission of different data across different
input-output connections. Only one input may be connected to any given output at any
given time. Data destined for the given output from other inputs must either be discarded
or be buffered at the inputs. We concern ourselves here with input-buffered crossbar
switches, rather than other types of switches, such as those that use shared memory, a
shared bus, or buffering in the switch fabric [11, 18].

2

Data travelling through the switch is organized into flows, each of which has fixed in-
put and output ports, although there may be several flows with the same input and output
ports, as happens for example with virtual circuits. It is often desirable to provide guar-
antees of service to particular flows. One discipline for providing such guarantees is as
follows:

• Organize each flow into cells of a fixed size. A common example is the ATM stan-
dard 53-byte cell, consisting of 48 payload bytes and 5 header bytes.

• Divide time at the switch into fixed slots. During each slot the switch can be config-
ured to implement a different connection of inputs to outputs, and each input can send
at most one cell.

• Group time slots into equal-sized batches of consecutive time slots. These batches
are called scheduling frames.

• Compute a schedule associating each slot position t within a frame with a set of non-
conflicting flows that will be given absolute priority for use of the switch during the t-
th slot of each frame. Two flows conflict if they have any port in common.

Under this discipline, a scheduled flow receives a bandwidth guarantee of m cells per
frame, where m is the number of slots in the schedule that contain the flow. This type of
service is commonly called constant bit rate (CBR) service.

Input and output ports that are not used by any scheduled flow during a given slot
might be used for nonscheduled, opportunistic flows. Such flows would receive no
bandwidth guarantee. This type of service is commonly called available bit rate (ABR)
service. Although this report is not concerned with ABR service, the manner in which
the CBR schedule is computed can affect the bandwidth available for ABR. This effect
will be discussed briefly in Section 6.

Figure 1 illustrates a crossbar switch. During each time slot the input/output port
matcher evaluates the schedule and the set of flows that have cells available and decides
which flows will send a cell through the crossbar in the next time slot.

Flows may be unicast flows, which must use exactly one output port of the switch, or
multicast flows, which can use more than one output port. (In either case, the flow must
use exactly one input port.) For the present, we consider only unicast flows. A rudimen-
tary way to handle multicast flows will be discussed in Section 7.

Suppose we have a scheduling frame size of n slots and a set B of bandwidth requests,
where each request has the form “flow f needs m cells per frame of bandwidth from input
port i to output port o.” Given this set B of bandwidth requests, the schedule must satisfy
the following two constraints to provide all the requested guarantees of service:

• Each flow must be scheduled into the requested number of slots.

• Two flows that conflict with each other by using the same input port or the same out-
put port must not be scheduled into the same time slot.

It is easy to see that a necessary condition for the existence of such a legal schedule is that
for each input or output port p, the total bandwidth requested by all flows using port p
(called the load on p) must be no greater than the bandwidth of port p, that is, n cells per

3

frame. It turns out that this is also a sufficient condition: if no input or output port has a
load of more than n cells per frame, then a legal schedule is possible [10].

input/output
port matcher

schedule

cells available

input buffers
(queue by flow)

input port 1 output port 1crossbar

input port n output port n

no output buffer
(switch rate

equals line rate)

Figure 1: A crossbar switch.

Usually, if any legal schedule exists, there are many such schedules. These schedules
differ in the timing of the forwarding of cells, and, as a consequence, some of these
schedules require more buffering in the switch than others require. We are interested in
finding schedules that provide guarantees that allow us to build a switch with less buff-
ering than would otherwise be required. In particular, we are interested in “smooth”
schedules that distribute the scheduled slots so that cells of an input port, an output port,
or a flow are processed at a relatively steady rate throughout the scheduling frame. Such
schedules also result in lower worst-case latency than arbitrary legal schedules.

For example, suppose that the data cells of a flow arrive at the switch at a relatively
steady rate, but pass through the switch according to a legal schedule in which all the
scheduled slots for the flow are clustered at the end of the frame. The latency period
during which cells of the flow must wait in the input buffers could be quite long—almost
a frame time—and the amount of buffer space used by cells in the flow could be quite
large—almost the per-frame bandwidth of the flow.

Another problem related to clustering occurs in applications where the outputs of a
switch are used to drive communication links that run at bandwidths lower than the per-
port bandwidth of the switch. For example, an output of a high-speed switch might be
used to drive several lower-speed links, with data cells being demultiplexed onto the ap-
propriate links as they arrive at the switch outputs. In such cases, output buffering is
needed to hold the cells that arrive (at high speed) at the output port until they can be
transmitted (at lower speed) over the appropriate link. Figure 2 illustrates this type of
switch. Suppose the time slots reserved for data flows using a given output link are clus-

4

tered into one part of the schedule. Then the amount of output buffering needed at each
output port could approach the per-frame bandwidth of the link, and the latency intro-
duced by output buffering could approach the frame time.

The recursively balanced scheduling method we describe below avoids the problems
associated with clustering by distributing the time slots for each flow approximately uni-
formly throughout the scheduling frame. The method can also ensure that the time slots
during which any given output link is used are distributed approximately uniformly
throughout the scheduling frame. The method can compute a schedule having both these
smoothness properties regardless of the complexity of the pattern of bandwidth requests
and regardless of the amount of load, provided there is no input or output port whose load
exceeds the switch’s per-port bandwidth and no output link whose load exceeds the
bandwidth of that link. Previously known methods for regulating switch traffic cannot
simultaneously handle high loads and guarantee smoothness [3, 7, 10].

The problem of computing a schedule from a set of bandwidth requests also arises in
the context of time-domain multiplexed access (TDMA) networks such as satellite com-
munications systems. However, such systems take an appreciable time to reconfigure the
switch, so work in this area [8, 13, 17] has concentrated on minimizing the length of the
schedule and the number of distinct configurations needed rather than on smoothness.
Our model assumes that reconfiguration occurs every time slot, pipelined with the data
transfer, and therefore is effectively instantaneous.

input/output
port matcher

schedule

cells available

input buffers
(queue by flow)

input port 1 output port 1crossbar

input port n output port n

mux output buffers
(queue by link)

Figure 2: Crossbar switch with several lower-speed links per port.

5

3. The basic recursively balanced scheduling method
The input to the basic recursively balanced scheduling method consists of

• the frame size n, which must be an exact power of two, and

• a set B of bandwidth requests. Each bandwidth request b has four fields, b.f, b.i, b.o,
and b.m, where

• b.f is a flow identifier, unique within B,

• b.i is the input port for b, one of in1, in2, etc.,

• b.o is the output port for b, one of out1, out2, etc., and

• b.m is the bandwidth for b, given as a non-negative integer number of cells per
frame.

In Section 6 we will present modifications to the method to handle arbitrary-sized frames.

Because flow identifiers are unique within B, it is unambiguous to refer to the unique
bandwidth request b for flow f in B as simply B[f]. The sum of the bandwidths for all
bandwidth requests in B we call the load of B. We define the load in B for a flow f, an
input port i, or an output port o, as the sum of the bandwidths for all bandwidth requests
with that flow, input port, or output port. In the case of a flow, there will be at most one
such bandwidth request: B[f] if it exists. Table 1 summarizes the definitions.

load(B) ≡ ∑ ∈Bb
mb. load of B

load(B, f) ≡ ∑ =∈ ffbBb
mb

.:
. load in B due to flow f

load(B, i) ≡ ∑ =∈ iibBb
mb

.:
. load in B on input port i

load(B, o) ≡ ∑ =∈ oobBb
mb

.:
. load in B on output port o

Table 1: Load definitions.

The bandwidth request set B is feasible for frame size n if the load in B on each input
and output port is at most n. If the bandwidth request set is not feasible, no schedule is
possible. The scheduling method described below works for any feasible request set.

The output is a schedule S associating each time slot t in the range n,,1 � with a set
S[t] of flows. The schedule S has the following properties:

LEGAL.1. For any flow f, the number of time slots in which flow f appears in sched-
ule S equals the load in B due to f. Formally,

{ }),(][: fBloadtSft =∈ .

LEGAL.2. No two flows that use the same input or output port appear in the same
time slot of S.

S is thus a legal schedule for the request set B. The schedule S also has certain smooth-
ness properties discussed in more detail below.

6

3.1. Recursive splitting of the scheduling frame
The recursively balanced scheduling method works by recursive splitting of the schedul-
ing frame. Because the frame size is a power of two, each split divides the scheduling
frame exactly in half.

The base case of the recursion is the case n = 20 = 1; that is, there is just one slot in
the frame. Since the bandwidth request set B is required to be feasible for the frame size
n = 1, there can be at most one request in B for a flow of non-zero bandwidth for any
given input or output port, and each such request must be for a bandwidth of 1. So the
method simply returns a one-slot schedule S, where S[1] is the set of all positive-
bandwidth (i.e., bandwidth 1) flows in B.

The other case is that n = 2k+1 for some non-negative integer k. In this case, the
method splits the bandwidth request set B into two bandwidth request sets B1 and B2
having the following properties:

SPLIT.1. Each flow f has the same input and output ports in B1 and B2 as in B.
Formally,

if B1[f] exists then B1[f].i = B[f].i and B1[f].o = B[f].o, and

if B2[f] exists then B2[f].i = B[f].i and B2[f].o = B[f].o.

SPLIT.2. Each flow f has its load in B divided between B1 and B2. Formally,

() () ()fB2loadfB1loadfBload ,,, += .

SPLIT.3. Each flow f has its load divided as equally as possible. Formally,

() () 1,, ≤− fB2loadfB1load .

SPLIT.4. Each input port i has its load divided as equally as possible. Formally,

() () 1,, ≤− iB2loadiB1load .

SPLIT.5. Each output port o has its load divided as equally as possible. Formally,

() () 1,, ≤− oB2loadoB1load .

The method then recursively computes schedules S1 for B1 and S2 for B2, each with
frame size kn 22 = , and concatenates those schedules to produce the schedule S for B.

In order for the splitting step to be correct, B1 and B2 must each be feasible for frame
size n k2 2= . Properties SPLIT.1 and SPLIT.2 imply that the port loads in B1 and B2
sum to the corresponding port loads in B. Since B is feasible for frame size n, no port
load in B can exceed n. Adding properties SPLIT.4 and SPLIT.5, along with the fact that
n is even, allows the conclusion that no port load in B1 or B2 will exceed n 2. Hence B1
and B2 will indeed each be feasible for frame size n 2 .

We must also verify that the concatenation of S1 and S2 produces a legal n-slot
schedule S that satisfies all the bandwidth requests in B. This is guaranteed by properties
SPLIT.1 and SPLIT.2.

7

Property SPLIT.3 leads to a per-flow smoothness property that will be discussed later.
Properties SPLIT.4 and SPLIT.5, in addition to guaranteeing that the subproblems are
feasible, also lead to a per-port smoothness property.

3.2. The splitting step
The splitting step can be accomplished as follows. For each bandwidth request b in B, let
b1 and b2 be bandwidth requests (called subrequests of b) each with the same flow, input
port, and output port as b and as nearly as possible half the bandwidth. See Table 2.

b1.f ≡ b.f

b1.i ≡ b.i

b1.o ≡ b.o

b1.m≡ b.m / 2

b2.f ≡ b.f

b2.i ≡ b.i

b2.o ≡ b.o

b2.m≡ b.m / 2
Table 2: Subrequest definition.

When the bandwidth of b is odd, subrequest b1 gets half the bandwidth rounded down to
an integer and b2 gets half the bandwidth rounded up. Note that mbmb2mb1 ... =+ and

1.1.20 ≤−≤ mbmb .

For each bandwidth request b in B, either b1 or b2 will be allocated to B1 and the
other subrequest will be allocated to B2. Any such allocation of the subrequests to B1
and B2 will make B1 and B2 satisfy properties SPLIT.1-3. It remains to describe how to
allocate the subrequests so that properties SPLIT.4 and SPLIT.5 are satisfied.

For each even-bandwidth request b in B, b1 and b2 are equal, so the allocation is ar-
bitrary. We will ignore even-bandwidth requests and will consider only odd-bandwidth
requests for the remainder of this section.

For an odd-bandwidth request b, subrequest b2 has bandwidth greater by one cell per
frame than b1. We say that b favors whichever subrequest set receives subrequest b2, the
subrequest of greater bandwidth. In order to satisfy properties SPLIT.4 and SPLIT.5, we
must guarantee that the following properties hold:

ALLOC.1. For each input port i, the number of odd-bandwidth requests for i favor-
ing B1 and the number favoring B2 differ by at most one.

ALLOC.2. For each output port o, the number of odd-bandwidth requests for o fa-
voring B1 and the number favoring B2 differ by at most one.

We will achieve these properties by reducing the problem to that of finding a 2-coloring
of a certain graph.

First, let us consider property ALLOC.1. We achieve this property by forming pairs
of odd-bandwidth requests that have the same input port and then allocating subrequests
so that the members of a pair favor different subrequest sets. The input pairing, IP, is a
set of unordered pairs of odd-bandwidth requests. We call each element of IP an input
pair. IP must satisfy the following properties:

8

INPAIR.1. Each request appears at most once (as a member of an input pair) in IP,
and no request can be paired with itself.

INPAIR.2. If { } IPcb ∈, , then icib .. = .

INPAIR.3. For any input port i, there is at most one odd-bandwidth request for i that
does not appear (as a member of an input pair) in IP.

To construct IP we simply pair off as-yet-unpaired same-input odd-bandwidth requests
until there is at most one unpaired odd-bandwidth request left for each input port. Subse-
quently we will allocate subrequests so that the members of each input pair favor differ-
ent subrequest sets. In such an allocation, the load on any input port due to any input pair
will divide exactly evenly and we say that the input pair is balanced. Since at most one
request for input port i appears in no input pair, the load on i will be divided as equally as
possible.

Similarly, we achieve property ALLOC.2 by forming pairs of odd-bandwidth requests
that have the same output port and then allocating subrequests so that the members of a
pair favor different subrequest sets. The output pairing, OP, is a set of unordered output
pairs of odd-bandwidth requests. OP must satisfy the following properties:

OUTPAIR.1. Each request appears at most once in OP, and no request can be paired
with itself.

OUTPAIR.2. If { } OPcb ∈, , then ocob .. = .

OUTPAIR.3. For any output port o, there is at most one odd-bandwidth request for o
that does not appear in OP.

We construct OP in an analogous way to IP.

To achieve both ALLOC.1 and ALLOC.2 we must allocate the subrequests so that all
input pairs and output pairs are balanced simultaneously. As we will show below, this
allocation problem is equivalent to finding a 2-coloring of a graph G whose vertex set is
the set of odd-bandwidth requests in B and whose edge set is the (labeled) union of IP
and OP. We need a labeled union because it is possible for { } IPcb ∈, and { } OPcb ∈, ,
in which case there must be two edges between b and c.

Observe that each vertex b in G has degree at most two: one incident edge corre-
sponding to b’s membership in an input pair (if any), and one incident edge correspond-
ing to b’s membership in an output pair (if any). Suppose we have a 2-coloring of G us-
ing the colors white and black. For each white odd-bandwidth request, allocate the
subrequests to favor B1, and for each black odd-bandwidth request, allocate the subre-
quests to favor B2. Now consider any input pair { } IPcb ∈, . Since { }cb, is an edge in
G, b and c must have opposite colors and hence the input pair is balanced. The same rea-
soning applies to any output pair. Hence all input pairs and output pairs are balanced and
we achieve both ALLOC.1 and ALLOC.2.

Finding a 2-coloring of G is easy. Since each vertex has degree at most two, G con-
sists of a disjoint collection of paths and cycles. Furthermore, since a vertex with two
incident edges must have one edge in IP and one in OP, the total number of edges (and

9

hence vertices) around any cycle must be even. So to produce a 2-coloring, we simply
traverse each path and cycle in turn, assigning alternating colors to the vertices. An ex-
ample of such a coloring appears in Figure 3 in the next section.

3.3. An example of the splitting step
Here is an example to illustrate the splitting step. Suppose that the frame size is 32 and
we have the bandwidth request set B shown in Table 3. Checking the port loads, as
shown in Table 4, we see that no input or output port load exceeds 32, and thus the
bandwidth request set is feasible.

We identify the bandwidth requests by their unique flow ids. The easy part of split-
ting B into B1 and B2 is to deal with the even-bandwidth requests, which split exactly in
half. The even-bandwidth requests are f4 and f11. Request f4 splits into two subrequests
of bandwidth 3 and request f11 into two subrequests of bandwidth 1. In the final result
shown in Table 5, shaded horizontal lines mark these even-bandwidth requests.

flow
id

input
port

output
port

bandwidth

f1 in1 out1 9
f2 in1 out2 1
f3 in1 out3 11
f4 in1 out4 6
f5 in2 out1 5
f6 in2 out2 15
f7 in2 out3 11
f8 in3 out1 13
f9 in3 out1 5
f10 in3 out3 9
f11 in3 out4 2
f12 in3 out4 3
f13 in4 out4 15
f14 in4 out4 3

Table 3: Bandwidth request set B.

port load
in1 27
in2 31
in3 32
in4 18
out1 32
out2 16
out3 31
out4 29

Table 4: Port loads in B.

The hard part is to deal with the odd-bandwidth requests, namely f1–f3, f5–f10, and
f12–f14. Each such request will split into two subrequests whose bandwidths differ by
one cell per frame. For example, the request f1 has bandwidth 9; its subrequests will
have bandwidths 4 and 5. We must decide which requests favor B1 and which favor B2.

We begin by constructing the input and output pairings. Let us consider the input
pairing first. We begin by noticing that f1 and f2 use the same input port, in1, so they can
be paired. The only remaining flow using in1 is f3, so it must go unpaired. Similarly we
can pair f5 with f6 leaving f7 unpaired. Input port in3 appears in four odd-bandwidth re-

10

quests, which we group into two pairs, {f8, f9} and {f10, f12}. Finally the two requests
f13 and f14 that use in4 are paired with each other. The final input pairing is

IP = {{f1, f2}, {f5, f6}, {f8, f9}, {f10, f12}, {f13, f14}}.

In the same way, we can construct an output pairing, such as

OP = {{f1, f5}, {f8, f9}, {f2, f6}, {f7, f10}, {f12, f13}}.

For example, f7 and f10 can be paired since they share output port out3. The only re-
maining flow requesting out3 is f3, so it must remain unpaired. Figure 3 shows the paths
and cycles produced by this input and output pairing. To help illustrate the fact that cy-
cles must be even, edges resulting from the input pairing IP are drawn with thin lines and
edges resulting from the output pairing OP are drawn with thick lines.

f1 f2
in1

f6
out2

f5
in2 out1

f3

f7

f9f8

f10 f12 f13 f14

in3 out1

out3 in3 out4 in4

favors

B1
favors

B2
favors

B1
favors

B2
favors

B1

Figure 3: Paths and cycles of odd-bandwidth requests.

Next we traverse the paths and cycles, alternately favoring B1 and B2. The columns
in Figure 3 are shaded to show this alternation. Note that we have some freedom in
whether an odd-length path on balance favors B1 or B2. If we wanted to ensure that the
total load of B was divided as evenly as possible (which is not a requirement), we could
do so by pairing up odd-length paths.

Combining the subrequests of the odd-bandwidth requests with the subrequests of the
even-bandwidth requests already discussed, we arrive at the subrequest sets B1 and B2
shown in Table 5.

Table 6 shows the input and output port loads in B1 and B2. Note that the load on
each port is split as equally as possible between the two subrequest sets.

11

flow
id

IP input
port

output
port

OP bandwidth favors bandwidth
in B1

bandwidth
in B2

f1 in1 out1 9 B1 5 4
f2 in1 out2 1 B2 0 1
f3 in1 out3 11 B1 6 5
f4 in1 out4 6 3 3
f5 in2 out1 5 B2 2 3
f6 in2 out2 15 B1 8 7
f7 in2 out3 11 B1 6 5
f8 in3 out1 13 B1 7 6
f9 in3 out1 5 B2 2 3
f10 in3 out3 9 B2 4 5
f11 in3 out4 2 1 1
f12 in3 out4 3 B1 2 1
f13 in4 out4 15 B2 7 8
f14 in4 out4 3 B1 2 1

even-bandwidth request
odd-bandwidth request that favors B1
odd-bandwidth request that favors B2

pairs

unpaired
key

Table 5: Calculation of bandwidth subrequest sets B1 and B2.

port load in
B

load in
B1

load in
B2

in1 27 14 13
in2 31 16 15
in3 32 16 16
in4 18 9 9
out1 32 16 16
out2 16 8 8
out3 31 16 15
out4 29 15 14

Table 6: Port loads in B1 and B2.

12

Recursive splitting would divide B1 into two subframes, each having load 14/2 = 7
for in1 and load 16/2 = 8 for out1, and so on. Similarly, B2 would be divided into two
subframes, where each subframe would have load 16/2 = 8 for out1 and where one sub-
frame would have load (13+1)/2 = 7 for in1 and the other subframe would have load (13-
1)/2 = 6 for in1. Five levels of recursive splitting will split B into 32 request sets such
that no port has load greater than 1 in any single request set. At that point the switch can
satisfy the requests during a single time slot.

This completes the description of the basic recursively balanced scheduling method.

4. Degree of smoothness achieved by the basic method
Smooth schedules were described above as ones in which the scheduled time slots for
each flow are approximately uniformly distributed throughout the duration of the sched-
uling frame. Here is a quantitative characterization of the sense in which recursively bal-
anced schedules are smooth.

Suppose we have a schedule S for a frame of size n. For some flow or port whose
load is of interest, the question is: How is the load spread out over the schedule? Let the
load be m cells per frame. Some slots in S contain a unit of the load and the other slots
contain no load. From the point of view of the flow or port, the slots in S that contain a
unit of load are full and the rest are empty.

Now let S* be the schedule produced by concatenating an unlimited number of repe-
titions of S and consider any interval I consisting of I consecutive slots from S*. De-

fine the perfect load in I, ()IP , as nmI and the scheduled load in I, ()IS , as the num-

ber of full slots in I. If the schedule were perfectly smooth, then we would expect
() ()ISIP = . This cannot usually be achieved, if only because slots are discrete and

I m n may not be an integer. We define the scheduling discrepancy (with regard to a

flow or port) over interval I as () ()IPIS − . We define the maximum scheduling dis-

crepancy in S, ()Smsd , as the maximum scheduling discrepancy over any interval I from
S*.

If no two flows use the same input or the same output, it is possible to minimize the
maximum scheduling discrepancies for all flows simultaneously, producing a schedule
(an all-min-msd schedule) in which the maximum scheduling discrepancy for each flow is
less than 1 cell. However, given a bandwidth request set that includes flows with input or
output conflicts, an all-min-msd schedule is not necessarily possible. Consider, for ex-
ample, scheduling the bandwidth request set shown in Table 7 into a frame of four slots.
With this frame size, a flow with bandwidth 2 has a minimum maximum scheduling dis-
crepancy of ½, and to achieve this, the flow must be scheduled into every other slot.
Without loss of generality, let us assume that f1 is scheduled into slots 1 and 3, as illus-
trated in Figure 4. Then f2 must be scheduled into slots 2 and 4. Since f3 shares out1
with f1, it follows that f3 must be scheduled into an even-numbered slot. Similarly, f4
must be scheduled into an odd-numbered slot. Both f3 and f4 share in4 with f5. This

13

leaves f5 with one even-numbered and one odd-numbered slot, resulting in a maximum
scheduling discrepancy of 1 for f5.

flow
id

input
port

output
port

bandwidth

f1 in1 out1 2
f2 in1 out2 2
f3 in4 out1 1
f4 in4 out2 1
f5 in4 out4 2

Table 7: A bandwidth request set with no all-min-msd
schedule in a frame of four slots.

key
schedule
slot

slot with traffic
in1 → out1 and
in4 → out2

bandwidth request set a schedule in a
frame of four slots

f1
f2
f3
f4
f5

msd = ½
msd = ½
msd = ¾
msd = ¾
msd = 1

full slots for
each flow

full slot

empty slot

f1: 2 cells

f2: 2 cells

f3
: 1

 c
el

l
f4

: 1
 ce

ll

f5: 2 cells

in1

in2

in3

in4

out1

out2

out3

out4

1 2 3 4

Figure 4: A four-slot schedule for the bandwidth request set of Table 7.

Since an operational system recomputes the schedule from time to time as flows are
added or removed, we extend the definition of scheduling discrepancy to a concatenation
in which the schedules need not all be identical. Given a set SS of schedules, we define
the maximum scheduling discrepancy in SS, ()SSmsd , as the maximum scheduling dis-

crepancy over any interval I from any concatenation of schedules from SS. We are par-
ticularly interested in sets of recursively balanced schedules, although for comparison we
also consider sets of all legal schedules.

Let nLS be the set of all legal schedules with a frame of size n. Let nRB be the set of

all recursively balanced schedules with frame size n and let mnRB , be the subset of those

schedules that have load m for the flow or port of interest. A recursively balanced sched-
ule has the following smoothness property with regard to the load of that flow or port: a

14

load of m cells per frame has been split in half over and over again as equally as possible.
Using this property we will obtain bounds on ()nRBmsd and ()mnRBmsd , .

In Section 4.1 we give a method and example of calculating the maximum scheduling
discrepancy in any given schedule S. In Section 4.2 we compute the value of ()nLSmsd

by considering pathological but legal schedules. Generalizing the method of Section 4.1
and applying the smoothness property of recursively balanced schedules, in Section 4.3
we obtain a bound on ()nRBmsd when n is a power of two. In Section 4.4 we compare

this bound with some actual values of ()mnRBmsd , .

4.1. Maximum scheduling discrepancy in a given schedule
Suppose we have a scheduling frame of size n and a flow or port with a load m. The
maximum scheduling discrepancy in any given schedule S for this situation can be calcu-
lated as follows. First we construct two functions from cumulative (elapsed) slots to cu-
mulative cells. The cumulative scheduled load function)(tS is a bumpy line with a
slope of 0 during each empty slot and a slope of 1 during each full slot. The cumulative
perfect load function)(tP is a straight line with a slope of m n. Both S and P start at

)0,0(and end at),(mn : 0)0()0(== PS and mnPnS ==)()(. Next we compute the

difference)()()(tPtStD −≡ . The difference between the extreme high and low values

of D is the maximum scheduling discrepancy in the schedule S. The interval that exactly
spans the times at which the extreme high and low values of D occur has this discrep-
ancy, and no interval has a greater discrepancy. Note that this calculation applies to any
schedule, regardless of whether or not it is recursively balanced.

An example will illustrate the calculation. Figure 5 shows a construction of a recur-
sively balanced schedule for frame size n = 16 and load m= 10 . Note that each time the
load splits, the division is as equal as possible; hence the schedule is recursively balanced.
Full slots are shaded in and empty slots are shown empty.

Figure 6 shows the cumulative scheduled load function S and cumulative perfect
load function P for this schedule.

The difference D S P≡ − is plotted in Figure 7. An interval I of consecutive slots
can be represented by its beginning and ending cumulative slot values, say t0 and t1. Note
that t t I1 0− = . Observe that)()(01 tStS − is exactly the number of full slots in I and

P t P t I m n() ()1 − =0 . Hence the scheduling discrepancy over I is D t D t() ()1 0− .
From this illustration it is easy to see that the maximum scheduling discrepancy over

any interval within any concatenation of repetitions of S is indeed the difference between
the extreme high and low values of D . For the example in Figure 7, the maximum
scheduling discrepancy is 2.25 cells.

15

1 1 1 2 2 1 1 1

2 3 3 2

5 5

10

0 1 0 1 1 1 1 11 0 1 1 1 0 0 0

0

1

2

3

4

24

23

22

21

20

slots in
subframe

recursion
level

Figure 5: A recursively balanced schedule
for load 10 in frame size 16.

cumulative slots0

cu
m

ul
at

iv
e

ce
lls

schedule

perfect load

scheduled load

S

P

Figure 6: Scheduled load and perfect load for one
frame of a recursively balanced schedule.

D
0

cumulative slots

∆
ce

lls

d

I

calculation of
discrepancy d
over interval I

Figure 7: Difference between scheduled load and perfect load.

16

4.2. Maximum scheduling discrepancy in legal schedules
In this section we compute ()nLSmsd , the maximum scheduling discrepancy in any con-

catenation of legal schedules of any loads in frames of size n. First, let us consider legal
schedules of load m. Since D S P≡ − , the highest possible value of D results from
packing the entire load into the initial slots of the scheduling frame and evaluating at time
m. Using the subscript m to indicate this schedule, we have

() mmSm = ,

() nmmmPm ⋅= , and

() () nmmnmmDm ⋅−⋅= .

Next, keeping the frame size fixed at n, ()mDm is maximized when 2nm= . Hence, for

any time t in any legal schedule for any load in a frame of size n,

() 4ntD ≤ ,

and this bound is tight. A symmetrical argument packing the entire load into the final
slots of the scheduling frame bounds D from below. Hence, the maximum scheduling
discrepancy in any concatenation of legal schedules with a frame of size n is 2n . For-
mally,

() 2nLSmsd n = .

 For example, suppose we have a 1024-slot scheduling frame (n = 1024). Then the
maximum scheduling discrepancy in any concatenation of legal schedules is 512 cells.
This maximum is attained in the case of a load of 512 cells per frame and two consecu-
tive scheduling frames. In the first frame all 512 cells of the load appear in the final 512
slots of the frame, leaving the initial 512 slots empty. In the second frame (presumably
due to an unfortunate scheduling change) all 512 cells of the load appear in the initial
slots of the frame, leaving the final 512 slots empty. The 1024-slot interval consisting of
the final 512 slots of the first frame and the initial 512 slots of the second frame has a
scheduled load of 1024 and a perfect load of 512, for a discrepancy of 512 cells.

Although the recursively balanced scheduling method does not necessarily minimize
the maximum scheduling discrepancies of all flows and ports, the discrepancies it pro-
duces are much smaller than the maximum scheduling discrepancies of schedules that are
legal but satisfy no additional smoothness requirements. Consider again a 1024-slot
scheduling frame. In the following section, we will show that the maximum scheduling
discrepancy in any concatenation of 1024-slot recursively balanced schedules of any loads
cannot exceed 6.89 cells. This is much better than the 512 cell maximum discrepancy in
legal schedules.

4.3. A bound for msd in recursively balanced schedules
In this section we demonstrate that maximum scheduling discrepancy in recursively bal-
anced schedules is bounded by the inequality

17

() () ()





 −−+=




 −−+≤
9

½1
2

3
2

9

½13
2

2

kk kk
RBmsd k .

That is, in any concatenation of recursively balanced k2 -slot scheduling frames of any
loads, the scheduling discrepancy over any interval is at most kk ε+32 cells, where

310 ≤≤ kε .

Consider a concatenation of recursively balanced k2 -slot scheduling frames. Let
kn 2= be the number of slots in a frame. Recall the definitions of ()tS , ()tP , and ()tD

from Section 4.1. Note that ()tP has constant slope during a frame. Our analysis de-
pends on finding bounds for ()tD .

Since each whole scheduling frame has the correct number of slots allocated for its
load, it follows that at each frame boundary—that is, whenever t is an integer multiple of
the frame size n—we have () ()tPtS = , and thus () 0=tD .

The recursively balanced scheduling method proceeds by splitting the frame into
smaller and smaller subframes. Let us consider any frame or subframe F starting at time

0t and ending at time at 1t , where 201 ≥− tt . F contains 01 tt − slots. The defining
smoothness property of a recursively balanced schedule is that the load in each half of F
differs from half of the load of F by at most half a cell. In particular, the load in the first
half of F can be no greater than half the load of F plus half a cell:

() () ()
2

1

2
01

0
01 +−≤−





 − tStS

tS
tt

S ,

or equivalently

() ()
2

1

2
0101 ++≤





 − tStStt

S .

Within a frame, ()tP has constant slope. So we have

() ()
2

2

0101 tPtPtt
P

+=




 −

.

Hence we can bound the value of D at the midpoint of F:






 −−





 −=





 −

22

2
010101 tt

P
tt

S
tt

D

() () () ()
2

2

1
 0101 tPtPtStS +−++≤

() () () ()
2

1
 0011 +−+−= tPtStPtS

() ()
2

1
 01 ++= tDtD

.

18

Let i and j be integers, where ki ≤≤0 . Observe that any time of the form ikj −2 is

the boundary of a subframe of size ik−2 . Let us define iD
�

 as the maximum value of D at

any boundary of a subframe of size ik−2 . Formally,

(){ }ik

j
i jDD −≡ 2max
�

.

Now any time of the form kj2 is a frame boundary, hence

0 0 =D
�

.

Any time of the form 12 −kj is either a frame boundary (for which D has value 0) or the
midpoint of a frame (for which, from the midpoint inequality above, D has value at most
() 2100 ++). Hence

21 1 ≤D
�

.

For ki ≤≤2 , any time of the form ikj −2 can be characterized based on whether j is even
or odd. If j is even, ikj −2 is an integer multiple of ()12 −− ik . If j is odd, ikj −2 is the mid-
point of a subframe whose starting and ending times are successive integer multiples of

()12 −− ik , one of which is necessarily an integer multiple of ()22 −− ik . Hence, for ki ≤≤2 ,






 ++≤ −−
− 2

1
,max 21

1
ii

ii

DD
DD

��

��

.

From the above recurrence, it follows (as can readily be checked) that

()
9

½13

i

i

i
D

−−+≤
�

,

for any integer i in the range ki ≤≤0 . Taking ki = , we have

() ()
9

½13

k

k

k
DtD

−−+≤≤
�

,

for any integer t, and thus for any time t whatsoever. (Since both S and P have constant
slope within any single slot, the maximum value of D must occur at a slot boundary.)

By a symmetrical argument, D is bounded below by

() ()
9

½13

kk
tD

−−+−≥ ,

and the bound on maximum scheduling discrepancy claimed at the start of this section,

() ()





 −−+≤
9

½13
2

2

kk
RBmsd k ,

follows immediately.

Table 8 shows the numerical value of this bound for various values of k. Observe
from the table that the maximum scheduling discrepancy cannot exceed 2.88 cells in any
set of recursively balanced schedules whose frame size is 16 slots. In Section 4.1 we cal-
culated a maximum scheduling discrepancy of 2.25 cells in a particular recursively bal-

19

anced schedule of this frame size. As expected, 2.25 does not exceed the theoretical
bound of 2.88.

As discussed later in Section 7, our switch implementation uses a frame size of 1024
slots. From Table 8 we see that the maximum scheduling discrepancy in recursively bal-
anced schedules of this frame size cannot exceed 6.89 cells.

k frame size
n = 2k

bound on ()nRBmsd ,

()





 −−+
9

½13
2

kk
,

rounded up to nearest 0.01

0 1 0.00

1 2 1.00

2 4 1.50

3 8 2.25

4 16 2.88

5 32 3.57

6 64 4.22

7 128 4.90

8 256 5.56

9 512 6.23

10 1024 6.89

Table 8: Bound on msd(RBn) for various frame sizes.

4.4. Actual msd values for certain loads
Recall that we have a scheduling frame of size kn 2= and a flow or port of interest whose
load is m. In the previous section we obtained a bound for ()kRBmsd

2
, the maximum

scheduling discrepancy in any concatenation of recursively balanced k2 -slot scheduling
frames of any loads. For a given load m, the maximum scheduling discrepancy

()
mkRBmsd
,2

 could be much less than the bound.

In general, the worst case discrepancy for any given load occurs when a frame with its
load scheduled as late as permissible (called a latest-load frame) is followed—after zero
or more intervening frames—by a frame with its load scheduled as early as permissible
(an earliest-load frame). A latest-load frame achieves the minimum possible value of

() tD and an earliest-load frame the maximum possible value. Some other schedules
may also achieve these extremal values, but none can exceed them.

Let us consider some examples.

When 1=m , we have

20

() 




 −=

kkRBmsd
2

1
12

1,2
.

The latest-load frame has its last slot full, and the earliest load frame has its first slot full.

When m is a power of 2, say am 2= , we have

() 2
2

1
12

2,2
<





 −= −akakRBmsd .

Any recursively balanced schedule for this load puts one cell of load into each ak−2 -slot
subframe. This is exactly the same situation as a load of 1 in a frame of size ak−2 .

Now suppose m is a sum of two distinct powers of 2, say bam 22 += , with ba < .
Observe that the full slots in any recursively balanced schedule can be partitioned into
two sets A and B, where A is the set of full slots in some recursively balanced schedule of
load a2 and B is the set of full slots in some recursively balanced schedule of load b2 .
Hence,

() () ()bkakbak RBmsdRBmsdRBmsd
2,22,222,2

+≤
+ .

4
2

2
1

2

2
12 <





−+−= k

b

k

a

.

This bound is not tight because, for example, A and B cannot both contain the first slot of
any subframe. In fact, the worst case discrepancy is

() 





−−+−=

+ b

a

k

b

k

a

bakRBmsd
2

2

2

2
1

2

2
12

22,2
.

The latest-load frame has two full slots in its last bk−2 -slot subframe and a full slot as the
last slot of its next-to-last bk−2 -slot subframe, making a total of three cells of load in the
last bk−2 +1 slots of the frame. A symmetrical situation occurs at the beginning of the
earliest-load frame.

Although it is beyond the scope of this report to give a complete analysis, maximum
scheduling discrepancies are small for loads which are sums and differences of a small
number of powers of two.

As discussed later in Section 7, our switch implementation uses a frame size of 1024
slots. Table 9 gives maximum scheduling discrepancies for arbitrary concatenations of
recursively balanced schedules of any given load bam += with frame size 1024. We
show the msd values only for loads up to a few more than 512. Values for higher loads
can be found by symmetry: because the full slots in an earliest-load frame of load m are
precisely the empty slots in a latest-load frame of load mn − , and vice versa,

() ()mnnmn RBmsdRBmsd −= ,, .

In a frame of size 1024, the worst-case maximum scheduling discrepancy of 6.89 oc-
curs for a load of 2101010101341= cells per frame (and also for 3411024− cells per
frame). This value, highlighted in Table 9, is exactly the worst-case bound derived in
Section 4.3.

21

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 00002 00012 00102 00112 01002 01012 01102 01112 00002 10012 10102 10112 11002 11012 11102 11112

0 02 0.00 2.00 2.00 2.99 1.99 3.49 2.99 3.49 1.98 3.73 3.48 4.23 2.98 4.22 3.47 3.72
16 100002 1.97 3.84 3.71 4.59 3.46 4.83 4.21 4.58 2.95 4.58 4.20 4.82 3.45 4.57 3.69 3.81
32 1000002 1.94 3.87 3.81 4.74 3.68 5.12 4.55 4.99 3.42 5.11 4.79 5.48 4.16 5.35 4.54 4.72
48 1100002 2.91 4.72 4.53 5.34 4.15 5.46 4.77 5.08 3.39 4.95 4.51 5.07 3.63 4.69 3.75 3.81
64 10000002 1.88 3.84 3.81 4.78 3.74 5.21 4.68 5.14 3.61 5.33 5.04 5.76 4.48 5.69 4.91 5.13
80 10100002 3.34 5.19 5.03 5.87 4.71 6.05 5.39 5.74 4.08 5.67 5.26 5.85 4.45 5.54 4.63 4.72
96 11000002 2.81 4.72 4.62 5.53 4.43 5.83 5.24 5.64 4.05 5.70 5.36 6.01 4.66 5.82 4.97 5.13

112 11100002 3.28 5.06 4.84 5.62 4.40 5.68 4.96 5.24 3.52 5.04 4.57 5.10 3.63 4.66 3.69 3.72
128 100000002 1.75 3.73 3.71 4.70 3.68 5.16 4.64 5.13 3.61 5.34 5.07 5.81 4.54 5.77 5.00 5.24
144 100100002 3.47 5.33 5.18 6.04 4.90 6.26 5.61 5.97 4.33 5.94 5.54 6.15 4.76 5.87 4.97 5.08
160 101000002 3.19 5.11 5.03 5.95 4.87 6.29 5.71 6.13 4.55 6.22 5.89 6.56 5.23 6.40 5.57 5.74
176 101100002 3.91 5.70 5.50 6.29 5.09 6.38 5.68 5.97 4.27 5.81 5.36 5.90 4.45 5.49 4.54 4.58
192 110000002 2.63 4.58 4.53 5.48 4.43 5.88 5.33 5.78 4.23 5.94 5.64 6.34 5.04 6.24 5.44 5.64
208 110100002 3.84 5.67 5.50 6.32 5.15 6.47 5.80 6.13 4.45 6.03 5.61 6.18 4.76 5.83 4.91 4.99
224 111000002 3.06 4.95 4.84 5.73 4.62 6.01 5.39 5.78 4.17 5.81 5.45 6.09 4.73 5.87 5.00 5.14
240 111100002 3.28 5.04 4.81 5.57 4.34 5.60 4.86 5.13 3.39 4.90 4.42 4.93 3.45 4.46 3.47 3.49
256 1000000002 1.50 3.49 3.48 4.47 3.46 4.95 4.44 4.93 3.42 5.16 4.90 5.64 4.38 5.62 4.86 5.10
272 1000100002 3.34 5.21 5.07 5.94 4.80 6.17 5.54 5.90 4.27 5.88 5.50 6.11 4.73 5.84 4.96 5.07
288 1001000002 3.19 5.12 5.04 5.97 4.90 6.33 5.75 6.18 4.61 6.29 5.96 6.64 5.32 6.50 5.68 5.85
304 1001100002 4.03 5.83 5.64 6.44 5.24 6.54 5.85 6.15 4.45 6.01 5.56 6.11 4.66 5.72 4.77 4.82
320 1010000002 2.88 4.83 4.79 5.75 4.71 6.17 5.63 6.09 4.55 6.26 5.96 6.67 5.38 6.59 5.80 6.01
336 1010100002 4.22 6.05 5.89 6.72 5.55 6.89 6.22 6.56 4.89 6.47 6.06 6.64 5.23 6.31 5.39 5.48
352 1011000002 3.56 5.46 5.36 6.25 5.15 6.54 5.94 6.34 4.73 6.38 6.03 6.67 5.32 6.47 5.61 5.76
368 1011100002 3.91 5.68 5.45 6.22 4.99 6.26 5.54 5.81 4.08 5.60 5.12 5.64 4.16 5.19 4.21 4.23
384 1100000002 2.25 4.22 4.20 5.17 4.15 5.62 5.10 5.57 4.05 5.77 5.50 6.22 4.95 6.17 5.39 5.62
400 1100100002 3.84 5.69 5.54 6.39 5.24 6.59 5.94 6.29 4.64 6.24 5.84 6.44 5.04 6.14 5.24 5.34
416 1101000002 3.44 5.35 5.26 6.17 5.09 6.50 5.91 6.32 4.73 6.40 6.06 6.72 5.38 6.54 5.71 5.87
432 1101100002 4.03 5.82 5.61 6.39 5.18 6.47 5.75 6.04 4.33 5.87 5.40 5.94 4.48 5.51 4.55 4.59
448 1110000002 2.63 4.57 4.51 5.46 4.40 5.84 5.29 5.73 4.17 5.87 5.56 6.25 4.95 6.14 5.33 5.53
464 1110100002 3.72 5.54 5.36 6.17 4.99 6.31 5.63 5.95 4.27 5.83 5.40 5.97 4.54 5.61 4.68 4.74
480 1111000002 2.81 4.69 4.57 5.46 4.34 5.72 5.10 5.48 3.86 5.49 5.12 5.75 4.38 5.51 4.64 4.78
496 1111100002 2.91 4.66 4.42 5.17 3.93 5.19 4.44 4.70 2.95 4.46 3.96 4.47 2.98 3.98 2.99 2.99
512 10000000002 1.00 2.99 2.99 3.98 2.98 4.47 3.96 4.46 2.95 4.70 4.44 5.19 3.93 5.17 4.42 4.66

Table 9: Values of msd(RB1024,a+b), rounded to the nearest 0.01.

Because () ()mnmn RBmsdRBmsd ,2,2 = , Table 9 can also be used to look up the maxi-

mum discrepancy values for any given load in a k2 -slot frame, where 10242 <k . For
example, for a load of 21 cells and a frame size of 64 slots, we have

() () () 22.41024,3366416,211664,21 ≈== ×× RBmsdRBmsdRBmsd .

Note that this value, being the largest in the first column of the table, is the worst-case
maximum scheduling discrepancy for any load in a 64-slot frame.

5. Output link smoothness
In Section 1, we mentioned that a single output port of a switch may be used to drive sev-
eral communication links that each run at a lower bandwidth than the per-port bandwidth
of the switch. In such cases it is desirable that the slots containing flows destined for any
given output link be spread out smoothly over the scheduling frame, in order to decrease
both the amount of output buffering memory required and the amount of time data spends
in output buffers.

22

The basic recursively balanced scheduling method can be extended to achieve per-
output-link smoothing. We modify each bandwidth request b by replacing the output port
field b.o with an output link field b.ol that gives the specific output link. All references to
output port b.o are interpreted by mapping output link b.ol to the output port that contains
it. We define load(B, ol), the load in B on output link ol, as the sum of the bandwidths
for all bandwidth requests with output link ol:

load(B, ol) ≡ ∑ =∈ ololbBb
mb

.:
. .

Note that a feasible schedule is not possible if any output link is overloaded. To the
properties SPLIT.1-5 from Section 3.1 we add the following properties:

SPLIT.6. Each flow f has the same output link in B1 and B2 as in B. Formally,

if B1[f] exists then B1[f].ol = B[f].ol, and

if B2[f] exists then B2[f].ol = B[f].ol.

SPLIT.7. Each output link ol has its load divided as equally as possible. Formally,

() () 1,, ≤− olB2loadolB1load .

Property SPLIT.6 amplifies SPLIT.1 to guarantee that the splitting step preserves each
flow’s output link. Property SPLIT.7 guarantees per-output-link smoothness. Note that
SPLIT.7 does not supersede property SPLIT.5. Dividing the load on each output link as
equally as possible does not by itself guarantee that the load on each output port will be
divided as equally as possible, which is what SPLIT.5 requires. The problem is that each
of the output links of the same output port could favor the same subrequest set, leading to
an excessive imbalance in the division of the load on the output port.

 The enhanced properties SPLIT.1-7 can be satisfied by refining the way in which the
output pairing OP is computed. Define the output link pairing, OLP, as the subset of OP
in which the members of a pair have the same output link:

 { }{ }olcolbOPcbOLP ..:, =∈≡ .

In addition to properties OUTPAIR.1-3 we require:

OUTPAIR.4. For any output link ol, there is at most one odd-bandwidth request for
ol that does not appear in OLP.

Such a pairing may be found by first pairing requests that share output links until each
output link has at most one unpaired request, then pairing as-yet-unpaired requests that
share output ports until each output port has at most one unpaired request.

In Section 4 we derived a bound on the maximum scheduling discrepancy of any re-
cursively balanced schedule produced by the basic method. The same analysis applies to
the extended method, yielding a bound on the maximum scheduling discrepancy for an
output link. This discrepancy is an upper bound on the amount of memory in an output
link’s buffer needed to accommodate the lack of perfect smoothness in the schedule. In
the worst case, for a recursively balanced schedule with a frame size n and load m , the
link removes cells from the output buffer at exactly the minimum necessary rate of m n

cells per slot, for a total of I m n cells over any interval I . Over the same interval, as

23

many cells as the number of full cells in I may arrive at the output buffer. Hence
)(,mnRBmsd bounds the difference that must be absorbed in the output buffer.

6. Odd-size frames
The recursively balanced scheduling method described above uses a splitting step that
splits the bandwidth request set for an even-size frame into subrequest sets for two equal
sized subframes. Since the splitting step is applied recursively, the size of each subframe
to be split must also be even. Hence, as given, the method applies only to frames whose
size (in slots) is an integral power of two. At the cost of losing some smoothness in the
resulting schedules, the method can be extended to schedule frames of arbitrary size by
generalizing the splitting step to apply to odd-size frames.

Being able to handle arbitrary-size frames is useful for several reasons. It might be
desirable to use a non-power-of-two frame in order to support certain exact bandwidth
requirements. Even in the case of a power-of-two frame, it might be desirable to reserve
some slots throughout the schedule for other purposes, thus in effect leaving a non-
power-of-two frame for the recursively balanced scheduling method. For example, slots
might be reserved in order to handle multicast traffic, as in our implementation described
in Section 7.

Another reason for reserving slots would be to improve the performance of opportun-
istic traffic by leaving some slots completely free of scheduled traffic. This is a fairly in-
teresting effect. The smooth schedule (by design) spreads its port usage throughout the
slots it uses. This tends to increase the probability that a cell of opportunistic traffic will
find either its input port or its output port in use in any given slot. By reserving some
slots, the scheduled traffic is compressed into fewer slots, thus making it more likely that
opportunistic cells can be forwarded.

Figure 8 shows an example of this effect in a frame of 8 slots. The bandwidth request
set uses in1 four times and out1 three times. Case (a) shows a smooth schedule in which
these uses are spread out over seven slots, leaving only one slot available for opportunis-
tic traffic from in1 to out1. Although this schedule is pathological from this point of
view, it is certainly a perfectly fine smooth schedule and it could have been produced by
the recursively balanced scheduling algorithm. In case (b), four slots have been reserved
for opportunistic traffic. The bandwidth request set is feasible for the remaining frame of
four slots, so a smooth schedule can be constructed. In this case the four reserved slots
are available for opportunistic traffic from in1 to out1.

To split a bandwidth request set B into a frame F of odd size 2k+1, we proceed as
follows:

1. Split the frame F into three subframes, F1, F2, F3, where F1 and F3 have size k
and F2 consists of a single slot.

2. Allocate one slot’s worth of sufficiently many non-conflicting flows to the single-
slot subframe F2 so that the remaining requests are feasible for 2k slots.

3. Split the remaining requests into subrequest sets for F1 and F3 using the even-size
frame splitting method discussed in Section 3.2.

24

key

slot available for
opportunistic traffic
in1 → out1

slot reserved,
not allowed for
scheduled traffic

schedule slot

slot allocated for
scheduled traffic
in1 → out4

possible smooth schedule using all slots
1 slot available for
opportunistic traffic in1 → out1

bandwidth request set

in1 → out4 × 4

in2 → out1 × 2 in3 → out1 × 1

smooth schedule with reserved slots
4 slots available for
opportunistic traffic in1 → out1

(a)

(b)

frame size = 8 slots

Figure 8: Reserving slots can improve the
performance of opportunistic traffic.

The flows assigned to F2 in step 2 may be simply the flows assigned to any single slot
of any legal (not necessarily smooth) schedule for the bandwidth request set B in 2k+1
slots. One way of obtaining such a set of flows is to compute a maximum matching [4,
pp. 600-604] in the bipartite graph whose vertices are the input ports and output ports of
the switch and whose edges are those input-output pairs for which there is at least one
positive bandwidth flow. Our implementation uses a different method, described in Sec-
tion 7.5.

7. Implementation
We have implemented the recursively balanced scheduling method as part of the control
software on the AN2 switch [1, 14, 16]. An AN2 network has been in daily use as a
service network at our laboratory, the Digital Equipment Corporation Systems Research
Center, since the end of 1994.

7.1. Hardware description
The AN2 switch is a sixteen-port, input-buffered, ATM crossbar switch designed and
built at our laboratory. Each of the ports has a bandwidth of 800 Megabits/second, for a
total aggregate switch bandwidth of 12.8 Gigabits/second. Since the bit rate numbers in
the ATM arena often cover different amounts of overhead, matters can be clarified by
speaking in terms of ATM cells per second. The bandwidth of each AN2 switch port is
1923 kilocells/second.

25

The AN2 switch hardware provides two service classes: scheduled and opportunistic.
Scheduled traffic has absolute priority and is sent across the crossbar according to a
schedule provided by software. The AN2 schedule frame contains 1024 cell slots. Each
slot contains an entry for each of the sixteen input ports listing which virtual circuit has
priority in that schedule slot from that input port. The scheduling software must guaran-
tee that there is no collision of output ports. If the listed virtual circuit has no cells avail-
able, its input and output ports remain available for opportunistic traffic. Schedule slots
for an input port are left unused by listing virtual circuit zero, which never has cells. Op-
portunistic traffic is sent across the crossbar on a best-effort basis with hardware match-
ing of available input and output ports [15]. To avoid head-of-line blocking [11], each
input port maintains separate cell queues for each output port.

Each AN2 switch port accommodates an input/output line card that interfaces the
switch port to one or more external communication links. The quad line card supports
four SONET OC-3c links, multiplexing input cells to the switch port and demultiplexing
output cells. A SONET OC-3c link (so-called 155 Megabits/second) carries 353 Kilo-
cells/second. A line card that supports a single SONET OC-12 link has been developed
[5], but none of these are installed at our laboratory.

Each link on the quad line card contains a small FIFO output buffer for the purpose of
matching the high cell-rate output of the switch port to the slower link rate. Ten cells of
storage in each FIFO are dedicated to scheduled traffic. Whenever a speed-matching
FIFO gets too full, the switch hardware automatically blocks opportunistic traffic destined
to that output link (causing it to queue up in the switch’s input buffers). In order to pro-
vide guaranteed service, the hardware never blocks scheduled traffic. Hence the schedule
must be approximately smooth with respect to each output link or else the scheduled traf-
fic could overrun its dedicated storage.

A scheduled virtual circuit can forward cells simultaneously to multiple output ports
and links. This is how the switch hardware supports multicast. The hardware does not
support multicast for opportunistic traffic.

7.2. Software environment
The switch control software maintains a list of all scheduled virtual circuits, listing for
each such circuit the input port, the output link, and the required bandwidth in cells per
frame. (The output port number can be determined algebraically from the output link
number.) A special output link value is used to indicate a multicast circuit. A multicast
circuit that sends to all output links is full broadcast; if it sends to a proper subset there
may be output ports that it does not use. Although one could exploit a multicast circuit’s
unused output ports, our current system software does not do so. We treat all multicast
circuits as if they were full broadcast when constructing the schedule. This also allows
multicast circuits to add and drop output links without requiring the schedule to be modi-
fied. We do not expect that multicast traffic will find heavy use in the network. Some
heuristics are known for scheduling multicast circuits under the TDMA model [3].

Requests to add and delete scheduled virtual circuits are checked for admissibility and
then batched for processing. The admission test checks the input and output loads to
make sure that the schedule would be feasible and also verifies that the total number of

26

scheduled circuits would not exceed a software implementation limit. The admission test
guarantees that the processing step will succeed. The software limit arises from the
structure of our current implementation, which uses a preallocated working store and pro-
cesses each scheduled virtual circuit as a separate flow in the recursively balanced sched-
uling algorithm. Preallocating the working store guarantees enough space to handle a
certain number of flows. In Section 8.2 we discuss how we might aggregate flows to
eliminate this software limit.

Once a batch of requests is admitted, it is processed by constructing a new list of
scheduled virtual circuits (the bandwidth request set), running the recursively balanced
scheduling algorithm on it, and installing the resulting, “new” schedule in the switch
hardware. For difficult cases with many scheduled circuits, the scheduling algorithm can
take a long time: up to a little more than a second in our current implementation. The
switch hardware continues to forward cells according to the “old” schedule until the new
schedule is complete, at which point the hardware flips from old to new at the next frame
boundary. Processing requests in batches allows the software to support a high rate of
circuit add/delete requests, although possibly at a latency of a couple of seconds. There is
no difficulty in handling large batches because the recursively balanced scheduling algo-
rithm always recomputes the entire schedule from scratch.

7.3. Implementation overview
The recursively balanced scheduling algorithm works by recursively splitting the problem
in half, dividing the frame into two subframes and the bandwidth request set into two cor-
responding sets of subrequests at each level. We implement the algorithm directly using
a recursive subroutine. The implementation uses three main data structures: a schedule
array indexed by input port and frame slot, a bandwidth request array, and a request-
matching table.

The schedule array constitutes the result of the scheduling algorithm. As shown in
Figure 9, it is a two-dimensional array whose rows correspond to input ports, whose col-
umns correspond to slots in the scheduling frame, and whose entries are small integers
(virtual circuit indexes) identifying flows. Initially all elements in this array are set to
zero, which represents an empty schedule slot. When the recursive subroutine reaches a
subframe containing one slot, it fills in the slot in the schedule array based on the surviv-
ing subrequests. Because the initial problem is feasible and each step divides the problem
into two feasible subproblems, we know that the final one-slot problem is feasible, which
means that the surviving subrequests have a bandwidth of one cell each and no conflicts
in the input or output ports. Subframes in the schedule are identified by starting slot in-
dex and count.

The bandwidth request array is organized as stack of request sets. At each recursive
splitting step, two request sets are added to the stack. See Figure 10. This array is ini-
tialized with the set of input requests and provides working storage for the splitting of one
set into two sets of subrequests. A set of requests is identified by its starting index and
count.

The request-matching table maps integer port or link values to requests; it is used
during the splitting step to find partners for odd-bandwidth requests. Actually there are

27

two tables, one indexed by input port and one by output link. Initially these tables are
empty, represented by setting all elements to the impossible index value –1. During the
splitting step the requests are scanned and each request with an odd bandwidth has its in-
dex recorded in the matching tables according to its input port and output link. A match
is discovered if an entry was present already in the matching table, in which case the entry
is removed and the request and its match are linked together. Linking is accomplished
using two extra fields per request, one for the input partner and one for the output partner.
At the beginning of the splitting step, the partner fields are initialized to the impossible
index value –1, again representing empty. When matches are discovered, the matching
requests are linked to each other using the input or output partner field, whichever ap-
plies.

input port

slot

12 12
17

63 7
752

8

3 3
75

8

17

2

Figure 9: The schedule array.

f i o m

f i o m

f i o m

f i o m

f i o m

f i o m

--

f i o m

--

f i o m

--

f i o m

--

f i o m

bandwidth
request

for

for

split B as
equally as

possible into
B1 and B2

B

B1

B2

stack
grows

f i o m
for

f i o m
for

for

empty request resulting
from an ignored zero-
bandwidth subrequest

schedule subframe
for this request set

Figure 10: The array of bandwidth requests.

28

We need partner fields for the current set of requests only during the splitting step.
To save storage space, we use a parallel array of partner fields indexed by relative request
index within the current set. The parallel array is part of the working storage of the split-
ting step.

After all matches are discovered, the odd-bandwidth requests are split as equally as
possible with respect to input port and output link by walking the cycles and paths of
matched requests, favoring each subframe in alternation. At each end of a path, there will
be a request with a surviving entry in a matching table. We remove this entry as we walk
the path. This results in restoring the matching tables to their initial empty condition.
Then we call the recursive subroutine to process each set of subrequests in turn. Because
the matching tables have been restored to their initial condition, the recursive subroutine
does not have to reinitialize them on each call. In the worst case, restoring the table takes
time proportional to the number of requests. At the deepest levels of recursion, there are
likely to be very few requests, especially if the total schedule load is not heavy. Even in
the worst case, the number of requests cannot exceed the number of input ports (sixteen)
times the subframe size. Because most of the invocations of the recursive subroutine oc-
cur at the deepest levels, optimizations that improve the performance at the deeper levels
have large benefit.

7.4. Implementation details
Preliminary processing takes the list of scheduled virtual circuits and transcribes them
into the array of bandwidth requests. This creates the initial set of requests used as input
by the top-level call of the recursive subroutine. The preliminary processing also initial-
izes the schedule array and request-matching tables.

Our implementation handles broadcast requests as well as ordinary unicast requests.
Because broadcast requests use all output ports, any slot in the schedule that contains a
broadcast can contain nothing else. Such a slot is called a broadcast slot.

Arguments to the recursive subroutine provide the starting index and count of a
subrequest set in the bandwidth request array, the starting index and count of a subframe
in the schedule array, and the index of the first unused entry in the bandwidth request ar-
ray. We use this last index to allocate space for the two sets of subrequests, calculating
the size based on the worst-case assumption that each subrequest set could be as big as
the input request set.

First the recursive subroutine decides how to split its frame into subframes. If the
frame size is odd, the lower subframe gets the extra slot.

Next the subroutine splits the broadcast requests. We always place broadcast requests
at the front of a request set, so that we can process them first and then ignore them for the
rest of the split. We split broadcast requests by scanning them in order and writing ap-
propriate subrequests into the subrequest sets. Even-bandwidth requests split evenly into
subrequests; odd-bandwidth requests split favoring each subframe in alternation. If the
number of odd-bandwidth broadcast requests is odd, the lower subframe gets the extra
slot of load. Totaling up the broadcast bandwidth gives the number of broadcast slots in
each subframe, from which the number of remaining free slots can be computed.

29

When splitting odd-bandwidth broadcast requests, we don’t attempt to divide each in-
put port’s load as equally as possible. Actually, this was an oversight in our implementa-
tion, because we could have formed pairs of requests sharing the same input port just as
in the splitting step for unicast requests. The result of our oversight is that the load on an
input port is not necessarily spread as evenly as we could manage. However, this has no
effect on the feasibility of the schedule, because each unit load of a broadcast request
must be scheduled into a slot all by itself. Which broadcast slot contains which broadcast
unit load is immaterial to the scheduling of unicast requests.

In the case that the free slots are divided evenly between the subframes, we can pro-
ceed to split the unicast requests. Otherwise, one subframe has an excess free slot. In this
case we first extract enough requests into the excess free slot so that the remaining re-
quests are feasible for the remaining free slots. (The slot extraction algorithm is moder-
ately complicated in its own right and is described in Section 7.5.) Now the remaining
free slots constitute an even division of free slots between the subframes (we adjust the
relevant subframe to exclude the excess free slot) and we proceed to split the unicast re-
quests.

Once the free slots are evenly divided between the subframes, the subroutine splits the
unicast requests. It takes three scans through the unicast requests to perform the split. In
the first scan, requests with odd bandwidths are paired up by matching on input ports and
output links. In the second scan, odd-bandwidth requests with unmatched output links
are removed from the output link matching table and paired up by matching on output
ports. In the third scan, cycles and paths of odd-bandwidth requests are split into the
subrequest sets with each subframe favored in alternation. During one of the scans, re-
quests with even bandwidth are split evenly into the two subrequest sets; it does not mat-
ter which scan does this.

As an optimization, we ignore all subrequests of bandwidth zero. This simple opti-
mization turns out to save a lot of time, because all deeper levels of recursion never see
the ignored subrequests.

The SPLIT properties require that the odd-bandwidth requests on each path favor each
subframe in alternation, but there is no requirement that the total load be split as evenly as
possible. For example, several odd-length paths could each (on balance) favor the same
subframe. However, it is easy enough to keep the alternation going throughout the third
scan, which results in splitting the total load as evenly as possible.1

After splitting all the requests, the splitting subroutine calls itself recursively to proc-
ess each of the two subproblems.

7.5. Slot extraction algorithm
The method we use to extract requests into the excess free slot is a variation of the Sle-
pian-Duguid algorithm [9, p. 66]. The Slepian-Duguid algorithm produces a complete,

1 This would be a useful property for a switch that had a bandwidth limitation in its switching fabric,

such as might be the case in a switch that used a high-speed bus for its “crossbar”. With appropriate load
limits on its ports, such a switch might depend on the recursively balanced splitting of total load to provide
a schedule that respected its limited switching bandwidth.

30

legal schedule of any given frame size from any feasible set B of unicast requests. How-
ever, we need only one slot from such a legal schedule—the remaining slots we intend to
compute via recursive smooth scheduling. So we divide the complete schedule into two
parts: the SLOT and the REST. The SLOT is the one slot we need to extract; the REST repre-
sents the rest of the schedule.

The extraction algorithm uses three data structures: input and output port connection
arrays for the SLOT; input, output, and pair load arrays for the REST; and working storage
for the exchange step to be described below.

The port connection arrays give the assigned connections between input port and out-
put port in the SLOT. A slot in a legal schedule must not have output port conflicts, so we
must consider output ports and not output links when extracting the excess free slot. If it
has been decided to place in the SLOT one cell of a bandwidth request b that sends cells
from input port b.i to output port b.o, then element b.i in the input port connection array
contains b.o, and element b.o in the output port connection array contains b.i. The port
connection arrays record the fact that some such b exists; there is no record of exactly
which b it was. A postprocessing step will find one such b and place one of its cells in
the SLOT.

The input, output, and pair load arrays give the assigned bandwidth load in the REST

for each input port, each output port, and each ordered pair of input and output port.

As in Slepian-Duguid, we start with an empty schedule and feed the requests in one
by one. The empty schedule is represented by an impossible value (–1) in all entries of
both port connection arrays and zero in all entries of the three load arrays. As each re-
quest b is examined, we check the load arrays to see if the entire bandwidth b.m would
feasibly fit in the REST. If so, we increase the relevant loads by b.m. Otherwise, we in-
crease the relevant entry in each of the three load arrays by 1. −mb and then explore how
to fit the remaining cell from b into the SLOT. Assuming the request set B is feasible,

1. −mb will always fit into the REST.

If the request’s input and output ports b.i and b.o are both unconnected in the SLOT,
then we merely record the connection in the port connection arrays and we are done with
this request. Otherwise, assuming the request set B is feasible, the only remaining possi-
bility is that one of b.i or b.o is connected and the other is unconnected in the SLOT. In
this case we have to do an exchange step.

The purpose of the exchange step is to reallocate traffic between the SLOT and the
REST so that one cell from the request b will fit into the SLOT. This is the basic idea of
Slepian-Duguid, except that here we are treating the REST as an abstract entity without
caring how the detailed schedule within it might be worked out. Without loss of general-
ity, let us assume that the request’s input port b.i is unconnected in the SLOT. Then the
request’s output port b.o must be connected to some input port that we shall call b.i1. We
know that b.i1 ≠ b.i because b.i is unconnected. Now we consider move number one, the
possibility of moving one cell of b.i1 → b.o from the SLOT to the REST. This can be
evaluated by checking the loads for b.i1 and b.o in the REST. If it is possible, then we
move it, adjusting the loads and port connections, and then we connect b.i and b.o and we
are done with request b.

31

Otherwise, move number one must be impossible because either b.i1 or b.o or both are
completely full in the REST. It cannot be the case that b.o is full in the REST, because if so
the request set B would not be feasible. Hence, b.i1 must be full in the REST. By con-
sulting the pair load array, we can determine what output ports b.o1a, b.o1b,…, have cells
from b.i1 in the REST. We need to consider move number two, the possibility of moving
one of these cells back into the SLOT. If we could perform move number two, then move
number one would be enabled and then we could connect b.i and b.o and we would be
done with request b.

Of course, in order to perform move number two, we might have to consider a move
number three, and so on. The feasibility of the request set B guarantees that eventually
we will find a move that we can perform. Then each of the earlier moves can be per-
formed one by one back to move number one, and we will be done with request b. This
assumes that we choose the correct output port in each even-numbered move.

Unfortunately, we don’t know which output port to choose. Our solution is to explore
them all via breadth-first search. Working storage is needed for the exploration queue
and for back pointers so that when we finally find a possible move we can work our way
back through all of the enabled moves to the desired state. The back pointers also serve
as flags to limit later stages of the search by suppressing the exploration of output ports
that are already being explored. The feasibility of the request set B guarantees that the
search will terminate with success. Because the search explores each output port at most
once, a reasonable bound on the search time is obtained.

It sounds horrible, having a breadth-first search down in the inner loop inside the di-
vision step of a recursive subroutine, but in practice the implementation spends almost no
time there.

After we have processed all the requests, we scan them again, looking for requests
whose input and output ports connect to each other in the SLOT. When we find such a re-
quest b, we write its virtual circuit index b.f into the excess free slot’s schedule entry for
input port b.i and we decrement its bandwidth by one by replacing b.m with 1. −mb . We
then remove the connection b.i → b.o from the SLOT so that we won’t attempt to match it
again as we continue to scan the requests.

The result is a schedule for the excess free slot and a remaining bandwidth request set
that is feasible for the remaining free slots.

7.6. Performance
The smooth scheduling algorithm runs on the AN2 switch’s master control processor,
which is a 25MHz LR33000 CPU with 8 Megabytes of memory. We have investigated
the CPU time required by the smooth scheduling algorithm for various sets of requests.

Instead of running lots of experiments on the actual hardware, it was much easier to
run them on a DECstation R3000 workstation of the same instruction set and approxi-
mately same speed. We ran a few experiments on the actual hardware and found that it
was about five percent slower than the DECstation. The difference is probably due to the
LR33000’s smaller cache.

32

Each experimental trial consisted of a randomly generated feasible set of requests.
The requests used all sixteen input and output ports, and all traffic from a given input port
to a given output port was on one circuit. The experiments assumed that each output port
had an output link that was capable of handling the full output port bandwidth. About
one percent of the input load was broadcast traffic, and all broadcast traffic from a given
input port was also on one circuit. During a run of trials, the switch output load (which
was higher than the input load, because of broadcast traffic) was the same for each trial.
The amount of work the smooth scheduling algorithm performs depends roughly on the
amount of traffic in the schedule. Each run contained 100 trials.

Limiting the traffic to only one circuit emulates the effect of flow aggregation optimi-
zation discussed later in Section 8.2.

The results from the experimental runs are shown in Table 10.

output
load min average max

worst
output port
discrepancy

average
exchange

steps
5% 273 368 477 4.94 0

10% 316 385 516 4.59 0

20% 426 481 609 4.95 0

30% 508 583 676 5.62 0

40% 609 671 750 5.54 0

50% 672 750 820 5.37 1

60% 746 825 988 5.97 42

70% 816 896 960 6.76 295

80% 871 973 1082 6.62 704

90% 937 1062 1195 6.69 1135

95% 1031 1120 1293 5.97 1454

100% 1082 1173 1266 0.00 1702

Table 10: Experimental results of the implementation of
recursively balanced scheduling.

The “average exchange steps” column lists the average number of times the slot ex-
traction algorithm had to perform an exchange step. In all the trials with less than 50%
output load, no exchange steps were required.

The “worst output port discrepancy” is the worst observed scheduling discrepancy (in
cells) over any interval for any output port for any trial in the run. The discrepancy falls
off at very high loads because the output ports are running at almost full bandwidth—at
100% load the worst discrepancy is zero because all output ports are busy all the time.
None of the experimental trials produced a discrepancy greater than seven cells, which
fits comfortably within the ten cell buffers allocated to scheduled traffic in the output

run time
(milliseconds)

33

link’s speed matching FIFOs. This is nice to see, because the AN2 switch hardware de-
pends on the schedule being smooth enough so that these FIFOs do not overflow.

Performance could be improved by compiling the program with optimization turned
on. Currently, we are more interested in debugging so we don’t use optimization. In our
operational AN2 network, the observed output loads are five percent or less (usually
much less), and the performance of the recursively balanced scheduling algorithm is satis-
factory.

7.7. An additional constraint
After we developed and implemented the recursively balanced scheduling algorithm, we
discovered an additional hardware constraint. It turns out that the AN2 input/output port
matcher (see Figure 1) cannot handle the case in which the same flow appears in two con-
secutive slots in the schedule. There is a pipeline delay, and if the last cell in the input
buffer for the subject flow is sent during the first slot, the matcher will not notice in time
to prevent itself from grabbing at air during the second slot, fatally corrupting the hard-
ware’s internal data structures. This problem applies to a scheduled (CBR) flow only, as
the hardware specifically prevents an opportunistic (ABR) flow from sending cells in two
consecutive slots.

There is a known hardware fix, but since we have not had the need to support a high
volume of scheduled traffic at our laboratory, we have adopted the following draconian
solution. Considering the odd slots as schedule A and the even slots as schedule B, we
submit requests to schedule A only, leaving schedule B empty. Thus we support a maxi-
mum load of CBR traffic equal to half of the switch bandwidth. An improvement would
take requests not admitted to schedule A and submit them to schedule B. In any case, all
slots remain available for ABR traffic.

As illustrated by our earlier example in Table 7, it is not always possible to construct
a legal schedule in which no flow is scheduled into successive slots, even if the band-
width of each flow is at most half the frame size. An open question is what limitations on
port loads and flow bandwidths would be sufficient to guarantee the existence of a
smooth schedule in which no flow uses two consecutive slots.

8. Potential improvements
While we have so far found the performance of our implementation to be adequate, there
are a number of opportunities for further performance improvements. We describe some
of them here.

8.1. Parallelism
Once the bandwidth request set for a frame has been split, the scheduling tasks for the
subframes are completely independent. This offers an obvious opportunity for parallel-
ism, and since each line card in the AN2 switch has its own line card processor (LCP),
there are processors available to take advantage of this opportunity. One possible organi-
zation of the computation would be for the master LCP to start by performing the top-
level split and communicating one of the two resulting subrequest sets to another LCP.

34

Additional processors would be enlisted for lower-level splits until all processors were in
use. Alternatively, all processors could start with a copy of the initial bandwidth request
set, perform identical computations of the top-level split, and then continue working
down the recursion tree, each restricting its attention to a designated portion of the frame
and discarding subtasks not relevant to that portion. This second plan involves duplicated
communication, but saves communication on the critical path, since the multiple copies
of the top-level bandwidth request set can be maintained incrementally.

8.2. Aggregating flows
Our scheduling computation has three goals: (1) to connect each input port to each out-
put port in sufficiently many slots to serve all the flows (while avoiding conflicts), (2) to
conserve output buffering (and reduce output latency) by smoothing traffic to each output
link, and (3) to reduce input latency by achieving smoothness on a per-flow basis. We
can potentially improve performance by aggregating flows, which requires doing sched-
uling in two passes.

The first pass groups all flows from a given input port to a given output link as a sin-
gle aggregate flow whose bandwidth request is the sum of its constituents. This pass per-
forms the same computation as our current implementation, but treats the aggregates as
we now treat individual flows. Considerable savings in time will result if the average
number of flows per aggregate is large. Also, the number of aggregate flows can be no
more than the product of the number of input ports and the number of output links, which
is 16×64 = 1024. Hence the working stack of bandwidth request sets that is stored in the
array of bandwidth requests during the smooth scheduling algorithm has a maximum
worst-case size that is feasible to allocate in physical memory. Consequently, the number
of flows need no longer be limited by the working stack size.

In the second pass, the slots allocated to each aggregate flow would be divided up
among the individual flows, achieving per-flow smoothness. In this pass, we must con-
sider individual flows, but the computation required is much simpler than full-blown re-
cursive scheduling. Also, the second pass is very amenable to parallel implementation,
since each LCP can process only those flows that use the switch input port connected to
that LCP’s line card.

8.3. Shift in strategy for small subframes
Our current scheduling implementation uses the same splitting technique for subframes of
size two as for frames of size 1024. If per-link smoothness, or even per-flow smoothness,
is abandoned within subframes of small size—say 16 or fewer slots—the consequent loss
of smoothness may be small enough not to be of concern. In this situation, scheduling
within these small subframes may be performed by a more efficient technique than our
recursively balanced scheduling algorithm. Efficiency improvements in small subframes
can have a large impact on the performance of the entire algorithm, because most of the
work occurs at the deepest levels of recursion, which deal with small subframes.

Under loads that are not extremely heavy, such a shift in strategy opens up the possi-
bility for efficient incremental updates to the schedule. For example, if the total band-
width request set loads no port to more than 15/16 capacity, then after splitting the re-

35

quest set down to subframes of size 16, each subframe will have a subrequest set that is
actually feasible for 15 slots. If these subrequest sets are each scheduled into 15 slots
(possibly without regard to smoothness), then one slot in 16 will be left completely free
of scheduled traffic. We could then schedule small new requests incrementally into those
slots, and periodically run the full-blown recursively balanced scheduling algorithm in the
background to repack the schedule. Leaving some slots free, or nearly free, of scheduled
traffic also serves to improve the performance of opportunistic traffic by increasing the
probability that an opportunistic flow’s input and output ports will both be available in
the same time slot. This effect is illustrated in Figure 8.

The idea of incrementally updating a schedule instead of recomputing it from scratch
had also been applied to satellite switching TDMA networks [2].

9. Conclusions
The recursively balanced scheduling algorithm improves switch latency and buffering
requirements for scheduled traffic by smoothing out the workload of each flow and output
link. The algorithm produces smooth schedules all the way up to 100% switch load.
Previous work provides no guarantee of smoothness when scheduling heavy load. We
implemented the algorithm as part of the switch control software in AN2, which has been
in daily use as a service network at our laboratory since the end of 1994. Because we
knew we could produce smooth schedules, the AN2 quad line card includes only a small
speed-matching FIFO for each output link. Without the recursively balanced scheduling
algorithm, this design would not work. Performance of the implementation has been sat-
isfactory.

Acknowledgments
Allan Heydon, Cynthia Hibbard, and Michael Schroeder provided helpful comments and
suggestions on earlier drafts of this report.

References
1 Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.

High speed switch scheduling for local area networks. ACM Transactions on
Computer Systems, 11(4):319-352, November 1993. Also available as Research
Report SRC-99, Digital Equipment Corporation Systems Research Center, April
1993.

2 Wen-Tsuen Chen and Huai-Jen Liu. An adaptive scheduling algorithm for TDM
switching systems. IEEE Transactions on Communications, 43(2/3/4):651-658,
February/March/April 1995.

3 Wen-Tsuen Chen, Pi-Rong Sheu, and Jiunn-Hwa Yu. Time slot assignment in
TDM multicast switching systems. In Proceedings, Tenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, Volume 3, pages
1296-1305, 1991.

36

4 Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, April 1993.

5 Joseph B. Evans, Douglas Niehaus, David W. Petr, Victor S. Frost, Gary J. Min-
den, and Benjamin J. Ewy. A 622 Mb/s LAN/WAN gateway and experiences
with wide area ATM networking. IEEE Network, 10(3):40-48, May 1996.

6 S. Jamaloddin Golestani. Congestion-free transmission of real-time traffic in
packet networks. In Proceedings, Ninth Annual Joint Conference of the IEEE
Computer and Communication Societies, Volume 2, pages 527-536, 1990.

7 S. Jamaloddin Golestani. A framing strategy for congestion management. IEEE
Journal on Selected Areas in Communications, 9(7):1064-1077. September 1991.

8 Inder S. Gopal and C. K. Wong. Minimizing the number of switching in an
SS/TDMA system. IEEE Transactions on Communications, COM-33(6):497-
501, June 1985.

9 Joseph Y. Hui. Switching and Traffic Theory for Integrated Broadband Net-
works. Kluwer, Boston, 1990.

10 Joseph Y. Hui and Edward Arthurs. A broadband packet switch for integrated
transport. IEEE Journal on Selected Areas in Communications, SAC-5(8):1264-
1273, October 1987.

11 Mark J. Karol, Michael G. Hluchyj, and Samuel O. Morgan. Input versus output
queuing on a space-division packet switch. IEEE Transactions on Communica-
tions, COM-35(12):1347-1356, December 1987.

12 Manolis Katevenis, Panagiota Vatsolaki, and Aristides Efthymiou. Pipelined
memory shared buffer for VLSI switches. ACM SIGCOMM Computer Communi-
cation Review, 25(4):39-48, October 1995. From Proceedings of ACM
SIGCOMM’95.

13 C. A. Pomalaza-Raez. A note on efficient SS/TDMA assignment algorithms.
IEEE Transactions on Communications, 36(9):1078-1082, 1988.

14 Thomas L. Rodeheffer and Michael D. Schroeder. LAN emulation using resilient
virtual circuits. In preparation.

15 Charles P. Thacker. Method and apparatus for resource arbitration. U.S. Patent
5,267,235, November 1993.

16 Charles P. Thacker and Michael D. Schroeder. AN2: A high-performance ATM
switch. In preparation.

17 Yiu Kwok Tham. On fast algorithms for TDM switching assignments in terres-
trial and satellite networks. IEEE Transactions on Communications, 43(8):2399-
2404, August 1995.

18 Fouad A. Tobagi. Fast packet switch architectures for broadband integrated serv-
ices digital networks. Proceedings of the IEEE, 78(1):133-167, January 1990.

