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The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of itis
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.
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Abstract

We studied two aspects of the performance of Windows$"NTprocessor band-
width requirements for memory accesses in a uniprocessor system running bench-
mark and commercial applications, and locking behavior of a commercial database
on a small-scale multiprocessor. Our studies are based on full dynamic execution
traces of the systems, which inclualéinstructions executed by the operating sys-
tem and applications over periods of a few seconds (enough time to allow for signif-
icant computation). The traces were obtained on Alpha PCs, using a new software
tool called PatchWrx that takes advantage of the Alpha architecture’s PAL-code
layer to implement efficient, comprehensive system tracing. Because the Alpha
version of Windows NT uses substantially the same code base as other versions,
and therefore executes nearly the same sequence of calls, basic blocks, and data
structure accesses, we believe our conclusions are relevant for non-Alpha systems
as well. This paper describes our performance studies and interesting aspects of
PatchWrx.

We conclude from our studies that processor bandwidth can be a first-order bot-
tleneck to achieving good performance. This is particularly apparent when study-
ing commercial benchmarks. Operating system code and data structures contribute
disproportionately to the memory access load. We also found that operating sys-
tem software lock contention was a factor preventing the database benchmark from
scaling up on the small multiprocessor, and thatdhehe coherence protocol em-
ployed by the machine introduced more cache interference than necessary.



1 Introduction

This work was triggered by two performance puzzles (circa 1995) related to the
Microsoft SQL Server running on Alpha [SW95] PCs under the Windows NT op-
erating system: how could we speed up the uniprocessor version, and how could
we get closer to linear scaling for the multiprocessor version?

To answer these questions we found that we needed to look at the detailed be-
havior of the system under load. We created a tool for obtaining complete traces of
the instruction and data streams executed by the processor in all operating system
and application code. We proceeded to examine these traces and to use them to
run simulations that revealed interesting properties of the then current system. The
results of the simulations also had implications for future processor design.

The first puzzle we studied is how the processor bandwidth requirements of
applications—the bandwidth required to service on-chip instruction and data cache
misses from off-chip caches or memory—Ilimits the achievable execution speed of
the applications. This study was motivated by a discussion with some colleagues
about using a prefetching strategy to improve performance. Their studies showed
that prefetching would not help in the particular situation because there wasn't
enough processor-chip pin bandwidth to support the workload. When pin band-
width is a bottleneck, some common techniques for trying to improve performance
do not help. These include multiple instruction issue, code scheduling, prefetch-
ing, and improved external cache latency. Pin bandwidth putdiagcen how fast
an application can run. We discovered that pin bandwidth is indeed a bottleneck
for interesting commercial applications, as well as for data accesses in one of the
SPEC benchmarks that we studied.

The second puzzle we studied is how lock contention for a multiprocessor ap-
plication limits the scalability of the application. Detailed executicacas re-
veal patterns of locking that may not have been expected by the operating system
designers, application designers, or hardware designers responsible for the cache
coherence protocol. Lock contention and the related cache coherence overhead
prevent the application from scaling up beyond a small number of processors.

The contributions of this work are threefold: we provide evidence of processor
pin bandwidth limitations and locking problems for commercial applications; we
introduce a new tool for obtaining full traces of a system that allows us to study
such problems; and we are making available some of the traces upon which our
studies are based for other researchers td usiso, the understanding we gained
from this work led to significant improvements to the hardware and software in-
volved, so the results presented here do not fully apply to currently-shipping hard-

*Our uniprocessor traces are available on CD-ROM to full-time faculty members. Contact one of
the authors to obtain a copy.



ware and software.

In the next section we describe some of the more interesting aspects of the
tracing tool, called PatchWrx. Section 3 describes our studies of pin bandwidth re-
quirements for four different applications on two different Alpha processors. Sec-
tion 4 describes studies of locking behavior of one of these applications—the Mi-
crosoft SQL Server database—on a small multiprocessor. Section 5 concludes.

2 PatchWrx

To understand the traces that are the input to our performance studies it is helpful
to understand the properties of PatchWrx, the tool used to produce them. In this
section we give an overview of PatchWrx, and then describe some of the highlights
of its design and implementation.

2.1 Overview

PatchWrx is a software-only technique for capturing full time-stamped traces of
the dynamic instruction stream (i-stream) and data stream (d-stream) of operating
system and user code.

The goal of the PatchWrx effort is to capture traces of every single instruction
executed throughout many seconds of a real operating system, running some com-
plex workload on a non-microprogrammed multiprocessor. We wanted to build
a software-only solution, rather than requiring one-of-a-kind hardware that can-
not easily be applied at a customer computing environment. We wanted to gather
traces with less than a factor of ten performance degradation, so that nothing in the
operating system broke due to timeouts or excessive latencies. Finally, we wanted
to work with arbitrary binaries for which we did not have access to the source code.

The technigue we have adopted rewrites binary executable images, inserting
patches that record in a log the target of every change of control flow (branch,
call, return, system call, system return, interrupt, and return-from-interrupt), and
some base register values for d-stream memory accesses. A reconstruction program
working from the log and binary program images reproduces the trace of the full
i-stream and d-stream that was executed. Our logs are typically about 5-10 times
smaller than the resultinggces.

With the entire operating system patched for just branches (not load/store) and
logging on, everything runs at about 1/4 of normal speed until the log buffer fills
up. Thenlogging is turned off and the run speed is about 1/2 of normal speed. This
is sufficiently fast that our personal machines have run patched all the time for over
a year. With loads and stores patched in the operating system and applications,



the worst slowdown we've seen is about 1/8 of normal speed. Patched images are
30-50% larger than the originals.

PatchWrx is an offshoot of work with binary translation [SC&3], and of
the ATUM work in tracing using microcode [ASH86]. Our approach is similar
to other inline tracing efforts, but differs significantly in at least one dimension.
Most published studies are of user code only [EKKL90, LB94], or are done on
a single processor [BKW90, CB93], or require rebuilding source code [SJF92],
or trace only cache misses, not all instructions [CHRG95, TGH92]. None use
Windows NT. The excellent Shade paper [CK94] summarizes about thirty previous
tools. Using that paper’s classification, PatchWrx, like ATUM, traces executables,
user and system code, multiple domains, multiple processors, signals, dynamic
linking, and bugs, with performance similar to Shade.

We chose to produce traces rather than do on-the-fly data analysis [SE94] be-
cause of the difficulty of recreating complex execution environments months after
the original investigation. With a detailed trace, questions asked a year or more
later can still be investigated.

Somewhat like an electron microscope for computing, the PatchWrx approach
is for studying a small amount of execution in excruciating detail, rather than sum-
marizing long-running executions.

All of our experiments have been performed under Windows NT, version 3.5.
The uniprocessor experiments were run on an Alpha AXP 150 with 128 MB of
main memory. The multiprocessor experiments were run on a four-processor Al-
phaServer 2100, with 190 MHz processors and 256 MB of memory.

2.2 Trace Contents

The final output of PatchWrx is a trace containing the sequence of instructions
executed by the operating system and all applications from the time logging was
enabled up until the log buffer (from which the trace is reconstructed) filled up.
Each instruction in a trace is tagged with its program counter value, and if it is
a load or store instruction, the memory virtual address that is its source or target.
In a multiprocessor #ce, the instruction is also tagged with its processor number.
Some versions of our traces also contain timestamps on all branching instruc-
tions except for two-way branches. These are used to help line up the i-streams
from different processors in the multiprocesseaices, and to compute lock hold-
ing times in our second study, described in Section 4.



opcode time stamp target PC

opcode time stamp base register value
opcode time stamp new process id
op vector of 60 taken/fallthrough 2-way branch bits
0 8 32 64

Figure 1: Formats of PatchWrx log entries. Each entry is 64 bits.

2.3 Log Entries

While a patched system is running, a log is collected recording the information
necessary to eventually reproduce a full systemtrace. Alog is a sequence of entries
describing branching events or data references. Figure 1 summarizes the different
kinds of log entries.

As in most computer designs, the Alpha architecture has two basic forms of
branching instructions: a jump to an address in a register, and a PC-relative two-
way conditional branch. For each jump instruction, we record one log entry. For
two-way branches, we accumulate a bit-vector recording the outcome of up to 60
two-way branches in a single log entry, one bit per branch. This gives us a compact
encoding of the exact flow within a subroutine, taking only about 10% of the log
entries.

When an interrupt or page fault occurs during logging, the address of the first
instruction of the interrupt or fault handler is put in the log, along with the ad-
dress of the first instructionot executed because of the interrupt (the instruction
that would normally be executed immediately after the interrupt handler returns).
This information is used during trace reconstruction to determine exactly where
the interrupt occurred in the i-stream.

Additional log entries record information about memory load and store instruc-
tions, and process context switches.



In the Alpha implementation of PatchWrx, the log is recorded in a 45 MB
portion of physical main memory that is reserved at boot time, and is therefore
invisible to the operating system. The log buffer holds about 5.9 million eight-
byte log entries, which is enough for 5-20 seconds of real time. There is so much
information in a single reconstructed trace that we have not been motivated to try
stitching multiple taces together [CHRG95, AH90]; a single reconstructed trace
contains about 650 MB of dynamic i-stream with instruction and data addresses.

Recording the log in main memory is much faster than recording on disk or
tape. Recording in physical memory instead of virtual memory allows us to trace
the lowest levels of the operating system, including the page-fault handler, without
generating recursive page faults. It also allows us to trace across multiple threads
running in multiple address apes, without needing to write a log entry to one
address space while executing in a different address space.

2.4 PAL Subroutines for Logging

To implement the logging code, we use the Alpha architecture’s PALcall instruc-
tion, which traps to one of a set of Privileged Architecture Library (PAL) special-
ized subroutines without disturbing any programmer-visible state, such as registers.
These subroutines have access to physical main memory and to internal hardware
registers and they run with interrupts turned off. We extended the PAL-code for
Alpha NT with eight additional subroutines, and we modified some of the existing
subroutines, as summarized in Table 1. Other architectures may have supervisor
call or trap instructions that, in conjunction with modified operating system kernel
interrupt routines, could be used to get a similar effect.

2.5 Collecting Data Addresses

It is possible to capture data addresses by patching all load and store instructions,
but this fills up the log buffer quite quickly and so we would like to avoid it. We
observe that many pieces of code usdtiple references off the same base register.
Since the i-stream reconstruction recovers the actual instructions executed, we will
have these address specifications in the dynamic i-stream. Thus, for a sequence
of references over which changes to the base register value can be computed from
the i-stream, we need only record the base register’s value once. The effect is that
only one out of every 5-10 load or store instructions is actually patched, and that
for loops with constant strides through memory, only the initial base-register value
outside the loop is traced.

Our patching and reconstruction algorithms are somewhat simplistic, causing
the reconstruction to reach some loads and stores without knowing the base reg-



PAL routine | Action/Recorded info. |

PalReset (Set aside log memory)
InterruptStackDispatch next addr., interrupt target
Softwarelnterrupt next addr., interrupt target
DispatchMmFault next addr., page fault target
UNALIGNED next addr., align. fault target
RFE return from exception target
CALLSYS sys. call target

RETSYS return from sys. call target
SWPCTX new process ID

pwrdent read log entry from buffer
pwectrl init. log, turn logging on/off
pwbsr branch entry

pwjsr jumpl/call/return entry
pwldst load/store base register entry
pwbrt cond. branch taken

pwbrf cond. branch fall-through
pwpeek (for debugging only)

Table 1: Logging-related PAL subroutines. First set are modifications to existing
PAL subroutines. Second set (starting with pwrdent) are new PAL subroutines for
PatchWrx.



ister value (as with certain interrupts). When this happens during reconstruction,
we make up a random synthetic value for the base register, then track any incre-
mental changes from there. Even in code with no load/store patches at all, this
is surprisingly useful. The effect seen in the d-stream is that the bases of arrays
and structures and stacks are random, but the relative access patterns within each
aggregate are accurately reflected.

2.6 Handling Multiprocessors

When PatchWrx is running on multiple processors, the log entries for all processors
are merged into a single log buffer. This allows us to see the dynamics of the
interactions between processors. Writing a single merged log requires doing a
multiprocessor-atomic update of the next-log-entry pointer, and requires encoding
the processor number in each log entry.

Rather than interleaving single entries, we allocate chunks of 128 entries to
each processor. This cuts down the frequency of atomic updates by two orders
of magnitude and lets us encode the processor number once per chunk of entries,
rather than in every entry. With log entries generated on each processor at the
rate of about one per microsecond, a group of four chunks represents about 100
microseconds of real time on a four-processor system.

2.7 Trace Reconstruction from Logs

Reconstruction of a full trace given a log and a set of binaries is mostly straight-
forward. As described above, some special care and techniques are applied for
obtaining data addresses from a limited set of base register values recorded in a
log. Two additional tricky issues involve handling interrupts and merging multi-
processor traces.

The first issue concerns where to insert interrupts in a reconstructed i-stream.
During reconstruction, one potential place to divert the i-stream to the interrupt
handler is after all jump entries that precede the interrupt have been consumed,
when the instruction that matches the not-executed address in the next log entry
is encountered. If the not-executed instruction is inside a loop, the interrupt must
be delivered during the right iteration. Loop iterations are controlled by jumps
or conditional branches. So it is necessary to consume not only all the preceding
jump entries in the trace, but also exactly the right number of itimmé| branch
bits before delivering the interrupt. For this reason, we flush the partially accu-
mulated taken/fallthrough vector into the log buffer just before recording the trace
entries for an interrupt. This allows a perfect reconstruction of where to deliver an
interrupt.



The second issue concerns merging traces frontiphel processors. This re-
quires special care because the time stamps within the entries come from four dif-
ferent cycle clocks (oscillators) on a four-processor system. These clocks are not
synchronized with each other, and we observe drift of up to 100 partsipiEmm
(100 microseconds per second) within logs. All we really know about the clocks is
that the first time stamp in chunk was created after the first time stamp in chunk
N — 1 and before the first one in chumk + 1.

By carefully applying running inequalities between hundreds of chunks, we can
map the drifting time bases into a single absolute time from the beginning of the
log, within a window about two microseconds wide. We use this derived absolute
time base to interleave the instructions in the reconstructed merged i-stream. The
effect is that an instruction on one processor that stores to a shared variable is close
(within dozens of instructions at a 4x tracing slowdown) in the final i-stream to
an instruction on another processor that reads the shared variable and in fact sees
the new value. Although we cannot guarantee that the store precedes the load
in the final i-stream, we find this close enough for understanding multi-processor
dynamics, including cache interactions.

2.8 I-stream Distortion

Because the patches introduce extra instructions and extra memory references on
an instrumented system, there is necessarily some distortion in the timing of the
reconstructed i-stream. There is little distortion of the i-stream itself, since the re-
construction excludes the patches. The paths through subroutines and the sequence
of subroutine calls are the same in the reconstructed i-stream as they would have
been in an uninstrumented system.

The reconstructed and uninstrumented i-streams differ in four subtle ways,
however.

First, the patched images are bigger than the originals, so shared-library images
loaded into consecutive memory locations end up at somewhat different addresses.
This can have a slight effect on instruction cache (i-cache) simulations for large
caches based on the traced instruction addresses. Patching expands images by
multiples of 64 kilobytes, so the larger size images have no effect on sawile
simulations; the low 16 bits of patched and original i-stream addresses are identical.
There can be a similar slight effect on data cache (d-cache) and translation buffer
simulations, as patches can also cause data to be moved.

Second, the patched images can take i-stream page faults on the pages contain-
ing the patches. While the patches themselves never show up in the reconstructed
i-stream, the extra page fault traps and processing do. This appears to be only a
slight distortion.



Third, timer interrupts happen four times more frequently in the traced code
than in the uninstrumented code, due to the factor of 4 tracing slowdown. In Win-
dows NT 3.5, this increases the total number of instructions executed by about 1
percent. We have chosen to ignore this in our studies, but one could mechanically
remove three of every four timer interrupts to further reduce the distortion.

Finally, external interrupts (disk, network, etc.) happen approximately four
times sooner in the traced code than in the uninstrumented code (again due to the 4x
tracing slowdown). To the extent that they are a consequence of the workload being
traced, there are not more interrupts peallion instructions executed-each one
just occurs relatively sooner in the i-stream. Running an interrupt routine sooner
than it would have run in the uninstrumented code can have a subtle effect on
the memory access patterns of a processor, but there appears to be no interesting
distortion when aggregated over several seconds.

3 Pin Bandwidth Study

Ouir first study using PatchWrx traces is a comparison of processor pin bandwidth
requirements for a few different applications running under Windows NT on two
Alpha processors. As shown in Figure 2, we are interested in the bandwidth be-
tween the processor chip (with on-chip i- and d-caches) and the board-level cache.
This memory traffic is due to i- and d-cache misses. The question is: how many
bytes per second need to cross the pins of a processor chip when running a given
program at full speed? The answer is a function of the workload, including user
and system activity, the properties of the processor chip, the clock speed, and the
desired clock cycles per instruction (CPI). For our study, “full speed” is 1 CPI.
The answers are interesting because, as we’ll see, processor pin bandwidth is a
first-order bottleneck for important applications.

3.1 Configuration

We looked at four applications:

1. Microsoft SQL Server, October 1994 beta version, a commercial database
server, running the TPC-B [Gra91] benchmark. The trace contains 64.5 mil-
lion instructions, spanning several hundred transactions.

2. GEM compiler [B~92] back-end, from Digital’s commercially available op-
timizing C compiler, compiling a 3000 line C program. The trace contains
29 million instructions.

3. tomcatyv, from the SPEC92 floating point benchmarks [SPE]. The trace con-
tains 47 million instructions.
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Figure 2: Processor pin bandwidth

4. ear, also from the SPEC92 benchmarks. The trace contains 83.84 million
instructions.

We chose these applications because they give a variety of data points, from heavy
memory system usage to light usage. At the time we started the experiments, the
SPEC95 benchmarks were not yet available. It would be interesting to do the same
experiments for the gcc SPEC95 benchmark, to see how it compares to the GEM
results.

We took traces of these applications running on a uniprocessor Windows NT 3.5
system. The traces varied as to how much load/store patching was done. The rea-
sons for not just doing full load/store patching relate to current PatchWrx limi-
tations on image sizes and the slowdowns introduced by load/store patching. As
shown in Table 2, none of the uniprocessor traces had loads and stores patched in
the operating system. For the SQL Server and ear uniprocessor traces no loads or
stores were patched in the application images. For the GEM compiler and tomcatv
traces, load and store instructions were patched in the application images. None
of the i-stream references in these traces are synthetic, but the d-stream synthetic
references vary from 8% to 73%.

We used these traces to simulate the caching behavior of different processor
chips under the assumption that the trace executes at 1 CPI. The simulation com-
putes the number of bytes that would need to cross the pins to the board-level

10



System| Appl. | Synthetic
Ld/st Ld/st data
Application | #instr. | patched| patched addr.

SQL Server| 64M n n 73%
GEMcomp.| 29M n Y 8%
Tomcatv 47M n Y 24%
Ear 83M n n 14%

Table 2: Trace characteristics.

cache. These numbers were broken down by the source of the traffic: instruction
reference misses, and data reference misses of a variety of kinds.

We looked at the behavior of each application on two different Alpha proces-
sors: the Alpha 21064 at 200 MHz, and the Alpha 21164 at 400 MHz.

The Alpha 21064 runs at 200 MHz and has 8 kilobytes each of direct-mapped
write-through i-cache and d-cache with a 32-byte cache line size. Each instruction
cache miss and data read (load) miss causes 32 bytes to cross the pins. Writes go
into a group of four write buffers. A write to a different address causes 32 bytes
to cross the pins to flush one of the dirty write buffers. The actual pin bandwidth
on this processor is realistically about 300 MB/sec. The maximum bandwidth is
about 600 MB/sec.

The Alpha 21164 runs at 400 MHz and has a single 96-kilobyte 3-way associa-
tive write-back combined i-cache and d-cache with a 64-byte cache line size. Each
i-cache miss and load miss causes 64 bytes to cross the pins. This processor has a
write-back cache: writes that hit in the cache do not cause any bytes to cross the
pins but do make a cache line dirty. Writes and reads that cause a dirty cache line to
be flushed (“victim writes”) cause 16—64 bytes to cross the pins, depending on what
portion of the line has been modified; dirty bits are kept for each 16-byte subblock.
Writes that miss also cause a cache line to be allocated and filled from memory, so
they cause 64 bytes to cross the pins for the read. Note that some of these reads
will be unnecessary overhead if all 64 bytes are eventually overwritten (“redundant
reads” as compared to “useful reads”). The realistic pin bandwidth on this machine
is about 750 MB/sec, and the maximum bandwidth is about 1.6 GB/sec.

3.2 Results

For each of the applications on each of the processors we looked at a plot of the
processor pin bandwidth requirements over time. This shows the dynamics of the
traffic in addition to giving us upper bounds on the requirements.

11
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Figure 3: Pin bandwidth requirements of SQL Server running on Alpha 21064 and
21164 processors.

3.2.1 SQL Server

Figure 3 shows the simulation results for pin bandwidth requirements on the Al-
pha 21064 and 21164 processors for the SQL Server workload. The x-axis marks
time in chunks of 0.5 million instructions, and the y-axis shows the number of

12



gigabytes per second of traffic across the pins for a given instructionrace.

The top graph shows the 21064 results. The traffic is broken down into i-cache
misses (imiss), d-cache read misses (dmiss), and write buffer flushes (dwrite). At
1 CPI, the pins are overcommitted by a factor of two just on instruatexhe
misses alone. Three bytes of instruction miss in the cache for every four bytes
executed. The required bandwidth for all traffic is about 1.2 GB/sec, or about
four times the bandwidth that the processor realistically can deliver. In fact, the
uninstrumented workload achieves about 4.3 CPI, giving us confidence that the
cache simulations are valid. The simulation is intended to give lower bounds on
CPIs based on pin bandwidth requirements; the extra 0.3 CPI in practice is due to
non-zero latencies that are not included in the simulation.

The bottom graph shows the 21164 results. Here we split up the d-cache write
traffic into victim writes (dvict), and useful and redundant reads triggered by write
misses (dread). The required pin bandwidth here is as high as 1.7 GB/sec, so the
pins are overcommitted by more than a factor of 2 at 1 CPI. The pins are still
often overcommitted just ondache misses alone, although the i-cache miss traffic
periodically dips down below the 750 MB/sec that the processor typically delivers.

3.2.2 Compiler Back-end

The second trace for which we simulated the pin traffic is from the GEM compiler
run. The results are shown in Figure 4. The top graph shows that the required pin
bandwidth on the Alpha 21064 is about 600 MB/sec. This is about half as much as
the SQL Server workload on this machine, with a somewhat lower ratio of i-cache
to d-cache traffic. The pins ar¢ilsovercommitted by a factor of twaccording

to the simulation. The uninstrumented workload on this machine runs at about
2.5 CPI.

The bottom graph shows the results for this workload on the Alpha 21164
400 MHz processor. Note that the i-stream here mostly fits into the 96-kilobyte
cache, with about 200 MB per second of traffic left over. The total pin bandwidth
requirements are generally under about 500 MB/sec, with occasional spikes over
800 MB/sec. Thus, pin bandwidth is mostly not a bottleneck for GEM on the
21164.

3.2.3 SPEC Benchmarks

For comparison with the commercial workloads, we chose two of the SPEC92
floating point benchmarks to examine.

2Note: the bandwidth pictures show only the first 25 million instructionsaath trace; verijttle
changes in any of the traces beyond that.
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Figure 5 shows the simulation results for the tomcatv trace. On the 21064, the
i-stream essentially fits into the 8 kilobyte i-cache. The program repeatedly goes
through phases where the pins are overcommitted by factors of 1.5 to 3 or more, and
then are okay. The actual program runs at between 1 and 1.5 CPI on this machine.
On the 21164, more of the workload falls within the bandwidth limitations, with
the periodic lower plateaus well within the capacity of the processor pins, but there
are still periodic benchmark arragccess bursts that are factors of two or more
higher than the available bandwidth. Note that the instruction stream mostly fits in
the cache, and so doesn'’t contribute much to the bandwidth requirements. Also,
the demands for data bandwidth fall into a predictable pattern. Perhaps prefetching
during times when bandwidth is underutilized could help for this workload.

Figure 6 shows the simulation results for the ear trace running on the same
two processors. We see that even on the 21064, the pin bandwidth is essentially
sufficient with required bandwidth about 200 MB/sec. The actual workload runs at
1 CPI or less (because of the dual instruction issue chjped of the processor).

The requirements for ear on the 21164 400 MHz processor are well within the
range of the processor. A large part of the workload fits in the caches in this case.

3.3 Memory Maps

Looking at the patterns of memory accesses over time ligipsinate the results

of the pin bandwidth simulations shown above. Figures 7-11 show the memory
footprints for the first 25 million instructions ieach tracé The x-axis shows

time from left to right, in millions of instructions executed. The y-axis shows
virtual addresses accessed, modulo 4 MB (chosen because it is an interesting board
cache size). There is a dot in the picture for each instruction address and for each
load/store data address.

Figure 7 shows the memory footprint for the user-only part of the tomcatv
benchmark. The bottom solid line shows the instruction fetches for the benchmark,
all in a tight loop on a single page of code. The leftmost group of six upward-
sloping lines are data references sweeping forward through six half-megabyte ar-
rays. These are followed by some faster forward sweeps through different arrays,
four backward sweeps, and the data pattern repeats. This program has very pre-
dictable branching patterns and very predictable data accesses.

In Figure 8, we have added the operating system part of the trace. The periodic
vertical tics about one sixth of the way up from the bottom of the picture are the
i-stream for the timer interrupt routine (about four times too often because of the
tracing slowdown). The other dots that correlate with these are the data references

Sexcept for the ear trace, which has about 2flion instructions shown in this version
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Figure 7: tomcatv memory access plot showing the distribution of user-space ad-
dresses over time. Looking at any vertical slice we see all the addresses (mod

4 MB) that were accessed within that time slice.

Figure 8: tomcatv memory accesses, user and system.
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Figure 10: GEM memory accesses, user and system.

made in the timer routine. The occasional vertical lines of high-density references

are other operating-system activity, including the thread scheduler and network

traffic. This operating system code has less predictable branching patterns and
data accesses.

Figure 9 shows, on the same scale, a trace of both system and user addresses
for the ear benchmark. The memory usage is relatively light, with few strong
patterns other than the horizontal lines due to timer interrupts and some accesses to
application data structures, and the vertical lines due to operating system activity.

Figure 10 shows, on the same scale, a trace of the GEM compiler bench-
mark. The horizontal lines represent frequently used subroutines and frequently
used data. The visually dominant diagonal line appears to be the buffer of program
text being compiled; the compiler is sweeping forward through it (modulo 4 MB).
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The timer-interrupts are still there, but a bit harder to see. Most of the rest of the
dots are data references to linked-list data structures used by the operating system.
This workload has less predictable memory access patterns then tomcatv.

Finally, Figure 11 shows, on the same scale, a trace of the SQL Server bench-
mark. The trace looks somewhat similar to white noise—there is very little cor-
relation between addresses. This application falsifies the premise of a cache: that
accessing a location is a good predictor that the same or a nearby location will be
accessed in the near future.

These memory maps highlight the differences between the memory require-
ments of the workloads. There seems to be at least some rough correlation between
the density of the memory maps and the pin bandwidth requirements.

3.4 Cache Demand in More Detalil

To understand the processor bandwidth results better, we lookediatitbmental

cache hitcurves for cache sizes from 1KB to 16 MB. Except for the smallest cache,
the incremental hit rate for a given size cache is the numbadditionalhits that

occur in the given cache and miss in smaller caches. Portions of the incremental hit
curve for sizes bigger than processor on-chip caches represent misses that produce
the off-chip bandwidth demand.

In this section, we used direct-mapped combined i- and d-stream caches and a
line size of 64 bytes, and ran the simulations over the initial 25M instructions of
each trace.

From the bandwidth charts above, we see a marked difference in i-stream miss
rates across the uniprocessor workloads. Figure 12 shows the incremental i-cache
hit curves for three of them (we exclude ear from this Section’s discussion because
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Figure 12: Incremental I-cache Hit Curves.

its memory demands are uninteresting). For all three curves, the 1KB points are off
the chart at 845-957 hits/1000 instructions. This is to be expected — if straightline
code is executed with no repetition from 64-byte (16 instructzache lines, we
would expect 15/16 hits, or 937 hits/1000 instructions. The short vertical bars mark
8K and 96K cache sizes.

The tomcatv i-stream fits almost entirely in 8KB, with a little tail that hits only
in main memory. The GEM compiler i-stream extends out to 32KB before it drops
off, and the SQL i-stream has significant incremental hits all the way out to a 1MB
cache. This large footprint is why the SQL i-stream puts such a bandwidth load
on the processor pins. This result is roughly consistent with the i-cache miss rates
measured by [MDO94] for TPC-A and TPC-C (although they had a larger per-
centage of time in operating system code than we observed). The GEM footprint
produces a large bandwidth load with an 8KB on-chip cache but a small load with
a 96KB cache. The tomcatv footprint presents étle off-chip bandwidth load.

Figure 13 shows the incremental d-cache hit curves. All three d-streams show a
tail of references that miss even in 16MB and go all the way to main memory. The
tomcatv curve has peaks at 8KB (76 misses per 1000 instructions) and 4MB that
correspond to sizes of frequently accessed arrays in that program. The 4MB peak
is why the tomcatv d-stream puts a large periodic bandwidth load on the processor
pins.

In Figure 14, we have broken down the SQL incremental i-cache hits by system
and user code. The system hits are per 1000 system instructions, and the user hits
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Figure 14: SQL User vs. System I-stream.

per 1000 user instructions. The SQL system code is about 25% of the total i-stream.
The system code not only has a bigger cache footprint, it has a larger tail of hits in
main memory.

The SQL d-stream breakdown, Figure 15, shows system vs. user and also real
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Figure 15: SQL User vs. System D-stream.

vs. synthetic d-stream addresses. The d-stream has a high proportion of synthetic
addresses, so is not very precise. The major difference between the real and syn-
thetic addresses is a larger proportion of synthetic addresses that miss all the way
out to main memory. For both the real and synthetic d-stream addresses, the system
code has a larger footprint than the user code.

Both the GEM compiler and tomcatv i-stream breakdowns (not shown here)
reveal the system i-stream to have a much larger footprint than the user i-stream.
Similarly, the d-stream breakdowns show the system d-stream to have a much
larger footprint than the user one (although tomcatv is close, due to the large array
accesses).

In addition to observing larger footprints in system and SQL server code, the
incremental cache hit curve allows us to compute the relationship between the CPI
of a workload and the performance of various levels of the memory hierarchy. If
we multiply each point of the incremental cache hit curves by the time it takes to
service that hitin a real memory subsystem, we get the total time spent waiting on
memory accesses for that workload.

Using realistic times for early Alpha computer systems, the SQL i-stream and
d-stream hits beyond 96KB each total about 1.8 CPI. Combined with a 100%-hits
execution rate of about 1 CPI, these total about 4.6 CPI. This is roughly consistent
with the measurements in [CB94] of 4.3 CPI, and 20-25% operating system time,

and 39%+36% i-stream plus d-stream stall time, on the TP1 database workload on
an older AlphaSystem 7000 computer.
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21064 | 21164
SQL | 3.13 | 1.87

GEM | 1.20 | 0.28
tom| 0.04 | 0.06
ear| 0.05 | 0.02

Table 3: Average bytes per instruction of pin traffic due to the i-streams of each of
the benchmarks on the two processors studied.

3.5 Discussion

We conclude from these experiments that processor pin bandwidth is a bottleneck
for some applications.

SQL Server needs about two to four times the bandwidth of tomcatv, and is
limited to about 4 CPI on at least one current processor. According to another
experiment that we ran, a future processor similar to the Alpha 21164 but running
at 500 MHz would need at least 2 GB/sec of pin bandwidth to run the SQL Server
benchmark at 1 CPI.

Both SQL Server and GEM have higher pin bandwidth requirements due to i-
stream traffic than either of the SPEC benchmarks, as summarized in Table 3. This
i-stream traffic contributes significantly to the pin bandwidth bottleneck for SQL
Server. Therefore, chip designers should be looking at more than SPEC bench-
marks if they want their future chips to run commercial workloads well.

Our experiments also suggest that it is increasingly important for algorithm de-
signers to pay attention to memory structure and cache parameters if they want their
code to run fast. One example of such an effort is the AlphaSort work [NBIJ;
where careful attention to these memory details paid off handsomely.

4 Multiprocessor Study

Our second study examines the locking behavior of SQL Server running the TPC-
B benchmark on a four-processor AlphaServer 2100 symmetric multiprocessor.
The traces were taken for SQL Server version 6.00.85a (March 1995 beta release),
running Windows NT 3.5, with 12 clients running transactions against the database.
We chose this number of clients to minimize the idle time of the system, which
ended up being about 2—3%.

The trace contains about 69 million instructions. In contrast to the uniprocessor
traces, operating system loads and stores are patched. For the application code,
only loads and stores to lock variables are patched.

We use the trace in two ways. First, we look at a picture showing the timeline
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Figure 16: SQL Server lock activity. Time runs left-to-right and top-to-bottom.

of software lock acquisition and release activity. Then, we simulatedbbe co-
herence protocol employed on the machine to understand how the locking activity
affects communication among the processors.

4.1 Software Lock Activity

Figure 16 shows the timeline of locking activity for a 20-millisecond portion of
the SQL Server trace, encompassing portions of several transactions on the four
processors. The picture shows groups of four lines (with backgrounds alternately
shaded white and light gray), one line per processor, with shaded bars representing
the elapsed times that locks are held. Time runs from left to right and top to bottom.
Each group of four horizontal lines represents 2 milliseconds of elapsed time.

In this picture, we distinguish three cases: the thick black bars are the operating
system’s dispatcher lock (KiDispatcherLock), the thick gray bars are all other lock
holding times, and the thin black lines are times spent spinning while waiting to
acquire a lock. In the rectangle at 0.030 seconds, for example, processor 0 starts
out holding no locks, processor 1 holds the dispatcher lock, processor 2 is spinning
on the dispatcher lock, and processor 3 hold no locks. Processor 1 then releases
the dispatcher lock and processor 2 acquires it. Four other locks are used, then
processors 1 and 2 use the dispatcher lock again. Finally, processor 1 uses another
lock and processor 0 uses a lock.

“We usually look at this picture in color, with different colors and line widths for different locks,
making more of the locking behavior apparent at once.
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Lock acquisitions and releases are not reported directly in the trace, but rather,
must be detected by pattern matching against the common sequences of instruc-
tions used for this purpose. Therefore, the picture showing lock acquisition and
release points is not perfect. However, we have taken some care to ensure that the
picture is reasonably self-consistent, and consistent with the code.

While this picture shows just a small slice of the trace, it reveals several inter-
esting behaviors. The dispatcher lock is held for relatively long stretches of time
(200-900 instructions). Also, it is held for a large percentage of the time—about
45% of the total elapsed time. This suggests that the workload could not scale up
beyond eight processors, which would cause this lock to be held nearly 100% of
the time.

More that 16% of the time is spent spinning while waiting for a lock, usually
the dispatcher lock. This spin time would go up substantially as the lock-held
time approaches 100%. Note the convoy effect in the second rectangle, at about
0.041 seconds. Processors line up spinning for the dispatcher lock.

During the long stretch where processor 0 holds the dispatcher lock, a disk
interrupt arrives and the processor services it while still holding the lock. Other
processors are waiting to get the lock during that time.

All of the evidence above suggests that the dispatcher lock is a bottleneck.
Because of the convoy effect, it would be nearly impossible to get beyond about 6
processors’ worth of work from this code.

The picture reveals that in addition to being held for a long time overall, the
dispatcher lock is held frequently. This is because the SQL Server user code goes
through the dispatcher lock to block when one of its own locks is unavailable. This
type of lock usage was perhaps not anticipated by the Windows NT implementers.
Showing the picture to the Windows NT kernel and SQL Server implementers
at the same time brought out assumptions that each group was making about the
other’s code.

The full-color version of this picture makes other locking patterns visible. For
example, there is a repeated pattern of nine lock acquisitions (some of which are the
same lock repeatedly acquired and released) in the same order when manipulating
the operating system page tables. Examining the code may suggest ways to make
the associated operation more efficient.

4.2 Interference from Cache Coherence

The software lock activity above for achieving mutual exclusion is best tuned by

changing the software. We also looked at multiprocessor hardveatee interfer-

ence caused by writes on one processor affecting caches on other processors.
We looked in detail at the behavior of the cache coherence protocol with four
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AlphaServer 2100 processors. A pure invalidate protocol is used—a write by one
processor to a cache line invalidates all other cached copies of the line in other pro-
cessors. We found that 40% of the board-level cache misses in the 4-processor SQL
trace were due to interference from other processors—invalidates due to writes of
shared variables.

Most of these misses were in fact to about 24 cache lines containing software
locks. (Note that the time lost on servicing these misses is smaller than the time
lost above spinning on held locks.) Some of the invalidations came from false
sharing. The programmers who wrote the code assumed 32-byte cache lines and
took care to put locks in different 32-byte lines than other variables. However,
this particular machine has 64-byte lines, so a lock and another unrelated shared
variable could end up in the same line and cause unnecessary invalidations. The
ability to track shared sub-blocks in the hardware would help this problem. A
better cache coherence protocol for this workload would be a hardware design that
writes through for shared blocks, having recipients update or invalidate depending
on how recently they had touched the line. Such a design was used in the Alpha
Demonstration Unit [TCS93].

4.3 Discussion

The Windows NT 3.5 operating system code holds the dispatcher lock for so long
because it is doing a full context switch while holding the lock. It would be better
to make the decision about what to dispatch next while holding the lock, release
the lock, then perform the actual context switch without delaying the other proces-
sors. Allowing interrupts while holding the dispatcher lock also lengthens the path
and slows down other processors. It would be better to turn off interrupts before
acquiring the lock and turn them back on after releasing the lock.

The application code that triggers too-frequent use of the dispatcher lock could
adopt other locking strategies, such as trying a handful of times to acquire an ap-
plication lock before blocking or to do user-level dispatching between multiple
transactions.

Examining the dynamic locking behavior of the system reveals properties that
are more difficult or impossible to see from statistical information. We can see
clearly the convoy effect for locks that are in high demand, and we can see patterns
of locking that may suggest inefficiencies in the code. We can also identify cases
where locks are probably not a performance problem, as is true for most of the
locks in our trace.

Having the traces available for simulating cache coherence protocols helped us
to understand the causes of scaling problems in our multiprocessor system, and can
help the designers of future systems to avoid these problems.
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5 Conclusions

These studies have demonstrated that full, dynamic execution traces are useful for
designing future systems, as well as for diagnosing difficult performance problems
of current systems.

Obtaining such traces is practical using PatchWrx. The overhead is low enough
on the uniprocessor systems (about a factor of 2 slowdown) that we always ran the
systems with instrumentation in place. Overhead oftiprocessor systems was
reasonable enough to get useful traces. PatchWrx traces are in the range of about
50-100 million instructions, which was enough to observe interesting dynamic
behavior in the system while still being practical to collect.

The specific versions of software that we studied are inevitably already out of
date with respect to currently available versions, and some of the specific problems
revealed in our studies may have been fixed by now. In fact, the Microsoft SQL
Server 95 and Windows NT 3.51 and 4.0 products contain performance improve-
ments® that resulted from our studies [Gra95] . However, the same techniques and
tools can be used to look for performance problems in the new versions and the
traces §ll provide valuable input for testing future chip designs.

We find that real pieces of large software are bigger than any practical on-chip
caches, and therefore use much more processor pin bandwidth. Pin bandwidth can
be a bottleneck to running commercial workloads at the desired speed. For the near
future at least, computer design is memory design, and software design is memory
design. Pin bandwidth is an important consideration (as much as memory latency)
because it sets a lower bound on the number of clock cycles per instruction needed
to execute a workload.

Although this paper emphasizes the effect of bandwidth on the performance
of these processors, one shouldn't ignore the effect of latency. If there is insuffi-
cient bandwidth to perform a given workload, the workload will run proportionally
slowly, and there is nothing software can do to compensate for this. Systems that
have sufficient bandwidth but high memory-access latency can possibly perform
well, but only for software that is designed to hide the high latency. Both high
bandwidth and low latency are necessary for peak performance on most commer-
cial software.

SImprovements include: some collapsing of the 36 memory allocation calls per TPC-B transac-
tion, each of which calls Enter@ficalSection; replacing a slow locking sequence macro expansion
with a more efficient one, worth 5-8% all by itself, removing unnecessary calls to floating point
initialization routines; avoiding calls to OS services for CPU time and clock time; compiler im-
provements in setimp/longjmp implementation; minimizing context switches; and increasing cache
locality.
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