
1

Service Combinators for Web Computing

Luca Cardelli
and

Rowan Davies

June 1, 1997

SRCResearch
Report 148

Service Combinators for Web Computing

Luca Cardelli and Rowan Davies

June 1, 1997

Author Affiliation
Rowan Davies is currently a Ph.D. student at Carnegie-Mellon University, School of Com-
puter Science. He can be reached at Rowan_Davies@cs.cmu.edu .

© Digital Equipment Corporation 1997

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the fol-
lowing: a notice that such copying is by permission of the Systems Research Center of
Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors
and individual contributors to the work; and all applicable portions of the copyright notice.
Copying, reproducing, or republishing for any other purpose shall require a license with pay-
ment of fee to the Systems Research Center. All rights reserved.

Abstract

The World-Wide Web is rich in content and services, but access to these
resources must be obtained mostly through manual browsers. We would like to be
able to write programs that reproduce human browsing behavior, including reac-
tions to slow transmission-rates and failures on many simultaneous links. We thus
introduce a concurrent model that directly incorporates the notions of failure and
rate of communication, and then describe programming constructs based on this
model.

Contents

1 Introduction . 1
1.1 Some Kind of Computer. .1
1.2 Some Kind of Algorithms .2
1.3 Some Kind of Run-Time System .3
1.4 Other Issues. .4

2 Service Algebra . 4
2.1 Services. .5
2.2 Service Combinators .5
2.3 Examples .8

3 Formal Semantics . 10
3.1 The Meaning Function .10
3.2 Algebraic Properties .12

4 Implementation. 13

5 Conclusions and Future Directions. 14

Acknowledgments . 14

References . 15

1

1 Introduction
The World-Wide Web [2] is a uniform, highly interconnected collection of computa-
tional resources, and as such it can be considered as forming a single global computer.
But, what kind of computer is the Web, exactly? And what kind of languages are re-
quired for programming such a computer? Before approaching the second question,
we must answer the first. In other words, what is the Web's model of computation?

1.1 Some Kind of Computer

We can quickly scan a checklist of possibilities. Is the Web a Von Neumann computer?
Of course not: there is no stored program architecture, and no single instruction
counter. Is the Web a collection of Von Neumann computers? Down below yes, but
each computer is protected against outside access: its Von Neumann characteristics are
not exploitable. Is the Web a file system? No, because there is no universally available
“write” instruction (for obvious good reasons). Is the Web a distributed database? In
many ways yes: it certainly contains a huge amount of information. But, on the one
hand the Web lacks all the essential properties of distributed databases, such as precise
data schemas, uniform query languages, distributed coherence, consistent replication,
crash recovery, etc. On the other hand, the Web is more than a database, because an-
swers to queries can be computed by non-trivial algorithms.

Is the Web a distributed object system? Now we are getting closer. Unfortunately
the Web lacks some of the fundamental properties of traditional (in-memory, or local-
area) object systems. The first problem that comes to mind is the lack of referential in-
tegrity: a pointer (URL1) on the Web does not always denote the same value as it did in
a previous access. Even when a pointer denotes the same value, it does not always pro-
vide the same quality of access as it did in a previous access. Moreover, these pointers
are subject to intermittent failures of various duration; while this is unpleasant, these
failures are tolerated and do not negate the usefulness of the Web.

Most importantly, though, the Web does not work according to the Remote Proce-
dure Call (RPC) semantics that is at the basis of distributed object systems. For exam-
ple, if we could somehow replace HTTP2 requests with RPC requests, we would
drastically change the flavor of Web interactions. This is because the Web communica-
tion model relies on streaming data. A request results in a stream of data that is dis-
played interactively, as it is downloaded. A request does not block until it can produce
an atomic result (in RPC style) that is displayed when the request is completed.

At a more abstract level, here are the main peculiarities of a Web computer, with
respect to more familiar computational models. Three new classes of phenomena be-
come observable:

1. Uniform Resource Locator [7, 8]
2. The HyperText Transfer Protocol is the Web’s communication protocol [4, 7, 8].

2

• Wide-area distribution. Communication with distant locations involves a no-
ticeable delay, and behavior may be location-dependent. This is much more dra-
matic than the distribution observable on a multiprocessor or a local-area
network. It is not possible to build abstractions that hide this underlying reality,
if only because the speed of light is a physical limit.

• Lack of referential integrity. A URL is a kind of network pointer, but it does not
always point to the same entity, and occasionally it does not point at all. This is
quite different from a pointer in a programming language.

• Quality of service. A URL is a “pointer with a bandwidth”. The bandwidth of
connections varies widely with time and route, and may influence algorithmic
behavior.

A Web programmer will need to take these new observables into account. This calls for
new programming models, and eventually new languages.

Therefore, there are no good names for describing the computational aspects of the
Web. We might as well name such a computer a “Berners-Lee computer”, after the in-
ventor of HTTP. The model of computation of the Web is implicit in the HTTP protocol
and in the Web's hardware and software infrastructure, but the implications of the in-
teraction of the protocol and the infrastructure are not easy to grasp. The protocol is ac-
tually quite simple, but the infrastructure is likely to slow down, speed up, crash, stop,
hang, and revive unpredictably. When the Web is seen as a computer, e.g., for the pur-
pose of programming it, it is a very unusual computer.

1.2 Some Kind of Algorithms

What kind of activities can one carry out on such a strange computer? Here is an exam-
ple of a typical behavior a user might exhibit.

Hal carries out a preliminary search for some document, and discovers that the
document (say, a big postscript file) is available at four servers: in Japan, Australia,
North America, and Europe. Hal does not want to start a parallel four-way download
at first: it would be antisocial and, in any case, it might saturate his total incoming
bandwidth. Hal first tries the North American server, but the server is overloaded and
slow in downloading the data. So, he opens another browser window and contacts the
European server. This server is much faster, initially, but suddenly the transfer rate
drops to almost zero. Will the North American server catch up with it in the end? While
he waits to find out, Hal remembers that it is night in Japan and Australia, so the serv-
ers should be unloaded and the intercontinental link should not be too congested. So
he starts two more downloads. Japan immediately fails, but Australia starts crawling
along. Now Hal notices that the European download has been totally idle for a few
minutes so he kills it, and waits to see who wins out between Australia and North
America.

What is described above is an instance of an “algorithmic” behavior that is used
frequently for retrieving data. The decisions that determine the flow of the algorithm
are based on the observable semantic properties of the Web: load, bandwidth, and even

3

local time. The question is: what language could one use to comfortably program such
an algorithm? An important criterion is that the language should be computationally
complete with respect to the observable properties of the Web:

That is, if a user sitting in front of (say) a browser carries out a set of observations, de-
cisions, and actions that are algorithmically describable, then it should be possible to
write a program that emulates the same observation, decisions, and actions.

1.3 Some Kind of Run-Time System

The Web is one vast run-time system that, if we squint a bit, has many of the features
of more conventional run-time systems.

There are atomic data structures (images, sounds, video), and compound data
structures (HTML3 documents, forms, tables, multipart data), as described by various
Internet standards. There are pointers (URLs) into a universal address space. There are
graph structures (MIME4 multipart/related format) that can be used to transmit com-
plex data. There is a standardized type system for data layout (MIME media types).
There are subroutine calls and parameter passing conventions (HTTP and CGI5). There
are plenty of available processors (Web servers) that can be seen as distributed objects
that protect and dispense encapsulated data (e.g., local databases). Finally, there are
some nice visual debuggers (Web browsers).

What programming language features could correspond to this run-time system?
What could a “Web language” look like? Let's try to imagine it.

A “value” in a Web language would be a pair of a MIME media type and an ap-
propriate content. (For example, the media type may be image/jpeg and the content
would be a jpeg-encoded image). These values could be stored in variables, passed to
procedures, etc. Note that the contents of such values may be in the process of being
fetched, so values are naturally concurrently evaluated. Other kinds of values would
include gateways and scripts (see below).

The syntax of a programming language usually begins with the description of the
“literals”: the entities directly denoting a value, e.g., a numeral or a string. A “media
literal” would be a pair of a media type and a URL indicating the corresponding con-
tent. Such a literal would be evaluated to a value by fetching the URL content (and ver-
ifying that it corresponds to the claimed media type).

A “gateway literal” would be a pair of a Gateway Type and a URL indicating a
gateway (e.g., a CGI gateway). The gateway type indicates the parameter passing con-
ventions expected by the gateway (e.g., GET, POST, or ISINDEX) and the media types

3. HyperText Markup Language [3, 7]
4. Multi-purpose Internet Mail Extension [1, 7]
5. Common Gateway Interface [7]

Every algorithmic behavior should be scriptable.

4

for the requests and replies. A gateway literal evaluates to a gateway value, which just
sits there waiting to be activated.

A gateway value can be activated by giving it its required parameters. The syntax
for such an activation would look like a normal procedure call: g(a1, ..., an) where g is a
literal, variable, or expression that produces a gateway value, and the arguments are
(normally) media values. The effect of this call is to package the arguments according
to the conventions of the gateway, ship them through the appropriate HTTP connec-
tion, get the result, and convert it back to a value. The final value may be rendered ac-
cording to its type.

We now have primitive data structures (media literals) and primitive control struc-
tures (gateway calls). With this much we can already write “scripts”. These scripts
could be stored on the Web as Internet Media, so that a script can refer to another one
through a URL. The syntax for script calls would be the same as above, but might be a
media literal that refers to a script, instead of a gateway. Scripts would have to be
closed (i.e. no free variables, except for URLs), for security and network transparency.

This is arguably a Web language. The scripts are for the Web (not for a particular
operating system or file system) and in the Web (not stored in a particular address
space or file). Such a language uses the Web as its run-time system.

1.4 Other Issues

Two major issues remain to be addressed.
The first issue is output parsing. Because of the prominence of browsers and

browser-ready content on the Web, the result of a query is almost always returned as
an entity of type text/html (a page), even when its only purpose is to present, say, a
single datum of type image/jpeg. The output has to be parsed to extract the informa-
tion out of the HTML. Although the structure of HTML pages is relatively well defined,
the parsing process is delicate, error-prone, and can be foiled by cosmetic changes in
the pages. In order to make Web programming possible on a large scale, one would
need some uniform way of describing the protocol of a gateway and, by extension, of
a script. This problem is still unsolved and we will not discuss it here further.

The second issue is the design of control structures able to survive the flaky con-
nectivity of the Web. This is the topic of the rest of the paper.

2 Service Algebra
Suppose we want to write a program that accesses and manipulates data on the Web.
An obvious starting point is an HTTP library, embedded in some programming lan-
guage, that gives us the ability to issue HTTP calls. Each HTTP call can fail with fairly
high probability; therefore, error-handling code must be written using the error-han-
dling primitives of the language. If we want to write code that reacts concurrently to
network conditions and network failures in interesting ways, then the error-handling
code ends up dominating the information-processing code. The error-handling and

5

concurrency primitives of common languages are not very convenient when the excep-
tional code exceeds the normal code.

An alternative is to try to use high-level primitives that incorporate error handling
and concurrency, and that are optimized for Web programming. In this section we in-
troduce such primitives. A service is an HTTP information provider wrapped in error-
detection and handling code. A service combinator is an operator for composing ser-
vices, both in terms of their information output and of their error output, and possibly
involving concurrency. The error recovery policy and concurrency are thus modularly
embedded inside each service.

The idea of handling failures with combinators comes, in a sequential context,
from LCF tactics [5].

2.1 Services

A Web server is an unreliable provider of data: any request for a service has a relatively
high probability of failing or of being unacceptably slow. Different servers, though,
may provide the same or similar services. Therefore it should be possible to combine
unreliable services to obtain more reliable “virtual services”.

A service, when invoked, may never initiate a response. If it initiates a response, it
may never complete it. If it completes a response, it may respond “service denied”, or
produce a real answer in the form of a stream of data.

In the period of time between a request and the end of a response, the main datum
of interest is the “transmission rate”, counted as bytes per second averaged over an in-
terval. It is interesting to notice that the basic communication protocol of the Internet
does not provide direct data about the transmission rate: this must be estimated from
the outside.

2.2 Service Combinators

We now describe the syntax and informal semantics of the service combinators in our
language. The combinators were chosen to allow common manual Web-browsing tech-
niques to be reproduced with simple programs.

The syntax for our language is given below in BNF-like notation. We use curly
brackets { } for grouping, square brackets [] for zero or one occurrences, postfix * for
zero or more occurrences, postfix + for one or more occurrences, infix| for disjunction,
and simple juxtaposition for concatenation. We use ‘|’ to indicate an occurrence of | in
the language itself. For lexical items, [c1-c2] indicates a character in the range c1-c2.

6

Services

Gateway types

Lexical items

The basic model for the semantics of services is as follows: a service may be in-
voked at any time, and may be invoked multiple times. An invocation will either suc-
ceed and return a result after some time, or fail after some time, or continue forever. At
each point in time it has a rate which is a real number indicating how fast it is progress-
ing.

Basic Service

url(String)
The service url(String) fetches the resource associated with the URL indicated by the
string. The result returned is the content fetched. The service fails if the fetch fails, and
the rate of the service while it is running is the rate at which the data for the resource is
being received, measured in kilobytes per second.

Gateways

index(String, String1)
gateway get (String, Id1=String1 ... Idn=Stringn)
gateway post (String, Id1=String1 ... Idn=Stringn)

Each of these services is similar to the service url(String), except that the URL String
should be associated with a CGI gateway having the corresponding type (index, get or
post). The arguments are passed to the gateway according to the protocol for this gate-
way type.

S ::=
url(String) | S1 ? S2 | S1 ‘|’ S2 | timeout(Real, S) |
limit(Real1, Real2, S) | repeat(S) | stall | fail |
index(String1, String2) |
gateway G (String, {Id=String}*)

G ::= get | post

String ::= " StringChar* "
StringChar ::=

any single legal character other than ' " \
or one of the pairs of characters \' \" \\

Id ::= {[A-Z] | [a-z] | [0-9]}*
Real ::= [~] Digit+ [. Digit+]
Digit ::= [0-9]

7

Sequential Execution

S1 ? S2

The “?” combinator allows a secondary service to be consulted in the case that the pri-
mary service fails for some reason. Thus, the service S1 ? S2 acts like the service S1, ex-
cept that if S1 fails then it acts like the service S2.

Concurrent Execution

S1 | S2

The “|” combinator allows two services to be executed concurrently. The service
S1 | S2 starts both services S1 and S2 at the same time, and returns the result of which-
ever succeeds first. If both S1 and S2 fail, then the combined service also fails. The rate
of the combined service is always the maximum of the rates of S1 and S2.

Time Limit

timeout(t, S)
The timeout combinator allows a time limit to be placed on a service. The service time-
out(t, S) acts like S except that it fails after t seconds if S has not completed within that
time.

Rate Limit

limit(t, r, S)
This combinator provides a way to force a service to fail if the rate ever drops below a
certain limit r. A start-up time of t seconds is allowed, since generally it takes some time
before a service begins receiving any data.

In our original design, this start-up time was applied to the whole service S. We
later realized that this design leads to an unfortunate interaction with some of the other
combinators. This is demonstrated by the example: limit(t, r, (S1 ? S2)). The problem
here is that if S1 fails after the first t seconds, then S2 is initiated but is not allowed any
start-up time, so quite likely the whole service fails.

This motivates the following semantics. The service limit(t, r, S) acts like the service
S, except that each physical connection is considered to have failed if the rate ever
drops below r Kbytes/sec after the first t seconds of the connection. Physical connec-
tions are created by invocations of url, index and gateway combinators.

In general, a rate limit can be described as a function f from time to rate, and a com-
binator limit(f, S) could be used; the current combinator could then be defined via a step
function. The more general combinator is supported by our semantics, but we decided
to adopt the current, simpler, definition.

Repetition

repeat(S)
The repeat combinator provides a way to repeatedly invoke a service until it succeeds.
The service repeat(S) acts like S, except that if S fails, repeat(S) starts again.

8

Unlike many traditional languages, the repeat combinator does not include a con-
dition for terminating the loop. Instead, the loop can be terminated in other ways, e.g.,
timeout(t, repeat(S)).

Non-termination

stall
The stall combinator never completes or fails and always has a rate of zero. The follow-
ing examples show how this can be useful.

This program waits 10 seconds before starting S.

This program repeatedly tries to fetch the URL, but waits 10 seconds between attempts.

Failure

fail
The fail combinator fails immediately. It is hard to construct examples in our small lan-
guage where this is useful, though we include it anyway for completeness, and because
we expect it to be useful when the language is extended to include conditionals and
other more traditional programming language constructs.

2.3 Examples

We now show some simple examples to illustrate the expressiveness of the service
combinators. It is our intention that our service combinators be included as a fragment
of a larger language, so for these examples (and in our implementation) we include
some extensions. We use “let” to make top-level bindings, and we use “fun(x) body”
and “function(argument)” for function abstraction and application. It is not completely
clear how to define the semantics for these extensions in terms of the service model
used above. If we are going to very Web-oriented, then perhaps functions should be
implemented as gateways, and bound variables should actually refer to dynamically
allocated URLs. Regardless, for the simple examples which follow, the meaning should
be clear.

Example 1

url("http://www.cs.cmu.edu/")
This program simply attempts to fetch the named URL.

Example 2

gateway get("http://www.altavista.digital.com/cgi-bin/query",
pg="q" what="web" q="java")

This program looks up the word “java” on the AltaVista search engine.

timeout(10, stall) ? S

repeat(url("http://www.cs.cmu.edu/~rowan") ? timeout(10, stall))

9

Example 3

url("http://www.cs.umd.edu/~pugh/popl97/") |
url("http://www.diku.dk/popl97/")

This program attempts to fetch the POPL'97 conference page from one of two alternate
sites. Both sites are attempted concurrently, and the result is that from whichever site
successfully completes first.

Example 4

repeat(limit(1, 1, url("http://www7.conf.au/"))) |
(timeout(20, stall) ? url("http://www.cs.cmu.edu/~rowan/failed.txt")

This program attempts to fetch the WWW7 conference page from Australia. If the fetch
fails or the rate ever drops below 1 Kbytes/sec, then it starts again. If the page is not suc-
cessfully fetched within 20 seconds, then a site known to be easily reachable is used to
retrieve a failure message.

Example 5

let av = fun(x)
gateway get("http://www.altavista.digital.com/cgi-bin/query",

pg="q" what="web" q=x)
let hb = fun(x)

gateway get("http://www.HotBot.com/search.html",
... MT=x ...) (large number of other parameters omitted)

let avhb = fun(x) av(x) | hb(x)
avhb("java")

This program defines two functions for looking up search strings on AltaVista and
HotBot, and a single function which tries both concurrently, returning whichever suc-
ceeds first. It then uses this function to lookup the word “java”, to see which engine
performs this task the fastest.

 Example 6

let dbc = fun(ticker)
gateway post("http://www.dbc.com/cgi-bin/htx.exe/squote",

source="dbcc" TICKER=ticker format="decimals" tables="table")
let grayfire = fun(ticker)

index("http://www.grayfire.com/cgi-bin/get-price", ticker)
let getquote = fun(ticker) repeat(grayfire(ticker) ? dbc(ticker))
getquote("DEC")

This program defines two functions for looking up stock quotes based on two different
gateways. It then defines a very reliable function which makes repeated attempts in the
case of failure, alternating between the gateways. It then uses this function to lookup
the quote for Digital Equipment Corporation.

10

3 Formal Semantics
We now give a formal semantics for the service combinators.

3.1 The Meaning Function

The basic idea of the semantics is to define the status of a service at a particular time u,
given the starting time t. Possible values for this status are �rate, r�, �done, c�, and �fail�,
where r is the rate of a service in progress, and c is the content returned by a successful
service.

The limit combinator does not immediately fit into this framework. We handle it
by introducing an additional parameter in the semantics that is a function that indicates
the minimum rate that satisfies all applicable rate limits, in terms of the duration since
a connection was started.

Thus our semantics is based on a meaning function M with four arguments: a ser-
vice, a start time, a status time, and a rate limit function.

The meaning function implicitly depends on the state of the Web at any time. In-
stead of building a mathematical model of the whole Web, we assume that a url query
returns an arbitrary but fixed result that, in reality, depends on the state of the Web at
the time of the query.

A complication arises from the fact that Web queries started at the same time with
the same parameters may not return the same value. For example, two identical url
queries could reach a server at different times and fetch different versions of a page;
moreover, two identical gateway queries may return pages that contain different hit
counters. For simplicity, to make M deterministic, we assume the existence of an “in-
stantaneous caching proxy” that caches, for an instant, the result of any query initiated
at that instant. That is, we assume that url(String) | url(String) = url(String), while we
do not assume that timeout(t, stall) ? url(String) = url(String) for any t > 0.

The meaning function is defined compositionally on the first argument as follows:

M(stall, t, u, f) = �rate, 0�

M(fail, t, u, f) = �fail�

M(S1?S2, t, u, f) =
M(S2, v1, u, f) if M(S1, t, u, f) = �fail�
M(S1, t, u, f) otherwise
where v1 = inf {v | M(S1, t, v, f) = �fail�} (i.e. the time at which S1 fails)

11

The semantics for gateway is essentially the same as for url.
A basic property of this semantics, which can be proven by structural induction, is

that if M(S, t, u, f) = R, with R = �fail� or R = �done, c� for some c, then for all u’ ≥ u,
M(S, t, u’, f) = R.

M(S1|S2, t, u, f) =
�rate, max(r1, r2)� if s1 = �rate, r1� and s2 = �rate, r2�

�rate, r1� if s1 = �rate, r1� and s2 = �fail�
�rate, r2� if s2 = �rate, r2� and s1 = �fail�
�done, c1� if s1 = �done, c1� and (s2 = �rate, r2� or s2 = �fail� or v1≤v2)
�done, c2� if s2 = �done, c2� and (s1 = �rate, r1� or s1 = �fail� or v2<v1)
�fail� if s1 = �fail� and s2 = �fail�
where s1 = M(S1, t, u, f)
and s2 = M(S2, t, u, f)
and v1 = inf {v | M(S1, t, v, f) = �done, c1�}
and v2 = inf {v | M(S2, t, v, f) = �done, c2�}

M(timeout(v, S), t, u, f) =
M(S, t, u, f) if u – t < v
�fail� otherwise

M(limit(v, r, S), t, u, f) = M(S, t, u, g)
where g(v’) = max(f(v’), h(v’))
and h(v’) =

0 if v’ < v
r if v’ ≥ v

M(repeat(S), t, u, f) =
�rate, 0� if u ≥ vn for all n ≥ 0
M(S, vn, u, f) if vn ≤ u < vn+1

where (with inf {} = infinity)
v0 = t
vm+1 = inf {v | v ≥ vm and M(S, vm, v, f) = �fail�}

M(url(String), t, u, f) =
�done, c� if a connection fetching URL String at time t succeeds before

time u with content c.
�fail� if there exists u’ s.t. u’ ≥ t and u’ ≤ u and a connection fetching

URL String at time t fails at time u’ or has rate r’ at time u’,
with r’ < f(u’–t)

�rate, r� otherwise, if a connection fetching URL String at time t has
rate r at time u

12

3.2 Algebraic Properties

Our semantics can be used to prove algebraic properties of the combinators. In turn,
these properties could be used to transform and optimize Web queries.

We define:

Simple properties can be easily derived, for example:

An interesting observation is that our semantics equates the services repeat(fail)
and stall. However, it is still useful to include stall in the language, since the obvious
implementation will be inefficient for the service repeat(fail). Conversely, we could con-
sider eliminating fail in favor of timeout(0, stall).

A range of other equations can be derived:

Other “intuitive” properties can be checked against the semantics, and sometimes
we may discover they are not satisfied. For example, S | S’ ≠ S’ | S, because the | op-
erators asymmetrically pick one result if two results are obtained at exactly the same
time.

S = S’ iff ∀t, u≥t, f. M(S, t, u, f) = M(S’, t, u, f)

fail ? S = S ? fail = S
fail | S = S | fail = S
stall ? S = stall
S ? stall = S | stall

stall = repeat(fail)
fail = timeout(0, S)

(S | S) = S
(S1 | S2) | S3 = S1 | (S2 | S3)
(S1 ? S2) ? S3 = S1 ? (S2 ? S3)

repeat(S) = S ? repeat(S) = repeat(S ? S) = repeat(S ? ... ? S)
repeat(S) = repeat(S) ? S’

timeout(t, limit(u, r, S)) = timeout(t, S) if t ≤ u

limit(t, r, S | S’) = limit(t, r, S) | limit(t, r, S’)
limit(t, r, S ? S’) = limit(t, r, S) ? limit(t, r, S’)
limit(t, r, timeout(u, S)) = timeout(u, limit(t, r, S))
limit(t, r, repeat(S)) = repeat(limit(t, r, S))
limit(t, r, stall) = stall
limit(t, r, fail) = fail

13

4 Implementation
We have implemented an interpreter for the language of service combinators, includ-
ing top-level definitions and functions as used in the examples. This implementation is
written in Java [6].

The implementation also provides an easy interface for programming with service
combinators directly from Java. Services are defined by the abstract class Service, de-
clared as follows:

To invoke a service, the getContent method is passed a function of time which de-
termines the minimum rate for physical connections, exactly as in the formal semantics.
At the top-level, the function ZeroThreshold is normally used, indicating no minimum
rate. This method returns the content when the service completes, or returns null when
the service fails. During the invocation of the service, the current rate of the service can
be found using a concurrent call to the getRate method. Also, the current invocation
can be aborted by calling the stop method.

The various service combinators are provided as Java classes, whose constructors
take sub-services as arguments. For example, the following Java code corresponds to
example 3:

This technique could also be used to define interfaces for other domain specific lan-
guages within general purpose languages. Essentially the technique is to provide an in-
terface to the abstract syntax representation and the interpreter. If the interpreter is
object-oriented, then it will be actually built into the abstract-syntax classes as methods.
This is more efficient than providing an interface to the whole interpreter using strings,
and it avoids parsing and lexing errors at run-time.

In some sense the implementation is only an approximation to the formal seman-
tics because the semantics ignores interpretation overhead. However, it is quite a close
approximation, since interpretation overhead is very small for most programs com-
pared to the time for data to be transmitted.

The rate of a basic service is defined to be the average over the previous two sec-
onds, as calculated by samples done five times a second. This appears to give good re-
sults in practice, though admittedly it is somewhat ad hoc.

The implementation uses the Sun Java classes to fetch URLs. A small modification
was made to them so that failures are correctly detected, since they normally catch fail-
ures and instead return an error page.

public abstract class Service {
public Content getContent(FuncTime tf);
public float getRate();
public void stop(); }

new Par(
new Media("http://www.cs.umd.edu/~pugh/popl97/"),
new Media ("http://www.diku.dk/popl97/"))

14

5 Conclusions and Future Directions
We have shown that a simple language allows easy expression of common strategies
for handling failure and slow communication when fetching content on the Web. We
have defined such a language based on service combinators, implemented it, and given
a formal semantics for it.

Our intention is that our language will be extended to a more powerful Web-
scripting language. Such a language would include some common language features
such as functions and conditionals. It should also include additional features for Web-
programming beyond our service combinators, for example special constructs for ma-
nipulating HTML content, possibly linked to a browser. Another direction is to allow
scripts themselves to be stored on the Web, and in our implementation we have exper-
imented with this. It should also be possible to write scripts which provide content on
the Web, and perhaps even export a function as a CGI gateway. A full Web-scripting
language might even allow a thread of execution to migrate via the Web.

A language with all these features would certainly be very powerful and useful. In
this paper we have concentrated only on one particular aspect which is unique to the
Web, namely its unreliable nature. By first considering the fundamental properties of
the Web we have built a small language whose computation model is tailored for Web
programming. We hope that this language and model will serve as a firm foundation
for larger Web scripting languages. Elements of our language design and formal se-
mantics should also be useful to designers of other domain specific languages in do-
mains which include real-time concerns or where failures are common.

Acknowledgments
Luca Cardelli would like to thank David Jefferson and a group of people at Digital Palo
Alto who met to discuss Web-related issues. Those discussions provided the initial
stimulus for this work.

Rowan Davies would like to thank Digital SRC, including all its staff, for providing
the opportunity to work in a exceptionally stimulating and pleasant environment dur-
ing the summer of 1996.

Martín Abadi and Paul McJones reviewed early drafts.

15

References
[1] Borenstein, N., and N. Freed, MIME (Multipurpose Internet Mail Extensions)

Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies, RFC 1521, Bellcore, Innosoft, September 1993.

[2] Berners-Lee, T., R. Cailliau, A. Luotonen, H. F. Nielsen, and A. Secret: The World-
Wide Web. CACM 37(8): 76-82, 1994.

[3] Berners-Lee, T., and D. Connolly, Hypertext Markup Language - 2.0, RFC 1866,
MIT/W3C, November 1995.

[4] Berners-Lee, T., R. Fielding, and H. Frystyk, Hypertext Transfer Protocol - HTTP/
1.0, RFC 1945, MIT/UC Irvine, May 1996.

[5] Gordon, M., R. Milner, and C. Wadsworth, Edinburgh LCF. Lecture Notes in
Computer Science 78. Springer-Verlag. 1979.

[6] Gosling, J., B. Joy, and G. Steele, The Java Language Specification. Addison-Wes-
ley. 1996.

[7] Internet Engineering Task Force, Internet Standards. The Internet Society, <http:
//www.isoc.org>. 1997.

[8] World Wide Web Consortium, HTTP - Hypertext Transfer Protocol, <http://
www.w3.org/pub/WWW/Protocols/>. 1997.

