
April 28, 1997

SRC
Research
Report 145

Modularity in the Presence of Subclassing

Raymie Stata

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art in computer
systems. From our establishment in 1984, we have performed basic and applied research to support
Digital’s business objectives. Our current work includes exploring distributed personal computing
on multiple platforms, networking, programming technology, system modelling and management
techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by building hardware and soft-
ware prototypes and using them as daily tools. Interesting systems are too complex to be evaluated
solely in the abstract; extended use allows us to investigate their properties in depth. This experience
is useful in the short term in refining our designs, and invaluable in the long term in advancing our
knowledge. Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is in established
fields of theoretical computer science, such as the analysis of algorithms, computational geometry,
and logics of programming. Other work explores new ground motivated by problems that arise in
our systems research.

We have a strong commitment to communicating our results; exposing and testing our ideas in the
research and development communities leads to improved understanding. Our research report series
supplements publication in professional journals and conferences. We seek users for our prototype
systems among those with whom we have common interests, and we encourage collaboration with
university researchers.

Modularity in the Presence of Subclassing

Raymie Stata

April 28, 1997

Publication History

This report is a revision of a thesis of the same title submitted to the Department of Electrical
Engineering and Computer Science at the Massachusetts Instutite of Technology. This revision is
also published by MIT as MIT–LCS–TR–711.

c Massachusetts Institute of Technology 1996.
c Digital Equipment Corporation 1997

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require a license with payment of fee to the Systems Research Center. All rights
reserved.

Abstract

Classes are harder to subclass than they need be. This report addresses this problem, showing how
to design classes that are more modular and easier to subclass without sacrificing the extensibility
that makes subclassing useful to begin with.

We argue that a class should have two interfaces, aninstance interfaceused by programmers
manipulating instances of the class, and aspecialization interfaceused by programmers building
subclasses of the class. Instance interfaces are relatively well understood, but design principles for
specialization interfaces are not.

In the context of single inheritance, we argue that specialization interfaces should be partitioned
into class components. A class component groups part of a class’s state together with methods
to maintain that state. Class components establish abstraction boundarieswithin classes, allowing
modular replacement of components by subclasses. Achieving this replaceability requires reason-
ing about each component as an independent unit that depends only on the specifications of other
components and not on their implementations.

We introduce the concept ofabstract representationto denote the view of a class’s state given
in its specialization interface. This view is more detailed than the view used to describe instances of
the class, revealing details that describe the interfaces between class components. It is less detailed
than the actual implementation, hiding implementation details that should not be exposed even to
specializers.

We also consider multiple inheritance, specifically, Snyder’s model of encapsulated multiple
inheritance. We advocate separating class components into individual classes calledmixins. In-
stantiable classes are built by combining multiple mixins. With the mixin style of design, class
hierarchies have more classes than in equivalent single-inheritance designs. These classes have
smaller, simpler interfaces and can be reused more flexibly.

To explore the impact our ideas might have on program design, we consider classes from ex-
isting libraries in light of the proposed single- and multiple-inheritance methodologies. To explore
the impact our ideas might have on language design, we present two different extensions to Java,
one that provides a level of static checking for single-inheritance designs, and another that adds the
encapsulated model of multiple inheritance.

Acknowledgements

This report revises a PhD dissertation of the same title. My advisor, John Guttag, contributed to
the thesis in innumerable ways. His own research on software engineering, and the courses he’s
developed and taught, were important, technical influences. By turning my attention to the right
issues, offering key, technical insights, keeping me focused at the right level of abstraction, and
providing expert feedback on an endless stream of notes, papers, and drafts, he guided me in turning
vague intuitions into useful ideas and eventually into a dissertation. By mixing unlimited freedom
to explore ideas with invaluable wisdom and advice, he created a unique environment in which I
could develop as a researcher. By offering encouragement, support, patience, and understanding, he
made graduate school survivable. He made my graduate school experience irreplaceable.

Barbara Liskov also contributed to the thesis in essential ways. Her own work on programming
methodology and language design, and the courses she’s developed and taught, influenced and
inspired the thesis. As a member of my committee, she worked hard to help me extract, refine,
organize and explain the central ideas of the thesis. Her effort went well beyond the call of duty,
and the thesis is much better for it.

Luca Cardelli was also an invaluable member of my committee. Once again, his own work
on the foundations of object-oriented programming and type systems influenced the thesis. In his
insightful comments on papers and chapters, he brought a valuable perspective to the thesis. He
asked incisive questions—and suggested important cuts—that improved many aspects of the thesis.

My work benefited greatly from input from many people, including Steve Garland, Alan Hey-
don, Daniel Jackson, Depak Kapur, John Lamping, Gary Leavens, Rustan Leino, Andrew Meyer,
Greg Nelson, Nate Osgood, Anna Pogosyants, Yang-Meng Tan, Jim O’Toole, Franklyn Turbeck,
John Turkovitch, Mark Reinhold, Mark Vandevoorde, Michael Vanhilst, and Jeannette Wing. David
Evans in particular spent many hours discussing ideas and commenting on writing and presenta-
tions. My work benefited from experience gained at Draper Labs, and from a productive stay at
Digital Equipment’s System Research Center.

This work owes much to the seminal writing of Dijstra, Hoare, and Parnas. It also owes much
to the people, past and present, who made MIT the great institution it is today, and in particular to
those who made 6.001, 6.170, 6.035, and 6.821 such great courses.

I would like to thank my family and friends for their support and encouragement and for giving
me the confidence needed to start the thesis—and to finish. I would like to thank in particular my
parents for their love and support and for encouraging me in my interests and education. I’d like
to offer special thanks to Kimberly Sweidy for her support, patience, inspiration, understanding,
encouragement, wisdom, exuberance, and love.

Contents

1 Introduction 1
1.1 Language model. 3
1.2 Class components. 4
1.3 Overview . 7

2 Basic methodology 9
2.1 Instance interfaces. 9
2.2 Conventions for extensible state . 10
2.3 Specialization interfaces. 13
2.4 Abstract representations . 15
2.5 Summary . 17

3 Validating classes 19
3.1 Validation criterion . 19
3.2 Reasoning about local components. 20
3.3 Reasoning about subclasses. 22
3.4 Reasoning about instance interfaces. 27
3.5 Summary . 30

4 Formal specification and verification 33
4.1 Formal object specifications . 33
4.2 Formal specialization specifications . 35
4.3 Behavioral subclassing . 37
4.4 Verifying local components. 42
4.5 Shadowed components. 50
4.6 Specifying and verifying constructors . 52

5 Improving extensibility 55
5.1 Particular and assumed specifications . 55
5.2 Extensible specialization specifications . 57

6 Design implications 67
6.1 Design examples . 67
6.2 Control abstractions . 70
6.3 Designing specialization interfaces. 71

6.4 Language design. 75

7 Multiple inheritance 79
7.1 Mixins . 80
7.2 Specification and verification . 84
7.3 Program design . 85
7.4 Summary . 88

8 Conclusion 89
8.1 Summary . 89
8.2 Contributions . 89
8.3 Related work . 91
8.4 Future work . 92
8.5 Conclusion . 93

Bibliography 95

Chapter 1

Introduction

Reuse and modularity are two important principles for improving programmer productivity. Object-
oriented class libraries support software reuse in two ways. First, they define “black boxes” that can
be used as-is in a variety of contexts. Second, they define “extensible boxes” that can be customized
via subclassing to fit the needs of a particular context. Achieving modularity for black-box reuse is
well-understood, but we do not yet understand how to achieve modularity for extensible-box reuse.
The goal of this report is to reconcile modularity with the extensibility afforded by subclassing.

Modular designs are composed of loosely coupled components. An important technique for
decreasing coupling is to use specifications to draw abstraction barriers around components. (Spec-
ifications are documentation that hides implementation details; we use the term “specification” and
“documentation” interchangeably.) A component is said to beindependentof other components if
it depends only on their specifications and is said tobreak abstraction barriersif it depends on their
implementations.

In existing programming methodologies, classes are treated as the unit of modularity. As a
result, documentation for class libraries draws abstraction barriers around entire classes (see,e.g.,
[Borland94] and [Microsoft94]). This is fine for instantiators, clients whose code manipulates in-
stances of a class. However, specializers, clients who create subclasses, use method override to
replacepartsof classes, and thus interact with classes at a finer granularity. For specializers, classes
are too coarse a unit of modularity. As a result, when given documentation in terms of entire classes,
specializers are forced to break abstraction barriers.

For example, consider a classIntSet of mutable integer-set objects. An informal specification
for IntSet is given in Fig. 1.1. This documentation draws an abstraction barrier around the entire
IntSet class. Such documentation is fine for instantiators, but it does not answer the questions of
specializers. For example, assume a programmer wants to build a multiset abstraction by subclass-
ing IntSet . Can it be done? If so, which methods should be overridden? What constraints must
be met by overridden methods? These questions are not answered by documentation that takes the
entire class as the unit of modularity.

Because of method override, specializers need a unit of modularity smaller than the entire class.
At first, one might think that individual methods should be the unit of modularity for specializers;
after all, methods are what get replaced by method override. However, if methods were the unit of
modularity, then the methods of a class would have to be independent of one another,i.e., they could
not share any hidden implementation information. As we shall see, this is too strict. In particular,
to support extensibility for state, methods cannot always be made independent ofeach other.

1

2 CHAPTER 1. INTRODUCTION

Documentation for the IntSet class:
IntSet objects are mutable, integer-set objects

public void addElement(int el)
Modifies this
Effects Adds el to this.

public void addElements(IntVector els)
Modifies this
Effects Adds elements of els to this.

public boolean contains(int el)
Effects Returns true iff el is a member of this.

public IntEnumeration elements()
Effects Returns an enumeration yielding the elements of this.

public boolean isEmpty()
Effects Returns true iff this is empty.

public boolean removeElement(int el)
Modifies this
Effects If el in this, remove it and return true; otherwise, return false.

public void removeElements(IntVector els)
Modifies this
Effects Removes elements of els from this.

public int size()
Effects Returns the number of elements in this.

public String toString()
Effects Returns a printable representation of this.

...other public methods elided...

protected void uncache(int el)
Modifies this
Effects Invalidates the internal membership cache at el.

Figure 1.1: Description ofIntSet typical of today’s documentation.

1.1. LANGUAGE MODEL 3

To reconcile modularity and extensibility, this report starts with the assumption that classes
should have two interfaces, one for instantiators and one for specializers. The report proposes entire
classes as the unit of modularity for instance interfaces andclass componentsas the unit of modu-
larity for specialization interfaces. After describing class components, the report pursues a number
of additional results that follow from using them as the unit of modularity. The report describes
both formal and informal documentation for specialization interfaces. It describes a validation cri-
teria for classes built out of class components. Finally, the report presents advice, based on class
components, about designing specialization interfaces that are both modular and extensible.

The next section describes the language assumptions of the report. Sec. 1.2 gives an overview
of class components and how they facilitate documentation, validation, and design. Sec. 1.3 both
describes the organization of the report and summarizes its results.

1.1 Language model

This report assumes a model of object-oriented programming based on objects, object types, and
classes. The model is a standard, single inheritance model, except that, like Theta ([Day95]), it
separates object types from classes and it associates behavioral specifications with object types.
Chapter 7 considers multiple inheritance.

An objectis a set of instance variables and code for its methods.
An object typedescribes the behavior of objects. Looked at the other way around, we say that

an objectimplementsan object type when the object behaves as described by the type. In most work
on object-oriented programming, object types include onlysignature specificationsthat describe the
types of method arguments and results. In this report, object types are also associated withobject
specificationsthat describe the behavior of objects. Object specifications consist of an abstract
description of the object’s state together with descriptions of the behaviors of the object’s methods.
The method descriptions are given in terms of the abstract state, not in terms of the instance variables
used to represent that state. Object specifications are described in more detail in the next chapter,
and a formal approach is described in Sec. 4.1.

A classis a template consisting of method and instance variables definitions.Instantiatinga
class creates a new object that has the instance variables and method code defined by the class.
Instantiating a classCcreates adirect instanceof C. An instanceof C is a direct instance of eitherC
or any subclass ofC. Where object types describe the behavior of objects apart from any implemen-
tations, classes describe the implementations of objects. We say that a classimplementsan object
type when all its direct instances implement the type.

A class is defined by a set oflocal method and instance variable definitions and an optional
superclass from which additional definitions areinherited. A class can also defineclass variables
that are shared by all instances of the class. A classoverridesa superclass method by defining locally
a method with the same name as one of its superclass’s methods. As in many languages, a method
can have one of three implementation categories: final, deferred, or overridable. Final methods
cannot be overridden by subclasses, overridable methods can. Deferred methods are methods a
class declares and calls in its other methods but for which it does not provide code. Subclasses
provide code for deferred methods by overriding them. A class with deferred methods is called a
deferred classand cannot be instantiated. (In the literature, deferred methods and classes are often
called “abstract” methods and classes.)

4 CHAPTER 1. INTRODUCTION

Also in many languages, a method can bepublic, protected, or private, meaning, respectively,
the method is visible to instantiators and specializers, is visible only to specializers, or is visible
only inside the class itself. Except where explicitly noted, instance variables are private,i.e., only
visible inside the class itself.

The instance interfaceof a class is the interface used by instantiators; thespecialization inter-
faceis the interface used by specializers and includes protected methods. Theinstance specification
documents the instance interface of a class, while thespecialization specificationdocuments the
specialization interface. Given our language model, one can see that specialization specifications
need to document protected methods while instance specifications do not. We will show that there
are other, more important differences between the two.

1.2 Class components

This report is centered around a simple idea: that classes should be built out of class components.
A class component is a piece of state—calledsubstate—and a set of methods responsible for main-
taining that state.

Class components are illustrated in Fig. 1.2, which gives a partial implementation ofIntSet .
In this figure,IntSet has two class components, one for the actual elements of the set, and another
for a cache used to cache membership tests. The substate of the elements component is represented
by an IntVector object, an array of integers whose size changes dynamically. This part of the
representation is maintained by the methodsaddElement , removeElement , andelements .
The substate of the cache component is represented by an integer and a boolean and is maintained
by the methodscontains anduncache . As this example illustrates, class components are very
much like data abstractions: encapsulated state manipulated by a set of operations. This similarity
explains why class components are good units of modularity.

Class components have historical roots in programming conventions for extensible state. In the
context of subclassing,extensibilitymeans allowing a subclass to provide its own implementation
of some aspect of its superclass. Programming languages directly support extensibility for methods
by allowing subclasses to provide their own implementations for superclass methods. However, lan-
guages do not directly support extensibility for state: there is no mechanism that allows subclasses
to provide their own representations of superclass state.

To address this asymmetry, programmers have developed class components as a convention
that does allow subclasses to provide their own representations for superclass state. The key to
this convention, as illustrated byIntSet , is that methods in the elements component call the
methods of the cache component rather than accessing the instance variables representing the cache.
Subclasses replace the representation of a superclass component by overriding the methods of a
component with new code that uses a new representation. For example,IntSet2 in Fig. 1.3
replaces the representation of the cache by overridingcontains anduncache with code that
represents the cache using a bit vector. This new representation can cache up to sixty-four hits, but
it only caches hits on zero through sixty-three, soIntSet2 is best used where membership tests
on small, positive numbers dominate. (IntSet2 inherits but does not use the instance variables
c valid andc val , the old representation of the cache. Sec. 6.4.4 explains how these orphaned
instance variables can be optimized away.)

In addition to facilitating extensibility, class components are good units of modularity for spe-
cialization interfaces. We saw earlier that the entire class is too big a unit. At the other extreme,

1.2. CLASS COMPONENTS 5

class IntSet f

// ‘‘elements’’ component
private IntVector els = new IntVector();

public overridable void addElement(int el) f
if (! els.contains(el)) els.addElement(el);

g;

public overridable boolean removeElement(int el) f
this.uncache(el); // Maintain cache validity
return els.removeElement(el); // Call remove method of IntVector

g;

public overridable IntEnumeration elements() f
return els.elements();

g;

// ‘‘cache’’ component
private int c_val; // Value currently in cache
private boolean c_valid = false; // True only if c_val is valid

public overridable boolean contains(int el) f
if (c_valid && c_val == el) return true ;
for (IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f
c_valid = true; c_val = el;
return true ;

g;
return false;

g;

protected overridable void uncache(int el) f
if (c_val == el) c_valid = false;

g;

..other methods elided
g;

Figure 1.2: Implementation ofIntSet .

6 CHAPTER 1. INTRODUCTION

class IntSet2 extends IntSet f
// Replace the ‘‘cache’’ component

private long c_bits; // Used as a bitmap; caches 0 - 63 only
// If c_bits[i] is true, then i is in the cache

private final boolean c_test(int el)
// If el is in range, return c_bits[el], otherwise return false
f return 0 <= el && el < 64 && c_bits & (1 << el); g

private final void c_set(int el, boolean val) f
// If el is in range, set c_bits[el] = val
if (0 <= el && el < 64)

c_bits = (c_bits & ˜(1 << el)) | (val ? (1 << el) : 0);
g

public boolean contains(int el) f
if (c_test(el)) return true ;
for (IntEnumeration e = this.elements(); e.hasMoreElements();) f

c_set(el, true);
if (el == e.nextElement()) return true ;

g;
return false;

g;

protected void uncache(int el)
f c_set(el, false); g;

g;

Figure 1.3: Subclass ofIntSet that replaces the cache.

1.3. OVERVIEW 7

individual methods are too small a unit of modularity. For example, consider the cache component
of IntSet . The methods of this component,contains anduncache , share implementation in-
formation about the representation of the cache,e.g., thatc valid andc val are used to represent
the cache and thatc val is a cached hit only whenc valid is true. This shared implementation
information means thatcontains anduncache cannot be made independent of one another.
However, the two methods taken togetherare independent: a specializer can replace them as a
group with no knowledge ofc valid andc val .

Thus, class components are ideal for reconciling extensibility and modularity. This realization
leads to insights into design, documentation, and validation. For example, an important part of
designing specialization specifications is deciding what state should be extensible. This extensible
state should be subdivided into pieces that can be replaced independently, and each piece should
be given its own class component. The documentation of specialization interfaces should identify
the class components; this means documenting both the substate and the methods that make up
the component. Class components should be independent of one another. This means that one
component should not directly access the representations of other components but instead should
access the substates of other components by calling their methods. For example, thecontains
method ofIntSet does not directly access the representation of the elements of anIntSet but
instead callselements . Similarly, theremoveElements method does not access the rep of the
cache but instead callsuncache .

The need for independence feeds back into the design and documentation of specialization in-
terfaces. If components are to be independent of one another, then each component must offer a
sufficientinterface to the others. For example, the existence ofuncache is motivated by the de-
sire to support independent access to the cache byremoveElement . Also, documenting class
components in an independent manner often requires exposing aspects of a class’s state that is hid-
den from instantiators. For example, documenting the component containinguncache requires
exposing the existence of the membership cache to specializers even though this cache need not be
mentioned in the documentation given to instantiators.

1.3 Overview

This report introduces class components and explains why we think that they are the right unit of
modularity for specialization interfaces. The report also explores the implications of designing spe-
cialization interfaces in terms of class components. The next chapter describes class components
in more detail. It then describes how to document the specialization interface of classes built out
of them. This documentation establishes abstraction boundaries around components, allowing sub-
classes to replace them without looking at the code of superclasses. The chapter also describes the
differences between instance and specialization interfaces, justifying our decision to separate them.

Chapter 3 describes validation of specialization interfaces. This chapter first defines the val-
idation criterion for specialization interfaces. Part of our criterion is the classical one for data
abstractions: a class must implement the behavior described by its specification. Another part of
our criterion is a new one introduced for specialization interfaces: the components of a class must
be independent of one another. After defining this validation criterion, the rest of Chapter 3 focuses
on the new aspect: reasoning about classes in a way that ensures the independence of components.

Chapter 4 describes formal specification and verification of specialization interfaces. This chap-
ter formalizes results described informally by the previous two chapters. Chapter 5 extends these

8 CHAPTER 1. INTRODUCTION

specifications in a way that improves the extensibility without sacrificing modularity.
Chapter 6 looks at design issues that arise in the context of specialization interfaces. First,

it presents design guidelines for specialization interfaces, drawing on existing class libraries for
examples. Next, it looks at the design of languages, presenting an extension to Java that supports
class components.

Chapter 7 considers separating class components into separate classes, calledmixins, that can be
combined using multiple inheritance. The chapter assumes Snyder’s encapsulated model of multiple
inheritance, and it presents an extension to the Java language that embodies this model. The mixin
style of design leads to class hierarchies with more classes than in equivalent single-inheritance
designs, but in which classes have smaller, simpler interfaces and in which classes can be reused
more flexibly.

Chapter 2

Basic methodology

Modularity is a product of both methodology and good design. Methodology defines the unit of
modularity and the system of documentation. A good methodology allows modularity, but it does
not necessitate it: good use of the methodology—i.e., good design—is required as well. This chapter
focuses on the methodology side of modularity; the design side is discussed a bit here and more
in Chapter 6. This chapter looks in particular at documentation for classes. A good system of
documentation is important because it describes modules as abstractions apart from any particular
implementation. This is central to achieving independence, allowing clients and implementors of
modules reason about their code independently. It also is central to achieving good design by
making interface designs more tangible and thus easier to evaluate.

There are two units of modularity in our methodology. For instantiators, the unit of modularity
is the entire class. Sec. 2.1 describes how to document instance interfaces. For specializers, the
unit of modularity is class components. Sec. 2.2 describes the programming conventions for class
components, and Sec. 2.3 looks at documentation for specialization interfaces given in terms of
class components. These sections also introduce examples used throughout the report.

Although the mechanics of specifying instance and specialization interfaces are similar, the
information contained by their specifications is different. Sec. 2.4 looks at this difference.

2.1 Instance interfaces

Chapter 1 explains that classes need two interfaces, one for instantiators and another for specializ-
ers. The one for instantiators takes the entire class as the unit of modularity. We draw abstraction
boundaries around entire classes by documenting classes with object specifications. Object speci-
fications describe the behavior of objects. The object specification documenting a class describes
the behavior of direct instances of the class. (Documenting classes by describing their instances is
nothing new and goes back at least to [Hoare72].)

IntSetISpec , an example object specification forIntSet , is given in Fig. 2.1. This is an
informal specification, using the notation from [Liskov86] (formal specifications are described in
Chapter 4).IntSetISpec illustrates the two basic parts found in all object specifications: the
abstract state, which describes the state of objects, and themethod specifications, which describe
the behavior of the methods of objects.

The abstract state ofIntSetISpec is given in thestate fielddeclaration (in general, there can

9

10 CHAPTER 2. BASIC METHODOLOGY

object specification IntSetISpec f // Documents instance interface

state field elements; // A mathematical set of integers

public void addElement(int el);
// Modifies: this.elements
// Effects: Adds el to this.elements.

public boolean removeElement(int el);
// Modifies: this.elements
// Effects: Removes el from this.elements, returning true iff
// el is in to begin with.

public IntEnumeration elements();
// Effects: Returns an enumeration of integers in this.elements.

public boolean contains(int el);
// Effects: Returns true iff el is in this.elements.

..other methods elided
g;

Figure 2.1: Instantiator’s view ofIntSet .

be multiple field declarations). These declarations declareabstract-state fields. Abstract-state fields
are fields of objects much like instance variables, except that they do not exist at run-time. They are
fictions created to abstract away from the details of instance variables. These fictional fields do not
appear in any code, but they do appear in the specifications of methods.

Methods are specified in terms ofpre-conditionsthat must be hold on entry to a method and
post-conditionsthat are established on exit. Therequires clausedescribes a method’s pre-condition,
constraining the arguments on which the method is defined. The code calling a method is responsi-
ble for establishing the method’s pre-condition. None of the methods inIntSetISpec have pre-
conditions, which means they can be called with any arguments. Themodifiesandeffects clauses
together describe a method’s post-condition. The modifies clause constrains the behavior of the
method by restricting what it is allowed to change: the method can only change what is listed in its
modifies clause. The effect clause describes the behavior of the method,i.e., it describes in what
ways the method changes objects and what values the method returns. In Fig. 2.1, the post-condition
of addElement says thataddElement modifies theelements field of this by insertingel
into it.

2.2 Conventions for extensible state

As discussed in Chapter 1, class components support extensibility for state. In the context of sub-
classing, extensibility means allowing subclasses to provide their own implementation of some
aspect of their superclasses. For example, subclasses can provide their own code for deferred and
overridable methods. With class components, the final, overridable, and deferred distinction can
be applied to state. When applied to state, final, deferred and overridable are calledrepresentation

2.2. CONVENTIONS FOR EXTENSIBLE STATE 11

categories.
Overridable and deferred state is extensible: subclasses can provide their own representations

for it. The overridable stateof a class is state for which the class provides a representation that
can be replaced by subclasses. Thedeferred stateis state a class assumes exist but for which it
provides no representation, depending instead on subclasses to provide representations.Final state
is not extensible: subclasses cannot provide their own representations for final state but rather must
inherit the superclass’s representation. Overridable, deferred, and final state are all supported by
class components.

An overridable class component is a group of public and protected, overridable methods and a
set of private instance variables maintained by them. Only methods in the component may access the
instance variables assigned to the component. These methods are called the component’saccessors.
If a method outside the component needs to access the state represented by these instance variables,
it must call the accessors of the component rather than directly access the variables. Thus, for exam-
ple, removeElement in IntSet (Fig. 1.2) callsuncache rather than accessingc valid and
c val , andcontains callselements rather than accessingels . As illustrated in byIntSet2
(Fig. 1.3), which represents the cache using a bit-map, a subclass replaces the representation of an
overridable component by overridingall accessors of the component with new code that accesses
the new representation.

For convenience, an overridable class component may containhelper methods, private, final
methods that are useful for implementing the component’s accessors. For example, inIntSet2 ,
the cache component contains the helper methodsc test andc set that perform bit-level oper-
ations. Helper methods may only be called by methods in their own component and may not be
called by methods in other components.

A deferred class component is a group of public and protected, deferred methods. Deferred
components are also associated withdeferred state. Deferred state is assumed to exist by the code
of final and overridable methods, but the class provides no representation for it. The final and
overridable methods of a class access the deferred state of a component by calling the component’s
deferred methods, which are also calledaccessors. A subclass provides a representation for deferred
state by overriding these accessors with code that access a representation provided by the subclass.

An example of deferred state is given in Fig. 2.2. This figure presents a partial implementation
of Rd (“reader”), a character input stream inspired by the Modula-3 library [Brown91]. Different
subclasses ofRd read characters from different sources,e.g., the source ofFileRd is disk files,
while the source ofSocketRd is network connections. Buffering, using an internal array to fa-
cilitate the reading of characters off devices in blocks rather than individually, is important to the
performance of readers. The state associated with buffering—and the code that manipulates that
state—is included inRd so it can be shared by all subclasses. The state associated with the source
a reader is deferred because it is different in different subclasses. This deferred state is accessed
by calling the deferrednextChunk (see, for example, the code ofgetChar). Subclasses pro-
vide a representation for this deferred state by providing code fornextChunk that accesses the
subclass-provided representation.

Final state is not extensible, so it is a little outside of the topic of this section (“conventions
for extensible state”), but we include a discussion of final components for completeness. A final
class component is a group of public and protected, final methods and a set of associated instance
variables. Although it is possible to use protected and public instance variables for final state, we
assume that private instance variables are used (protected and public instance variables are discussed

12 CHAPTER 2. BASIC METHODOLOGY

class Rd f // Character input streams

// Rd class implements source-independent buffering.

// Deferred component: substate = char’s not yet read from underlying source
protected deferred char[] nextChunk();

// Returns the next block of characters from the source.
// Subclasses override this accessor with code that directly accesses
// the representation of the underlying source of characters.

// Final component: substate = buffer of characters
private char[] buffered = new char[0];
private int cur = 0;

public final char getChar() throws EofException f
if (cur == buffered.length) f

buffered = this.nextChunk();
cur = 0;
if (buffered.length == 0) throw new EofException();

g;
return buffered[cur++];

g;

..other methods elided
g;

Figure 2.2: Partial implementation ofRd.

2.3. SPECIALIZATION INTERFACES 13

in Chapter 6). In Fig. 2.2, the state associated with the buffer of a reader is final. This state is
represented by the instance variablesbuffered andcur .

Because the final state of a class cannot be replaced by subclasses, it is safe for all methods of
the class to directly access its representation. For example, if the cache ofIntSet (Fig. 1.2) were
final rather than overridable, then the code ofremoveElement could manipulatec valid and
c val directly instead of callinguncache . Thus, the purpose of grouping of methods into final
components is not to enforce implementation restrictions but to help break up a class into smaller,
more digestible pieces.

The conventions for extensible state can be summarized in two simple statements:

1. Partition methods and instance variables into final, overridable, and deferred components.

2. Implement each component independent of the the other overridable components in the class.

This second point is important to making an overridable component overridable: if subclasses of
classC are going to replace componentG and inherit other components, thenC’s implementation
of those other components must be independent of the wayC happens to implementG. We have
already described one aspect of establishing this independence: the instance variables of a compo-
nent may be accessed only by the methods in the component. However, independence goes beyond
not looking at instance variables,e.g., it also includes not depending on the code of methods. In
general, one component is independent of another if it depends only on thespecificationof the other
component, not on its implementation. The next section explains how to specify components. The
next chapter looks the steps necessary to ensure that the implementation of a component depends
only on these specifications and not on implementation details.

2.3 Specialization interfaces

An informal specialization specification forIntSet is given in Fig. 2.3. Specifications for spe-
cialization interfaces have two parts: an object specification that describes instances of the class,
and adivision of laborthat partitions this object specification into class components. The form
for the object-specification part is the same as for all object specifications although, as discussed
below, the content of the object specifications for the instance and specialization interfaces differ.
The division of labor assigns each abstract-state field and method of the specialization interfaces’
object specification to one of the interfaces class components. Asillustrated in Fig. 2.3, divisions of
labor are given in the form ofcomponent clauses that group togethersubstate fielddeclarations,
which indicate the abstract-state fields assigned to the component, and the method specifications of
methods assigned to the component.

As suggested above, the content of the object specifications given for the instance and special-
ization interfaces differ. Specifications for the specialization interface are typically more detailed
than those for the instance interface. Our theory does not require that the object specifications for
these two interfaces differ, but in practice specializers typically need to know more about a class
than instantiators do. For example,IntSetSSpec is more detailed thanIntSetISpec in expos-
ing the existence of the membership cache, allowing subclasses to replace it. As another example,
IntSetSSpec has an invariant whileIntSetISpec does not, an invariant important to the cor-
rect maintenance of the cache. These kinds of differences between the object specifications for the
instance and specialization interfaces will be discussed in subsequent sections and chapters.

14 CHAPTER 2. BASIC METHODOLOGY

specialization specification IntSetSSpec f

state field elements; // A mathematical set of integers
state field cache; // Also a mathematical set of integers

invariant cache ⊆ elements // All methods must preserve this

overridable component f
substate field elements;

public void addElement(int el);
// Modifies: this.elements
// Effects: Adds el to this.elements.

public boolean removeElement(int el);
// Modifies: this.elements, this.cache
// Effects: Removes el from this.elements, returning true iff
// el is in to begin with.

public IntEnumeration elements();
// Effects: Returns an enumeration of the integers in this.elements.

g;

overridable component f
substate field cache;

public boolean contains(int el);
// Modifies: this.cache
// Effects: Returns true iff el is in this.elements.

protected void uncache(int el);
// Modifies: this.cache
// Effects: Removes el from this.cache

g;

..other methods elided
g;

Figure 2.3: Informal specialization specification ofIntSet .

2.4. ABSTRACT REPRESENTATIONS 15

We did not mention invariants when we introduced object specifications, but any object specifi-
cation can have an invariant. An invariant describes a constraint on the specification’s abstract-state
fields that must be established by constructors and preserved by all methods. The invariant of an ob-
ject specification is an implicit part of all method specifications: it may be assumed on entrance and
must be preserved on exit. Thus, for example,contains may assume the invariant even though it
is not part of the explicit pre-condition ofcontains . Similarly,removeElement must preserve
the invariant even though it is not part of the explicit post-condition ofremoveElement . Invari-
ants are just one of many different kinds of information that might be put into object specification.
Other examples include constraints for establishing history properties [Liskov94] or complexity in-
formation for bounding algorithms [Musser96]. We highlight invariants because, as discussed in
the next section, they are particularly important in the context of specialization interfaces. For sim-
plicity, we ignore other kinds of information that could be included in object specifications, but our
results can be extended to handle additional information.

IntSetSSpec has two overridable class components, one associated with theelements
field and the other associated with thecache field. RdSSpec (Fig. 2.4), a specialization specifica-
tion for Rd, illustrates documentation for final and deferred components. Documentation for class
components lifts the programming conventions for components to the level of abstract state. Even
though deferred components do not have an implementation, they do have abstract state. Thus, at
the abstract level, rather than at the level of instance variables, it becomes possible to describe the
state assigned to deferred components.

2.4 Abstract representations

Instance and specialization interfaces are both documented using object specifications. However, as
indicated earlier, the specializer’s object specification is more detailed than the instantiator’s. The
specializer’s object specification has a more detailed view of the class’s state and includes specifica-
tions for protected methods. For example,IntSetSSpec reveals the existence of the membership
cache to specializers and also includes the protected methoduncache . Similarly, RdSSpec re-
veals that the source of a reader is split into the componentsbuffered andondevice and also
includes the protected methodnextChunk (c.f. the instance specification in Fig. 2.5). The extra
details found in the specializer’s object specification describe abstract interfaces that class compo-
nents use to interact with each other.

Again, one way in which the specializer’s object specification is more detailed than the instan-
tiator’s is by having a more detailed view of the class’s abstract state. We call this more detailed
view theabstract representation. This term emphasizes that it is at a level of abstraction between
the fully-abstract state given in the instance specification and the instance variables manipulated by
code. As a slogan, we say that the abstract representation should expose the implementation strategy
without exposing implementation details. Implementation strategies includes internal mechanisms
such as caching (e.g., in IntSet), buffering (e.g., in Rd), or the fact that some structures are
sorted. Such strategies are “implementation details” as far as instantiators are concerned, but they
are important in terms of the interactions among components.

The other way in which the specializer’s object specification is more detailed than the instan-
tiator’s is by including protected methods. Protected methods arise where a class component main-
tains aspects of a class’s state that is visible in the specializer’s object specification of the class but
not in the instantiator’s. Often, such components include accessors to allow other components to

16 CHAPTER 2. BASIC METHODOLOGY

specialization specificationRdSSpec f

state field buffered; // Sequence of characters
state field ondevice; // Sequence of characters

final component f
substate field buffered;

public char getChar() throws EofException;
// Modifies: this.ondevice, this.buffered
// Effects: If this.buffered and this.ondevice are both empty,
// signals EOF. Otherwise, first may (but may not) move a prefix
// of this.ondevice onto the end of this.buffered, then removes
// and returns the first character of this.buffered.

g

deferred component f
substate field ondevice;

protected char[] nextChunk();
// Modifies: this.ondevice
// Effects: Removes and returns a prefix of this.ondevice.
// Returns the empty sequence only if this.ondevice is empty.

g

..other methods elided
g;

Figure 2.4: Informal specialization specification ofRd.

object specification RdISpec f

state field source; // Sequence of characters

public char getChar() throws EofException;
// Modifies: this.source
// Effects: If this.source is empty, signals EOF. Otherwise,
// removes and returns the first character of this.source.

..other methods elided
g;

Figure 2.5: Informal instance specification ofRd.

2.5. SUMMARY 17

manipulate this state in ways not available to instantiators. Protecting accessors hides them from
instantiators but exposes the full interface to subclasses. For example, theuncache accessor of
IntSet must be visible to subclasses because subclasses that replace theelements component
need to call it and because subclasses that replace thecache component need to provide their own
implementation for it. At the same time, this accessor should be hidden from instantiators because
the cache is irrelevant to instantiators. A similar argument applies to thenextChunk accessor of
Rd.

Another difference between the instantiator’s and specializer’s object specifications is the role
played by invariants. In particular, in classes constructed from class components, invariants on the
abstract representation serve in lieu of representation invariants. We call these invariantsabstract
representation invariantsnot only because they are invariants on abstract representations but also
because of their role as surrogates for representation invariants.

Efficient implementations of methods must be able to make assumptions about the relationships
among different parts of an object’s state. For example, inIntSet , contains assumes that the
cache of a set is a subset of the set’s elements, andremoveElement assumes thatels contains no
duplicate entried (i.e., no number is stored inels more than once). In the context of classical data
abstractions, both of these assumptions would be expressed as representation invariants. However,
as discussed in the next few paragraphs, in the context of subclassing, not all such assumptions can
be captured as representation invariants.

Even in the context of subclassing, representation invariants can still be used to capture as-
sumptions that relate state within a component such as the “no duplicates” assumption from above.
Such invariants can be established by data-type induction,i.e., by making sure that the methods
that have access to the instance variables preserve the invariant. In our example, the no duplicates
property can be established by ensuring thataddElement , removeElement , andelements
all preserve it.

However, representation invariants cannot be used to capture assumption that relate state from
multiple components such as thecache-validity property. This is because subclasses might replace
the representations of some of the state involved. For example, consider a subclass ofIntSet
that replaces theelements component and inherits thecache component. The inherited code
for contains still assumes thatcache is a subset ofelements , but the representation of
elements has been replaced. Instead of expressing multi-component properties in terms of the
concrete representation, they must be expressed in terms of the abstract representation. Thus, we
see that the invariants on the abstract representation serve in lieu of invariants on representations to
express properties that relate state from multiple components.

2.5 Summary

Classes have two interfaces, one for instantiators and once for clients. The unit of modularity for
instance interfaces is the entire class. They are documented using object types.

The unit of modularity for specialization interfaces is class components. Class components are
a programming convention that support the overridable, deferred and final representation categories
for the state of classes. Under this convention, the methods and instance variables of classes are
partitioned into final, overridable, and deferred components, andeach component is implemented
independently of the implementations of other overridable components.

18 CHAPTER 2. BASIC METHODOLOGY

The class components making up a class are documented by giving an object specification to-
gether with a division of labor that divides the state and methods of the object specification into
class components. Specialization specifications need their own object specification and cannot use
the instance specification. This is because the specialization specification reveals more detail, details
pertaining to the interfaces between class components. When designing specialization interfaces,
designers need to think in terms of an implementation strategy,i.e., a level of abstraction above the
implementation but below the instance specification.

Chapter 3

Validating classes

Validation is any activity intended to increase our confidence that a class behaves as intended. Val-
idation typically consists of some combination of testing and reasoning. Testing involves placing
the class in a particular context and seeing if it behaves as expected. Reasoning involves inspect-
ing the implementation of a class and arguing that it will behave correctly in all possible contexts.
Reasoning can be done formally or informally. Much formal reasoning can be done mechanically.
Mechanical reasoning can range from simple type checks, to anomaly checking, to full, formal
verification.

All forms of validation depend on some notion of what it means for a class to “behave as in-
tended.” We call this notion thevalidation criterion. Our starting point for defining such a criterion
is the slogan “a class is correct if it meets its specification.” Sec. 3.1 looks at what it means for a
class to meet both its instance and specialization specifications. The Sections 3.2 and 3.3 apply this
criterion to informal reasoning about the correctness of class relative to its specialization interface.
Sec. 3.4 explains how the correctness of a class relative to its instance interface can be deduced from
correctness relative to its specialization specification.

3.1 Validation criterion

Recall that classes have two specifications, one for instantiators and one for specializers. The in-
stance specification of a class consists of an object specification. A class implements its instance
specification if all instances of the class behave as described by the specification.

The specialization specification consists of an object specification together with a division of
labor. The validation criterion for a class against its specialization specification is two-fold. First,
instances of the class must behave as described by the object-specification part of the specialization
specification. Second, each class component defined by the division of labor must be implemented
independentlyof the implementations of the other overridable components in the class. This means
that each class component can depend only on the specifications of other class components; it cannot
depend on the implementations of methods nor on the representation of state assigned to other
components. If components are independent, then subclasses can replace some of the components
without breaking the others.

The following implementation ofremoveElement is behaves correctly but is not independent
of the representation of another component:

19

20 CHAPTER 3. VALIDATING CLASSES

public overridable boolean removeElement(int el) f
boolean result = els.removeElement(el);
if (result) c_valid := false; // Bug: accesses rep of cache!
return result;

g;

This code would be fine if the only validation criterion were that a class implement the object-
specification part of its specialization specification. However, this code is not valid because it de-
pends on the representation of the cache and thus is not independent of the implementation of the
cache component.

The following code also behaves correctly but is also not valid, this time because it is not inde-
pendent of the implementation of a method it calls:

protected overridable void uncache(int el) f
c_valid = false; // Invalidate even if el not in cache

g;

public overridable boolean removeElement(int el) f
boolean result = els.removeElement(el);
if (result) this.uncache(2); // Assume that uncache ignores the
return result; // value of its argument.

g;

This version ofuncache always invalidates the cache no matter what the value of its argument. Al-
though not the most efficient thing to do, it is still correct. This version ofremoveElement takes
advantage of the fact thatuncache ignores its argument. Like the version ofremoveElement
that accessedc valid , this version behaves correctly but is not valid because it depends on the
implementation ofuncache .

3.2 Reasoning about local components

The implementation of a class contains two kinds of components: components implemented lo-
cally and components inherited from a superclass. This section considers reasoning about local
components. Local components include superclass components overridden by the class, deferred
components of the superclass implemented by the class, and new methods defined by the class.
We want to reason about the correctness of the local components of a class relative to the class’s
specialization specification.

The implementation of a local component consists of a set of instance variables that represent
the state of the component and code for the component’s methods. Programmers reason about this
code—both formally and informally—in pretty much the same way they reason about code for
classical data abstractions (see,e.g., [Liskov86],[Dahl92]). This reasoning involves inspecting the
code to make sure that it does what it is supposed to. We do not review this inspection process
here. Instead, we explain the additional steps necessary to ensure that the code of a component is
independent of other, overridable components in the class.

3.2. REASONING ABOUT LOCAL COMPONENTS 21

3.2.1 Calling methods

The first aspect of being independent of other components is to reason about calls to overridable
methods in terms of specifications rather than implementations. Because calls to overridable com-
ponents are reasoned about in terms of their specifications, these calls will still work as expected
when subclasses replace the components with new code implementing the same specification.

3.2.2 Accessing state

Another aspect of being independent of other components is not depending on the representations
of their state. This means that if the code in one components needs to access the state assigned
to another, overridable component, it should do so by calling the methods of the other component
rather than by accessing its instance variables. When done through methods, accesses of the state
of an overridable component will still work as expected when subclasses replace the component.

Binary methods, generally a problem (see,e.g., [Liskov93] and [Bruce96]), must be treated with
care. A binary method of classC is a method that takes one or more arguments of typeC in addition
to this. In most languages, the code in binaryC’s methods has privileged access to all arguments
of typeC, not just tothis. In particular, this code can access the private instance variables of those
arguments. This privileged access supports efficient implementations of some data types, but it must
be used sparingly to to achieve independence.

Consider the following class:

class C f
// Overridable ‘‘count’’ component

private int m_count;

public overridable getCount() f return m_count; g
public overridable addCounts(C o)

f return m_count + o.getCount(); g

...
g

The code foraddCounts can safely accessmcount of this. However, this code should not
accessmcount for o. This is because the class implementingo may be a subclass ofC that has
replaced thecount component with code that does not usemcount to representcount . Instead
of accessingmcount for o, addCounts should callgetCount instead.

In short, instance variables representing overridable state should only be accessed forthis and
not for other arguments. Forall of its arguments, a binary methodcan safely access the instance
variables representingfinal state.

3.2.3 Assuming invariants

Invariants are important in reasoning about the correctness of method code [Liskov86]. For ex-
ample, the code ofremoveElement (Fig. 1.2) assumes no duplicates inthis.els , i.e., that no
element appears inthis.els twice. The code ofcontains assumes that an element of thecache
is also an element ofelements .

22 CHAPTER 3. VALIDATING CLASSES

In the context of class components, there are two kinds of implementation invariants. First, there
are invariants that relate state within a single component,e.g., the “no duplicates” invariant. Such an
invariant can be established by showing that it is preserved by the code of each of the component’s
methods. For example,addElement , removeElement , andelements all preserve the no
duplicates invariant. Because only the methods in a component access the instance variables of
the component, only these methods need to be checked to establish an invariant on these instance
variables.

The second kind of invariant relates state assigned to different components,e.g., thecache va-
lidity invariant. As explained in the previous chapter, such invariants cannot be established directly
on the instance variables. In place of such invariants, programmers must instead use abstract repre-
sentation invariants,i.e., invariants on the abstract state of the object specifications of specialization
specifications.

3.2.4 Abstracting state

When choosing a representation for a class and coding the class’s methods, the implementor has in
mind anabstraction function, a relationship between the class’s instance variables and the class’s
abstract state. For classical data abstractions, the abstraction function maps the entire representation
to the entire abstract state. In the context of class components, each component needs its own
subabstraction function. These subabstraction functions map the component’s instance variables to
the abstract state assigned to the component.

For example,IntSet (Fig. 1.2) needs two subabstraction functions, one for theelements
component and the other for thecache component. The function for theelements component
returns the set consisting of the elements ofels . The function for thecache component returns
the empty set whenc valid is false and the singleton set consisting ofc val whenc valid is
true.

Subabstraction functions are central to formal verification of classes and will be discussed fur-
ther in Chapter 4. However, even when classes are not formally verified, subabstraction functions
are useful for informal reasoning, and it is a good idea for implementors to document the subab-
straction function of each class component.

3.3 Reasoning about subclasses

Root classes are classes without superclasses, such asIntSet in Fig. 1.2. All non-deferred com-
ponents of a root class are local, so root classes are easy to reason about: just reason about each
local component as described in the previous section.

Subclasses are a little trickier. The validation criterion described in Sec. 3.1 applies equally to
root classes and subclasses. Local components of a subclass—i.e., superclass components overrid-
den by the subclass, deferred components of the superclass implemented by the subclass, and new
local components—are still reasoned about as described in the previous section. However, unlike
root classes, subclasses contain inherited components. Also, unlike root classes, subclasses can use
super to call superclass versions of methods.

This section discusses reasoning about inherited methods andsuper. It assumes that the sub-
class’s set of abstract-state fields is the same as the superclass’s. The next chapter handles the case
when the sub- and superclass have different abstract-state fields.

3.3. REASONING ABOUT SUBCLASSES 23

3.3.1 Reusing superclass code

Subclasses can reuse code of their superclasses, both by inheriting components and by usingsuper
to call superclass versions of methods. Superclass code reused by the subclass may in turn call
code provided by the subclass; for example, an inherited method may call an overridden one. Code
provided by the subclass must meet assumptions made about it by inherited superclass code. (In
addition to this issue, reasoning aboutsuper entails other issues discussed in Sec. 3.3.4.)

Superclass code makes two assumptions that subclasses need to respect. First, superclass code
assumes that the superclass invariant is preserved. If this code is going to work when reused by
the subclass, the subclass will have to preserve the superclass’s invariant. For example,contains
depends on the cache validity invariant; a subclass that inheritscontains must preserve this
invariant. To ensure that the subclass (and its subclasses) will preserve the superclass’s invariant,
we require that the subclass’s invariant imply the superclass’s.

The second assumption made by superclass code is that the methods ofthis implement the spec-
ifications given to them in the superclass. For example, the correctness ofcontains in Fig. 1.2
depends on the behavior ofelements . If a subclass replaceselements and inheritscontains ,
it should replaceelements with code that does whatcontains expects it to. To ensure that the
subclass’s code for methods implements the behavior expected by superclass code, we require that
the subclass specifications of overridable and deferred methods imply their specifications in the
superclass. This rule applies to all methods for which the subclasscan provide code, not just to
methods for which the subclass actually does provide code. Applying this rule to all methods en-
sures that subclasses of the subclass, which can replace methods not replaced by the subclass, also
respect assumptions made by the superclass.

3.3.2 Inherited methods

Local components are reasoned about by inspecting their code. However, recall that a goal of this
report is to allow specializers to build subclasses without looking at the code of superclasses. We
need a way to ensure that the code of inherited methods behaves as described by the subclass’s
specification without actually looking at this code.

We are assuming that the superclass implements its specification. This means that inherited
methods behave as described by thesuperclass’s specification. If this superclass specification im-
plies the subclass specification, then the subclass specification will also describe the inherited code.
Thus, we ensure that inherited methods meet their subclass specifications by requiring that their
superclass specifications imply their subclass specifications.

This implication is opposite the implication in the previous subsection. There, subclass speci-
fications imply superclass specifications to ensure that subclass-provided code behaves as expected
by the superclass. Here, superclass specifications imply subclass specifications to ensure that
superclass-provided code behaves as described by the subclass. Note that the implications of this
subsection and the previous one both apply to inherited, overridable methods. This means that the
specifications of such methods in the sub- and superclass interfaces end up being logically equiva-
lent.

A subclass that inherits a component must inherit the component as a whole—it may not
separate the elements of the component. For example, a subclass ofIntSet that inherited the
element component may not putaddElement andremoveElement into separate class com-
ponents. If a subclass did split them up, subclasses of this subclass could overrideaddElement

24 CHAPTER 3. VALIDATING CLASSES

Method kind Implication(s) between specifications
Final superclass⇒ subclass
Inherited overridable superclass⇔ subclass
Overridden overridable superclass⇐ subclass
Deferred superclass⇐ subclass

Table 3.1: Behavioral subclassing.

without overridingremoveElement , which would be an error. When a subclass replaces a com-
ponent, itmaybreak it up. In our example, a subclass that replaces theelements component
could putaddElement andremoveElement into separate class components.

3.3.3 Behavioral subclassing

Collectively, we refer to the rules from the previous two subsections asbehavioral subclassing. In
short, these rules are:

1. The specifications of overridable and deferred methods in the subclass must imply their spec-
ifications in the superclass, and the invariant of the subclass must imply the invariant of the
superclass.

2. The specifications of inherited methods in the subclass must be implied by their specifications
in the superclass.

3. Components inherited from the superclass may not be broken up by the subclass.

These rules ensure that superclass code reused by the subclass behaves as expected. Table 3.1
summarizes the implications between the specifications of methods in the sub- and superclass spec-
ifications.

To understand how behavioral subclassing works, consider a specialization specification that is
the same asIntSetSSpec (Fig. 2.3) in every way except for the specification ofelements :

specialization specification IntSetSSpec2 f
...
overridable component f

...
public IntEnumeration elements();

// Effects: Returns an enumeration of the integers in
// this.elements. This enumeration yields these integers
// in ascending order.

g;
...

g;

This specification forelements is stronger than the one inIntSetSSpec : it returns an enu-
meration that yields its elements in ascending order. IfIntSetSSpec is the specialization spec-
ification of IntSet , could IntSetSSpec2 be the specialization specification of a behavioral

3.3. REASONING ABOUT SUBCLASSES 25

subclass ofIntSet ? The answer is “yes”—but only for subclasses that override theelement
component ofIntSet . Because of rule (1), the subclass’s specification ofelements can be
stronger than the superclass’s only when the subclass overrideselements . This makes sense:
Subclasses that inherit theelement component cannot be specified byIntSetSSpec2 because
the inherited code forelements does not (necessarily) meet this stronger specification. A sub-
class can strengthen the specification of superclass methods only when the subclass provides its own
code for that method—code that meets the stronger specification.

Now consider another specialization specification, also the same asIntSetSSpec except for
the specification ofelements :

specialization specification IntSetSSpec3 f
...
overridable component f

...
public IntEnumeration elements();

// Effects: Returns an enumeration of *some* of the integers
// in this.elements.

g;
...

g;

This specification forelements is weaker than the one inIntSetSSpec : it returns an enumer-
ation that yields a subset of the elements inthis.elements . Could this be the specialization spec-
ification of a behavioral subclass ofIntSet ? The answer here is “no” becausecontains —and
perhaps other methods ofIntSet —depend on the stronger behavior ofelements . A subclass
cannot weaken the specification of superclass methods because inherited methods may depend on
the stronger behavior. (By adding more information to specialization specifications, we could allow
subclasses to weaken the specification of superclass methods. Such information might include,e.g.,
the fact thatcontains is the only method that callselements . However, we do not feel that the
ability to weaken specifications is worth the extra complexity it would add to specifications and to
reasoning.)

3.3.4 Shadowing components

Half way between inheriting a component on the one hand and completely replacing it on the other
is to shadowa component. When a class shadows a superclass component, it replaces some of the
component’s methods but doesnotreplace the representation of the component’s substate. The class
may also add new methods and new substate to a shadowed component.

CIntSet (Fig. 3.1) extendsIntSet to count the number of timesaddElement is called.
CIntSet shadows theelements component ofIntSet : it does not replace the representation
of elements but it extends the state of the component to include a counter. It also adds a new
method. Notice thatCIntSet usessuper to invoke the superclass version ofaddElement .
Shadowed components typically usesuper in this way.

The convention for shadowed components is as follows:

• The subclass does not provide a representation for the substate of shadowed components.
Instead, the superclass’s representation is used. InCIntSet , for example, the representation
of elements is not replaced.

26 CHAPTER 3. VALIDATING CLASSES

class CIntSet extends IntSet f

// Shadowing ‘‘elements’’ component of IntSet:
private int m_addCount;

public void addElement(int el) f
m_addCount += 1;
super.addElement(el);

g;

public int addCount() f
return m_addCount;

g;
g;

Figure 3.1: Subclass ofIntSet that shadows a component.

• Because the superclass represents this substate using instance variables not visible to the
subclass, the subclass cannot directly access the representation of this state. Instead, the
subclass manipulates this state usingsuper to call superclass accessors. In our example,
addElements calls the superclass version ofaddElements to update theelements
field.

• The subclass can add new substate fields to a shadowed components. These new fieldsare
represented using subclass instance variables, and a local subabstraction function defines the
new substate fields in terms of these instance variables. In our example, a newaddCount
field is added to the state of theelements component.

• The subclass need not override all methods of shadowed components. In our example,
removeElement andelements are both inherited.

• A subclass cannot break up a shadowed component. That is, the component in the subclass
must include at least the methods and substate fields of component in the superclass, although
it may contain more. Our example follows this rule.

Whensuper is used to call the superclass version of a method, the superclass’s specification of the
method is used to reason about the call.

Super can only be used in shadowed components. Further, a shadowed component cannot call
superclass versions of methods in other components, only of methods in itself. Other uses ofsuper
are not modular. For example, imagine that a subclass ofIntSet inherits theelements com-
ponent but overrides thecache with a version ofcontains that called theelements method
via super. This subclass would work fine. However, if a subclass of this subclass replaced the
elements component and inherited thecache component, then thecache component would
no longer work because its call toelements would invoke the wrong version.

More general mechanisms exist for invoking overridden code. For example, in C++, the invo-
cation:

o->C::m(..arguments..)

3.4. REASONING ABOUT INSTANCE INTERFACES 27

invokes the code for methodmprovided by classC, whereC is an arbitrary superclass ofo. Whereas
super allows the invocation of only the immediate superclass’s version of a method, more general
mechanisms such as the one in C++ allows the invocation of any superclass’s version. The method-
ology defined by this report supports the invocation of only the immediate superclass’s version of
a method, not an arbitrary superclass’s version. This restriction follows from the philosophy that
subclassing is an implementation issue: the superclasses of a class is not considered to be part of a
class’s specification, so subclasses of the class should not be able to depend on those superclasses.

3.4 Reasoning about instance interfaces

So far, this chapter has looked at showing that a class implements its specialization specification.
Reasoning about a class also includes showing that it implements it instance specification. The
correctness of classes relative to their instance specifications cannot be reasoned about by inspecting
code because the code of inherited methods is not available for inspection. Instead, we reason about
the correctness of a class relative to its instance specification by relating the instance specification
to the specialization specification.

The validation criterion for specialization interfaces says that a class must implement the object-
specification part of its specialization specification. This fact can be used to reason about instance
interfaces: a class will implement its instance specification if its instance specification is a behav-
ioral supertype of the object-specification part of its specialization specification.

One object specification is abehavioral supertypeanother if it correctly describes all objects
described by the other. The term supertypeis used because object specifications are used to docu-
ment object types. A behavioral supertype is a “more general” specification,i.e., it describes more
objects. The behavioral subtype is “more specific.” Behavioral subtyping is discussed in detail in
[Liskov94]; formal rules for behavioral subtyping are given in Sec. 4.1.2. For the purposes of this
section, a simple rule suffices: a subtype must have a more detailed view of an object than its behav-
ioral supertypes do. This has three implications: the subtypes has more methods; the subtype has
more abstract-state fields; the subtype has a stronger invariant and stronger method specifications.

For example, the object specification in Fig. 2.1 is a behavioral supertype of the object specifi-
cation part of the specialization specification in Fig. 2.3. This is because the specialization speci-
fication reveals more methods (uncache) and more state (the cache) and has a stronger invariant.
Thus, if we assume thatIntSet (Fig. 1.2) correctly implements the specialization specification in
Fig. 2.3, then it follows that it correctly implements the instance specification in Fig. 2.1.

In Java and most languages, the “class” construct defines both what this report calls a classand
what this report calls an object type. That is, Java classC defines a type that is also namedC. Inside
the code of classC, this can be used wherever the typeC is expected. In languages like this, good
design practice requires that the instance specifications of all subclasses ofC be behavioral subtypes
of the instance specification ofC. For example, code similar to the following appears in the ET++
View class (ET++ is a GUI framework [Weinand95]):

public ViewStretcher createStretcher() f
DocView dv = this.getDocView();
if (dv == null) return CreateViewStretcher(this);
else return CreateViewStretcherWithRect(this, dv.contentRect());

g;

28 CHAPTER 3. VALIDATING CLASSES

The code ofcreateStretcher passesthis as an argument to other routines. These other rou-
tines expect their first arguments to meet the instance specification ofView . The correctness of
createStretcher assumes that the instance specifications of all subclasses ofView are behav-
ioral subtypes of the instance specification ofView .

Behavioral subtyping of instance specifications does not follow automatically from behavioral
subclassing. That is, if classD is a behavioral subclass ofC, it does not follow that the instance
specification ofD is a behavioral subtype of the instance specification ofC. In languages like Java
in which D is treated like a subtype ofC, programmers must explicitly check to ensure that the
instance specification ofD is a behavioral subtype of that ofC.

3.4.1 Instance invariants

Note that the instance interface forIntSet is simpler than its specialization specification. The
instance specification hides the membership cache. Unfortunately, behavioral subtyping by itself is
not always enough to allow instance specifications to hide abstract-state fields of the specialization
interface.

In IntSet3 (Fig. 3.2),fastRemove removes elements fromelements without invalidat-
ing the cache. This allowsremoveElements to remove multiple elements while invalidating the
cache only once. Cache validity is not an invariant ofIntSet3 because it is not preserved by
fastRemove . As a result, cache validity must be an explicit pre-condition of contains . We
still would like to use the simple instance specification in Fig. 2.1 forIntSet3 , but we cannot
because behavioral subtyping will not allow us to get rid of the precondition of contains .

This is an example of a larger pattern not uncommon in object-oriented programs. Protected
methods likefastRemove are allowed to “get inside” the implementation and do things that
instantiators cannot do. In order to specify such methods, specialization interfaces must expose
fields likecache . However, subclasses that call these protected methods usually “fix things” before
returning, so fields likecache can be hidden in instance specifications.Instance invariantssupport
this pattern.

Instance invariants are invariants that must be established by constructors and preserved by all
public methods of an object but that may not be preserved by all protected methods of an object.
For example, the cache validity invariant (this.c ⊆ this.s) is an instance invariant ofIntSet3 .
Instance invariants always hold when an instantiator calls a public method, so they can be dropped
from the preconditions of methods in instance specifications.

In general, letSbe the object-specification part of a specialization specification,T be an instance
specification, andI be an instance invariant ofS. Let S′ be the object specification that results from
taking S and dropping all preconditions that are implied byI (e.g., dropping the cache-validity
precondition ofcontains). T is a valid instance specification for classes implementingS if S′

is a behavioral supertype ofT . This is just what is necessary to drop thecache field from the
instance specification ofIntSet3 .

(In the formal notation of the next chapter, instance invariants are used to augment behavioral
subtyping by augmenting the precondition rule as follows:

• Precondition:I [thispre/thisρ] ∧ T .prem[A(thispre)/thispre] ⇒ S.ospec.prem

This augmented rule lets the instance specification drop preconditions that are implied by the in-
stance invariant.)

3.4. REASONING ABOUT INSTANCE INTERFACES 29

class IntSet3 f // Alternative set implementation

public void removeElements(int els[]) f
// Modifies: this.elements, this.cache
// Effects: Empties the cache and removes elements of els from this.elements.
this.invalidate();
for (IntEnumeration e = this.elements(); e.hasMoreElements();)

fastRemove(e.nextElement());
g;

// ‘‘elements’’ component (overridable):
private IntVector els = new IntVector();

public overridable void addElement(int el) f
// Modifies: this.elements
// Effects: Adds el to this.elements
...same as Fig. 1.2

g;

protected overridable boolean fastRemove(int el) f
// Modifies: this.elements (does not change cache!)
// Effects: Removes el, returning true iff el already in
return els.removeElement(el);

g;

public overridable IntEnumeration elements() f
// Effects: Returns an enumeration of integers in this.elements
...same as Fig. 1.2

g;

// ‘‘cache’’ component (overridable):
private int c_val;
private boolean c_valid = false;

public overridable boolean contains(int el) f
// Requires: this.cache ⊆ this.elements
// Modifies: this.cache
// Effects: Returns true iff el is in this.elements. May update the cache,
// but will ensure that the new this.cache is a subset of this.elements.
...same as Fig. 1.2

g;

protected overridable void invalidate();
// Modifies: this.cache
// Effects: Empties the cache
c_valid = false;

g;
g;

Figure 3.2: Alternative integer-set class.

30 CHAPTER 3. VALIDATING CLASSES

In languages like Java that assume subclasses are subtypes, instance invariants cannot be estab-
lished by data type induction. That is, they cannot be established by inspecting the constructors and
public methods to see if the invariant is preserved. This problem can be fixed by making instance
invariants part of specialization specifications, just like invariants must be made part of object spec-
ifications in the presense of subtyping [Liskov94]. That is, a specialization specification is now an
object specification, a division of labor,andan instance invariant. The rules for behavioral subclass-
ing are augmented to require the subclass’s instance invariant implies the superclass’s.

3.5 Summary

Validation is the broad process of increasing our confidence that a class behaves as intended. It
includes such activities as testing, type checking, informal reasoning, and formal verification. All
forms of validation depends on a validation criterion that defines what it means for a class to “behave
as intended.” The validation criterion for specialization interfaces has two aspects. First, functional
correctness: instances of the class must implement the object-specification part of a class’s spe-
cialization specification. This is the same as the classical validation criterion for data abstractions.
Second, independence: the implementation of each class component must be independent of the
implementations of other overridable components. This independence allows subclasses to replace
overridable components without breaking inherited code.

Correctness of local components is reasoned about much in the same way correctness of clas-
sical data abstractions is reasoned about. To ensure independence of components, this classical
reasoning has to be augmented by extra concerns:

• Calls to other methods in the class must be reasoned about in terms of their specification, not
their implementations.

• One component must access the state of another overridable component by calling the meth-
ods of the other component, not by directly accessing instance variables.

• Abstraction functions must map on a per-component basis,i.e., they must map the instance
variables of each component to the abstract state assigned to the component. (The next chapter
looks at abstraction functions in more detail.)

• Representation invariants can only relate instance variables within the same component. In-
variants involving state from multiple components must be handled using abstract represen-
tation invariants.

Subclasses reuse superclass code. The rules of behavioral subclassing are needed to ensure (1)
that subclass-provided code meets assumptions made about it by the reused code, and (2) that the
subclass specification of inherited methods actually describes the inherited code. The two basic
rules that ensure these are (1) the subclass invariant and specifications of overridable and deferred
methods must imply their superclass equivalents, and (2) the superclass specifications of inherited
methods must imply their subclass specifications.

With super, a subclass can shadow an overridable class component. In this case, the superclass
retains responsibility for representing the substate assigned to the component. The subclass can add
substate fields to a shadowed component. In this case, a local subabstraction function defines the
new substate fields in terms of instance variables provided by the subclass.

3.5. SUMMARY 31

The correctness criterion for a class’s instance interface is the classical criterion that the class
correctly implement the behavior described by the class’s instance specification. Because of in-
herited methods, the code of a class cannot be verified directly against its specification. Instead,
the correctness of a class relative to its instance specification is deduced from the correctness of
the class relative to its specialization specification. In particular, the class implements its instance
specification if the instance specification is a behavioral supertype of the object-type part of the
class’s specialization specification. The behavioral supertype relation can be extended with instance
invariants to help hide fields of the abstract representation from instantiators.

32

Chapter 4

Formal specification and verification

This chapter formalizes the results of the previous two chapters. It presents formal specifications
for specialization interfaces and describes how to verify classes against specialization specifications.
We present these formal results for two reasons. First, they are useful in their own right. As one
tries to increase the precision of informal documentation, it tends to get long-winded and, as a
result, confusing. Formal specifications, on the other hand, are simultaneously precise, clear, and
concise. In addition, formal specifications can be mechanically checked both for syntax and for
certain semantic “goodness” properties [Guttag93], helping designers to catch mistakes. Formal
verification, where it is possible, greatly improves confidence in the correctness of code. Even where
verification against full specifications is not cost-effective, verification against partial specifications
has proven useful [Detlefs96]. The second reason to pursue formal specifications and verification is
that it helps us evaluate our informal results. By formalizing our informal techniques in a manner
that is sound and elegant, we increase our confidence in the soundness of and, more generally, in
the “goodness” of the informal techniques.

The first two sections of this chapter describe formal specifications for specialization inter-
faces. The first section presents a formal model for object specifications. Sec. 4.2 describes how
object specifications are combined with division of labor specifications and also with constructor
specifications to formally specify specialization interfaces. The following three sections describe
the procedure for verifying classes against specialization specifications. This procedure has two
steps. The first step is checking that the subclass is a behavioral subclass of its superclass. Sec. 4.3
formalizes the informal rules of behavioral subclassing described in Sec. 3.3.3. The second step
is verifying the code of local class components,i.e., components for which the class provides its
own code. This involves both checking for functional correctness and for independence of compo-
nent implementations. Sec. 4.4 shows how to verify normal class components; Sec. 4.5 describes
verification for shadowed components. Sec. 4.6 ends this chapter by discussing specification and
verification of constructors.

4.1 Formal object specifications

This report assumes the specification model for objects described in [Liskov94]. Like many mod-
els, this model assumes that program states include an environment that maps variables to object
identifiers and a store that maps object identifiers to values.Stateis the the space of program states.

33

34 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

If ρ is aState, then:

• ρ.env: Var→Obj

• ρ.store: Obj→Val

whereVar is the set of program variables,Obj is the set of object identifiers, andVal is the set of
values that objects can take on. Given a variablex and a stateρ, xρ denotesρ.store(ρ.env(x)), the
value ofx in stateρ. The store of a state is a partial function defined only on those objects that are
allocated in that state; the set of allocated objects in stateρ, alloc(ρ), is the domain of theρ.store.

An object specificationT has a number of components:

• T.oids, a subset ofObj, is the identifiers of objects subsumed byT .

• T.sort, a subset ofVal, is a space of values, called asort, defining the underlying values that
objects subsumed byT can take on.T objects cannot always take on all of these values; the
invariant ofT limits the possibilities.

• T.methodsis a set of identifiers containing the names ofT ’s methods.T .prem is the precon-
dition of methodm andT .postm is its postcondition. Pre- and postconditions are expressed
as boolean-valued terms with free variablesthis, pre, and, in postconditions,post. The vari-
ablethis is the implicit “self” argument to the method,pre is the state before the method is
called, andpost is the state after the method is called. Preconditions are predicates onpre,
and postconditionsare relations on (pre, post)-pairs. Pre- and postconditions also contain free
Var variables for the formal arguments of the method and the special freeVal variableresult
for the result of the method.

• T.inv is an invariant that allT objects must obey.T.inv is a boolean-valued term containing
the free variablethis ranging overVar andρ ranging overState. The invariant is interpreted
as an axiom constraining allowable program states:

∀ this : T.oids, ρ : State· this ∈ alloc(ρ)⇒ T.inv

As in informal specifications, the invariant ofT is considered animplicit part of the specifi-
cation ofT ’s methods. That is, a method may assume the invariant even if it is not implied
by the method’s precondition and must preserve the invariant even if it is not implied by the
method’s postcondition.

4.1.1 Example

An object specification for the instance interface ofIntSet is given in Fig. 4.1. This specification
employs a surface syntax that is close to the syntax used in the previous specification for informal
specification.

Our object specifications use Larch Shared Language (LSL)traits to define sorts and function
symbols used in specifications [Guttag93].IntSetISpec in Fig. 4.1 uses the traitSet . TheSet
trait is given in Fig. 4.2. TheSet trait first gives signatures forinsert, delete, and other common
functions on sets. Next, it asserts axioms that define these functions. Thegenerated byaxiom states
that all sets can be generated from just the empty set and theinsertfunction. When a specification

4.2. FORMAL SPECIALIZATION SPECIFICATIONS 35

object specification IntSetISpec f // IntSet instance specification

uses Set(Int, IntSet);
state is IntSet; // defines IntSet.sort

public void addElement(int el) f
Modifies: this
Ensures: thispost = insert(el, thispre)

g

public boolean contains(int el) f
Ensures: result = el ∈ thispre

g

..other methods elided
g

Figure 4.1: Partial object specification for instance interface ofIntSet .

usesa trait, it imports the definitions of that trait. A specification can rename symbols imported
from a trait. For example, when theIntSet class uses theSet trait, it renames the sortE to
Int and the sortC to IntSet , meaningIntSet (the sort) will be a set ofInt . As this example
indicates, we use separate name spaces for sorts and for classes.

4.1.2 Behavioral subtyping

This report assumes the behavioral subtype relationship defined in [Liskov94]. One object specifi-
cation is a behavioral subtype of another if all objects described by the first specification are also
described by the second.

A sufficient condition for object specificationSto be a behavioral subtype of object specification
T is the existence of an abstraction functionA from S.sort to T.sortsuch that:

• Invariant rule:S.inv⇒ T.inv[A(thisρ)/thisρ]

• Method rule: For allm∈ T.methods:

– Pre-condition:T .prem[A(thispre)/thispre] ⇒ S.prem

– Post-condition:

S.postm⇒ T .postm[A(thispre)/thispre, A(thispost)/thispost]

The reversed implication for pre-conditions reflects their contravariant nature.

4.2 Formal specialization specifications

Specialization interfaces are specified with an object specification, a division of labor, and construc-
tor specifications:

SpecializationSpec= ObjectSpec× LaborDiv×ConsSpecs

36 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

Set(E, C): trait
includes Integer %% Trait defining the sort Int

introduces
fg: →C
insert, delete:E,C →C
size:C → Int
_ ∈ _:E,C →Bool
∪, _ ∩ _, _ - _:C,C →C
_⊆ _:C,C →Bool

asserts
C generated by fg, insert
∀e,e1,e2:E , s, s1, s2:C

insert(insert(s,e1),e2) = insert(insert(s, e2),e1)

insert(s,e) = insert(insert(s,e),e)
¬(e∈ {})
e1 ∈ insert(e2, s) ⇔ e1 = e2 ∨ e1 ∈ s
size({}) = 0
size(insert(e,s)) = (if e∈ s thensize(s)elsesize(s)+ 1)
e1 ∈ delete(e2, s) ⇔ (e1 6= e2 ∧ e1 ∈ s)
e∈ (s1 ∪ s2) ⇔ e ∈ s1 ∨ e ∈ s2

e∈ (s1 ∩ s2) ⇔ e ∈ s1 ∧ e ∈ s2

e∈ (s1 − s2) ⇔ e ∈ s1 ∧ ¬(e ∈ s2)

s1 ⊆ s2 ⇔ (s1− s2) = {}
end Set

Figure 4.2:Set trait.

4.3. BEHAVIORAL SUBCLASSING 37

If S is a specialization specification, the object specification part ofS is denoted byS.ospec. The
division of labor part ofS is denoted by two components,S.methodsi , the set of methods assigned
to componenti , andS.substatei , the sort of the substate assigned to componenti . Discussion of
constructor specifications is deferred to Sec. 4.6.

To facilitate the partitioning of the abstract state into substates,S.ospec.sort and each of the
S.substatei must be Larch tuple sorts. Larch tuples are tuples with named fields, like immutable
records in programming languages. Each field in theS.ospec.sort tuple must appear in exactly one
of theS.substatei . This requirement can be written as:

S.ospec.sort=
∏

i

S.substatei

The tuple-sort product operator takes tuple sorts with disjoint field names and returns the tuple sort
that combines all the field names and field sorts of all the individual sorts. Tuple-sort product is
undefined on tuples that do not have disjoint field names.

A specialization specification forIntSet is given in Fig. 4.3. The abstract state for the entire
specification is given by the “state is” followed by a tuple sort. The substates of components are
given by the “substate is” declarations. Each field in the abstract state declaration must appear
in exactly one of the substate declarations. The state ofIntSet has two fields,s andc. The
field s, which contains the elements of the set, is the substate of the component that contains the
methodsaddElement , removeElement , andelements . The methodelements returns an
enumeration, which is specified with two fields,seq giving the values yielded by the enumeration,
and index giving the current position of the enumeration. The fieldc, used bycontains to
cache membership tests, is the substate of the component that contains the methodscontains
anduncache .

4.3 Behavioral subclassing

Sec. 3.3 points out that, when reasoning about subclasses, it is not enough to reason about the
correctness of local code. In addition, to ensure that superclass code reused by the subclass works
as expected, the subclass must be shown to be a behavioral subclass of the superclass. The rules
of behavioral subclassing constrain the specification of a subclass relative to the specification of its
superclass. The rules of behavioral subclassing also take into account what methods the subclass
has overridden. This section formalizes the rules for behavioral subclassing.

We break behavioral subclassing into two sets of rules. The first set of rules define inclusion
for specialization specifications. One specialization specificationincludesanother if all classes
implementing the latter specification also implement the former. The second set of rules define
simple behavioral subclassing. These are simple, very restrictive rules for behavioral subclassing.

By combining inclusion with simple behavioral subclassing, we get the definition for full be-
havioral subclassing given by the following equation:

Subclass(T, S, L)= ∃T ′, S′ · Includes(T, T ′) ∧ Simple(T ′, S′, L) ∧ Includes(S′, S)
where Full : SpclSpec× SpclSpec×OverrideList→Bool

Simple: SpclSpec× SpclSpec×OverrideList→Bool
Includes: SpclSpec× SpclSpec→Bool

38 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

specialization specification IntSetSSpec f // Spec of IntSet

uses Integer, Set(Int, IntSet);
state is [s:IntSet, c:IntSet];
invariant this ρ.c ⊆ thisρ.s;

overridable component f
substate is [s:IntSet];

public void addElement(int el) f
Modifies this;
Ensures thispost.s = insert(thispre.s, el);

g;

public boolean removeElement(int el) f
Modifies this;
Ensures thispost.s = delete(thispre.s, el) ∧ result = el ∈ thispre.s;

g;

public IntEnumeration elements() f
Ensures result.index = 0 ∧ len(result.seq) = size(thispre.s)
∧ (∀ i · i ∈ thispre.s ⇔ i ∈ result.seq);

g;
g

overridable component f
substate is [c:IntSet];

public boolean contains(int el) f
Modifies this.c;
Ensures result= el ∈ thispre.s;

g;

protected void uncache(int el) f
Modifies this.c;
Ensures el 6∈ thispost.c ∧ thispost.c ⊂ thispost.c;

g;
g;

g;

Figure 4.3: Formal specialization specification forIntSet

4.3. BEHAVIORAL SUBCLASSING 39

C

S

S’

T’

T

D

Impl(D,T’)

Includes(S’,S)

Impl(C,S)

Simple(T’,S’,L)

Subclass(D,C,L) Includes(T,T’)

Local components
of D are verified
against T’

Figure 4.4: Full behavioral subclassing.

Both full and simple behavioral subclassing are relations on two specialization specifications plus a
list of methods that have been overridden by the subclass. Inclusion is a relation on two specializa-
tion specifications.

Fig. 4.4 graphically denotes the above equation. In this figure, classD is a subclass of classC. L
is the set of methods overridden byD. We are given thatC implements specialization specification
S. We want to know: IsD specified by specialization specificationT is a behavioral subclass ofC?
Our rule for full behavioral subclassing answers “yes, if there exist two intermediate specifications
T ′ andS′ such thatS includesS′, T includesT ′, andT ′ is a simple behavioral subclass ofS′.” A full
verification of D includes verifying the local components ofD. As indicated by the figure, these
components are verified against specialization specificationT ′. Verification of local components is
discussed in Sec. 4.4.

Full and simple behavioral subclassing are both behavioral subclassing relationships. That is,
they both ensure that superclass code reused by the subclass works as expected. As mentioned ear-
lier, simple behavioral subclassing is very restrictive. Full behavioral subclassing generalizes this
restrictive relationship by combining it with inclusion. Splitting behavioral subclassing into inclu-
sion and simple behavioral subclassing simplifies the overall description. In particular, behavioral
subclassing defined here allows for the sub- and superclasses to have different abstract states, a case
ignored in Sec. 3.3. By handling differences of state in the rules for inclusion, we avoid spelling out
complicated rules to handle corner cases that arise when subclasses override components.

Sec. 4.3.1 gives sufficient conditions for inclusion. Sec. 4.3.2 defines simple behavioral sub-
classing. Sec. 4.3.3 gives an example of full behavioral subclassing.

4.3.1 Inclusion of specialization specifications

Specialization specificationτ includes specialization specificationσ if all classes that implementσ
also implementτ . This section gives two sets of sufficient conditions for inclusion.

One way a specialization specification can include another when it merges components of the
other. When specialization specificationτ includesσ by merging components,τ andσ are the

40 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

specialization specification IntSetSSpec2 f // Alternative spec for IntSet

uses Integer, FiniteMap(IntBoolMapSort, Int, Bool);
state is [m:IntBoolMapSort, c:IntSet];
invariant ∀e · e∈ thisρ.c ⇒ (defined(thisρ.m, e) ∧ apply(thisρ.m, e));

overridable component f
substate is [m:IntMapSort];

public void addElement(int el) f
Modifies this;
Ensures thispost.m = update(thispre.m, el , true);

g;

public boolean removeElement(int el) f
Modifies this;
Ensures

thispost.m = update(thispre.m, el , false)
∧ result = apply(thispre.m, el);

g;

...
g

...
g;

Figure 4.5: Map-based specification forIntSet

same (textually) in every way except that two or more components ofσ may bemergedin τ . Two
components are merged by combining both their methods and substate fields. For example, the
specification ofIntSet in Fig. 4.3 is included by a specification that is the same except that it only
has a single component to which all state and all methods are assigned.

Another way a specialization specification can include another is when it can be simulated by
the other. For example, the map-based specification ofIntSet in Fig. 4.5 can be shown to include
the set-based specification in Fig. 4.3 in this way.

When τ includesσ by simulation, thenτ andσ must have the same method suite and the
same grouping of methods into components. In addition, there must exist an abstraction function
from σ.ospec.sort to τ.ospec.sort that respects component boundaries. When composed with this
abstraction function,τ must both respect the assumptions ofσ and must correctly describe code
provided by classes implementingσ .

In more detail, the abstraction functionA from σ to τ must fulfill the following criteria:

1. A respects component boundaries. τ andσ have the same groupings of methods into compo-
nents.A must map the substate of each component independently,i.e., it must be the product
of multiple subabstraction functionsAi :

A(x) =
∏

i

Ai (x↓σ .substatei)

4.3. BEHAVIORAL SUBCLASSING 41

for each componenti , where the range ofAi is τ .substatei . (x↓S is x projected ontoS, i.e.,
x with only theSfields.)

2. Under A, τ respects assumptions made by classes implementingσ . Assume a classC im-
plementsσ . This code makes assumptions aboutthis that must be met by subclasses that
override methods ofC. These assumptions are that subclasses will preserve the invariant
of σ , and also that subclasses will implement the specifications of deferred and overridable
methods given inσ . τ must respect these assumptions.

This can be formalized as:

τ.ospec.inv[A(thisρ)/thisρ] ⇒ σ.ospec.inv

If there is an instance invariant, then a similar implication must hold. Also, for each deferred
and overridable methodm:

σ.ospec.prem⇒ τ.ospec.prem[A(thispre)/thispre]
τ.ospec.postm[A(thispre)/thispre, A(thispost)/thispost] ⇒ σ.ospec.postm

3. Under A,τ correctly describes code provided by classes implementingσ . Again, assume a
classC implementsσ . This means the code ofC implements the method specifications ofσ .
τ must correctly specify this code. This is assured when the specifications of these methods
in τ is no stronger than their specifications inσ . That is, for all final and overridable methods
m:

τ.ospec.prem[A(thispre)/thispre] ⇒ σ.ospec.prem

σ.ospec.postm⇒ τ.ospec.postm[A(thispre)/thispre, A(thispost)/thispost]

4.3.2 Simple behavioral subclassing

Simple behavioral subclassing is defined by three rules:

• The abstract states and invariants of the sub- and superclass specifications are the same (tex-
tually).

• Methods common to the sub- and superclass must have the same specifications in the sub-
and superclassexceptfor superclass methods overridden by the subclass, which may have
stronger specifications in the subclass. There are no constraints on the specifications of new
methods introduced by the subclass.

• The subclass must inherit method components as a whole and cannot break them up. That
is, the subclass’s division of labor must group inherited methods and associated state the
same as the superclass’s does. However, the subclass may regroup the state and methods of
components it replaces.

As mentioned before, these rules for behavioral subclassing are very restrictive, much more so than
the rules given in Sec. 3.3. These restrictions are overcome by combining this rule with inclusion.

Regarding method signatures, the rules of the programming language determine what changes
are allowed in method signatures. For example, Java allows a subclass to make the return-type of a
method more specific (i.e., a subtype), but does not otherwise allow changes in method signatures.

42 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

4.3.3 Example

We illustrate full behavioral subclassing withPrioritySet (Fig. 4.6 and Fig. 4.7), a subclass of
IntSet . PrioritySet s are like sets except they support a methodpop which extracts the least
element from the set. The implementation ofPrioritySet inherits the methodscontains
anduncache , overrides the methodsaddElement , removeElement , andelements , and
defines the new methodpop .

In showing thatPrioritySet is a behavioral subclass ofIntSet , the first step is to find
S′, a new specification forIntSet included by the oldIntSet specification.S′ must have the
same object specification as the specification in Fig. 4.6. One such specification is the specification
in Fig. 4.6 minus thepop method. This inclusion relation can be proven using the abstraction
function:

toPSet(x) =
{ {} for x = {}p

insert(toPSet(x′), i) for x = insertp(x′, i)

Fig. 4.6 isT ′, a simple behavioral subtype ofS′ against whichIntPrioritySet is verified. In
this case,T andT ′ can be the same.

4.4 Verifying local components

As discussed in Sec. 3.1, each class component must implement its specification and must be in-
dependent of the implementations of other overridable components. We verify that a component
is correct using standard data refinement procedures ([Hoare72], [Liskov86], [Dahl92]) adapted to
ensure independence. This section describes this adaptation. It starts with an overview of our ap-
proach, discusses the mechanics, and ends with an example. This section assumes thatsuper is not
used in to implement local components; the next section discussessuper.

4.4.1 Achieving independence

To achieve independence, the standard refinment procedures must be adapted in two ways. First,
the code of one method must be verified in terms of the specifications of other methods it calls. This
is simple enough. Second, just as the code of one component may not access the instance variables
of another, theformal reasoningof one component cannot make reference to the instance variables
of another. Achieving this second adaptation is more subtle.

The domain of the abstraction function used to verify a method defines the “concrete” view of
this used to reason about the method. In the standard data refinement techniques, every method is
verified using the same abstraction function. This function maps theentireconcrete state to its entire
abstract state. This means the concrete view ofthis used to reason about every method includes all
the instance variables ofthis. Unfortunately, this approach (illustrated in Fig. 4.8a) violates the
restriction about the formal reasoning of one component not referring to the instance variables of
others. (For simplicity, this chapter assumes abstraction functions rather than abstraction relations,
but the results can be extended to abstraction relations.)

To adapt the standard refinement procedure to class components, each component needs its own
view of the concrete state ofthis. For each component, the state ofthis has two parts, the state
assigned to the component, called theinternal state, and the state assigned to other components,
called theexternal state. The concrete view ofthis seen by a component includes only to the

4.4. VERIFYING LOCAL COMPONENTS 43

specialization specificationPrioritySetSSpec f

uses Integer, Set(Int, IntSet), PrioritySet(Int, PrioritySet);

state [p:PrioritySet, c:IntSet];
invariant ∀e · e ∈ thisρ.c ⇒ e∈p thisρ.p;

overidable component f
substate [p:PrioritySet];

public void addElement(int el) f
Modifies this;
Ensures thispost.p = insertp(thispre.p, el);

g;

public boolean removeElement(int el) f
Modifies this;
Ensures thispost.p = deletep(thispre.p, el) ∧ result = el ∈p thispre.p;

g;

public int pop() throws(Bounds) f
Modifies this;
Ensures thispost.p = rest(thispre.p) ∧ (thispre.p = {}p ⇒ throws(Bounds))

∧ (thispre.p 6= {}p ⇒ result = head(thispre.p));
g;

public IntEnumeration elements() f
Ensures result.index = 0 ∧ len(result.seq) = size(thispre.s)
∧ (∀ i · i ∈ thispre.s ⇔ i ∈ result.seq);

g;
g;

overridable component f
substate [c:IntSet];

public boolean contains(int el) f
Modifies this.c;
Ensures result= el ∈p thispre.p;

g;

protected void uncache() f
Modifies this.c;
Ensures el 6∈ thispost.c;

g;
g;

g;

Figure 4.6: Specialization specification ofPrioritySet .

44 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

PrioritySet(E, C): trait
assumesTotalOrder(E)
includes Integer

introduces
{}p: →C
_ ∈p _:E,C →Bool
insertp, deletep:E,C →C
biggest:C →E
rest:C →C
sizep:C → Int

asserts
C generated by {}p, includep

∀e,e1,e2:E , p:C
¬(e∈ {}p)
insertp(insertp(p, e1), e2) = insertp(insertp(p, e2), e1)

insertp(p,e) = insertp(insertp(p, e),e)
e1 ∈ insertp(e2, p) ⇔ e1 = e2 ∨ e1 ∈p p
sizep({}p) = 0
sizep(insertp(e, p)) = (if e∈p p thensizep(p)elsesizep(p) + 1)
e1 ∈p deletep(e2, p) ⇔ (e1 6= e2 ∧ e1 ∈p p)
e= head(p) ⇔ (e∈ p ∧ (e1 < e ∨ e1 6∈p p))
rest({}p) = {}p
p 6= {}p ⇒ (e ∈ rest(p) ⇔ e 6= head(p))

end PrioritySet

Figure 4.7: Trait definint priority sets.

4.4. VERIFYING LOCAL COMPONENTS 45

Rep Spec

Concrete Abstract

Concrete Abstract

Abstraction
function

Identity

(a) Traditional simulation

(b) Adapted simulation

External
spec

Internal
rep Internal

abstraction
function

External
spec

Internal
spec

Concrete Abstract

Identity

(c) Fully adapted simulation

External
spec

Internal
rep Internal

abstraction
function

External
spec

Internal
spec

Local,
final rep

L.,final
spec

Local, final
abstraction
function

Figure 4.8: Classical and adapted refinements.

46 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

instance variables representing the component’s internal state. This view hides the representation of
the external state by treating that stateabstractly.

This per-component view ofthis is illustrated in Fig. 4.8b. The concrete view ofthis seen by
each class component is a product of the internal representation and the external,abstractstate.
In each component, the concrete view ofthis is related to the fully abstract view by a compound
abstraction function that is the identity on the external state and is defined by an internal abstraction
function on the internal state. With this compound abstraction function, one can verify method code
as in standard refinements. The identity part of the compound abstraction function hides the internal
abstraction functions of other class components, achieving independence: if the internal abstraction
function of one component changes, the verification of other components is still valid.

This basic adaptation of the standard refinement techniques must be extended to deal with fi-
nal state. Recall from Sec. 2.2 that every component in a class can access the representation of
the class’slocal final state (local final state is final state implemented by the class itself, as against
final state inherited from the superclass). This is safe because subclasses cannot replace the rep-
resentation of final state. Thus, the view ofthis seen by each class component includes both its
own representationand the representation of the class’s final state. This extended view ofthis is
illustrated in Fig. 4.8c. Each class component uses the same abstraction function to map the repre-
sentation of the final state.

4.4.2 Mechanics

This subsection looks at the mechanics of verifying local components of classC against specializa-
tion specificationT . Table 4.1 summarizes symbols defined in this subsection and gives particular
values used to verify theaddElement method ofIntSet .

For each local componentj , the verifier defines a subabstraction functionAj :

Aj : C.repj→T .substatej

whereC.repj denotes the instance variables assigned to the local componentj (C.repj is a tuple with
named fields, where each field is an instance variable). This function defines how the component’s
instance variables are used to represent the component’s substate.

Each local component is verified separately. Leti be the component we are interested in veri-
fying. Let lf be the local component of final state. For the purpose of verification, we can assume
without loss of generality that there is only one component of local final state. We assume for now
that i 6= lf ; we discussi = lf below.

We now define the concrete view ofthis used to verify the code of componenti . As illustrated
by the left-hand side of Fig. 4.8c, this view includes the abstract, external state, the concrete, local,
final state, and the concrete, internal state. Thus, the code of componenti is verified as ifthis had
the sort:

this : C.repi × C.replf × Ei

whereEi is shorthand for:
Ei =

∏
j 6∈{i,lf }

T .substatej

that is, the state ofthis whose representation the code of componenti may not directly access. The
state inEi is state assigned to deferred components and to overridable components other thani .

4.4. VERIFYING LOCAL COMPONENTS 47

C.repi = Instance variables assigned to componenti
= [els : IntVector]

C.replf = Instance variables representing local final state
= [](IntSet has no final state)

T .substatei = Sort of substate of componenti
= [s : IntSet]

T .substatelf = Sort of local final state
= []

Ei = State whose representation componenti may not access
= ∏

j 6∈{i, f } T .substatej
= [c : IntSet]

Ai = Subabstraction function for componenti
: C.repi→T .substatei
= λ r · [s := toSet(r.els)]

Alf = Subabstraction function for local final state
: C.replf →T .substatelf
= λ r · []

Vi = Function for verifying componenti
: (C.repi × C.repj × Ei)→T.ospec.sort
= λ r · Ai (r↓C.repi)× Ai (r↓C.replf)× (r↓Ei)

= λ r · [s := toSet(r.els), c := r.c]

Table 4.1: Symbols for verifying local methods in componenti of classC against specialization
specificationT . Also given are particular values fori = add , the class component ofIntSet
containingaddElement , removeElement , andelements .

Next, we define the abstraction functionVi with which the code of componenti is verified. Vi

is the combination of the three subabstraction functions in Fig. 4.8c.Vi that has the signature:

Vi : (C.repi ×C.replf × Ei)→T.ospec.sort

Vi is defined by the equation:

Vi (r) = Ai (r↓C.repi)Ai (r↓C.replf)× (r↓Ei)

wheretup↓Sort is result of projecting tupletuponto tuple sortSort, i.e., only theSortfields of tup.
The methods of componenti are verified usingVi according to standard refinement procedures

(see,e.g., [Liskov86]). Where the code of methods make calls to other methods, the specifications
of the called methods are used to reason about the calls.

The special case ofi = lf , i.e., verifying the component of local, final state, is a bit simpler
than the general case. In this case, the state ofthis is divided into two parts rather than three: the
local, final state and the rest of the state. This component is verified using the abstraction compound
function:

Vlf (r) = Ai (r↓C.replf)× (r↓Elf)

where
Elf =

∏
j 6=lf

T .substatej

48 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

object specification IntVectorISpec f // IntVector instance spec

uses Integer, Sequence(Int, IntSequenceSort);
state IntSequenceSort;

public void addElement(int el) f
Modifies this;
Ensures thispost = thispre` el;

g;

public boolean removeElement(int el) f
Modifies this;
Ensures ∃ s1,s2 ·

el 6∈ s1 ∧ (el = head(s2) ∨ isEmpty(s2))

∧ thispre = s1 || s2

∧ thispost = s1 || tail(s2)

∧ result = (el ∈ thispre);
g;

public boolean contains(int el) f
Ensures result= (el ∈ thispre);

g;

public int size() f
Ensures result= size(thispre);

g;

// .. spec’s of other methods elided ..
g

Figure 4.9: Instance specification ofIntVector .

The methods of the local final component are verified using the abstraction functionVlf in the
usual manner.

4.4.3 Example

We illustrate the verification procedure on theaddElement method ofIntSet . To verify
addElement , one needs the instance specification forIntVector given in Fig. 4.9, which in
turn uses the LSLSequence sort from [Guttag93]. A full verification is not presented here, just
enough to illustrate the use ofVi to verify method components.

To verify addElement , one must defineAadd , the subabstraction function for its compo-
nents. Informally,Aadd constructs anIntSet by inserting each element ofthis.els into an
initially empty set. More formally,Aadd maps the instance variable assigned to the component to
the substate maintained by the component as follows:

Aadd (r) = [s := toSet(r.els)]

where the functiontoSetis defined as:

toSet(x) =
{ {} for x = empty

insert(toSet(x′), i) for x = x′ ` i

4.4. VERIFYING LOCAL COMPONENTS 49

(The functionsemptyand` generateIntSequenceSort values; the sequencex ` i contains the
elements of sequencex followed by integeri .)

From Aadd follows the abstraction functionVadd :

Vadd (r)
= [s := Aadd (r).s, c := r.c]
= [s := toSet(r.els), c := r.c]

(IntSet has no final state, so we can ignoreAlf in this case.)Vadd is used to verify the code in
theaddElement component.

To verify a method in theaddElement component,Vadd is composed with the specification
of the method to transform the specification into the concrete domain assumed by the implementa-
tion. Next, the proof rules of the language are used to show that the code of the method meets its
transformed specification.

For example, composingVadd with theensuresclause ofaddElement yields:

Vadd (thispost).s = insert(Vadd (thispre).s, el)

which expands to:

toSet(thispost.els) = insert(toSet(thispre.els), el)

The code ofaddElement can be verified against this in two cases, first whenel is not already in
thispre.els and second when it is:

1. Whenel is in thispre.els , one can conclude that:

el ∈ toSet(thispre.els)

Also, becauseaddElement is not called in this case, one can conclude:

toSet(thispost.els) = toSet(thispre.els)

Combining these with the lemma

i ∈ s ⇒ s= insert(s, i)

which is implied by the idempotence ofinsert, it follows that:

toSet(thispost.els) = insert(toSet(thispre.els), el)

So theensuresclause is met in this case.

2. Whenel is not inthispre.els , the effects of the invocation ofIntVector ’s addElement
method must be taken into account. When this invocation returns, it establishes as its post-
condition:

thispost.els = thispre.els ` el

Applying toSetto each side, we get:

toSet(thispost.els) = toSet(thispre.els ` el)

50 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

It follows from the definition oftoSetthat:

toSet(s` e) = insert(toSet(s), e)

Putting these two together, one gets:

toSet(thispost.els)

= toSet(thispre.els ` el)
= insert(toSet(thispre.els), el)

So theensuresclause is met in this case too.

A complete verification ofaddElement must also verify themodifiesclause and must verify
that addElement preserves the class’s invariant. Themodifies clause requires that onlythis is
modified. This is true, but we must assume no “representation exposure,”i.e., that changes toels
affect onlythis and no other objects (c.f., [Schaffert81, Leino95]).

Showing thataddElement preserves its invariant means assuming

thispre.c ⊆ toSet(thispre.els)

and proving:
thispost.c ⊆ toSet(thispost.els)

Informally, the invariant is preserved becauseaddElement does not changec and at most adds an
element toels . In more detail, we have just shown that:

toSet(thispost.els) = insert(toSet(thispre.els), el)

The body ofaddElement does nothing to change thec field, so:

thispre.c = thispost.c

Substituting these equalities into the assertion to be proved yields:

thispre.c ⊆ insert(toSet(thispre.els), el)

This assertion is implied by:

thispre.c ⊆ toSet(thispre.els)

which we can assume.

4.5 Shadowed components

To verify shadowed components (Sec. 3.3.4), both the rules of simple behavioral subclassing and
the verification procedure for local methods must be modified.

The rules for simple behavioral subclassing are augmented to indicate what happens to shad-
owed components. A subclass cannot regroup methods of shadowed components. When a subclass
shadows a component, then the shadowing component (in the subclass) must include at least the

4.5. SHADOWED COMPONENTS 51

Concrete Abstract

Internal
abstraction
function

IdentitySuper
state

Super
state

External
state

New
internal
rep

External
state

Identity

Internal
state
extension

External
state

Internal
state

Figure 4.10: Refinement whensuper is used.

C.repi = Instance variables assigned to componenti
S.substatei = Sort in superclass of substate of componenti

Ei = Additional substate fields added byC to componenti
T .substatei = Sort of substate of componenti

= S.substatei × Ei

Ai = Subabstraction function for componenti
: C.repi→Ei

Vi = Function for verifying componenti
: (C.repi × S.substatei ×

∏
j 6=i C.substatej)→C.ospec.sort

= λ s · (s↑C.repi)× Ai (s↓C.repi)

Table 4.2: Verifying componenti , a class component of classC that shadows a superclass com-
ponent.T is the specialization specification ofC, andS is the specialization specification ofC’s
superclass.Ei are fields ofS that are being made part of the substate ofi in T .

methods and all substate fields of the shadowed component (in the superclass). The shadowing
component may contain additional methods and substate fields. The shadowing component can
strengthen the specification of methods that it overrides, even methods whose superclass version is
invoked viasuper.

The verification procedure is changed (a) to adapt the abstraction function for shadowed compo-
nents and (b) to clarify which specification should be used to reason about calls viasuper. Change
(b) is simple: the superclass’s specification is used. The subclass version ofm is verified against
the subclass specification form, and subclass invocations ofm throughthis are also reasoned about
using the subclass specification form.

Change (a) requires adding more structure to abstraction functions. This new structure is illus-
trated in Fig. 4.10 and summarized in Table 4.2 (for simplicity, we ignore local final state here).
Assume thatG is a superclass component shadowed byG′ in the subclass. When verifyingG′, the
substate fields ofG, i.e., the substate fields represented by the superclass, are treated like external
state. That is, they are taken as part of the concrete view ofthis, and an identity function is used to
abstract them.G′ may contain more fields thanG does. These new subclass fields are defined by
an internal abstraction function mapping from the new instance variables of the subclass.

52 CHAPTER 4. FORMAL SPECIFICATION AND VERIFICATION

4.6 Specifying and verifying constructors

So far, this report has largely ignored constructors because, while the verification of regular methods
is largely language independent, the verification of constructors is not. Mechanisms for object
construction differ from language to language, and the details of constructor verification depend
on these differences. This section presents the specification and verification of constructors in the
context of the Java language ([Javabeta95]).

In Java, object construction is a multi-step process involvinginitializers, initialization expres-
sions associated with instance variables, andconstructors, special methods defined in a class for
object initialization. Assume that classCn is being instantiated, whereCn−1 is the direct superclass
of Cn, Cn−2 is the direct superclass ofCn−1, and so on back toC0, which isObject , the universal
root class.

• First, space for aCn object is allocated, and its instance variables are “pre-initialized” to
default values according to their type,e.g., numerical variables are initialized to zero, object
references are initialized to nil. (The motivation for pre-initialization is described below.)

• Constructors are called in a top-down manner,i.e., the constructor forC0, the root class, is
called first, then the constructor forC1, and so on. (In Java, classes can have more than one
constructor, but, for simplicity, we assume classes have only one.)

• Between the calls to the constructors ofCi andCi+1, the instance variables ofCi+1 are ini-
tialized by evaluating their initializers. Initializers are evaluatedaccording to the textual order
of instance-variable declarations in the class definition.

Object construction in Java (and in most languages) is intricate because both constructors and ini-
tializers can call methods of the object being constructed. Because of method override, these calls
might dispatch to method codelower in the class hierarchy than the constructor making the call.
As a result, these methods might see instance variables that have not yet been initialized by a con-
structor. Java’s “pre-initialization” of instance variables ensures that these methods will notaccess
completely uninitialized variables, but this pre-initialization will not in general establish represen-
tation invariants assumed by these methods.

To support straight-forward verification of constructors, a programming convention is assumed.
In this convention, initializers are assumed have no side-effects. Further, initializers and construc-
tors can only callinitialization methodsof this: final, private methods that areonly called by ini-
tializers and constructors and not by other methods. Initialization methods cannot assume any
representation invariants.

4.6.1 Specification of constructors

Like other routines, constructors are specified using pre- and postconditions. However, to simplify
verification, the postconditions of constructors are structured as conjunctions of per-component
postconditions. IfT is a specialization interface, then:

• T .preconsis the precondition ofT ’s constructor.

• T .posticonsis a postcondition assertion forT ’s constructor that only mentions substate fields
assigned to componenti . T .posticonsis defined for final and overridable components only.

4.6. SPECIFYING AND VERIFYING CONSTRUCTORS 53

R = All local instance variables ofC
= ∏

i∈L C.repi
O = Inherited and deferred state
= ∏

i 6∈L T .substatei
Vcons = Constructor abstraction function

: (R× O)→T.ospec.sort
= λ s · (s↓O)×∏i∈L Ai (s↓C.repi)

Table 4.3: Derivation of constructor abstraction function for verifying initialization code of class
C against specialization specificationT . L is the set of local class components,i.e., components
for which C provides its own code. The subabstraction functionsAi must be the same as those in
Table 4.1.

• The full postcondition ofT ’s constructor is the conjunction of its per-component postcondi-
tions:

T .postcons=
∧

i

T .posticons

Again, i ranges over final and overridable components only.

The motivation for structuring constructor postconditions in this way is that the constructor of a class
should be able toselectivelyassume the postconditionof its immediate superclass’s constructor,i.e.,
it should be able to assume postconditions relating to components it inherits but not those relating
to components it replaces.

4.6.2 Verification of constructors

Constructors, initializers, and initialization methods are all verified using theconstructor abstrac-
tion function. Constructors must initialize all instance variables of a class, not just the instance
variables assigned to a single class component. Thus, the concrete view ofthis assumed by this
abstraction function treats the substates of all local components in terms of their representations.
The constructor abstraction function is the product of the subabstraction functions used to verify
local components; a definition of the constructor abstraction function is given in Table 4.3.

On entry, the implementation of the constructor can assumeS.posticonsfor componentsi that
havenot been overridden, whereS is the specialization specification of the superclass. Further,
the implementation can assume that the instance variable initializers have been executed. Under
these assumptions, the body of the constructor can be verified in the usual way using the constructor
abstraction function.

54

Chapter 5

Improving extensibility

There is a trade-off between modularity and extensibility. At one extreme, allowing specializers
to look at the source code of superclasses permits the widest range of customized subclasses, but
is not at all modular. At the other extreme, requiring that specializers overrideall methods of
superclasses is very modular—it permits the widest range of changes to superclasses that do not
affect subclasses—but it results in no code reuse. The methodology based on class components
outlined in the previous chapters strikes a balance between extensibility and modularity. However,
we can improve the extensibility of this approach without sacrificing modularity. This chapter
explains how.

Sec. 5.1 looks at splitting the specialization specifications of overridable methods into one used
when the method is inherited and another used when the method is overridden. (Including the
instance specification, this brings the number of specifications for overridable methods to three.
Chapter 7 looks at a way to simplify this situation.) Sec. 5.2 looks at improving the extensibility of
formal specifications. By parameterizing sorts on a per-object basis, the behavior of methods can
be specified in a manner that is both precise and extensible.

5.1 Particular and assumed specifications

ConsiderIntSet4 , in Fig. 5.1.IntSet4 is just likeIntSet except thatelements yields the
elements of the set in ascending order (IntSet4 achieves this by keepingels sorted). We would
like to specifyIntSet4 such that (a) the instance specification ofIntSet4 says thatelements
returns a sorted listing, (b) a subclass that inherits theelements component can assume that
elements returns a sorted listing, and (c) a subclass that overrides theelements components
doesnothave to implement anelements method that yields its elements in ascending order.

This flexibility can be achieved if the specialization specification of a overridable method can
have two specifications, anparticular specificationthat describes what the class’s own version of
the method actually does and anassumed specificationthat constraints what subclass versions of
the method can do. The particular specification is stronger than (i.e., implies) the assumed one. In
the case ofIntSet4 , the particular specification ofelements would say thatelements yields
the elements of the set in ascending order, while the assumed specification would say that it yields
the elements of the set in any order.

With two specifications, the rules for reasoning about classes do not change, but they have to be

55

56 CHAPTER 5. IMPROVING EXTENSIBILITY

class IntSet4 f

// ‘‘elements’’ component
private IntVector els = new IntVector();

// Rep invariant: no duplicates and kept in sorted order;

public overridable void addElement(int el) f
int i = findIndex(el);
if (i > 0 && els.elementAt(i-1) == el) return ;
els.insertElementAt(el, i);

g;

public overridable boolean removeElement(int el) f
int i = findIndex(el);
if (i == 0 || els.elementAt(i-1) != el) return false;
this.uncache(el);
els.removeElementAt(el, i-1);
return true ;

g;

public overridable IntEnumeration elements() f
return els.elements();

g;

private final int findIndex(int el) f
% Effects: Helper function for elements component that returns
% the highest index at which el can be inserted into els
% while keeping els in sorted order
if (el < els.firstElement()) return 0;
if (els.lastElement() <= el) return els.size();

int lo = 0;
int hi = els.size() - 1;
while(lo+1 < hi) f /* Invariant: els[lo] <= el < els[hi] */

int mid = hi - (hi-lo)/2;
if (el < els.elementAt(mid)) hi = mid;
else lo = mid;

g
return hi;

g

..other methods elided
g;

Figure 5.1: Integer sets with ordered enumeration.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 57

clarified to indicate which specification is used when:

• The particular specification is used when reasoning about the implementation of an over-
ridable method,i.e., the code of a method must do what the particular specification of the
method says it does. Because the particular specification implies the assumed specification,
this reasoning will ensure that the method meets both specifications.

• The assumed specification is used when reasoning about a call from one method to another
method. For example, inIntSet4 , the call toelements in contains must be reasoned
about using the assumed specification ofelements , which meanscontains cannot as-
sume that elements are yielded in ascending order.

• The particular specifications of methods are used when when reasoning about the instance
specification of a class by comparing it to the specialization specification.

• The superclass’s particular specification for the method is used when reasoning about a call
via super to a superclass version of a method.

• In the informal rules for behavioral subclassing (Sec. 3.3), the rules for overridable methods
must be clarified:

1. The particular specifications of inherited, overridable methods in the subclass must be
implied by their particular specifications in the superclass.

2. The assumed specifications of all overridable in the subclass must imply their assumed
specifications in the superclass.

• In the formal rules for inclusion (Sec. 4.3.1), the implication on method specifications in
the “respects clause” (rule (2), page 41) applies to the assumed specifications of overridable
methods, while the implication on method specifications in the “describes clause” (rule (3),
page 41) applies to the particular specifications of overridable methods.

In the formal rules for simple behavioral subclassing (Sec. 4.3.2), where it says that overrid-
den methods may have stronger specifications in the subclass, this means that the assumed
specification in the subclass must imply the assumed specification in the superclass.

Note that there need not be any relation between the particular specifications of a sub- and super-
class.

5.2 Extensible specialization specifications

Fig. 5.2 givesIntCollection , a partial class for building integer collections. This class is
inspired by theCollection class in the Smalltalk library [Goldberg89]. This class provides code
for about two dozen methods common to collection classes, such as membership-testing, adding and
removing multiple members from an array, and so-on. Subclasses provide their own implementation
for theelements component and can inherit these two dozen methods.

An informal specification forIntCollection is given in Fig. 5.3. The aim of this specifi-
cation is to be as general as possible. This will allow the reuse ofIntCollection in all kinds

58 CHAPTER 5. IMPROVING EXTENSIBILITY

class IntCollection f

// Deferred ‘‘elements’’ component
public deferred void addElement(int el);
public deferred boolean removeElement(int el);
public deferred IntEnumeration elements();

// ‘‘cache’’ component (same as IntSet)
private int c_val; // Value currently in cache
private boolean c_valid = false; // True only if c_val is valid

public overridable boolean contains(int el) f
if (c_valid && c_val == el) return true ;
for (IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f
c_valid = true; c_val = el;
return true ;

g;
return false;

g;

protected overridable void uncache(int el) f
if (c_val == el) c_valid = false;

g;

..About two dozen other methods implemented in terms of addElement,
removeElement, elements, and contains. For example:

public void removeElements(int els[]) f
for (IntEnumeration e = this.elements(); e.hasMoreElements();)

this.removeElement(e.nextElement());
g;

...
g;

Figure 5.2: Base class for integer-collection classes.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 59

of collection classes,e.g., both ordered and unordered collections, and both set-like and multiset-
like collections. To achieve this generality, notice that the description of theelements field—“a
collection of integers”—is vague. The specifications ofremoveElement of elements are also
vague—they make vague hints about values being inelements “multiple times.”

A formal specification can clear up this vagueness, but classes likeIntCollection are chal-
lenging to specify. What mathematical space should be used to model theelements field? This
space needs to include sets, multisets, sequences, and a wide-variety of other collection values. How
should the behavior of methods be specified, given that the behavior in different subclasses can vary
markedly? For example, in a set-like subclass,addElement is an idempotent operation,i.e., after
an element is inserted the first time, all subsequent insertions of that element have no effect. In
multiset-like subclasses,addElement is not idempotent: each insertion of an element into such
an object changes the state of the object.

The challenge of designing mathematical spaces that are crafted so as to be reusable is not
unique to specifying specialization interfaces. The issue also arises in the context of instance speci-
fications. For example, most collection libraries have a collection type that is a supertype of all other
collection types, and specifying this type raises the same issue. The issue also arises in the context
of designing LSL handbooks, collections of LSL traits defining related sorts [Guttag93]. Below we
propose a solution that seems promising for specifying both the instance and specialization speci-
fications of classes. However, the important point here is the identification of the general problem
as it pertains to specifying classes. If formal methods are to be applied to object-oriented programs,
some solution to this problem—whether the one here or some other—will be necessary.

Our solution is to carefully craft the sorts used to model the abstract state of classes like
IntCollection . An extensible sortis a larger space of values containing subspaces of val-
ues for which we can assert properties independently. In classes such asIntCollection , where
the abstract state of different subclasses need different, contradictory properties, each subclass will
get its own subspace of values and will assert the needed properties. Aclass assertionis an axiom
associated with a class that asserts properties for the subspace of an extensible sort associated with
all subclasses of the class. Acomponent assertionis an axiom associated with a class component
that asserts properties for just those subclasses that inherit the component.

5.2.1 Extensible sorts

When it comes to designing the abstract spaces for extensible classes, the challenge is this. First,
we need to define a space of values that all share some general properties. For example, all
IntCollection s share a general notion of “membership” and of “inserting” and “removing”
members of a collection. At the same time, we want to be able to divide that space of values into
subspaces that have additional properties, where the additional properties of different subspaces
might be contradictory. In our example, we want to carve up the very general space of “collec-
tions” into subspaces for sets, multisets, and other kinds of collections. For some of these subspaces
(set-like collections), insertion is idempotent, while for others (multiset-like collections), it is not.
Similarly, for some subspaces (unordered collections), insertion is commutative, while for others
(ordered collections), it is not. We need to be able to assert properties on each subspace indepen-
dently.

For eachobjectsubsumed by a specification likeIntCollection , our approach is to create a
subspace for the object. That is, each individualIntCollection object has its own subspace of

60 CHAPTER 5. IMPROVING EXTENSIBILITY

specialization specification IntCollectionSSpec f

state field elements; // A collection of integers
state field cache; // A set of integers

invariant if integer i ∈ cache then i is a member of elements

overridable component f
substate field elements;

public void addElement(int el);
// Modifies: this.cache
// Effects: Adds el to this.elements.

public boolean removeElement(int el);
// Modifies: this.elements, this.cache
// Effects: Removes el from this.elements, returning true iff
// el is in to begin with. In some subclasses, eg,
// IntMultiSet, an element may have to be removed multiple
// times before it is completely gone from this.elements.

public IntEnumeration elements();
// Effects: Returns an enumeration of the integers in this.elements.
// This enumeration yields each distinct integer only once, even
// integers that are in this.elements multiple times.

g;

overridable component f
substate field cache;

public boolean contains(int el);
// Modifies: this.cache
// Effects: Returns true iff el is in this.elements.

protected void uncache(int el);
// Modifies: this.cache
// Effects: Removes el from this.cache

g;

..other methods elided

g;

Figure 5.3: Informal specification forIntCollection .

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 61

Holder: trait

includes Int, Sequence(Int, IntSequenceSort), StateTrait

introduces
new:Obj → IntHolder
ins:IntHolder,Int → IntHolder
tag:IntHolder →Obj

del:IntHolder,Int → IntHolder
mem:IntHolder,Int →Bool
goodSeq:IntHolder,IntSequenceSort →Bool
measure:IntHolder → Int

asserts
IntHolder generated by new, ins
∀o, o′:Obj , h:IntHolder , s:IntSequenceSort , i, i ′:Int

tag(new(o)) = o
tag(ins(h, i)) = tag(h)

¬mem(new(o), i)
mem(ins(h, i), i ′) = (i = i ′ ∨mem(h, i ′))

measure(new(o)) = 0
measure(ins(h, i)) = (mem(h, i)?measure(h) : 1+measure(h))

goodSeq(h,s) ⇒ (mem(h, i)⇔ i ∈s)
end Holder

Figure 5.4:Holder trait.

abstract values it can take on. We define these subspaces by tagging values withObj s (object iden-
tifiers). The subspace of abstract values that an objecto can take on is the set of values tagged with
o. Fig. 5.4 gives a trait forIntHolder , a value space for the abstract state ofIntCollection .
Thenewoperation takes anObj argumento and returns an emptyIntHolder value tagged byo.
The axioms fortag (which returns the object tagging a value) indicate that anyIntHolder value
generated by inserting integers intonew(o)is also tagged byo. Thus, we see that associated with
eachObj is a whole space ofIntHolder values.

Tagging values gives us the freedom to define properties for bothIntHolder as a whole and
also for subspaces ofIntHolder . We can define a property on allIntHolder values by quanti-
fying over all tags. For example, the trait in Fig. 5.4 asserts general properties ofmemandgoodSeq
that apply to allIntHolder values. We can define a property on subspaces ofIntHolder by
quantifying over the objects for which the property should apply. For example, the assertion:

∀ h:IntHolder , i :Int · InstanceOf(tag(h), IntSet)⇒ ins(h, i) = ins(ins(h, i), i)

says that insertion is idempotent forIntHolder values that are tagged by an instance ofIntSet .
(InstanceOf(o,C) is a boolean-valued function returning true whenObj o is a direct or indirect
instance of classC.)

A formal specification forIntCollection is given in Fig. 5.5. This specification uses

62 CHAPTER 5. IMPROVING EXTENSIBILITY

specialization specification IntCollection f

uses Integer, Set(Int, IntSet), Holder;
state [h:IntHolder, c:IntSet];
invariant this = tag(thisρ.h) ∧ e ∈ thisρ.c ⇒ mem(thisρ.h, e);

overridable component f
substate [h:IntHolder];

public void addElement(int el) f
Modifies this;
Ensures thispost.h = ins(thispre.h, el);

g;

public boolean removeElement(int el) f
Modifies this;
Ensures thispost.h = del(thispre.h, el) ∧ result = mem(thispre.h, el);

g;

public IntEnumeration elements() f
Ensures result.index = 0 ∧ goodSeq(thispre.h, result.seq);

g;
g;

overridable component f
substate [c:IntSet];

public boolean contains(int el) f
Modifies this.c;
Ensures result= mem(thispre.h, el);

g;

protected void uncache(int el) f
Modifies this.c;
Ensures el 6∈ thispost.c;

g;
g;

g;

Figure 5.5: Formal specialization specification forIntCollection

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 63

specialization specification IntSetSSpec2 f

uses Integer, Set(Int, IntSet), Holder;
state [h:IntHolder, c:IntSet];
invariant this = tag(thisρ.h) ∧ e ∈ thisρ.c ⇒ mem(thisρ.h, e);

asserts
∀h : IntHolder [this], s:IntSequenceSort , i, i ′:Int

ins(ins(h, i), i ′) = ins(ins(h, i ′), i)
∧ ins(h, i) = ins(ins(h, i), i)
∧ mem(del(h, i), i ′) = (i 6= i ′ ∧ mem(h, i ′))
∧ goodSeq(h,s) ⇒ len(s) = measure(h);

.. rest of specification is same as for IntCollection
g;

Figure 5.6: Using class assertions to specializeIntHolder

IntHolder as its abstract state. The invariantthis = tag(thisρ.h) ensures that the subspace
of IntHolder values associated with objectx are used to describe the abstract state ofx.

5.2.2 Specializing extensible sorts

To specializean extensible sort is to assert properties about interesting subspaces of the sort. “Inter-
esting” subspaces include spaces associated with all the instances of some class and instances of all
classes that inherit a given class component.

Class assertionsare used to specialize an extensible sort for all instances of a class. A class
assertion appears in the specialization specification of a class. These assertions can be quantified
over sort expressions of the form “Sort[this],” whereSort is an extensible sort. Inside the classC,
the class assertion “asserts∀x : Sort[this] · P” is interpreted as:

∀x : Sort · InstanceOf(tag(x),C)⇒ P

This desugaring generalizes in the expected manner for multiple occurrences of quantification over
sorts of the formName[this].

Fig. 5.6 shows a class assertion that asserts set-like properties for thoseIntHolder values
associated with instances ofIntSet . The assertion here is interpreted as:

∀ h : IntHolder , s:IntSequenceSort , i, i ′ :Int
InstanceOf(tag(h), IntSet)⇒
(ins(ins(h, i), i ′) = ins(ins(h, i ′), i)
∧ins(h, i) = ins(ins(h, i), i)
∧mem(del(h, i), i ′) = (i 6= i ′ ∧mem(h, i ′))
∧goodSeq(h, s)⇒ len(s) = measure(h))

Note that this asserts properties of the sortIntSet (Fig. 4.2), idempotence and commutativity, that
are missing fromIntHolder .

64 CHAPTER 5. IMPROVING EXTENSIBILITY

Class assertions constrain both direct instances of a class and also instances of all subclasses of
the class. Sometimes, constraining all subclasses limits reuse. For example, the code forIntSet
in Fig. 1.2 implements the specification in Fig. 5.6. However, using this specification forIntSet
limits potential reuse. The specification in Fig. 5.6 restricts all subclasses to implement sets when
in fact IntSet could be used to implement other collection classes (e.g., multisets).

This is really a variation on the story of Sec. 5.1: different specifications are needed for de-
scribing a component and for constraining subclasses that replace a component. For instances of
IntSet and for subclasses that inherit theelements component, we want a specific specifi-
cation that explains that theelements component is implementingsetsin particular. For sub-
classes ofIntSet that override theelements component, we want a general specification like
the one forIntCollection in Fig. 5.5 that says thatelements must implement some kind of
IntHolder —but any kind ofIntHolder .

We can handle this dual requirement by associating assertions withcomponentsrather than with
classes. For example, another specification ofIntSet is given in Fig. 5.7. This specification is the
same as the one in Fig. 5.6 except that the specializing assertion forIntHolder has been moved
into theelements component. Inside a class componentG, the component assertion “asserts
∀x : Sort[this] · P” is interpreted as:

∀x : Sort · (tag(x) inheritsG)⇒ P

In other words, the abstract-value space of all subclasses that inherit the code ofG are subject to
the assertion ofG. The code for methods inG may assumeP. For example, whenIntSet is
specified by Fig. 5.7, the implementation ofelements can assume that insertion is idempotent,
so the code foraddElement (Fig. 1.2) need not add an element if it is already inelements .
Code for methods outside ofG maynot assumeP. For example, consider the following code for
contains :

public overridable boolean contains(int el) f
if (c_valid && c_val == el) return true ;
if (this.removeElement(el)) f

c_valid = true; c_val = el;
this.addElement(el) // Bug! Assumes insertion is commutative
return true ;

g else return false;
g;

This code assumes that element insertion is commutative. This assumption would be correct if
IntSet were specified by Fig. 5.6. However, ifIntSet is specified by Fig. 5.7, this assumption
is incorrect outside of theelements component.

5.2. EXTENSIBLE SPECIALIZATION SPECIFICATIONS 65

specialization specification IntSet f

uses Integer, Set(Int, IntSet), Holder;
state [h:IntHolder, c:IntSet];
invariant this = tag(thisρ.h) ∧ e ∈ thisρ.c ⇒ mem(thisρ.h, e);

class componentf // ‘‘elements component’’
substate is [h:IntHolder]

asserts
∀ s:IntSequenceSort , i, i ′:Int

ins(ins(this.h, i), i ′) = ins(ins(this.h, i ′), i)
∧ ins(this.h, i) = ins(ins(this.h, i), i)
∧ mem(del(this.h, i), i ′) = (i 6= i ′ ∧ mem(this.h, i ′))
∧ goodSeq(this.h, s) ⇒ len(s) = measure(this.h);

.. rest is same as for IntCollection
g;

.. rest same as for IntCollection
g;

Figure 5.7: Using class assertions to specializeIntHolder

66

Chapter 6

Design implications

This chapter looks at the design implications of the previous chapters. It focuses on the design
implications for class libraries, but it also looks at design implications for programming languages.

The goal of this report is to show how to improve the specialization interfaces of class libraries.
The previous chapters showed a methodology—a unit of modularity with associated documentation
and reasoning techniques—that achieves modularity without sacrificing extensibility. However, as
suggested in an earlier chapter, a good methodology allows good designs but does not necessitate
them. Good use of the methodology—i.e., good design—is required as well. This chapter explores
some principles of good design implied by the methodology.

There are two levels in the design of class libraries. One level is the decomposition of the overall
library into type and class hierarchies. The other level is the design of the interfaces of individual
classes. This chapter considers the latter, the design of specialization interfaces of individual classes.
It presents a series of tips for designing these interfaces and also describes how languages can
support these tips.

Sec. 6.1 describes the examples used to illustrate the points of this chapter. Sec. 6.2 describes
control abstractions, a building block like class components for designing specialization interfaces.
This chapter does not discuss control abstractions in detail, but it is important to understand how
control abstractions and class components fit together. Sec. 6.3 discusses the design of specialization
interfaces using class components. Our approach is to concentrate on identifying a good abstract
representation and on picking representation categories for the fields of the abstract representation.
Decomposing this into class components follows naturally once the abstract representation is de-
signed.

The last section of this chapter looks at the implications of class components on another area
of design: the design of programming languages. It suggests a construct for expressing overridable
class components in one’s code. It shows how such a construct can be used to enforce many of the
rules discussed in Chapter 3.

6.1 Design examples

This chapter illustrates its points using three examples. Two of the examples have already been
seen:IntSet andRd.

The third example is a new one: “views,” a class central to most GUI libraries. A view is a

67

68 CHAPTER 6. DESIGN IMPLICATIONS

Functionality Openstep ET++
Root class: NSObject Object
Responder: NSResponder EvtHandler

View: NSView VObject

Table 6.1: Class hierarchies of two GUI libraries.

rectangular region on the screen that programs can draw into and that responds to user events such as
mouse clicks and key strokes. Views are arranged in a view hierarchy, with a superview containing
a number of subviews containing subsubviews and so on. Mouse-click events are directed to the
lowest view in the view hierarchy containing the click; other input events, such as keystrokes and
commands generated by menus, are directed to the view that currently has the input focus.

We compare and contrast the view classes in two GUI libraries, Openstep [Next94] and ET++
[Weinand95]. We consider both to be well-designed libraries, an opinion that has been seconded in
the literature (e.g., [Holzle93],[Lewis95]). Openstep and ET++ are similar in their class hierarchies
and in the general functionality of various classes. However, the details of their specialization
specifications are different.

The view-related part of the class hierarchies of Openstep and ET++ are shown in Table 6.1.
In both libraries, the immediate superclass of the view class is a “responder” class that factors out
functionality for processing mouse, keyboard, and other events. The immediate superclass of the
responder class is the root class of the library, which provides generic functionality such as object
copying, equality testing, and dynamic type identification.

Table 6.2 lists some of the abstract-state fields of the view class and their representation cate-
gories in the different libraries. Thegeometry field contains the location and size of the view. The
nextResponder points to the next responder in the program’s responder chain (an event such as
a keyboard stroke is passed along the responder chain until a responder chooses to process it). The
superview andsubviews fields contain the view hierarchy. Theobservers field is unique to
the ET++ library. Theobservers field contains a list of objects registered to receive notification
when aVObject changes; it is motivated by the change-propagation mechanism in the SmallTalk
Model-View-Controller paradigm [LaLonde91].

A specialization specification for the classView is given in Fig. 6.1. This specification is
referred to in our design discussions later in this chapter.View is close to the ET++ view class,

Field Openstep ET++
geometry final, encapsulated final, exposed
nextResponder final, encapsulated deferred
superview final, encapsulated final, encapsulated
subviews final, encapsulated overridable
observers — overridable

Table 6.2: Abstract-state fields of two view classes.

6.1. DESIGN EXAMPLES 69

specialization specificationViewSSpec f

state field subviews; // Set of Views
state field superview; // Single View, or nil
..other fields elided

final component f
substate field superview;

public View getSuperview();
// Effects: Returns superview.

public void setSuperview(View newSuper);
// Modifies: this
// Effects: Sets superview to newSuper.

g;

overridable component f
substate field subviews;

public void addSubview(View newSub) throws BoundsException;
// Modifies: this, newSub
// Override effects: If subviews is full, throws BoundsException,
// otherwise, inserts newSub into subviews and sets
// newSub.superview to this.
// Inherited effects: Always throws BoundsException because the
// default representation of subviews has zero capacity. Subclasses
// that expect to have subviews must override this component.

public void removeSubview(View oldSub)
// Modifies: this, oldSub
// Effects: If oldSub in subviews, removes it and

sets oldSub.superview to null.

public ViewEnumeration subIter();
// Effects: Returns an enumeration that yields the
// subviews of this in turn.

g;

// Not accessors for any state, so outside of any component
public final void drawAll();

// Effects: Draws this by calling drawSelf, then
// draws each subview by calling drawAll.

public deferred void drawSelf();
// Effects: draws this.

..other methods elided
g;

Figure 6.1: Partial specialization interface ofView .

70 CHAPTER 6. DESIGN IMPLICATIONS

class View f

public void addSubview(View newSub) throws BoundsException
f throw new BoundsException(); g;

public void removeSubview(View oldSub)
f g;

public ViewEnumeration subIter()
f return new EmptyViewEnumeration(); g;

...
g;

Figure 6.2: Representation ofsubviews in View .

but avoids details that are not relevant to our discussion. We consider here only two abstract-
representation fields ofView : superview , containing the superview of a view, andsubviews
containing the set of subviews of a view.

The specification in Fig. 6.1 shows two class components of theView class, a final component
that maintains thesuperview state and an overridable component that maintains thesubviews
state. In addition, Fig. 6.1 includes two methods,drawAll anddrawSelf , that are not accessors
of any component and thus are outside of any component; these are discussed further in the next
section.

The default representation ofsubviews , given in Fig. 6.2, holds no subviews: any attempt to
add a subview results in aBoundsException being thrown. This makesaddSubview a good
candidate for having both an assumed and an particular specification (Sec. 5.1). The assumed spec-
ification ofaddSubview describes the behavior required of all subclasses:addSubview adds a
new subview to aView , subject to an unspecified bound on the number of allowable subviews. The
particular specification refines this general specification, indicating that the default representation
of subviews holdsnosubviews soaddSubview will always throwBoundsException .

6.2 Control abstractions

Class components are one building block that can be used in the design of specialization interfaces.
Control abstractions are another. Control abstractions support extensibility for behavior. Although
control abstractions are beyond the scope of this report, no realistic discussion of the design of
specialization interfaces can completely ignore them. This section briefly describes control abstrac-
tions and discusses how they interact with class components. (A detailed discussion of control
abstractions can be found in [Kiczales91].)

A control abstractionis a method whose behavior can be customized by overriding methods
that it calls. Control abstractions are final or overridable methods containing algorithms in which
key details are embodied by calls to deferred and overridable methods calledspecializing meth-
ods. By overriding these specializing methods, subclasses can customize the behavior of control
abstractions.

6.3. DESIGNING SPECIALIZATION INTERFACES 71

public final void drawAll() f
this.drawSelf();
for (ViewEnumeration e = this.subIter(); e.hasMoreElements();)

e.nextElement().drawAll();
g;

Figure 6.3: Implementation ofdrawAll .

The methoddrawAll (in View) is an archetypical control abstraction. This method is respon-
sible for drawing the entire view, including graphics handled by the view itself and any graphics
handled by subviews. As shown in Fig. 6.3,drawAll does this by first callingdrawSelf to draw
its own graphical content, and then calling thedrawAll method of each of its subviews. Sub-
classes specializedrawAll by overriding its specialization methodsdrawSelf andsubIter
(overridingsubIter implies overriding the entiresubviews component). For example, a dialog
box is typically implemented as a superview containing a number of “controls” (e.g., buttons) as
subviews. ThedrawAll behavior ofDialogView is defined by overridingdrawSelf to draw
a background for the dialog and overridingsubIter to yield the controls inside the dialog.

Class components and control abstractions can overlap. An accessor of a class component can
be a specializing method of a control abstraction. For example, inView , subIter is a specializing
methods ofdrawAll and also an accessor of thesubviews component. Also, a method can be
both an accessor and a control abstraction. For example, inRd, getChar is both an accessor of the
buffered component and also a control abstraction whose specializing method isnextChunk .

Sometimes a method is purely a control abstraction (drawAll) or purely a specializing method
(drawSelf) and does not directly access the representation of any state. In specifications, it is
convenient to place such methods outside of anycomponentclause. When reasoning about these
methods, we treat them as each belonging to a particularly simple component, a component having
no substate and only one method. Because we consider these methods as belonging to single-method
components, we sometimes call themsingletons.

6.3 Designing specialization interfaces

Choosing a good abstract representation is important to designing the specialization interfaces of
classes. We recommend the following, iterative process for designing abstract representations:

1. Select a preliminary abstract representation and abstract representation invariant.

2. Pick representation categories for fields of the abstract representation,i.e., categorize the
fields as final, deferred, and overridable.

3. Group overridable fields into components and pick accessors for each component.

4. Iterate, taking into account the implementations and subclasses enabled and ruled-out by the
current iteration.

The following subsections discuss the first three steps in turn.

72 CHAPTER 6. DESIGN IMPLICATIONS

Not extensible Extensible

Deferred Overridable

DefaultNo default

Final

Figure 6.4: Decision tree for category selection.

6.3.1 Selecting a preliminary abstract representation

The first step ties the process of designing specialization interfaces into the overall process for de-
signing the class library. By the time the designer gets around to designing the specialization inter-
face, the abstract state of the instance interfaces has already been decided. The abstract state of the
specialization interface is picked as an abstract representation of that instance specification. Many
times, as in the case ofView , the abstract states of the instance and specialization specifications
can be the same. Other times, as inRd and IntSet , extra state is revealed in the specialization
interface.

6.3.2 Picking representation categories

Once a preliminary abstract representation has been selected, representation categories for each field
must be picked. In all likelihood, the designer already has a good idea of what the representation
categories will be, but it is worth considering some of the design considerations that go into this
choice.

Fig. 6.4 gives a decision tree for choosing a representation category for a field. The designer
must first decide whether or not the field should be extensible,i.e., whether or not subclasses should
be able to provide their own representations for a field. If the field is extensible, the designer must
decide if it should be overridable or deferred.

Each of these decisions is discussed below in turn. These discussions illustrate their points
using bothRd andView . The details ofRd andView given here differ from those in the class
libraries that inspired them, but the discussion in this section applies to the actual libraries. The
representation categories forRd andView are summarized in Table 6.3.

6.3.2.2 Extensible vs. non-extensible

The first step in choosing a representation category for a field is to decide whether or not it should be
extensible. The benefit of extensibility is that it fosters reuse both by allowing customized function-
ality and by allowing specialized implementation trade-offs at different points in the class hierarchy.
The deferredunbuffered field of Rd allows customized functionality. The deferred field allows

6.3. DESIGNING SPECIALIZATION INTERFACES 73

Category Rd class View class
Deferred unbuffered —
Final buffered superview
Overridable — subviews

Table 6.3: Examples representation categories.

different subclass ofRd to use different devices (e.g., disks, network connections) to represent the
unbuffered part of a reader.

The overridablesubviews field allows customized space trade-offs. The usage ofsubviews
shows a pattern that can be exploited: the view class hierarchy has a large number of leaf classes,
i.e., views like buttons whose instances have no subviews, and also a large number of “filter”
view classes, views like “boardered view” whose instances have only one subview. By making
subviews extensible, it can be represented in a space-efficient manner: leaf classes can repre-
sentsubviews without using any space, and filter classes can representsubviews with only an
instance variable rather than with a heap-allocated collection object used by more generalView
classes.

Extensible state can lead to more reuse. ET++ makes extensive use of extensible state to
reducing the default size of a view object, making views lightweight. This encourages their reuse
at a fine level of granularity,e.g., to represent individual cells in a spreadsheet program. Openstep,
on the other hand, does not use extensible state (it gets extensibility from control abstractions). In
Openstep, views take a lot of space, so programmers avoid them at a fine-level of granularity, instead
developing their own mechanisms for fine-grain drawing and event handling.

Despite the reuse that can come from extensible state, we make the following, conservative
recommendation: An abstract representation field should be final unless there is a specific case for
making it extensible. For example, the structure ofsuperview is very uniform: everyView
has exactly one parent (except the root), so there is no reason to make it extensible. There are two
reasons for this recommendation. First, with extensible fields there are more opportunities for errors
in both designs and implementations. Being conservative about extensibility leads to more reliable
software.

Second and more important, being conservative allows designers to put-off deciding exactly how
a class should be extensible until such time as there are real-world needs to drive design. It is rela-
tively easy to change a field from final to overridable without breaking existing classes. However,
it is hard to change a representation strategy that has been exposed in the specialization interface,
especially in third-party libraries, because such changes can break subclasses. For example, for
View , a specializer that finds a compelling reason for makingsuperview overridable can nego-
tiate to haveView changed, and this change will not break existingView subclasses. By being
conservative about exposing representation strategies, builders of class libraries can wait until their
“customers” come to them with real-world examples of where extensibility is needed. This will lead
to better design decisions.

74 CHAPTER 6. DESIGN IMPLICATIONS

6.3.2.2 Overridable vs. deferred

If a designer chooses to make an abstract representation field extensible, then the designer must
next choose between overridable or deferred. This choice depends on whether or not there exists a
suitable default representation for the field. When a field is made extensible for behavior reasons
(i.e., to allow for customized functionality), there is often no sensible default representation. This
case applies tounbuffered .

When a field is made extensible for performance reasons (i.e., to allow for customized trade-
offs), there is often a default representation that can be given. This case applies tosubviews . The
subviews field follows a general pattern for overridable fields: usually a low-space representation
is chosen as the default, under the assumption that subclasses will replace it as needed with a higher-
space representation that is either faster or provides more functionality.

6.3.2.2 Final fields

If a designer chooses to make an abstract representation field non-extensible, then the designer must
decide whether or not to expose it. We have been assuming that final state is encapsulated. We feel
this is the best choice. Encapsulated fields are represented with private instance variables. A class
cannot access the representation of its superclass’s encapsulated final fields, but instead must access
them indirectly by calling superclass methods.

For performance reasons, final abstract representation fields are sometimes exposed by using
protected instance variables to represent them, allowing subclasses to access them directly rather
than having to call superclass methods. To support direct access, the representation of an exposed
field must be well documented. This means documenting the instance variables in the field’s repre-
sentation, the invariants these variables obey, and the abstraction function relating these variables to
abstract-values of the field they represent ([Edwards96]).

In the Modula-3Rd class (but not in Fig. 2.4),buffered is an exposed field. Reading charac-
ters from input streams is often part of the critical path of the kinds of systems programs Modula-3
is meant to support. The designers ofRd exposed the field to minimize the performance overhead
on this critical path.

Final fields should not be exposed unless there is a really good reason. The trade-off between ex-
posing and encapsulating a final field is the old one between performance on the one hand and safety
and maintainability on the other. By allowing direct manipulation, exposed fields allow subclasses
to avoid the method-call overhead inherent in indirect manipulation. However, exposing fields re-
quires subclasses to maintain invariants and reason about superclass abstraction functions, potential
sources of error. Also, a change to the representation of an exposed field can invalidate code in sub-
classes, introducing maintenance difficulties. In the long-term, exposing fields can actually harm
performance. Once a field is exposed, it is basically impossible to change its representation, espe-
cially in class libraries. This makes it impossible to change to a more efficient representation, and
it makes it impossible to make the field overridable, which would let subclasses provide optimized
representations.

6.3.3 Picking accessors for components

Sufficiencyof interfaces is an old issue in the design of data abstractions [Kapur88]. A sufficient
interface is one that provides enough functionality to allow effectiveaccess to objects; an insufficient

6.4. LANGUAGE DESIGN 75

interface is one whose methods make it hard or impossible to manipulate objects. Sufficiency is also
an issue in the specialization interface, but at a finer level of granularity.

Class components are really data abstractions embedded within the specialization interface.
The issue of sufficiency applies to each of these embedded data abstractions. For example, the
subviews component ofView would not be of much use without thesubIter method to allow
code outside the component to access the set of subviews. In general, the methods of a component
should form a sufficient interface to the component’s substate.

Making sure that each component has a sufficient interface is an important part of picking meth-
ods for a class, but it is not the only issue involved. Other considerations include a sufficient interface
for instantiators, and also the control abstraction in the specialization interface. A full methodology
for designing method suites is beyond the scope of this chapter.

6.4 Language design

Class components have implications for the design of programming languages as well as for the
design of classes. The central implication is to add overridable class components as a checked
construct of classes. With such a construct, compilers can check that the instance variables of
overridable components are only accessed by their own code, that subclasses override components
as units, and that subclasses shadow components correctly. This construct also facilitates a space-
saving optimization.

Deferred and final components do not suggest any language features. Deferred and final compo-
nents affect the way programmers think about the design and implementation of classes, but they do
not impose restrictions on code the way overridable components do. For example, the convention
for deferred components says that deferred abstract state should be accessed by calling deferred
methods. Deferred abstract state is a specification concept, so there is no compiler-checkable re-
striction here. The convention for final components says that any method in a class may access
the instance variables representing the class’s final abstract state, so again there is no compiler-
checkable restriction here. (As mentioned in Sec. 2.2, the purpose of grouping of methods into final
components is not to enforce implementation restrictions but to help break up a class into smaller,
more digestible pieces.)

The conventions for overridable components, in contrast, define a number of restrictions on the
implementations of classes, restrictions that can be enforced by compilers. Sec. 6.4.1 below de-
scribes what a construct for overridable components might look like. Sec. 6.4.2 describes how such
a construct can be used to check the local code of a class. Sec. 6.4.3 describes how this construct
can be used to ensure that subclasses correctly override and shadow superclass components. Finally,
Sec. 6.4.4 explains how such a construct can be used for a space-saving optimization.

In the discussion below, we assume that overridable components are supported in the language’s
syntax and that checking is done by the compiler. An alternative is to use comment-embedded
annotations to support overridable class components and to do checking with a tool that works
beside the compiler. This alternative approach is taken by LCLint to support data abstraction in C
[Evans96]. Except for the discussion on optimization, the discussion below applies equally to both
approaches.

76 CHAPTER 6. DESIGN IMPLICATIONS

6.4.1 A construct for overridable components

Support for overridable class component requires just a small amount of syntax. What is needed is
a construct in class definitions for grouping declarations of methods and instance variables. These
groups constitute the overridable components of the class.

Fig. 6.5 gives an implementation ofIntSet using a class component construct (c.f. Fig. 1.2).
The syntax designating class components is trivial, yet it conveys a lot of information. This infor-
mation is useful to programmers because it documents the internal modules making up the class.
And, as shown in the following subsections, this information is useful for mechanical checking and
for optimization.

An overridable method that appears outside of a component construct is a singleton. From the
perspective our methodology, such a method belongs to a class component consisting of only the
method itself and no other methods or any abstract-state fields. As suggested in Sec. 6.2, singletons
are typically pure control abstractions or pure specializing methods for control abstractions.

6.4.2 Overridable components as scoping units

By treating the component construct as a scoping unit, and by treating the declarations of instance
variables and final methods that appear inside a component as private to the component, useful
checks can be made on the local code of a class.

One part of the programming conventions for overridable components described in Chapter 2
is that only the methods of a component may access the representation of the state assigned to the
component. With a component construct, this convention can be checked. Instance variables de-
clared inside a component construct should be visible only to code inside that component. Attempts
to access instance variables from outside the variables’ component should be an error. (Inside a
component construct, there is not need to clutter the declarations of instance variables withprivate,
e.g., compare Fig. 6.5 to Fig. 1.2.)

Another part of the conventions for overridable components is helper methods, which are pri-
vate, final methods inside an overridable component. The helper methods of a component may
access the component’s instance variables, but they can only be called by other methods in the com-
ponent. The component construct allows enforcement of this part of the convention as well. Any
final methods declared inside a component should be treated as helper methods. Such a method
should have access to the instance variables of the component, but it should only be visible to other
methods in the component.

Yet another part of the conventions of Chapter 2 is the restriction on binary methods. This
restriction says that the code for methods in overridable componentG can only access the instance
variables ofG for this and not for other arguments. The component construct allows compilers to
check this restriction.

6.4.3 Overridable components as units of override

Another aspect of the programming conventions for overridable components is restrictions on how
they can be overridden. When a subclass replaces a component, it must replace it as a unit, replacing
all methods of the component and not just some of them. With the component construct, compilers
can enforce this requirement.

6.4. LANGUAGE DESIGN 77

class IntSet f
overridable component f // elements component

IntVector els = new IntVector(); // Elements of IntSet

public void addElement(int el) f
if (! els.contains(el)) els.addElement(el);

g;

public boolean removeElement(int el) f
this.uncache(el); // Maintain cache validity
return els.removeElement(el); // Call remove method of IntVector

g;

public IntEnumeration elements() f
return els.elements();

g;
g;

overridable component f // cache component
int c_val; // Value currently in cache
boolean c_valid = false; // True only if c_val is valid

public boolean contains(int el) f
if (c_valid && c_val == el) return true ;
for (IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f
c_valid = true; c_val = el;
return true ;

g;
return false;

g;

protected void uncache(int el) f
if (c_val == el) c_valid = false;

g;
g

.. more methods elided
g;

Figure 6.5: Implementation ofIntSet using component construct.

78 CHAPTER 6. DESIGN IMPLICATIONS

Instead of replacing a superclass component, a subclass might shadow it,i.e., it might replace
some of its methods without replacing its representation. We recommend that the language syn-
tax includes an explicit indication of shadowing; for example, components that shadow superclass
components might have the keywordshadowin front. An explicit indication of shadowing allows
specialized checking of shadowing. Invocations throughsuper can be restricted to subclass com-
ponents that shadow superclass components. Further, a subclass component shadowing superclass
componentG can be restricted to usesuper only when invoking superclass versions of methods
in G. The compiler can also check that the subclass does not regroup a shadowed component.
That is, if methodsm andn are overridden by the subclass and both belong to the same, shadowed
component of the superclass, thenm andn must belong to the same component in the subclass.

6.4.4 Eliminating unused instance variables

When a component is replaced by a subclass, the subclass inherits the old representation of the
component’s substate but does not use it. For example,IntSet2 (Fig. 1.3), which replaces the
cache component ofIntSet , inherits the instance variablesc valid andc val but does not
use them. The class-component construct allows compilers to optimize away this wasted space.
In particular, when a subclass replaces (rather than shadows) a component of its superclass, the
subclass need not inherit the instance variables declared inside the method group. That is, at run-
time, space need not be allocated in the object for these variables. Of course, the instance variables
of shadowed components shouldnotbe optimized away because they are used by the subclass.

This optimization will require some advances in compiler technology. For example, compilers
typically compile accesses to instance variables as fixed offsets from a base pointer. If subclasses
can remove some instance variables, these offsets will no longer be fixed. Constructors also pose
a challenge. Constructors need to be able to access all the instance variables of a class, even those
defined inside overridable components. When a constructor is inherited into a class that optimizes-
away some of the instance variables accessed by the constructor, the constructor code will have to
be changed to read and write a temporary variable rather than actual instance variables. We have
not pursued solutions to these problems, so at this point the possibility of optimizing-away instance
variables is still speculative.

Chapter 7

Multiple inheritance

In discussing single inheritance, we started from current practice. We assumed standard language
mechanisms and were inspired by existing, successful designs. The single-inheritance results do not
imply new approaches to structuring class hierarchies, but rather apply at the level of specialization
interfaces of individual classes. Multiple inheritance is different. There are few large, successful
libraries that make aggressive use of multiple code inheritance. Thus, while for single inheritance
we were inspired by today’s best designs, there are no such starting points for multiple inheritance.
Also, as discussed in [Snyder87], the multiple inheritance models of most languages are inherently
non-modular. Thus, we cannot even start with a standard language model.

Rather than start with conventional language and design assumptions, this chapter starts with the
ideas of the previous chapters, ideas on the design, documentation, and validation of specialization
interfaces. Based on these ideas, it suggests a mechanism for multiple inheritance that solves some
problems with single-inheritance designs.

One problem with single inheritance is a lack of coherence. In most object-oriented libraries,
classes perform many functions rather than a single, well-focused purpose as demanded by the
principle ofcoherence([Pressman92, Booch94]). In single-inheritance designs, classes serve two
purposes: they are templates from which useful instances can be instantiated, and they are super-
classes from which subclasses can inherit. In addition, the specialization specification of overridable
components serves two purposes: it both describes the class’s own version of components and con-
strains subclass versions. The result is up to three different specifications for overridable methods,
clearly a somewhat complicated situation.

Another problem with single inheritance is tight the coupling of component implementations.
Single inheritance forces designers to commit to particular combinations of implementations of
different components. For example, previous chapters have shown two implementations of the
elements component and two implementations of thecache component packaged into three
classes. By requiring designers to commit to particular combinations of component implementa-
tions, single inheritance rules out some combinations, limiting the potential for reuse.

These problems can be solved by turning class components into separate classes. A group
of these smaller classes, each implementing different facets of an object’s functionality, can be
combined to form instantiable classes. We call these smaller classesmixins, after the process of
“mixing” them together to form larger classes. (“Mixin” was first coined in the Flavors community
[Weinreb81], but our use follows [Booch94].)

The first section below describes how mixins can be supported in Java with only minimal lan-

79

80 CHAPTER 7. MULTIPLE INHERITANCE

EvtHandler

DocManager VObject

BorderItem

RarelyObservedMixinFilterMixin

Figure 7.1: Example type and class hierarchy.

guage changes. The next section explains how a simplified subset of the specification and verifica-
tion techniques of the previous chapters applies directly to mixins. Sec. 7.3 goes into more detail
on the advantages of mixin-based designs over designs based on single inheritance.

7.1 Mixins

A multiple inheritance mechanism suitable for our purposes can be added to Java by adding a new
kind of class called a “mixin.” Like Java’s existing classes, mixins define a set of variables and
methods that can be inherited into subclasses. Unlike Java’s existing classes, mixins cannot be
instantiated, nor do they define types (i.e., the name of a mixin cannot be used in type expressions).
Classes defined by Java’s existingclassmodule are calledinstantiable classesto distinguish them
from mixins.

In our modified language, programmers can build instantiable classes by subclassing from one
or more mixins, but they cannot subclass from other instantiable classes. In this language, the class
hierarchy is completely separated from the type hierarchy. The type hierarchy consists of Java
interfaces at the inner nodes and instantiable classes at the leaves. The class hierarchy consists of
mixins at the inner nodes and again instantiable classes at the leaves. An example hierarchy is given
in Fig. 7.1. In this figure,O’s stand for types,X’s stand for classes. Instantiable classes, which
define both object types and classes, join the two hierarchies at their leaves, so they are represented
by anO andX superimposed. Solid lines stand for subtyping, and dashed lines for subclassing

Mixins can be added to the syntax of Java with only a slight modification of the grammar in
[Javabeta95]:

classdeclaration → classmodifiersclassidentifier
[
super

] [
interfaces

]
classbody

mixin declaration → mixin identifier
[
super

] [
interfaces

]
classbody

super → mixins mixin∗

mixin → identifier| identifierhide f identifier list g

Java’s existingclassdeclarationnon-terminal does not change; it declares instantiable classes. The
new non-terminalmixin declarationdeclares mixins. Java’s existing non-terminalsuperis changed
to allow multiple supertypes and also to allow hiding of supertype methods (see below).

The methods in an instantiable class’s body must all be final. Mixins contain final and deferred
methods. We assume here that mixins do not have overridable methods. A real design would allow
overridable methods in mixins. Overridable methods would be used only as specializing methods of
control abstractions (Sec. 6.2), not as accessors for overridable state. We do not have anything to say
about control abstractions in the context of mixins, so we ignore overridable methods to simplify
the discussion.

7.1. MIXINS 81

mixin IntSetCore f
deferred boolean contains(int el);
deferred void uncache(int el);

private IntVector els = new IntVector();

final void addElement(int el)
f if (! els.contains(el)) els.addElement(el); g;

final boolean removeElement(int el) f
this.uncache(el); // Maintain cache validity
return els.removeElement(el); // Call remove method of IntVector

g;
final IntEnumeration elements() f return els.elements(); g;

g;

mixin IntSetSmallCache f
deferred IntEnumeration elements();

private int c_val; // Value currently in cache
private boolean c_valid = false; // True only if c_val is valid

final boolean contains(int el) f
if (c_valid && c_val == el) return true ;
for(IntEnumeration e = this.elements(); e.hasMoreElements();)

if (el == e.nextElement()) f c_valid = true; c_val = el; return true ; g;
return false;

g;
final void uncache(int el) f if (c_val == el) c_valid = false; g;

g;

mixin IntSetBVCache f
deferred IntEnumeration elements();

private long c_bits; // Used as a bitmap; caches 0 - 63 only

private boolean c_test(int el)
f return 0 <= el && el < 64 && c_bits & (1 << el); g
private void c_set(int el, boolean val) f

if (0 <= el && el < 64)
c_bits = (c_bits & ˜(1 << el)) | (val ? (1 << el) : 0);

g

final boolean contains(int el) f
if (c_test(el)) return true ;
for(IntEnumeration e = this.elements(); e.hasMoreElements();) f

c_set(el, true);
if (el == e.nextElement()) return true ;

g;
return false;

g;
final void uncache(int el) f c_set(el, false); g;

g;

Figure 7.2: Mixins for buildingIntSet .

82 CHAPTER 7. MULTIPLE INHERITANCE

Fig. 7.2 presents some mixins for building the integer set classes used as examples throughout
the thesis. With mixins,IntSet from Fig. 1.2 could be expressed as simply:

class IntSet mixin IntSetCore, IntSetSmallCache, IntSetExtras
f g

whereIntSetExtras is another mixin that includes the operations elided in Fig. 1.2. Notice the
duality betweenIntSetCore andIntSetSmallCache : what is deferred in one is final in the
other, allowing them to be mixed together.

Interface types for mixins

Mixins need to have aninterfacesclauses because the code for a mixin sometimes needs to pass
this as an argument. For example, considerFilterMixin , given in Fig. 7.3, a mixin that might
be used to createView classes (see Fig. 7.1). In the code foraddSubview , this is passed to the
setSuperview of anotherView object. ThesetSuperview method expects aView as an
argument, so forFilterMixin to be correct, all classes inheriting from itFilterMixin must
implementView .

For each Java interfaceI in the mixin’s interfacesclause, the variablethis can be used where
a Java interfaceI is expected. Theinterfacesclause of any subclasses of the mixin must include a
subtype ofI .

Access control

Access control is simpler for mixins than for single-inheritance classes. Because classes now serve
only one purpose, they need only two access levels: private and non-private. There is no need for a
protected level of protection. Private members can only be accessed inside the class defining them.
If an interfaceI is in a class’sinterfacesclause, then none ofI ’s methods can be private in that
class. Only final methods can be private, not deferred methods.

When non-private members are inherited from mixins, by default they remain non-private in the
subclass. However, this default can be changed in two ways. First, thehides clause of themixin
production allows subclasses to hide members of superclasses. Hidden members are treated as if
they were private members of superclasses. Only final methods can be hidden. Second, the access
control of inherited methods can be changed is withaccess declarations. An access declaration
declares are subclass declarations that declare new (stronger) levels of access control for inherited
methods (c.f. C++ access declarations, [Stroustrup91]).

Semantics of multiple inheritance

With multiple code inheritance, two questions arise that do not arise in the single inheritance case.
First, what happens when a class inherits the same field from two or more mixins? Second, what
happens when a class inherits the same mixin through multiple paths in the mixin hierarchy?

A class can inherit multiple instance variables with the same name, but at most one of them
can be non-private and the rest must be private. A class can also inherit multiple methods with the
same name, but at most one of them can be non-private and final; the rest must be either private or
deferred. (Java supports overloading, so the “names” of methods include their argument types.)

7.1. MIXINS 83

mixin FilterMixin implements View f
private View m subview;

final void addSubview(View v) throws BoundsException f

if (m subview != null) throw new BoundsException();
msubview = v;
msubview.setSuperview(this);

g;

final void removeSubview(View v) f
if (m subview == v) f

msubview.setSuperview(null);
msubview = null;

g;
g;

final ViewEnumeration subIter() f
return new SingletonViewEnumeration(m subview);

g;
g;

Figure 7.3: Implementation ofFilterMixin .

84 CHAPTER 7. MULTIPLE INHERITANCE

D E

F

C

F

Figure 7.4: Example mixin hierarchy.

When a class inherits private methods and instance variables from multiple superclasses, they
are kept distinct in a subclass, even when they have the same name. For example, if classC inherits
from mixinsDandE (Fig. 7.4), andDandE both have a private instance variablei , thenChas two
instance variables namedi , one visible only to the code inD and the other visible only inE. One
can think of this in terms of each class having a distinct name space for private fields.

A class cannot inherit non-private instance variables with the same name from multiple super-
classes. When a class inherits non-private methods with the same name from multiple superclasses,
they are merged, becoming a single method in the inheriting class. For example, ifD andE both
have a deferred, non-private method namedm, thenC also has only one method namedm, and this
mis alsoDandE’s m. One can think of this in terms of a class and all of its superclasses as sharing
a single name space for non-private fields. In the context of this single name space, declarations of
deferred methods “declare” fields, while declarations of instance variables and final methods “de-
fine” fields. Our rule is this shared name space can contain at most one definition of a field, although
it may contain multiple declarations of deferred methods.

C++ doesnot use this merging semantics. Instead, all methods are kept distinct the way we
keep private fields distinct. In terms of name spaces, name spaces of sub- and superclasses are
distinct for all members, private and non-private. This makes the multiple-inheritance semantics of
C++ unsuitable to mixin-style programming (although a clever use of templates ([VanHilst96]) can
yield the desired semantics).

When a class inherits the same mixin through multiple paths, the class incorporates two copies
of the mixin. This rule embodies the “tree inheritance” approach of [Snyder87]. In our example
(Fig. 7.4),D andE both inherit from mixinF. As a result,C inherits the methods and instance-
variables ofF twice. This implies thatC, D, and/orE must hide one copy of each ofF’s non-private
members (except deferred methods) so thatCdoes not inherit them twice.

7.2 Specification and verification

The documentation and reasoning techniques of the previous chapters apply directly to the mixin
mechanism described above. Mixins are specified with specialization specifications. However,
unlike the general specifications of Chapter 4, specifications of mixins have only two compo-
nents, one for deferred methods and another for final methods. Instantiable classes only have
instance interfaces, so they can be specified with object specifications. Java interfaces are also
specified with object specifications. Specifications for the mixins in Fig. 7.2 are given in Fig. 7.5.
IntSetElements can be used to specifyIntSetCore and other mixins that provide a repre-

7.3. PROGRAM DESIGN 85

sentation for the elements of an integer set.IntSetCache can be used to specify mixins that im-
plement a cache for membership testing, such asIntSetSmallCache andIntSetBVCache .

Verification of mixins proceeds almost exactly as described in Chapter 4. The specialization
specification of the subclass must be a behavioral subclass ofall the superclass specifications. When
a mixin has aninterfacesclause, each interface specification must be related to the mixin’s spe-
cialization specification according to the rules for instance interfaces given in Sec. 3.4. Instance
invariants can be used for mixins. However, because subclasses can add methods that break such
invariants, data-type induction cannot be used to establish instance invariants for mixins. Instead,
explicit instance invariants are needed in their specialization interface as described in Sec. 3.4.1.

Instantiable classes are specified with object specifications. However, as explained in previ-
ous chapters, instantiable classes cannot be verified directly against instance specifications because
the code of inherited methods is not available for inspection. Instead, instantiable classes are veri-
fied against specialization specifications that are invented by the verifier strictly for the purposes of
verification. The instance specification is then verified by comparing it to this intermediate special-
ization specification using rules for instance interfaces in Sec. 3.4.

7.3 Program design

Now that the language, specification, and verification mechanisms are defined, we can turn our at-
tention to designing programs using these mechanisms. The impact of mixins on design is examined
by considering our integer collection and GUI library examples from earlier chapters. No libraries
have been designed using the mixin style proposed by this report, so the comments in this section
are speculative.

Multiple inheritance eliminates the need for overridable class components. What would be
overridable components in single-inheritance designs become separate mixins with multiple inheri-
tance. Eliminating overridable components reduces the chance of errors by simplifying the design,
implementation, and use of specialization interfaces.

In single-inheritance designs, class components are packaged together into classes. In mixin
designs, they are separated into their own classes as illustrated by the integer-set related mixins
given in Fig. 7.2. Looking at this case in more detail, Fig. 7.6 shows how the integer set classes from
previous chapters package two different implementation of each of the two componentselements
andcache into three classes. Table 7.1 indicates how a mixin design would separate these four
component implementations into their own class. This illustrates how mixins encourage designers
to break libraries into a larger number of smaller, more focused classes than one finds in single-
inheritance hierarchies. Besides being more more coherent, these more focused mixins can be
combined in a flexible manner than class components can be. For example, in the mixin design but
not in the single-inheritance design, one can reuse the existing classes to construct an integer set
class with a sortedelements and a bit-vectorcache .

In traditional object-oriented languages, the type and class hierarchies are combined. In the
mixin style, the two hierarchies are separate. One benefit of separating the type hierarchy from the
class hierarchy is that the class hierarchy can be designed strictly in terms of behavioral subtyping
and no longer need be influenced by code-sharing relationships. Fig. 7.7 shows both the existing
ET++ VObject hierarchy and an alternative hierarchy uninfluenced by code sharing concerns.
In the existing hierarchy, the abstract classCompositeVObject exists for code sharing only. In
the alternative hierarchy it is not needed, making the hierarchy simpler. In the existing hierarchy,

86 CHAPTER 7. MULTIPLE INHERITANCE

specialization specification IntSetElements f
state field elements, cache;
invariant cache ⊆ elements

final component f
substate field elements;

void addElement(int el);
// Modifies: this.elements
// Effects: Adds el to this.elements.

boolean removeElement(int el);
// Modifies: this.elements, this.cache
// Effects: Remove el from this.elements; return true iff el in at start.

IntEnumeration elements();
// Effects: Returns an enumeration of the integers in this.elements.

g;

deferred component f
substate field cache;

boolean contains(int el);
// Modifies: this.cache
// Effects: Returns true iff el is in this.elements.

void uncache(int el);
// Modifies: this.cache
// Effects: Removes el from this.cache

g;
g;

specialization specification IntSetCache f
state field elements, cache;
invariant cache ⊆ elements

final component f
substate field cache;

boolean contains(int el);
// Modifies: this.cache
// Effects: Returns true iff el is in this.elements.

void uncache(int el);
// Modifies: this.cache
// Effects: Removes el from this.cache

g;

deferred component f
substate field elements;
IntEnumeration elements();

// Effects: Returns an enumeration of the integers in this.elements.
g;

g;

Figure 7.5: Mixin specifications.

7.3. PROGRAM DESIGN 87

IntSet

elements: unsorted array
cache: singleton

IntSet2

elements: unsorted array (inherited)
cache: bit-vector

IntSet4

elements: sorted array
cache: singleton (inherited)

Figure 7.6: Classes implementing integer sets.

Mixins for theelements component
IntSetCore Stores elements in an unordered array
IntSetSortedCore Stores elements in an ordered array

Mixins for thecache component
IntSetSmallCache Caches one membership hit at a time
IntSetBVCache Caches numbers 0-63 using a bit-vector

Table 7.1: Mixins for building integer set.

ScrollBar appears underExpander . ScollBar s are not meant to be used by instantiators
as if they wereExpander s, but they are a subtype ofExpander becauseScrollBar is con-
veniently implemented by reusingExpander code. In the alternative hierarchy,ScrollBar
appears directly underVObject where it more logically belongs.

Another benefit of separating the type and class hierarchies is that Java’s interfaces will more
likely be used. In Java, to get good code reuse, designers put classes high in the type hierarchy. How-
ever, once a Java class is introduced into the type hierarchy, all subtypes below that type must be
defined using Java classes. This leads to libraries that do not use interfaces very aggressively. For ex-
ample, if theVObject hierarchy was done in Java, then, for code sharing purposes,EvtHandler
would be a Java class, meaning the entireVObject hierarchy would consist of Java classes. Java’s
own GUI class library [Gosling96] uses classes high in the type hierarchy, and as a result it makes
very little use of interfaces.

With mixins, interfaces can be pushed deeper in the type hierarchy. For example, in Fig. 7.7b,
EvtHandler and other types with(interface)next to their names would be defined using inter-
faces. This allows the use of multiple subtyping deeper in the type hierarchy. For example, a class
OLEVObject could be a subtype of bothVObject andOLEObject (whereOLEObject would
be an interface for a Microsoft OLE-compliant object [Microsoft94]). As this example indicates,
pushing interfaces deeper into type hierarchies may also have some advantages when it comes to
object-oriented, client-server programming standards. In Microsoft’s OLE and OMG’s CORBA,
programs interact with distributed objects using “interfaces.” Like Java interfaces, these distributed-
object interfaces describe the method suite of an object apart from the object’s implementation. In
a distributed version of Java, OLE or CORBA interfaces could be a special kind of Java interface,

88 CHAPTER 7. MULTIPLE INHERITANCE

EvtHandler

VObject
ImageItem

BorderItem

Box
Form

Expander

HExpander

VExpander
ScrollBar

TextItem
CompositeVObject

EvtHandler (an interface)

VObject (interface)

ImageItem

BorderItem

Box (interface)

Form

Expander (interface)

HExpander

VExpander

ScrollBar

TextItem

(a) Old type hierarchy (b) Alternative hierarchy

Figure 7.7: Restructuring the ET++ type hierarchy.

allowing seamless interaction of Java code with distributed CORBA objects.

7.4 Summary

A well-designed mechanism for multiple code inheritance allows designers to use separate “mixin”
classes in place of overridable class components. In languages like Java and Theta [ThetaWeb95]
that have modules for defining object types apart from classes, such a multiple inheritance mecha-
nism is easy to add.

In the mixin style of design, classes become smaller and more focused. Because they have
only two class components—one final and one deferred—they are easier to design, code, verify,
and use. Because mixins are focused in their functionality, they can be reused in a highly flexible
manner. In the mixin style of design, types and classes are separated, leading to type hierarchies
that are not influenced by code sharing considerations. In Java, the mixin style of design would
encourage the use of Java interfaces deeper in type hierarchies, allowing more aggressive use of
multiple supertypes and perhaps allowing better integration with schemes for distributed objects.

Chapter 8

Conclusion

8.1 Summary

Classes need two interfaces: instance interfaces that say how to manipulate instances, and special-
ization interfaces that say how to build subclasses. The unit of modularity for instance interfaces
is the entire class. To support extensibility, the unit of modularity for specialization interfaces is
smaller: the class component.

Class components are a programming convention that support the representation categories of
final, deferred, and overridable for the state of classes. This convention consists of partitioning the
class into components consisting of both state and methods. The implementation of a component
must not only be functionally correct but must also be independent of the implementations of other
components. Achieving this independence requires adding a division of labor to the documentation
of specialization interfaces to indicate component boundaries. It also requires reasoning about each
component as an independent unit that depends only on the specifications of other components and
not on their implementations.

The abstract representation is the view of a class’s state given in its specialization interface. This
view is more detail than the view given in the instance interface, revealing details that describe the
interfaces between class components. The specialization interface also includes the abstract repre-
sentation invariant, an invariant on the abstract representation that serves in lieu of inter-component
representation invariants. Selecting a good abstract representation and associated invariant is central
to designing a good specialization interface.

Mixins take the idea of class components a step further by breaking class components into
separate modules. Mixin-style programming separates the type and class hierarchies and uses Sny-
der’s encapsulated, multiple inheritance for the class hierarchy. Mixin-style programming leads to
smaller, more focused classes that can be reused in more flexible combinations.

8.2 Contributions

This report has focused on improving specialization interfaces. It makes a number of contributions
that can have an immediate impact on the design, documentation and implementation of class li-
braries. It also makes contributions that, in the longer term, may change the way class libraries are
structured.

89

90 CHAPTER 8. CONCLUSION

A central contribution of our work is to provide guidance on designing class libraries that are
more extensible and easier to reuse. The ideas of abstract representations, abstract representation
invariants, representation categories, and class components give designers a tool box with which
to tackle the designs of specialization interfaces. Until now, representation categories have been
implicit in only a few of the very best libraries. This report makes them available to all designers,
and it helps avoid errors found in even those very best designs. Also, in our view, even these very
best designs do not use overridable fields aggressively enough. Space-time conflicts make it difficult
to design classes that are applicable in a wide variety of contexts. Overridable fields help resolve
these conflicts.

The most immediately useful contribution of this report is a framework for documenting the
specialization interfaces of class libraries. Current documentation is frustratingly bad. This leads to
long learning times for most class libraries and also to incorrect use of classes. Further, as pointed
out in Chapter 1, current documentation does not tell specializers what they need to know to build
subclasses. Recognizing this reality, most vendors ship the source code of their class libraries
[Atkinson92]. When customers look at source code, they become dependent on implementation
details that vendors may want to change, so vendors become hamstrung when improving imple-
mentations, and customers have to worry about new versions invalidating their code.

The ideas in this report can improve documentation in a number of ways. Our exhortation to
document the abstract-state of classes is an important but neglected saw. Separate specifications for
instance and specialization interfaces will lead to better documentation for both. Class components,
abstract representations, and abstract representation invariants provide the modularity needed to
allow specializers to build subclasses without depending on the implementations of superclasses.

Another immediately applicable contribution is to explain the difference between the validation
criterion for classical data abstractions and for classes in the context of subclassing. This can help
implementors of classes in two ways: it can help them correctly use subclassing to build new classes,
and it can help them reason about their classes so they will not break when subclassed. This last
is particularly important. There are many programming errors that effect only subclasses of a class
and not instances,e.g., assuming an invariant that might not hold in all subclasses. It is hard to build
test suites of subclasses to uncover such errors. Thus, in the context of subclassing, testing is even
less effective than it is for classical data abstractions, and being rigorous about correctness during
coding is even more important.

This report suggests interesting directions for language design. Our construct for overridable
class components involves only a minor extension to languages, like Java, that have some kind of
“interface” or “object type” construct. Such a construct has important benefits. It increases the
extent to which the design of a class’s specialization interface is manifest in its implementation,
helping implementors avoid errors. The component construct further helps implementors avoid
errors by supporting a number of compile-time checks, checks that catch the kinds of errors that
affect subclasses but not instances. Given the difficulty of testing specialization interfaces, we hope
the class-component construct soon finds its way into languages or at least into checking tools.

Mixins are another language construct suggested by this report. The impact of mixins will
be farther out than that of class components because they entail a more radical departure from
current design practice. However, mixins may have an important place in the future of programming.
We imagine a future of programming in which programs are (possibly distributed) networks of
collaborating objects. Ninety-five percent or more of the objects in these networks will be off-the-
shelf, and the last five percent, which will embody the application-specific aspects of programs, will

8.3. RELATED WORK 91

be put together out of object-building components. These networks of objects will be constructed
with the close cooperation of end-users, perhaps even by the end-users.

The objects in these networks will be glued together using widely-accepted standards for object
“interfaces” like Microsoft’s COM. Actually, these “interfaces” are really object types as defined
in Sec. 1.1. The objects themselves will be implemented using a wide-variety of systems, such as
Visual Basic, C++, and Java. The mixin style of programming seems a promising way of imple-
menting objects in this future where object types and implementations will be completely separated.
Although the mixins in Chapter 7 are for building classes, a similar approach can be taken for build-
ing individual objects ([Steyaert95]). This is important because, in our view, object-based as well
as class-based approaches to object construction will be commonplace. The mixin style has the
potential of being simpler than existing class- and object-based approaches. Instead of giving pro-
grammers large, complicated objects or classes with lots of knobs for customization, the mixin style
gives them small, coherent chunks of functionality that can be combined in an easy manner. With
mixins, there is no notion of “replacing” parts of modules, there is only the simpler notion of fitting
parts together.

8.3 Related work

The idea of documenting data abstractions in terms of abstract- rather than concrete state has a long
history going back at least to [Hoare72]. This existing work forms the foundationof the specification
techniques presented in Chapters 2 and 4, but it does not address the issues that arise in the context
of subclassing.

There are a number of object-oriented specification languages [Lano93]. These languages are
“object-oriented” in the sense of adding object-oriented features like subtyping and specification
inheritance to specification languages like Z [Spivey92]. However, they do not address the prob-
lems raised in trying to specify specialization interfaces. Related to this work is work on specifi-
cations and behavioral subtype relations for type hierarchies [Leavens89, America91, Liskov94].
We borrowed heavily from this work, especially the work of Liskov and Wing [Liskov94]. But
again, none of this work addresses specialization interfaces, including Leavens’ more recent work
on Larch/C++ [Cheon94].

An active area of work is on kernel languages. This work aims at finding the lambda-calculus
of object-oriented programming,i.e., a tiny language kernel that embodies the essence of object-
oriented programming. Currently, there are four major approaches (a survey of three can be found
in [Wadler94], and the fourth is presented in [Castagna95]). The focus of this work has been on type
systems that eliminate “message not understood” errors without giving up too much of the flexibility
of untyped object systems. This pursuit has lead to the recognition that “[code] inheritance is
not subtyping” [Cook90], and that flexible subclassing requires special consideration (see,e.g.,
[Abadi95] and [Fisher95]).

An important connection between our work and work on kernel languages is the separation
of subtyping and subclassing. This separation, central to our own work, was first fully developed
in the context of kernel languages. Our work provides additional reason to separate subtyping and
subclassing: even when a subclass is a subtype in thenon-behavioral sense of subtyping, its instance
specification may not be abehavioralsubtype of its superclass’s instance specification (Sec. 3.4).

Little work has been done on verification of specialization interfaces. Our own work is based
on the traditional approach to verifying data abstractions, which goes back again to [Hoare72].

92 CHAPTER 8. CONCLUSION

Leaven’s work on verification [Leavens89] considers verification of programs in the presense of
behavioral subtyping, but it does not consider verification of specialization interfaces.

Rustan Leino’s report [Leino95], which presents modular verification techniques for object-
oriented programs, does consider verification in the presence of subclassing. [Leino95] is more
formal than our work and includes a soundness proof for a restricted verification problem. This extra
formality has proven useful for generating verification conditions in the Extended Static Checker
[Detlefs96].

Our work is more general than [Leino95]. The generality of our work is compatible with Leino’s
work and could inform extensions to that work. [Leino95] considers a language model in which sub-
typing and subclassingare combined, where we consider a more general language model. [Leino95]
supports only final and deferred abstract-state fields, while we consider overridable fields as well.
[Leino95] allows only one specification per method,i.e., subclasses inheriting a method also inherit
a specification for that method. This restriction makes it harder for subclasses to refine the behav-
ior of methods (although [Leino95] does allow indirect refinement by allowing refinement of the
abstraction functions that define abstract-state fields). This restriction makes it hard to hide spe-
cialization details from instantiators, and it rules-out having separate assumed and particular spec-
ifications for overridable methods. [Leino95] is more general in that it supports arbitrary numbers
of interfaces to classes while we support only two (instance and specialization interfaces). How-
ever, [Leino95] does not recognize as we do that specializers need differentkindsof information
(e.g., representation categories for abstract-state fields, both assumed and actual specifications for
overridable methods).

Many text books cover object-oriented design (e.g., [Rumbaugh91], [Booch94]). However,
none consider the design of specialization interfaces. [Kiczales91] and [Kiczales92] present prin-
ciples and advice for designing specialization interfaces, but they concentrate on layered control
abstractions and do not discuss class components, abstract representations or representation cate-
gories. Control abstractions go back to Simula, where they are part of the programming lore (see,
e.g., [Pooley87]). [Lamping93] presents static checking for control abstractions. [Lamping93] an-
ticipates the idea of class components, but it fails to distinguish them from control abstractions.
Lamping’s later paper on checking specialization interfaces [Lamping94] deals purely with control
abstractions. The Standard Template Library of C++ [Musser96] makes extensive use of control
abstractions; interestingly, in the STL, extensibility is provided by parametric polymorphism rather
than by subtype polymorphic.

The term “mixin” was first coined in the Flavors community [Weinreb81]. It has been used in
a number of contexts; see,e.g., [Keene88], [Bracha90], [Booch94], [Taligent94], [VanHilst96]. In
the context of multiple-inheritance languages like C++, a mixin is a partial class that implements
a small part of the functionality of a larger class (see [Booch94]). A mixin is distinguished from
other partial classes by the intent of its designers. A typical, partial class is like a mostly completed
puzzle, with deferred methods representing a few missing pieces. A mixin is like a single puzzle
piece, with final methods representing the tabs on a puzzle piece and deferred methods representing
the indentations into which tabs of other pieces fit.

8.4 Future work

The ideas of this report suggest a number of software-development tools. At one extreme is com-
menting conventions from which printed documentation can be extracted; at the other extreme is

8.5. CONCLUSION 93

full, formal verification of classes. In between, this report suggest annotations to support static
checks. A valuable property of the ideas in this report is that they suggest tools along this entire
spectrum of formality, allowing the level of formality to be dictated by the needs of a project rather
than by the tools.

The verification procedure presented by this report is based on the traditional simulation tech-
niques for data abstractions. There are still open issues regarding these traditional techniques, even
for classical data abstractions without subtyping or subclassing. One of the thorniest issues is mod-
ular reasoning about changes to abstract values of objects in the presence of shared, mutable ob-
jects. Typical of the kinds of hard questions raised in this context is the following: If an object
of typeT is in the representation of objects of typeS and an object of typeT is modified, which
(if any) objects of typeS are also modified? Although some progress has been made in this area
([Schaffert81, Leino95]), practical solutions have not yet been found.

An area that needs further work is specifications for control abstractions. As suggested in
[Kiczales92], formal specifications of control abstractions may require a more operational flavor
than the specifications used in this report,e.g., specifications that explain the behavior of a method
in terms of invocations of other methods. It remains to be seen whether true, operational specifi-
cations are needed, or whether declarative specifications with an operational flavor will work (see,
e.g., the use of “actions” in [Birrell91]).

As mentioned above, a number of books describe full methodologies for object-oriented pro-
gramming, but none of these methodologies pay as close attention designing specialization inter-
faces as we have. Thus, an obvious next step is to use the ideas in this report to improve the treatment
of specialization interfaces.

Perhaps the most important area of future work will be to get more experience in applying the
ideas of this report to real-world projects. The design study in Chapter 6 as well as examples in other
chapters suggest that we are headed in the right direction. But this experience-base is inadequate,
and future experience will surely lead to improvements. An important question we would like
to explore is whether or not our approach is too restrictive: does it rule out good designs we don’t
want to rule out? Also, we would like to have a better assessment of the practical value of extensible
specifications described in Sec. 5.2.

Practical experience is even more important for the more speculative work on multiple inheri-
tance in Chapter 7. For single inheritance, our ideas are inspired by successful class library, but this
is not the case for multiple inheritance. Thus, for multiple inheritance, the goal of more experience
is not further refinement but rather to test basic utility. One possible experiment would be to use
the ideas in Chapter 6 to design a single-inheritance, GUI application framework, and then use the
ideas in Chapter 7 to convert it into a mixin design. Two versions of a number of sample applications
could be built using the two frameworks, providing a basis for comparison and evaluation.

8.5 Conclusion

We have shown that modularity in the presence of subclassing is indeed possible. We feel the aspect
of our work most responsible for its success is our focus on abstract state. In concluding, we would
like to draw attention to this aspect of our approach and explain why it is so important.

Objects are state plus behavior. In object-oriented languages (and for data abstraction in gen-
eral), abstraction for behavior is supported more directly than it is for state. The act of invoking

94 CHAPTER 8. CONCLUSION

methods encourages a decoupling of clients from the implementations of methods, providing a nat-
ural abstraction boundary. Although clientscan depend on aspects of a method’s implementation
they should not depend on, such dependence is not a necessary part of method invocation and if
anything is discouraged by it. The act of accessing instance variables is fundamentally different: it
strongly couples clients to the implementation of state.

We do not believe there is a linguisticsolution to this asymmetry. For example, we do not believe
there is any way of adding “abstract-state fields” as a language construct. Instead, the asymmetry
needs to be addressed via programming methodologies. Mechanically, this means encapsulating
access to instance variables so that clients no longer interact directly with the implementation of the
state of objects but instead call methods. More importantly, this means that programmers need to
learn to design using abstract-state fields, to base documentation on them, and tothink in terms of
them.

When new mechanisms for data abstraction are introduced, research in software engineering
must find the right way of thinking about abstract state in the context of those new mechanisms. In
essence, this report does just that: it figures out how to think about abstract state in the context of
subclassing. As other approaches to data abstraction are introduced,e.g., object-based [Ungar91],
role-based [VanHilst96], and subject-oriented [Harrison93] programming, the issue of abstract state
will have to be revisited again.

Bibliography

[Abadi95] M. Abadi and L. Cardelli. On subtyping and matching.ECOOP ’95 Proceedings
(Aarhus, Denmark, Aug. 1995). Published asLNCS 952, pages 145–67. Springer Verlag,
Berlin, Aug., 1995.

[America91] P. America. Designing an object-oriented programming language with behavioural
subtyping.Foundations of Obj.-Orien. Lang.(Noordwijkerhout, The Netherlands, May/June
1990). Published asLNCS 489, pages 60–90. Springer-Verlag, 1991.

[Atkinson92] B. Atkinson. Panel: reuse—truth or fiction.OOPSLA ’92 Conf. Proceedings(Van-
couver, Oct. 1992). Published asSIGPLAN Notices, 27(10):41–2. ACM, Oct. 1992.

[Birrell91] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin. Thread synchronization: a
formal specification. InSystems Programming with Modula-3, pages 119–29. Prentice Hall,
1991.

[Booch94] G. Booch.Object-Oriented Analysis and Design, with Applications, 2nd ed. Addison-
Wesley, Reading, MA and London, UK, 1994.

[Borland94] Borland ObjectWindows Programmer’s Guide, version 2.5. Borland, Inc., Scotts Val-
ley, CA, 1994.

[Bracha90] G. Bracha and W. Cook. Mixin-based inheritance.ECOOP/OOPSLA ’90 Conf. Pro-
ceedings(Ottawa, Canada, Oct. 1990). Published asSIGPLAN Notices, 25(10):303–11. ACM,
Oct. 1990.

[Brown91] M. R. Brown and G. Nelson. I/O streams: abstract types, real programs. InSystems
Programming with Modula-3, pages 130–69. Prentice Hall, 1991.

[Bruce96] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and
B. Pierce. On binary methods.Theory and Practice of Obj. Sys., 1996.(To appear.).

[Castagna95] G. Castagna and G. T. Leavens. Foundations of object-oriented languages: 2nd work-
shop report.ACM SIGPLAN Notices, 30(2):5–11. ACM Press, Feb. 1995.

[Cheon94] Y. Cheon and G. T. Leavens. A quick overview of Larch/C++. JOOP., 7(6):39–49.
SIGS, Oct. 1994.

[Cook90] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping.Proc. 17th
POPL(San Francisco, CA, Jan. 1990), pages 125–35. ACM, Jan. 1990.

95

96 BIBLIOGRAPHY

[Dahl92] O.-J. Dahl.Verifiable Programming. Prentice-Hall, Englewood Cliffs, NJ, 1992.

[Day95] M. Day, R. Gruber, B. Liskov, and A. Myers. Subtypes vs. where clauses: constraining
parametric polymorphism.OOPSLA ’95 Conf. Proceedings(Austin, TX). Published asACM
SIGPLAN Notices, 30(10):156–68. ACM, Oct. 1995.

[Detlefs96] D. L. Detlefs. An overview of the extended static checking system.Proc. the Workshop
on Formal Methods in Softw. Practice(San Diego, CA). Published asSIGSOFT. ACM, Jan.
1996.To appear.

[Edwards96] S. H. Edwards. Representation inheritance: a safe form of “white box” code inher-
itance. Proc. the Fourth Intl Conf. on Softw. Reuse(Washingtond, DC., Apr., 1996), pages
195–204. IEEE Comp. Soc. Press, Apr. 1996. (To appear.).

[Evans96] D. Evans. Static detection of dynamic memory errors.ACM SIGPLAN 1996 PLDI
(Philadelphia, PA., May 1996), page ACM., May 1996.

[Fisher95] K. Fisher and J. C. Mitchell. A delegation-based object calculus with subtyping.Fun-
damentals of Computation Theory: Proc. 10th Intl Conf., FCT ’95(Dresden, Germany, Aug.
1995). Published asLNCS 965, pages 42–61. Springer Verlag, Berlin, Aug. 1995.

[Goldberg89] A. Goldberg and D. Robinson.Smalltalk-80: The Language. Addison-Wesley, Read-
ing, MA and London, UK, 1989.

[Gosling96] J. Gosling and F. Yellin.The Java Application Programming Interface Volume 2:
Window Toolkit and Applets. Addison-Wesley, Reading, MA and London, UK, May, 1996.
(To appear.).

[Guttag93] J. V. Guttag and J. J. Horning.Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

[Harrison93] W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure ob-
jects). OOPSLA ’93 Conf. Proceedings(Washington, DC, Oct. 1993). Published asACM
SIGPLAN Notices, 28(10):411–27. ACM, Oct. 1993.

[Hoare72] C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,1(4):273–
81. Springer-Verlag, 1972.

[Holzle93] U. Hölzle. Integrating independently-developed components in object-oriented lan-
guages. ECOOP ’93 Proceedings(Kaiserslautern, Germany, July 1993). Published as
LNCS 707, pages 36–56. Springer-Verlag, 1993.

[Javabeta95] Sun Microsystems, Inc.The Java Language Specification (1.0 Beta), 30 Oct. 1995.

[Kapur88] D. Kapur and M. Srivas. Computability and implementability issues in abstract data
types.Sci. of Comp. Prog., 10(1):33–63. North-Holland, Amsterdam, Feb. 1988.

[Keene88] S. E. Keene.Object-Oriented Programming in Common Lisp: A Programmer’s Guide
to CLOS. Addison-Wesley, Reading, MA and London, UK, 1988.

BIBLIOGRAPHY 97

[Kiczales91] G. Kiczales, J. des Rivi`eres, and D. G. Bobrow.The Art of the Metaobject Protocol.
The MIT Press, Cambridge, MA, 1991.

[Kiczales92] G. Kiczales and J. Lamping. Issues in the design and specification of class libraries.
OOPSLA ’92 Conf. Proceedings(Vancouver, Oct. 1992). Published asSIGPLAN Notices,
27(10):435–51. ACM, Oct. 1992.

[LaLonde91] W. R. LaLonde and J. R. Pugh.Inside Smalltalk, Volume II. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

[Lamping93] J. Lamping. Typing the specialization interface.OOPSLA ’93 Conf. Proceedings
(Washington, DC. Oct. 1993). Published asSIGPLAN Notices, 28(10):201–14. ACM, Oct.
1993.

[Lamping94] J. Lamping and M. Abadi. Methods as assertions.ECOOP ’94 Proceedings(Bologna,
Italy, July 1994). Published asLNCS 821, pages 60–80. Springer-Verlag, 1994.

[Lano93] K. Lano and H. Haughton, editors.Object-Oriented Specification Case Studies. Prentice
Hall, New York, 1993.

[Leavens89] G. T. Leavens.Verifying Object-Oriented Programs that use Subtypes. PhD thesis,
published as Technical report MIT–LCS–TR–439. Lab. for Comp. Science, MIT, Feb. 1989.

[Leino95] K. R. M. Leino.Toward Reliable Modular Programs. PhD thesis, published as Technical
report CS–TR–95–03. California Inst. of Techn., Pasadena, CA, Jan. 1995.

[Lewis95] T. Lewis.Object-Oriented Application Frameworks. Manning Publications, Co., Green-
wich, CT, 1995.

[Liskov86] B. Liskov and J. Guttag.Abstraction and specification in program development. MIT
Press/McGraw-Hill Book Co., 1977.

[Liskov93] B. Liskov. A history of Clu.2nd History of Prog. Lang. Conf. (preprints)(Cambridge,
MA. Apr. 1993). Published asSIGPLAN Notices, 28(3):133–47. ACM, Mar. 1993.

[Liskov94] B. Liskov and J. M. Wing. A behavioral notion of subtyping.ACM Trans. on Prog.
Lang. and Sys., 16(6):1811–41. ACM, Nov. 1994.

[Microsoft94] Microsoft Visual C++ Volume Two: Programming with MFC and Win32, version
2.0. Microsoft Press, Redmond, WA, 1994.

[Musser96] D. R. Musser and A. Saini.STL Tutorial and Reference Guide: C++ Programming
with the Standard Template Library. Addison-Wesley, Reading, MA and London, UK, 1996.

[Next94] Next Computer, Inc.Openstep Specification, Oct., 1994. Available via anonymous FTP
at ftp.next.com in pub/OpenStepSpec .

[Pooley87] R. J. Pooley.An Introduction to Programming in SIMULA. Blackwell Scientific Publi-
cations, Oxford, 1987.

98 BIBLIOGRAPHY

[Pressman92] R. S. Pressman.Software Engineering: a Practitioner’s Approach, 3rd edition. Mc-
Graw Hill, Inc., 1992.

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Schaffert81] J. C. Schaffert.Specification and Verification of Programs using Data Abstraction
and Sharing. PhD thesis. MIT, 1981.

[Snyder87] A. Snyder. Inheritance and the development of encapsulated software components.
In B. Shriver and P. Wegner, editors,Research Directions in Object-Oriented Programming,
pages 163–88. MIT Press, 1987.

[Spivey92] J. M. Spivey.The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs,
NJ, 1992.

[Steyaert95] P. Steyaert and W. De Meuter. A marriage of class- and object-based inheritance
without unwanted children.ECOOP ’95 Proceedings(July 1995), pages 127–43. Springer
Verlag, Berlin, 1995.

[Stroustrup91] B. Stroustrup.The C++ Programming Language, 2nd edition. Addison-Wesley,
1991.

[Taligent94] Taligent.Taligent’s Guide to Designing Programs: Well-Mannered Object-Oriented
Design in C++, The Taligent Reference Library. Addison-Wesley, Reading, MA and London,
UK, 1994.

[ThetaWeb95] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and
A. Myers. Theta reference manual. MIT LCS, PMG memo 88, Feb. 1995.
http://www.pmg.lcs.mit.edu/Theta.html .

[Ungar91] D. Ungar and R. B. Smith. Self: the power of simplicity.Lisp and Symbolic Computa-
tion, 4(3):187–205. Kluwer Academic Publishers, July 1991.

[VanHilst96] M. VanHilst and D. Notkin. Using C++ templates to implement role-based designs.
Intl Symp. on Object Technologies for Advanced Softw. ’96(Kanazawa, Japan, Mar. 1996),
Mar. 1996.(To appear.).

[Wadler94] P. Wadler (ed.). Type systems for object-oriented programming: special issue ofJour-
nal of Functional Programming. J. of Func. Prog., 4(2):125–283. Cambridge Univ. Press,
Apr. 1994.

[Weinand95] A. Weinand and E. Gamma. ET++: a portable, homogeneous class library and
application framework. InObject-Oriented Application Frameworks, pages 154–94. Manning
Publications, Co., Greenwhich, CT., 1995.

[Weinreb81] D. Weinreb and D. Moon.Lisp Machine Manual, 4th Ed. Symbolics, Inc./MIT AI.
Lab., 1981.

