
May 1, 1997
Modified April 1, 1998

SRC
Research
Report 147

Should Your Specification Language Be Typed?

Leslie Lamport and Lawrence C. Paulson

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

http://www.research.digital.com/SRC/



Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.



Should Your Specification Language Be Typed?

Leslie Lamport and Lawrence C. Paulson

May 1, 1997
Modified April 1, 1998



Lawrence C. Paulson is at the University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England. His email address is
larry.paulson@cl.cam.ac.uk .

c©Digital Equipment Corporation 1997

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.



Authors’ Abstract

Most specification languages have a type system. Type systems are hard to get
right, and getting them wrong can lead to inconsistencies. Set theory can serve
as the basis for a specification language without types. This possibility, which has
been widely overlooked, offers many advantages. Untyped set theory is simple and
is more flexible than any simple typed formalism. Polymorphism, overloading, and
subtyping can make a type system more powerful, but at the cost of increased com-
plexity, and such refinements can never attain the flexibility of having no types at
all. Typed formalisms have advantages too, stemming from the power of mechan-
ical type checking. While types serve little purpose in hand proofs, they do help
with mechanized proofs. In the absence of verification, type checking can catch er-
rors in specifications. It may be possible to have the best of both worlds by adding
typing annotations to an untyped specification language.

We consider only specification languages, not programming languages.



Contents

1 Introduction 1

2 Types are Not Necessary 4
2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Functions versus operators . . . . . . . . . . . . . . . . . . . . . 7
2.5 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 What is 1/0? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7.1 Finite lists . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.2 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7.3 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Typed Formal Languages 11
3.1 Typed Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Disjoint Sums and Datatypes . . . . . . . . . . . . . . . . . . . . 12
3.4 Sets in Higher-Order logic . . . . . . . . . . . . . . . . . . . . . 13
3.5 More Sophisticated Type Theories . . .. . . . . . . . . . . . . . 14

3.5.1 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Overloading . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Constructive Type Theories . . . . . . . . . . . . . . . . . . . . . 16

4 Sets Versus Types 17
4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Convenience . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.4 Abstractness . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Specification without Verification. . . . . . . . . . . . . 21
4.2.2 Verification by Machine . . . . . . . . . . . . . . . . . . 21
4.2.3 Verification by Hand . . . . . . . . . . . . . . . . . . . . 23

4.3 The Trouble with Predicate Subtypes . .. . . . . . . . . . . . . . 23

5 Conclusions 25



1 Introduction

Types have become ubiquitous in computer science. The advantages of typed pro-
gramming languages are obvious, so most computer scientists assume that they
should also be used in languages and logics for specification and verification. Some
computer scientists we have talked to even doubted that an untyped formalism can
be sound. Types do more good than harm in a programming language: they let the
compiler catch errors that would otherwise be found only after hours of debugging.
Specification and verification are different from programming; we do not run spec-
ifications, and there is no convincing analogy between debugging and verification.

We begin with two examples illustrating that types are not as benign as they
may seem to the unwary. We then try to help readers answer the question, should
the specification language they use be typed?

As the first example, suppose that a program contains an arrayA of type
NAT → NAT and two variablesi and j of type NAT, where NAT is the type of
natural numbers. Consider the following question: is the postconditionA[i − j ] =
A[i − j ] true if the program terminates withi − j < 0 (soA[i − j ] is not type-
correct)? “It’s a run-time error” is not a meaningful answer, since our question is
whether a mathematical formula is true, and formulas don’t run. Indeed, the pro-
gram might be error-free; we can ask this question even if the expressionA[i − j ]
does not appear in the program. In any conventional logic (including the one we
outline below), the answer is clear—the formulae = e is a tautology for any ex-
pressione. Now let us examine some popular books that use types and see how
they answer this question. The books by Chandy and Misra [3] and Manna and
Pnueli [28], despite their efforts to be rigorous, do not provide an answer. Gries and
Schneider were more careful in the description of the typed logic in their book [17].
Their explicit typing rules tell us thatA[i − j ] = A[i − j ] is not a legal expression.
Unfortunately, those same rules tell us that(i − j ≥ 0)⇒ (A[i − j ] = A[i − j ]) is
also an illegal expression. It would appear to be rather awkward to use their logic to
reason about a program containing the statementif i − j ≥ 0 then A[i − j ] := 0.
Few other books cope any better with the interactions between types and defined-
ness. The book by Apt and Olderog [1] avoids such problems by not allowing the
type NAT; one has to use the type INT of all integers. It also insists that all func-
tions be total, even defining division by zero to yield zero. Apt and Olderog do not
allow you to declare an array indexed by the set{0, . . . ,99}, but they do allow you
to write x := 1/0 in place ofx := 0.

As the second example, consider an algorithm for computing the gcd of (the
initial values of) the variablesm andn. The assertion that the result is the gcd
of m and n will be expressed by some formulaF (m,n). In an untyped for-
malism such as untyped temporal logic or an untyped version of Dijkstra’swp

1



calculus, correctness of the algorithm for all integers is expressed by the formula
(m,n ∈ Z) ⇒ F (m,n), whereZ is the set of integers. In a typed formalism,
it is expressed by the validity ofF (m,n) whenm andn are of type INT, an as-
sertion we writem,n : INT ` F (m,n). We would expect that an algorithm for
computing the gcd of two integers also computes the gcd of two natural numbers.
In an untyped formalism, this is the case because(m,n ∈ Z)⇒ F (m,n) implies
(m,n ∈ N) ⇒ F (m,n), since the setN of natural numbers is a subset ofZ.
However, in many typed formalisms,m,n : INT ` F (m,n) does not necessarily
imply m,n : NAT ` F (m,n). For example, in a typed formulation of thewp
calculus,wp(n := n − 1, TRUE) equalsTRUE if n has type INT and equalsn > 0
if n has type NAT [16].1 Thus,n : INT ` wp(n := n − 1, TRUE) is valid, but
n : NAT ` wp(n := n − 1, TRUE) is not. We believe that, in formal versions of
the logics of Chandy and Misra and of Manna and Pnueli,m,n : INT ` F (m,n)
will not imply m,n : NAT ` F (m,n) for arbitraryF .

Many type systems have been proposed that handle the first example. We will
describe the most popular, and point out their costs. The problem posed by the
second example seems to have gone unnoticed. Our raising of it has elicited two
kinds of responses from advocates of typed systems. The first is that changing the
type of a variable in a program changes the program, so there is nothing surpris-
ing about the example. But the example is about the specification of an abstract
algorithm, not about programs. We expect any informal description of Euclid’s
algorithm that works for integers to work for natural numbers. It seems reasonable
to expect the same of a formal description, but types force us to abandon common
sense and think like a programmer. The other response has been that there is some-
thing wrong with a formalism in whichn : INT ` G does not implyn : NAT ` G
for any formulaG. One referee even wrote thatwp(n := n − 1, TRUE) isn’t a
formula, but “a meta-theoretic operation on formulas”. As far as we know, all pro-
gramming logics and temporal logics share this problem. In this view, apparently
these logics are either all flawed, or else they aren’t really logics, but are calculi of
meta-theoretic operations.

An untyped formalism based on axiomatic set theory, the standard way of for-
malizing everyday mathematics, can provide a simple, powerful foundation for
writing formal specifications. For readers not familiar with set theory, Section 2
describes such a formalism and explains how it avoids the potential inconsistencies
of naive set theory. Readers already familiar with set theory may find this section
perfectly obvious.

1We are using Gries’s semantic definition ofwp from Chapter 7 [16, page 108]. His rule for
computingwp of an assignment statement in Definition 9.1.1 could be interpreted to mean that
wp(n := n − 1, TRUE) equals eithern > 0 or TRUE, whenn has type NAT. The ambiguity arises
because Gries gives no typing rules.

2



Some computer scientists are so used to thinking in terms of types that they
find untyped set theory completely unnatural. To them, types express a natural
classification of objects—a classification that should be enforced by the syntax.
They feel that we should not be allowed to write a nonsensical formula like 2∩N.
Some believe that integers and real numbers are completely distinct types, and it
should make no sense to assert that the integer 2 equals the real number 2 [23].

There is nothing inherently natural or unnatural about types or sets. There are
mathematicians and computer scientists who find untyped set theory to be com-
pletely natural. To them, not being allowed to write 2∩N is a confusion of syntax
with semantics—like trying to redefine the grammar of English so “Rocks are car-
nivores” is not a well-formed sentence. They are happy with the standard mathe-
matical construction of the real numbers, in which the integers are identified with
(declared to be) a subset of the reals. They find types to be an unnecessary and
unnatural complication.

We eschew philosophical arguments about what is natural. We believe that, as
Dana Scott once said, “Logic is an experimental science.” For us, a formalism is
a tool, not an end in itself. We are concerned here withworking formalisms, those
intended as a foundation for the varied and often quite large specifications that arise
in industrial practice, where even a simplified, high-level formal specification of a
system can be more than 50 pages. The choice of a working formalism should be
based on pragmatism, not philosophy. Types should be used if and only if they
help more than they hinder. We explain how they help and how they hinder, so
readers can make a more informed choice of whether to use them. We also discuss
the possibility of getting the best of both worlds by overlaying type systems atop a
basic untyped formalism.

Section 3 describes the general classes of type systems and how they are used.
It is followed by a discussion of the pros and cons of typed and typeless formalisms.
From this discussion, we draw the following conclusions:

• If a specification language is to be general, it must be expressive. No sim-
ple type system is as expressive as untyped set theory. While a simple type
system can allow many specifications to be written easily, it will make some
impossible to write and others more complicated than they would be in set
theory. The constructive type theories described in Section 3.6 may be ex-
pressive enough for writing just about any specification, but they are ex-
tremely complicated.

• Any error caught by type checking will be found easily when reasoning about
a specification. However, large specifications are seldom verified, and type
checking can catch errors in them that would otherwise go undetected. More-

3



over, mechanical theorem proving with a typed formalism may require less
human intervention than with untyped set theory.

• Types serve little purpose in practice unless enforced by mechanical type
checking.

These conclusions suggest the possibility of using untyped set theory, either by
itself or in combination with a type system that poses additional well-formedness
conditions on formulas. Different type systems could be used for different speci-
fications, or even for different parts of the same specification. We believe that this
approach merits further study.

While types can be helpful for tools that must deal with real applications, they
serve little purpose in the kind of textbooks we have discussed, which rely exclu-
sively on hand proofs. In such books, types either unnecessarily restrict the range
of applications, or else add complications that are masked only by informal pre-
sentations that sweep them under the rug,

2 Types are Not Necessary

Although specification languages may employ esoteric formalisms like temporal
logic or process algebra, those formalisms are generally based on a more mundane
assertion language. The formalism’s type system, or lack thereof, comes from this
underlying language. We now sketch an untyped language, based on ZF set theory,
for specifying data structures and operations on them.2 It is similar to the language
mechanized by one of us using Isabelle [36, 39].

2.1 Logic

Our language is based on first-order predicate logic with equality. We also use
Hilbert’s ε operator [27], which we callchoose. The expressionchoosex .P(x )
denotes an arbitrary valuex that satisfiesP(x ), if one exists; otherwise it denotes
a completely arbitrary value. Thechooseoperator satisfies the following axiom
schemas (⇒ is implication and≡ is the boolean operatorif and only if).

(∃ x .P(x )) ⇒ P(choosex .P(x ))
(∀ x .P(x ) ≡ Q(x )) ⇒ (choosex .P(x )) = (choosex .Q(x ))

(1)

2We prefer Zermelo-Fraenkel (ZF) set theory. However, for the purposes of this article, other
axiom systems such as Bernays-G¨odel (BG) would serve just as well. Implementors of theorem
provers might prefer BG to ZF because BG has no axiom schemes.

4



Althoughchooseis seldom mentioned in logic texts, mathematicians implicitly use
similar operators all the time. Assumingx 6= 0, a mathematician might define 1/x
to be the unique number such thatx · (1/x ) = 1. This can be expressed formally
as

1/x 1= choosey . (y ∈ R)∧ (x · y = 1)

whereR is the set of real numbers. To write a specification, we define new op-
erators in terms of the primitive ones provided by the formalism. We take the
simple view that definitions are purely syntactic. For example, writingF (x ) 1=
∃ y .G(x , y) makesF (e) an abbreviation for∃ y .G(e, y), for any expressione.
An operator can be defined only in terms of primitive operators and operators that
have already been defined. (Recursion is discussed below.) Thus, by replacing
defined symbols with their definitions, any expression can be reduced to one con-
taining only the primitive operators. A definition cannot introduce unsoundness, so
we never have to prove a theorem in order to make a definition. Of course, we have
to prove that the operators we define have the properties we want. For example, we
define theif /then/elseconstruct by

if p then e1 elsee2
1= choosex . (p ∧ (x = e1)) ∨ (¬p ∧ (x = e2))

From this definition and the axiom schemas (1), we can prove

(if true then e1 elsee2) = e1

Sincechooseis permitted in function definitions, the first axiom of (1) yields a
strong form of the axiom of choice. One can use a more restrictedchooseoperator
with weaker axioms, but the unrestricted form is more convenient. There seems to
be no practical reason to avoid the axiom of choice in a formalism for specifying
and verifying computer systems.

2.2 Set Theory

Figure 1 describes a collection of operators from set theory that we have found
valuable in writing specifications. Some of these operators are defined in terms
of the others; the rest are primitive. We will not discuss the axioms of set theory.
When writing and reasoning about specifications, it makes no difference which of
these operators are taken to be primitive. We need only understand their meanings
and know that two sets are equal iff they have the same elements.

Naive informal reasoning about sets can be unsound. It leads to many para-
doxes [45, pages 60–65], the most famous being Russell’s paradox of the setR of
all sets that are not elements of themselves. This set satisfiesR ∈ R iff it satisfies

5



= 6= ∈ /∈ ∅ ∪ ∩ ⊆ \ [set difference]

{e1, . . . , en} [Set consisting of elementsei ]

{x ∈ S : P(x )} [Set of elementsx in S satisfyingP(x )]
{e(x ) : x ∈ S } [Set of elementse(x ) such thatx in S ]

P(S ) [Set of subsets ofS ]⋃
S [Union of all elements ofS ]

〈e1, . . . , en〉 [Then-tuple whosei th component isei ]

S 1× . . .× S n [The set of alln-tuples withi th component inS i ]

Figure 1: The operators of set theory.

f [e] [Function application]

dom f [Domain of the functionf ]

S → T [Set of functions with domainS and range a subset ofT ]

[x ∈ S 7→e(x )] [Functionf such thatf [x ] = e(x ) for x ∈ S ]

Figure 2: Operators for expressing functions

R /∈ R. In axiomatic set theory (such as ZF), paradoxes are avoided by preventing
the creation of sets that are too big. The Russell setRmight be written as the com-
prehension{x : x 6∈ x }, but ZF allows only comprehension over some previously
constructed setS , as shown in Figure 1.3

2.3 Functions

A function is usually defined to be a set of ordered pairs. Formally, one can define
the operatorApply by

Apply(f , x ) 1= choosey . 〈x , y 〉 ∈ f

and letf (x ) be an abbreviation forApply(f , x ). But, it doesn’t matter how func-
tions are defined. We prefer simply to regard the four operators of Figure 2 as
primitive, where we writef [x ] instead of the customaryf (x ) to distinguish func-
tion application from operator application.4 A function f has a domain, which
is the set writtendom f . The setS → T consists of all functionsf such that
dom f = S and f [x ] ∈ T for all x ∈ S . The notation [x ∈ S 7→ e(x )] is
used to describe a function explicitly. (We reserve the more familiarλ-notation for

3S is considered to lie outside the scope of the bound variablex in the expression{x ∈ S : P(x )},
so{x ∈ {x } : x /∈ x } equals{y ∈ {x } : y /∈ y}.

4We could usef (x ) for both; simple syntactic rules can determine which is meant.

6



other purposes.) For example, [r ∈ R\{0} 7→ 1/r ] is the reciprocal functionrecip,
whose domain is the setR\{0} of nonzero reals. We can define this function by

recip[r : R\{0}] 1= 1/r

In general,f [x : S ]
1= e(x ) definesf to equal [x ∈ S 7→ e(x )]. We describe

recursive function definitions in Section 2.5 below.

2.4 Functions versus operators

Functions are different from operators. A functionf has a domain, and we define
the value off [x ] only for elementsx in its domain. The expressionrecip[0],
which is an abbreviation forApply(recip,0), is syntactically a term, so it denotes
a value. However, we don’t know what value. It need not equal 1/0. It need
not even be a number. But, whatever its value, it must equalrecip[2 − 2], since
2− 2 equals 0. Functions are just like other values; for example,recip by itself is
syntactically a term. We can quantify over sets of functions, writing expressions
such as∀f ∈ (R→ R) . |f |∞ ≥ 0.

Operators are different from functions. (Set theorists call themclass functions.)
Consider the operator

⋃
, where

⋃
S is the union of all elements ofS . We cannot

define a functionunion so thatunion[S ] equals
⋃

S for all setsS . The domain
of union would have to be a set that contains all sets, and there is no such set. (If
there were, we would encounter Russell’s paradox.) The symbol

⋃
by itself is not

a term, so it does not denote a value.
Higher-order operators, which take operators as arguments, pose no problem.

For example, we can define the operatorincreasingso thatincreasing(F ) asserts
that the operatorF is increasing under the partial order⊆.

increasing(F ) 1= ∀A .A ⊆ F (A)

However, we do not allow quantification over operators, which would lead to a
higher-order logic. The string∃U .R ∈ U (R) is not syntactically well-formed,
since we can writeR ∈ U (R) only if U is an operator, and bound variables are
terms, not operators. We could combine ZF with higher-order logic, but there is
little reason to adopt such a complicated formalism. Because we can quantify over
functions, we have not found quantification over operators to be necessary.

The distinction between operators and functions exists in ordinary mathemat-
ics. Mathematicians don’t think of

⋃
or ∈ as functions. However, the distinction

tends to go unnoticed—perhaps because ordinary mathematicians have no generic
name for what we call operators.

7



2.5 Recursion

We allow recursive function definitions of the form

f [x : S ]
1= e(x , f ) (2)

For example, we can define the factorial functionfact on natural numbers by

fact [n : N]
1= if n = 0 then 1 else n · fact [n−1] (3)

There are several ways to define (2); perhaps the simplest is to let it be an abbrevi-
ation for

f 1= chooseg . g = [x ∈ S 7→ e(x , g)]

One can also introduce constructs for defining sets recursively, as well as for defin-
ing least and greatest fixed points [37]. They can all be translated to simple set-
theoretic definitions. However, operators, unlike functions, cannot in general be
defined recursively.

Of course, one can write silly recursive definitions—for example, replacing
n − 1 by n + 1 in (3). To prove anything about a recursively defined function,
we must prove that the recursion is well-founded. The well-foundedness of many
recursive definitions is obvious enough to be verified automatically. For some def-
initions, the proof of well-foundedness may be difficult; the question may even
be undecidable. Well-founded or not, a recursive function definition does define
some value (though not necessarily a function). A definition can never introduce
inconsistency.

2.6 What is 1/0?

Elementary school children and programmers are taught that 1/0 is meaningless,
and they are committing an error by even writing it. In set theory, one can give a
simple answer to the question of what 1/0 is: we don’t know and we don’t care.

Let us take 1/0 to be an abbreviation forrecip[0], whererecip is the reciprocal
function defined in Section 2.3. Since 0 is not in the domain ofrecip, we know
nothing about the value of 1/0; it might equal

√
2, it might equalR, or it might

equal anything else. We don’t care what it equals. For example, consider

(x ∈ R) ∧ (x 6= 0) ⇒ (x · (1/x ) = 1) (4)

This formula holds for all values ofx . Substituting 0 forx yields the formula
false⇒ (0 · (1/0) = 1), which equalstrue regardless of the value of 1/0, and
regardless of whether or not 0· (1/0) equals 1. The subformulax · (1/x ) = 1 of

8



(4) may or may not hold; we don’t know what 0· (1/0) or R · (1/R) equal, so we
don’t know whether or not they equal 1.

One drawback of the don’t-care approach is that theorems such as 1/0 = 1/0
can be proved about undefined quantities. This is avoided by more sophisticated
approaches. We can introduce a formal notion of definedness and provide axioms
for proving that terms are defined [10]. Domain theory goes even further, adding
a more defined thanrelation between functions [18]. In our experience [35], the
benefits of these approaches do not justify their complexity. Abstract Incorpo-
rated’s LAMBDA system [24] moved from a definedness logic [42] to conventional
higher-order logic for similar reasons.

2.7 Examples

The data structures and related operations found in programming and specification
languages are easily represented in set theory. We show how to represent three of
these structures: finite lists, records, and objects.

2.7.1 Finite lists

We represent a finite list of lengthn as a function with domain 1. . n, the set
{i ∈ N : 1≤ i ≤ n} of natural numbers from 1 throughn. The setList(L) of all
finite lists with elements in the setL is just equal to

⋃{(1 . .n) → L : n ∈ N}.
The lengthLen(s) of a finite lists is defined by

Len(s) 1= choosen . (n ∈ N) ∧ (dom s = 1 . . n) (5)

List andLen are operators; they cannot be functions. For them to be functions,
their domains would have to consist of all sets and all finite lists, respectively,
neither of which forms a set.

2.7.2 Records

We represent a record as a function whose domain is a finite set of strings. For
example, the set of all records that consist of aptr field that is a natural number
and asq field that is a list of natural numbers is

{r ∈ ({“ptr” , “sq” } → N ∪ List(N)) : r [“ ptr”] ∈ N ∧ r [“ sq”] ∈ List(N)}

We letr .str be an abbreviation forr [“ str”], for any stringstr .
In set theory, one can define many useful operators on records that are not ex-

pressible in conventional programming languages. For example, supposeT is a

9



“record type”—a set of records all having the same components—andr an arbi-
trary record. We can define the operatorCopy so thatCopy(T , r) is a recordt in
T such thatt .c equalsr .c for any componentc common to botht andr . We first
defineAny(T ) to equalchooset . t ∈ T and then defineCopy(T , r) to equal

[c ∈ dom Any(T ) 7→ if c ∈ dom r then r [c] elseAny(T )[c]]

2.7.3 Objects

Objects and classes generalize the concept of records and record types. One can
define the classC of all objects with acnt field and the methodadd1 that, for any
objecto in this class, returns the object that is the same aso except with itscnt
field incremented by 1.

To represent objects in set theory, we first define some elementary sets of val-
ues, including the set of all strings, the set of all integers, and any other desired sets
of primitive data values. We next define (by transfinite recursion) a setU of values
to be the smallest set containing all of these elementary sets such that ifS andT
are elements ofU , thenS → T ,P(S ), and all the elements ofS are also elements
of U . The setO of objects is then the set of all elements inU that are records.

The classC of all objects with acnt field is represented by the set{o ∈ O :
“cnt” ∈ dom o}, and the methodadd1 by the function with domainC such that
add1[o] equals the function

[ s ∈ dom o 7→ if s = “cnt” then o[“ cnt”] + 1 elseo[s] ]

for all o ∈ C . In general, a class is a set of objects, and a method is a function
whose domain is a class. The setM of methods is the union of all setsS → U such
that S ⊆ O . (Since classical mathematics has no notion of assignment, objects
defined in this way resemble objects in a functional programming language rather
than an imperative one.)

Some object-oriented languages allow methods to be associated with individual
objects. Methods are not elements ofU , so they cannot appear as fields of an
object.5 Thus, a fieldo.m of an objecto cannot equaladd1. However, we can
define a setN of method names withN ⊆ U and a functionµ in N → M such
thatµ[o.m] equalsadd1. For example, we could letN be a set of strings, define
µ such thatµ[“ add1”] = add1, and leto.m equal “add1”. In principle, we could
defineN to be the set of strings in some language for describing methods, and
defineµ to be a “compiler” for that language. In practice, any specification will
use only a small set of distinct methods, which can be assigned arbitrary names
like “add1”.

5Because the setS → S is always bigger than the setS , there is no way to construct a set of
objects so that any method can be a field of some object.

10



3 Typed Formal Languages

Types in programming languages are valuable but not essential. Two programming
languages can be quite similar except for the use of types—for example, C and
BCPL, or ML and Lisp. Programming languages use type checking to catch errors
at compile time and to improve run-time efficiency. DeclaringA to be an array
indexed by 1. . 4 allows the compiler to assign storage only for four array elements
and to detectA[“ two”] to be an error.

Types in a typed logical formalism play an essential role. If we remove type
checking, we almost certainly make the logic inconsistent and therefore useless.
One reason for adopting a typed logic is indeed to catch errors, but type checking
cannot just be disabled when it is inconvenient.

There is usually no obvious translation between the typed and the untyped
worlds. Although basic types like NAT and INT can be identified with particular
sets, more general types cannot.

One could consider ZF to be a typed formalism with the two basic types SET

and BOOL, and its syntax could be formulated as typing rules. For example,∪
would have type SET× SET→ SET andP would have type SET→ SET, making
S ∪ P illegal because it doesn’t type check. But practically all expressions would
have type SET. By a typed formalism, we mean one with many basic types, such
as NAT (natural numbers) and REAL (real numbers).

The most popular typed formalism is higher-order logic, also known as simple
type theory. Versions of it have been mechanized in a number of proof assistants,
including HOL [15], Isabelle/HOL [38], and PVS [34]. We will focus on higher-
order logic, but we will also outline alternatives to it.

3.1 Typed Set Theory

Whitehead and Russell invented types early in this century to prevent the paradoxes
of naive set theory [45]. Their work contains all the elements of modern higher-
order logic. The key idea is that a set must have a different type from its elements.
If S is a set, then it has a type of the form SET(τ); we may writex ∈ S only if x
has typeτ . The formulax 6∈ x , which occurs in the definition of the Russell setR,
is illegal becausex cannot simultaneously have typesτ and SET(τ).

All elements of a set must have the same type. Many constructions used in un-
typed set theory violate this restriction. They mostly have the flavor of encodings.
For example, in ZF one often defines the ordered pair〈a, b〉 to be {{a}, {a, b}},
and the natural numbern to be the set{0, . . . ,n − 1}. Higher-order logic uses
different definitions and can express much of mathematics easily. Occasionally,
cumbersome constructions are needed to get around its type constraints.

11



3.2 Polymorphism

As programmers know, an unduly restrictive type system can make it hard to write
perfectly reasonable expressions. Whitehead and Russell realized that a type disci-
pline has to be flexible. The proof of a theorem likex ∈ {x }must not depend on the
type ofx . They invented (in 1910!) the concept we now callpolymorphism, which
they calledtypical ambiguity. The premise of polymorphism is that we should not
have to think about types that are irrelevant, and that most type constraints should
be implicit. Whitehead and Russell never even bothered to invent a notation for
types [14].

Polymorphism uses type variablesα, β, . . . as placeholders for irrelevant types.
We can provex ∈ {x } wherex has typeα (so {x } has type SET(α)) and use
the instances of this theorem obtained by replacingα with any type. The length
operatorLen of untyped set theory becomes a polymorphic function with type
LIST(α) → NAT; we can think ofLen as a collection of separate functions, one
for each typeα. Polymorphic equations likeLen(Reverse(L)) = Len(L) can be
proved without specifying the type ofL’s elements.

A more interesting example involves the powerset operator, which has type
SET(α) → SET(SET(α)). (Recall that the simple type system for ZF gives pow-
erset the type SET → SET.) Polymorphism lets us write terms likeP(P(S )) in
which the operator appears with two different types. Most proof assistants for
higher-order logic automatically type check such terms [15, 34, 38].

3.3 Disjoint Sums and Datatypes

Properly implemented, polymorphism lets us write specifications that hardly ever
mention types. But the types are still there, and they constrain what we may write.
In A ∪B , the setsA andB must have the same type. Sometimes this restriction is
reasonable, but often it is not. IfA is a set of apples andB a set of bananas, then
it is unreasonable to prohibit the setA ∪B of fruit. The standard way to write this
set in higher-order logic is to define the new type FRUIT to be the disjoint union of
the existing types APPLEand BANANA :

datatype FRUIT
1= Apple APPLE | Banana BANANA

In addition to declaring the type FRUIT, this declaration introduces the constructor
functionsApple : APPLE→ FRUIT andBanana : BANANA → FRUIT, as well
as other functions for case analysis.

The functionApple maps from apples to fruit, but we also need to map from
sets of apples to sets of fruits. For this purpose, we can use the image operator “,

12



defined informally by
f “S 1= {f (x ) | x ∈ S }.

(This definition is easily formalized in higher-order logic.) IfA has type
SET(APPLE) and B has type SET(BANANA ), then Apple“A ∪ Banana“B has
type SET(FRUIT).

Datatype declarations can be recursive. Here is the definition of lists in terms
of two primitive functions, the empty listNil and the constructor functionCons
that takes arguments of typesα and LIST(α).

datatype LIST(α)
1= Nil | Cons(α, LIST(α))

Datatype declarations can be reduced to the underlying logic [29].

3.4 Sets in Higher-Order logic

The simple types of higher-order logic are too restricted a notion of collection
to replace sets. To write practical specifications, we need set-theoretic operators
such as union and set comprehension. We could add appropriate set theory axioms
to typed first-order logic and then develop mathematics more or less as in ZF.
However, it is more convenient to develop typed set theory within higher-order
logic, adopting functions as a primitive concept instead of coding them as sets
of pairs. This permits quantification over predicates, which are variables of type
τ → BOOL.

A practical type system for higher-order logic should provide several ways of
expressing types:

• Type variablesα, β, γ , . . . for polymorphism.

• Basic typessuch as NAT and REAL, including the type BOOL of logical
formulas.

• Type operators including the operator→ such thatσ → τ is the type of
functions from typeσ to typeτ .

• Datatype declarations.

Type checking is decidable, using the Hindley-Milner algorithm [30]. The algo-
rithm even infers the types of variables occurring in expressions. This kind of type
system is used in the functional programming languages Haskell [22] and ML [40],
since one may write code that is not only polymorphic, but almost entirely free of
type declarations. It works well in logic too.

13



Sets of elements of typeτ are represented as predicates over typeτ . We define
SET(α) to beα → BOOL and make the following polymorphic definitions of set
operations: comprehension{x | P(x )} equalsλx .P(x ), x ∈ S equalsS (x ), andP
and

⋃
are defined by

P(S ) 1= {T | T ⊆ S }⋃
S 1= {x | ∃ y ∈ S . x ∈ y}

The operator
⋃

has type SET(SET(α))→ SET(α). The other set-theoretic opera-
tors described in Section 2 have similar counterparts in higher-order logic.

In set theory, operators such asP are different from functions. In higher-order
logic they are (polymorphic) functions; there is no need to distinguish between
functions and operators.

Much of the discussion of sets in Section 2 carries over to their representation in
higher-order logic. Higher-order logic traditionally includes the operatorchoose.
It can adopt the same treatment of recursive functions and recursively defined sets.
As in untyped set theory, we can let 1/0 have some unspecified value. Since 1/0
has type REAL, its value is a real number and thus is not completely unspecified.
In principle, this can be a problem—for example, it could allow us to prove the
correctness of an algorithm that evaluates 1/0 during its execution. In practice,
this is seldom an issue.

3.5 More Sophisticated Type Theories

The simple type theory we have just described is a starting point. We now consider
some enhancements that have been added to try to create a more powerful working
formalism.

3.5.1 Subtyping

In simple type theory, a term has at most one type. We can’t consider a value of
type NAT also to be of type INT; we can only define an injectionι : NAT → INT

that converts naturals into the corresponding integers. Addition of natural numbers
and addition of integers are different operators with different types. (Overloading,
discussed below, does allow us to use the same symbol+ for both of them.)

An obvious extension to simple type theory is to allow one type to be a subtype
of another. Naturals can be a subtype of integers, and text files a subtype of files.
Then,n : NAT impliesn : INT, and we don’t need the injectionι. But such simple
subtyping is not enough. It does not solve the problem, posed in the introduction,
of the expression(i − j ≥ 0) ⇒ (A[i − j ] = A[i − j ]), whereA is an array of

14



type NAT → NAT, andi andj are variables of type NAT. We tacitly assumed that
“−” is ordinary subtraction on integers, so it has type INT × INT→ INT.6 Simple
subtyping does not allow us to type check this expression. DeclaringA to have
type NAT → NAT does not imply that it has type INT→ NAT.

This problem can be solved withpredicate subtyping, a strong form of subtyp-
ing used in the proof assistant PVS. Predicate subtyping allows us to declare NAT

to be the subtype of INT such thatn : NAT iff n : INT andn ≥ 0. The expression
(i−j ≥ 0)⇒ (A[i−j ] = A[i−j ]) then type checks with the original declarations
of i , j , andA.

In general, predicate subtyping allows type expressions to contain arbitrary
predicates, so they essentially become set comprehensions. It enables us to define
the subtype REAL 6=0 of nonzero real numbers and give the reciprocal functionrecip
the type REAL 6=0 → REAL. The question of what 1/0 means never arises; an
expression is not type correct if its meaning depends on the meaning of 1/0. Type
checking of any expression would include provingx 6= 0 for every occurrence of
1/x . Context can be used, so(x 6= 0) ⇒ (x · (1/x ) = 1) is type correct. But,
with predicate subtypes, type checking is undecidable; the user must prove the
type-correctness theorems that the type checker cannot.

3.5.2 Overloading

Overloadingmeans letting one symbol stand for many different functions, using
types to determine which function is intended. The symbol “+” could denote ad-
dition over types NAT, INT, and REAL. Because it eliminates the need for different
versions of the operators over the numeric types, overloading may be seen as an
alternative to subtyping. However, injections among the types are still required.

Haskell’s type classes [44] support overloading in a controlled fashion, ensur-
ing that symbols are shared only among suitably related types. They treat over-
loading as a generalization of polymorphism. Type classes were invented for use
in functional programming and are implemented in the proof assistant Isabelle [38].

However, overloading is probably not the best way to promote flexibility in
notation because it can lead to confusion. In any case, it is not a decisive reason to
prefer a typed language to an untyped one, so we will not discuss it further.

6There is no problem if one defines “−” to have type NAT × NAT → NAT; but declaring 1− 2
to be a natural number is a way of pretending the problem doesn’t exist, not of solving it. A system
that does meaningful type checking and allows the type NAT should not only allow(i − j ≥ 0) ⇒
(A[i − j ] = A[i − j ]), it should also disallow(i − j ≥ 0) ⇒ (A[j − i ] > 0) whenA has type
NAT → NAT.

15



3.6 Constructive Type Theories

A number of type theories, such as the Calculus of Constructions [5], have been de-
signed as constructive alternatives to classical set theory. Constructive reasoning—
whether typed or not—is concerned with what we can know, as opposed to what
might be true “out there” [8]. This shift of emphasis rejects basic laws of classical
logic, even the “obvious” tautologyP ∨ ¬P . Constructive logic accepts the truth
of every integer is either even or odd, but only because we have an effective means
of determining which alternative holds for any integer. It does not accept the state-
mentevery real number is either rational or irrational; given a real number, say as
a convergent series, we have no effective means of determining whether or not it is
rational. Constructive logic makes distinctions that are lost in classical logic. For
instance,∃x .P(x ) is a stronger assertion than¬(∀x .¬P(x )), since the former
implies that we can compute the value claimed to exist.

Formally, we do not say “A is true,” but “a is a proof ofA,” and writea ∈ A. A
proof of the conjunctionA∧B consists of a proofa of A and a proofb of B ; thus,
a proof ofA ∧ B has the form(a, b) for a ∈ A andb ∈ B . Clearly, if we regard
A andB as sets or types, thenA ∧ B is precisely the Cartesian productA × B .
Constructive type theories identify each formula with the type of its proofs.

Similarly, a proof ofA ∨ B either has the formInl(a), for a ∈ A, or Inr(b),
for b ∈ B . The disjunction is simply the disjoint sumA + B . (The Inl /Inr tag
indicates whether the attached proof verifiesA or B .) A proof of A ⇒ B must
provide a proof ofB given a proof ofA. It is a functionf such thatf (x ) ∈ B if
x ∈ A. Constructive type theories represent implication by the typeA → B of
functions fromA to B .

Quantifiers, viewed constructively, yield dependent types. A proof of∃x ∈
A .B(x ) consists of some elementa of A paired with a proof ofB(a). The corre-
sponding set or type is written

∑
x ∈ A .B(x ) and consists of all pairs(a, b) such

thata ∈ A andb ∈ B(a); it generalizes the Cartesian productA× B by lettingB
depend upon elements ofA. A proof of∀x ∈ A .B(x ) consists of a functionf that
gives a prooff (x ) of B(x ) if x ∈ A. The collection of all such functions is written∏

x ∈ A .B(x ); it generalizes the function spaceA → B by letting B depend
upon elements ofA. For example, if NLIST(n) is the type of lists of lengthn,
then the functionf that maps each natural numbern to the list [1,2, . . . ,n] has
the dependent type

∏
n ∈ Nat .NLIST(n).

Constructive type theories achieve conceptional economy by identifying∧
with ×, ∨ with +, ∃ with 6, ∀ with 5, etc. They can use the same primitives
on collections as they do on logical propositions. Their lore is too deep for us to
examine here; look elsewhere for explanations of universes, impredicativity, inten-
sional equality and other mysteries.

16



For expressing specifications, constructive type theories are no more powerful
than the classical systems we have examined above. The6 and5 constructions
can also be defined in both untyped set theory and in the typed set theory of higher-
order logic. Classic ZF texts define5 [20, page 36], and6 has a simple definition.
PVS’s predicate subtypes provide the effect of6 and5 at the level of types.

The main virtue of these type theories is precisely that they are constructive. A
constructive proof that two arbitrary numbers always have a gcd provides an algo-
rithm for computing it [43]. Researchers, using tools such as Coq [7] and Nuprl [4],
are investigating whether this can lead to a practical method of synthesizing pro-
grams.

You can perform classical reasoning in a constructive type theory by adding
P∨¬P as an axiom. The resulting system will probably be strong enough to handle
any specification problem likely to arise. However, it will be no stronger than ZF,
and it will be much more cumbersome to use. If you want classical reasoning,
use a system designed for that purpose. Since most computer scientists do prefer
classical reasoning, constructive type theories are not widely used. We will not
consider them further.

4 Sets Versus Types

Having described set theory and typed formalisms, we now compare them—first
for writing specifications, then for reasoning about them. We also cast a more
critical eye on predicate subtyping.

4.1 Specification

Our comparison of set theory and typed formalisms for writing specifications is
partitioned into four rather arbitrary categories: flexibility, convenience, pitfalls,
and abstractness.

4.1.1 Flexibility

Set theory is more flexible than typed systems. This flexibility is evident in the
ability to model objects with sets, described in Section 2.7.3. To construct a set of
all objects, we need to write sets like

⋃{B i : i ∈ S }, the union of all setsB i with
i ∈ S . No simple typed formalism that we know of admits

⋃{B i : i ∈ S } as a
type. It is a set in a typed set theory only ifB i has the same type for alli in S ,
which might require the use of disjoint sums.

Object-oriented type theories are being investigated [11], and perhaps a simple,
elegant one can be found. However, objects are just one example of the diverse

17



mathematical concepts that arise in real specifications. (In the application that
led to this example, objects were needed to represent the system, not because we
wanted to write an object-oriented specification.) We cannot expect to find type
systems ready-made for each new concept—let alone for combinations of them.
But set theory’s flexibility should enable it to take new developments in stride.
Indeed, one application of set theory is in modeling novel recursive structuring
principles that can be used in the design of new type theories [37, 39].

The flexibility of set theory is also useful in more mundane circumstances. The
Copy operator defined in Section 2.7.2 appears in a specification of a distributed
system written in part by the first author. The specification describes actions in
which a node receives a messagem of one type and sends one or more messages
of different types containing many of the fields fromm. Using Copy instead of
listing the fields to be copied makes the specification shorter and clearer. In a typed
system, one would need a separateCopy operator for each pair of types, which is
not feasible. Instead, one would define a single message type containing all the
fields from all messages, and would ignore irrelevant fields in specific messages.

The typed specification is easy enough to write, but having a single type for all
messages makes it essentially untyped. The set-theoretic specification is, in effect,
strongly typed: it distinguishes among the individual message types. This example
is typical of large specifications. It can be written in a typed formalism, but set
theory permits simplifications that would probably not even occur to someone who
has used only typed formalisms.

4.1.2 Convenience

One argument against typed formalisms is the inconvenience of having to attach
type constraints to all variables. This is at most a minor point, and it does not apply
to a well-designed language based on higher-order logic with type inference. Type
inference propagates type information, rendering most type declarations unneces-
sary. From the single declaration 0 : NAT and the expression 0∈ A ∪ {x , y}, we
can infer automaticallyx , y : NAT andA : SET(NAT). The standard type inference
algorithm has been proved to be sound [30] and enjoys other strong properties; for
instance, it always finds the most general type possible. Subtyping complicates
matters considerably. If NAT is a subtype of INT, the declaration 0 : NAT does not
determine the type of any variable in 0∈ A ∪ {x , y}. Mitchell [31] has proposed a
type inference algorithm to handle coercions between atomic types, but subtyping
clearly limits what can be inferred automatically.

Conversely, it can be argued that types make writing specifications more conve-
nient because they make implicit parts of the specification that must be expressed
explicitly in an untyped formalism. Automatic type inference can deduce thatx

18



is of type NAT in cases where a set-theoretic specification would need the explicit
assumptionx ∈ Nat . However, the simple type system that makes type infer-
ence possible would force us to writeι(x ) − ι(y), whereι is the injection of type
NAT → INT, in cases where the set-theoretic specification would let us simply
write x − y . Whether type inference helps more than injections hurt will depend
on the particular specification.

4.1.3 Pitfalls

By “pitfalls”, we mean subtle aspects of a formalism that can lead unwary users
to write specifications that don’t mean what the users think they do. We illustrate
some pitfalls using anaction formalism, in which a system is specified by an ini-
tial predicate and a next-state relation, which is a predicate relating old and new
values [21, 26]. For example, a nonterminating program in whichn is initially
0 and is continually decremented by 1 is specified by the initial predicaten = 0
and the next-state relationn ′ = n − 1. This next-state relation is equivalent to
the programming-language statementn := n − 1, but action formalisms allow
you to write next-state relations such asn = n ′ + 1 that have no counterpart in a
conventional programming language.

One would expect the next-state relationsn ′ = n − 1 andn = n ′ + 1 to be
equivalent. They are in a typed formalism, ifn is declared to have a numeric type
such as NAT or INT. They are not equivalent in an untyped formalism like ZF.
For example, there could be some nonnumeric valuev , different from 3, such that
4 = v + 1, so 4= n ′ + 1 does not implyn ′ = 4− 1. The next-state relation
for a program that continually decrementsn by 1 can be written in set theory as
n ′ = n−1 or(n = n ′+1)∧(n ′ ∈ Int), but not asn = n ′+1.7 The inequivalence
of n ′ = n − 1 andn = n ′ + 1 is a minor nuisance. But, it could lead unwary users
to write n = n ′ + 1 when they meann ′ = n − 1.

This pitfall is avoided in a typed system because declaringn to have type INT

asserts the assumption thatn andn ′ are integers. However, such assumptions lead
to a different pitfall. If we declaren to have type NAT, then we are assumingn ≥ 0
andn ′ ≥ 0. Hence,n ′ = n − 1 is equivalent to(n ′ = n − 1) ∧ (n > 0). Thus,
n ′ = n − 1 represents not the usual assignment statementn := n − 1, but the
semaphore operationP(n). This means that INT ` F does not imply NAT ` F , if
F is the formula asserting thatn ′ = n − 1 is enabled. It is quite easy to forget that
the next-state relationn ′ = n−1 is not always enabled, and this can lead to errors.
Indeed, the first author once fell into this trap and wrote incorrect proofs for a few
algorithms.

7Defining “+” so m + n is a number iffm andn are both numbers does maken ′ = n − 1 and
n = n ′ + 1 equivalent as next-state relations for a system in whichn is initially a number.

19



Subtlety is in the mind of the beholder. A subtle trap for the naive user is an ob-
vious error to the expert. An experienced user of a formalism may find it perfectly
simple and think that only other formalisms have subtle pitfalls. Set theory and
higher-order logic both have their pitfalls; there is no reason to believe that either
has fewer than the other. However, complexity usually leads to subtle problems, so
we might expect more pitfalls in a more complicated type system.

4.1.4 Abstractness

Mathematicians typically define objects by explicitly constructing them. For ex-
ample, a standard way of definingN inductively is to let 0 be the empty set andn
be the set{0, . . . ,n−1}, for n > 0. This makes the strange-looking formula 3∈ 4
a theorem.

Such definitions are often rejected in favor of more abstract ones. For example,
de Bruijn writes [6,§3]:

If we have a rational number and a set of points in the Euclidean plane, we
cannot even imagine what it means to form the intersection. The idea that
both might have been coded in ZF with a coding so crazy that the intersection
is not emptyseems to be ridiculous.

In the abstract data type approach [19], one defines data structures in terms of their
properties, without explicitly constructing them.

The argument that abstract definitions are better than concrete ones is a philo-
sophical one. It makes no practical difference how the natural numbers are defined.
We can either define them abstractly in terms of Peano’s axioms, or define them
concretely and prove Peano’s axioms. What matters is how we reason about them.
If we use only Peano’s axioms, then we will never prove 3∈ 4, even if it should
happen to follow from our definition of the natural numbers.

Experience with abstract data types has shown that defining data structures ab-
stractly in terms of their properties is error-prone. It is easy to write inconsistent
or incomplete lists of properties. When there does not already exist a well estab-
lished mathematical characterization of a data structure, one is better off defining
it explicitly in terms of sets and functions.

Even though we define data types explicitly, experience with large programs
shows that it is important not to “break” an abstraction by making use of its under-
lying representation. An abstraction can be enforced by some form of modularity
that hides the representation from users of the abstraction. Such hiding works for
both typed and untyped specifications.

20



4.2 Verification

One reason for writing a specification is to allow a subsequent verification. To say
that a program (or hardware design) is correct means that it meets its specification.
Some programs are verified by hand. Others are verified using proof tools. But
most are not verified at all, even those that have been specified formally. We now
consider what these alternatives imply about the choice of a formalism.

4.2.1 Specification without Verification

Verification is difficult and time-consuming. For most real systems, it is pro-
hibitively expensive. But the very act of writing a formal specification catches
errors, omissions, and ambiguities early in the design process [12]. This is the
main objective of the popular specification languages Z and VDM. Such specifica-
tions are seldom intended for use in proofs.

Type checking can find errors in these specifications. This is a good reason for
choosing a typed formalism. However, there may be other ways of finding errors.
We envision a system in which an untyped specification can be augmented with
typing annotations that are checked by machine. This approach is highly flexible.
The “type system” could exploit the full power of set theory, perhaps in unusual
ways. We could safely ignore “type errors”; our set theory is untyped, after all.

Analogous approaches have already been adopted for programming languages.
Soft typing [46] is one attempt to combine the advantages of untyped and typed
programming languages. Modula-3 is strongly typed but provides loopholes in
order to achieve the flexibility needed for writing systems programs [32].

A checker for typing annotations could combine the advantages of type check-
ing with the generality of set theory, but building it is a research project. Now, if
one wants the advantages of type checking, one must use a typed formalism.

4.2.2 Verification by Machine

Although not all specifications will serve as a basis for mechanical verification, the
desire for machine-checked proofs may affect the choice of a formalism.

Type checking finds errors that, in an untyped system, must be caught when
writing a proof. It can be argued that type checking saves work by catching errors
earlier. However, type errors are generally trivial compared to the subtle errors
that the proof process is designed to catch, and they are usually caught early in the
proof. Indeed, one can argue that type checking wastes time by forcing the user to
correct type errors in formulas that are later discarded because they turn out to be
wrong or unnecessary. Neither argument carries much weight. Type checking can
save work by catching an error early, and it can create extra work by forcing one

21



to type check an unnecessary formula, but the amount of time saved or wasted is
almost always negligible.

A more compelling argument in favor of typed formalisms for mechanical ver-
ification is that the type checker can automatically deduce facts that have to be
asserted as lemmas with an untyped formalism. Suppose we want to prove that
(x + 1) + y = y + (x + 1) for real numbersx andy . In an untyped system, we
would use the proof rule

∀r , s ∈ R . r + s = s + r (6)

To apply that rule, we must first provex + 1 ∈ R, using the rule

∀r , s ∈ R . r + s ∈ R

In a typed system, we would be proving(x + 1)+ y = y + (x + 1) whenx andy
are of type REAL. The analog of (6) in a typed system is simply

r + s = s + r (7)

where “+” has type REAL×REAL → REAL. One can apply (7) directly to deduce
(x + 1)+ y = y + (x + 1).

Logically, there is no difference between the untyped and typed proof. To apply
(7), the typed system must type check the expression(x + 1) + y , which requires
checking thatx + 1 is of type REAL. Hence, it has to prove the same lemma that
must be proved in the untyped proof. The two proofs are completely isomorphic,
where one writesr ∈ R in the untyped proof andr : REAL in the typed proof.
An untyped prover could automatically prove theorems that correspond to type
correctness. In fact, the Nqthm theorem prover [2] uses type information internally,
even though the logic is untyped. Still, the untyped prover ends up doing extra work
to prove type-correctness lemmas likex + 1 ∈ R; unless precautions are taken, it
may prove the same lemmas repeatedly. In ACL2 [25], an untyped theorem prover
for an applicative subset of Common Lisp, the user can provide type declarations
as hints to get the system to automatically deduce the same facts that a type checker
does in a typed system.

Applying the conditional rewrite rule implicit in (6) is sufficiently difficult with
current untyped systems that one often tries to avoid the problem by artificially
extending the definition of “+” so that (6) holds unconditionally:8

∀r , s . r + s = s + r (8)

8Boyer and Moore use this technique extensively to ensure that all functions are total.

22



For example, we can define

r + s 1= if r , s ∈ R then . . . elsenonreal (9)

wherenonreal is some arbitrary value not inR. However, this approach cannot
completely avoid the need to use type information in proofs. For example, redefin-
ing “+” and “−” in this way will not maken ′ = n − 1 andn = n ′ + 1 equivalent
for nonnumeric values ofn andn ′.

The mechanical verification systems that have so far been most successful are
probably HOL [15] and the Boyer-Moore prover [2]. Both systems have been used
for over a decade to verify many systems. HOL uses higher-order logic, while the
Boyer-Moore system is untyped, though it is not based on set theory. PVS [34],
based on predicate subtyping, has recently become quite popular. Tools for ZF,
such as EVES and Isabelle/ZF [36], are emerging; other axiom systems for set
theory, such as Bernays-G¨odel, are also suitable for automation [41]. It seems
impossible to draw any conclusions about the superiority of typed or untyped for-
malisms from experience with existing verification systems. The most significant
differences among them lie in such issues as the user interface, decision procedures,
extensibility, and the ability to write proof tactics—not in whether the formalism
is typed.

4.2.3 Verification by Hand

Any advantages that typed formalisms might have for mechanized proofs do not
apply to hand proofs. One might try to argue that, even if the proof is done by hand,
one could still use a type checker to catch some errors. However, automatic type
checking is possible only for simple type systems. The errors caught by such type
checking are mathematically trivial; they would be easily caught by any reasoning
rigorous enough to be called a proof. Type checking will catch the error sooner, but
our experience writing hand proofs indicates that this would not save a significant
amount of time.

When reasoning by hand, it makes little difference if the formalism is typed or
untyped. What matters is how simple the theorem is that one is trying to prove.
Because of its greater flexibility, set theory can allow a simpler statement of a
theorem than a typed formalism.

4.3 The Trouble with Predicate Subtypes

Predicate subtypes provide an appealing solution to the problem of the expression
(i − j ≥ 0)⇒ (A[i − j ] = A[i − j ]). They seem to add the advantages of sets to
a typed formalism. However, they introduce their own problems.

23



initially n = 0; s = [ ]
do true → n := n + 1; s := s ⊕ [42]

n > 0 → n := n − 1; s := Tail(s) od

Figure 3: A simple algorithm.

One problem with predicate subtypes is that they restrict how one can decom-
pose definitions. They permit the definition

P 1= (i − j ≥ 0)⇒ (A[i − j ] = A[i − j ])

but not the pair of definitions

Q 1= A[i − j ] = A[i − j ]

P 1= (i − j ≥ 0)⇒ Q

The definition ofQ does not type check. (Note thati andj are variables declared
elsewhere, not parameters of the definition.) To write this, one would need a sepa-
rate kind of “macro” definition (perhaps akin to C’s#define directive) that defers
type checking until the definition is used. Formulas in specifications can be very
large. Reasoning about a large formula requires defining it in terms of subformulas
whose definitions are expanded only as needed. Restrictions on what subformulas
can be defined may be burdensome.

Another problem with predicate subtypes is illustrated by the program of Fig-
ure 3. The program uses Dijkstra’sdo construct

do g1→ s1 . . . gn → sn od

which is executed by repeatedly choosing an arbitraryi such thatg i is true, and
executings i . The statement terminates when all theg i are false.Tail and⊕ (con-
catenation) are the usual operations on sequences, and [ ] is the empty sequence.
The program of Figure 3 loops forever, nondeterministically adding and removing
42s from the sequences, while keepingn equal to the length ofs. We consider the
proof that the program never setss to Tail of the empty sequence. In a formalism
based on set theory, we prove that the assertion(s ∈ List(N)) ∧ (n = Len(s))
is an invariant of the program. What do we do in a formalism based on predicate
subtypes?

With predicate subtyping,Tail would have type LISTne(α)→ LIST(α), where
LISTne(α) is the subtype of LIST(α) consisting of nonempty lists of elements of
α. If we let n have type NAT ands have type LIST(NAT), then the program of

24



Figure 3 does not type check becauseTail is applied to an expression of the wrong
type in the last clause of thedo statement. The problem can be made to go away
by adding the extra tests 6= [ ] to the second guard. But verification means proving
the correctness of a given implementation, not finding an implementation whose
correctness one can prove.

In general, the type declarations of the program variables will have to encode
an invariant of the program. In the worst case—which is probably not uncommon
for algorithms that employ “partial functions” likeTail and division—the type
declaration will have to include a large part of the invariant needed to prove the al-
gorithm correct. Type checking requires performing a major part of the correctness
proof and can be quite difficult. Type declarations are likely to be an awkward way
of expressing an invariant.

With predicate subtyping, type checking is undecidable and often requires hu-
man intelligence. A well-designed verifier will handle the easy cases automatically
and generate proof obligations for the rest. Predicate subtypes can be useful for
increasing the flexibility of the type system in a theorem prover. However, the ex-
tra flexibility comes at the price of making some specifications awkward to write.
Even with predicate subtyping, a typed formalism is significantly less flexible than
set theory. Moreover, the subtyping rules of PVS are not simple, and have caused
several bugs that violate soundness. For example, a recent PVS release note reads
in part [33]:

Soundness bug 160 is due to subtype constraints being asserted out of
context. The subtype information in B for the expression A AND B
should not be asserted globally since the subtyping might depend on
the context A.

5 Conclusions

The advantages of types in programming languages are well known. Few people
are aware of the problems they can introduce in a working formalism for spec-
ifying and reasoning about computer systems. A simple type system prohibits
the simple formula(i > 0) ⇒ (A[i ] > 0) if i has type INT and A has type
NAT → NAT. Predicate subtypes constrain how we can decompose formulas and
can require quite complicated type declarations. Set theory provides a simple,
powerful alternative that avoids these problems.

A working formalism should be designed on practical grounds. For types to be
worth using, they must offer some benefit. That benefit can lie only in the realm of
computerized tools. Without mechanical support, types have nothing to offer; set
theory’s greater flexibility makes it better suited to writing hand proofs.

25



The most obvious tool is a type checker. Simple type checking can catch er-
rors in specifications. Those errors are easy to catch with rigorous proofs. How-
ever, many specifications are never verified; they can benefit from automatic type
checking. But typed formalisms that permit automatic type checking are less flexi-
ble than set theory. The best way to catch errors may be to treat type declarations as
annotations that do not affect the meaning of the specification. If the type system
proved to be too inflexible, one could replace it by a different one or simply ignore
certain type errors.

Another important class of tool is a mechanical theorem prover. Mechanical
proofs in set theory tend to require more human guidance than proofs in a typed
formalism. Type checking establishes results that otherwise have to be proved
as theorems about set membership. However, untyped provers can already prove
some “type-checking” results automatically, and we can expect such implementa-
tions to improve. Eventually, provers based on set theory may provide the benefits
of type checking together with the ability to write specifications that cannot be type
checked.

Model checkers are becoming increasingly popular, since they provide the
guarantees of theorem proving with little human effort. Model checking, which
in principle involves exhaustively checking all possibilities, can work only on a
restricted class of specifications. This class of specifications can be defined by
adding a quite restrictive type system to an untyped formalism based on ZF, so the
class consists of all type-correct specifications. This approach is currently being
pursued by colleagues of the first author.

Set theory is particularly appealing as a single formalism that can be used for
a range of diverse and unforeseen applications. For each application, there may
exist a type theory that is ideal for it. But it is unlikely that any type theory can
be good for all applications. Universal formalisms do not exist in the real world;
set theory is as close to one as we are likely to get. Now, mathematical theories
must be redeveloped from scratch for each new verification system. The use of set
theory as a common foundation could make possible the sharing of results between
these different systems.

We believe that the generality of set theory can be combined with the bene-
fit of type-based tools by viewing a type system as just a way of imposing well-
formedness conditions on formulas. We can overlay different type systems atop
untyped set theory, choosing the one that is suited to the particular tool we want to
use. This is equivalent to defining a sublanguage of set theory to be translated into
the language of the tool. The approach was used in TLP [9], which translated from
an untyped, ZF-based first-order language into LP [13], a typed logic that (at the
time) lacked quantifiers. We believe this technique can be applied more generally
and merits further research.

26



Acknowledgements

This work began as a diatribe against types by the first author. Mart´ın Abadi,
Robert Boyer, Luca Cardelli, Peter Hancock, Peter Ladkin, Denis Roegel, Fred
Schneider, and Andrzej Trybulec suggested improvements to early versions of that
paper. Andrew Appel, then editor-in-chief of this journal, suggested that it be
published together with a rebuttal by the second author. We felt that presenting
both sides of the issue in a single article would be more fruitful. The collaboration
allowed us to explore our initial differences and eventually to reach agreement.
The views presented here are shared by both of us. Their exposition benefited
from comments by Mart´ın Abadi, Nikolaj Bjørner, Robert Boyer, Michael Gordon,
Jim Horning, Florian Kamm¨uller, Gary Leavens, J Moore, Fred Schneider, and
Natarajan Shankar.

References

[1] Krzysztof R. Apt and Ernst-R¨udiger Olderog. Verification of Sequential
and Concurrent Programs. Texts and Monographs in Computer Science.
Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong
Kong, Barcelona, 1990.

[2] Robert S. Boyer and J Strother Moore.A Computational Logic Handbook.
Academic Press, 1988.

[3] K. Mani Chandy and Jayadev Misra.Parallel Program Design. Addison-
Wesley, Reading, Massachusetts, 1988.

[4] R. L. Constable et al.Implementing Mathematics with the Nuprl Proof De-
velopment System. Prentice-Hall, 1986.

[5] Thierry Coquand. Metamathematical investigations of a calculus of construc-
tions. In P. Odifreddi, editor,Logic and Computer Science, pages 91–122.
Academic Press, 1990.

[6] N. G. de Bruijn. On the roles of types in mathematics. In Philippe de Groote,
editor,The Curry-Howard isomorphism, pages 27–54. Academia, 1995.

[7] Gilles Dowek et al. The Coq proof assistant user’s guide. Technical Report
154, INRIA-Rocquencourt, 1993. Version 5.8.

[8] Michael Dummett.Elements of Intuitionism. Oxford University Press, 1977.

27



[9] Urban Engberg, Peter Grønning, and Leslie Lamport. Mechanical verification
of concurrent systems with TLA. In G. v. Bochmann and D. K. Probst, edi-
tors,Proceedings of the Fourth International Conference on Computer Aided
Verification, volume 663 ofLecture Notes in Computer Science, pages 44–55,
Berlin, June 1992. Springer-Verlag. Proceedings of the Fourth International
Conference, CAV’92.

[10] William M. Farmer. A partial functions version of church’s simple theory of
types.Journal of Symbolic Logic, 55(3):1269–1291, 1990.

[11] Kathleen Fisher and John C. Mitchell. The development of type systems for
object-oriented languages.Theory and Practice of Object Systems, 1(3):189–
220, 1995.

[12] J. S. Fitzgerald, P. G. Larsen, T. M. Brookes, and M. A. Green. Developing a
security-critical system using formal and conventional methods. In Michael
Hinchey and Jonathan P. Bowen, editors,Applications of Formal Methods,
pages 333–356. Prentice-Hall, 1995.

[13] Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover.
In Nachum Dershowitz, editor,Proceedings of the Third International Con-
ference on Rewriting Techniques and Applications, volume 355 ofLecture
Notes on Computer Science, pages 137–151. Springer-Verlag, April 1989.

[14] Kurt Gödel. Russell’s mathematical logic. In Paul Benacerraf and Hilary
Putnam, editors,Philosophy of Mathematics: Selected Readings. Cambridge
University Press, 2nd edition, 1983. First published in 1944.

[15] M. J. C. Gordon and T. F. Melham.Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[16] David Gries.The Science of Programming. Springer-Verlag, 1981.

[17] David Gries and Fred B. Schneider.A Logical Approach to Discrete Math.
Springer-Verlag, New York, 1993.

[18] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science: Volume B: Formal Models and
Semantics, pages 633–674. Elsevier, 1990.

[19] J. V. Guttag and J. J. Horning. The algebraic specification of abstract data
types.Acta Informatica, 10:27–52, 1978.

[20] Paul R. Halmos.Naive Set Theory. Van Nostrand, 1960.

28



[21] Eric C. R. Hehner. Predicative programming.Communications of the ACM,
27(2):134–151, February 1984.

[22] Paul Hudak, Simon Peyton Jones, and Philip Wadler. Report on the program-
ming language Haskell: A non-strict, purely functional language.SIGPLAN
Notices, 27(5), May 1992. Version 1.2.

[23] Gerard Huet. Re: types and extremism. Email to Leslie Lamport.
Internet message sent on April 25, 1997 23:11:37 MET DST, number
199704252111.XAA19096@pauillac.inria.fr.

[24] Abstract Incorporated. LAMBDA. At URLhttp://www.ahl.co.uk
/lambda.html on the World Wide Web.

[25] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version
of Nqthm. InProceedings of the Eleventh Annual Conference on Computer
Assurance (COMPASS-96), pages 23–34. IEEE Computer Society Press, June
1996.

[26] Simon S. Lam and A. Udaya Shankar. Protocol verification via projections.
IEEE Transactions on Software Engineering, SE-10(4):325–342, July 1984.

[27] A. C. Leisenring.Mathematical Logic and Hilbert’sε-Symbol. Gordon and
Breach, New York, 1969.

[28] Zohar Manna and Amir Pnueli.The Temporal Logic of Reactive and Concur-
rent Systems. Springer-Verlag, New York, 1991.

[29] Thomas F. Melham. Automating recursive type definitions in higher order
logic. In Graham Birtwistle and P. A. Subrahmanyam, editors,Current Trends
in Hardware Verification and Automated Theorem Proving, pages 341–386.
Springer, 1989.

[30] Robin Milner. A theory of type polymorphism in programming.Journal of
Computer and System Sciences, 17:348–375, 1978.

[31] John C. Mitchell. Type inference with simple subtypes.Journal of Functional
Programming, 1(3):245–285, July 1991.

[32] Greg Nelson, editor.Systems Programming with Modula-3. Series in Inno-
vative Technology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1991.

[33] Sam Owre. PVS 2.1 patches (2.417). Email to pvs@csl.sri.com.
Internet message sent on Sat, Feb 7, 1998 02:53:40 -0800, number
199802071053.CAA02273@lotus.csl.sri.com.

29



[34] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. For-
mal verification for fault-tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering, 21(2):107–125, February
1995.

[35] Lawrence C. Paulson. Verifying the unification algorithm in LCF.Science of
Computer Programming, 5:143–170, 1985.

[36] Lawrence C. Paulson. Set theory for verification: I. From foundations to
functions.Journal of Automated Reasoning, 11(3):353–389, 1993.

[37] Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive
definitions. In Alan Bundy, editor,12th International Conference on Auto-
mated Deduction, LNAI 814, pages 148–161. Springer, 1994.

[38] Lawrence C. Paulson.Isabelle: A Generic Theorem Prover. Springer, 1994.
LNCS 828.

[39] Lawrence C. Paulson. Set theory for verification: II. Induction and recursion.
Journal of Automated Reasoning, 15(2):167–215, 1995.

[40] Lawrence C. Paulson.ML for the Working Programmer. Cambridge Univer-
sity Press, 2nd edition, 1996.

[41] Art Quaife. Automated deduction in von Neumann-Bernays-G¨odel set theory.
Journal of Automated Reasoning, 8(1):91–147, 1992.

[42] Dana Scott. Identity and existence in intuitionistic logic. In M. P. Four-
man, editor,Applications of Sheaves, pages 660–696. Springer, 1979. Lecture
Notes in Mathematics 753.

[43] Simon Thompson.Type Theory and Functional Programming. Addison-
Wesley, 1991.

[44] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad
hoc. In16th Annual Symposium on Principles of Programming Languages,
pages 60–76. ACM Press, 1989.

[45] A. N. Whitehead and B. Russell.Principia Mathematica. Cambridge Uni-
versity Press, 1962. Paperback edition to *56, abridged from the 2nd edition
(1927).

[46] Andrew K. Wright and Robert Cartwright. A practical soft type system
for Scheme. ACM Transactions on Programming Languages and Systems,
19(1):87–152, January 1997.

30


