
October 8, 1996

SRC
Research
Report 143

To Provide or To Bound: Sampling in Fully
Dynamic Graph Algorithms

Monika R. Henzinger and Mikkel Thorup

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

To Provide or To Bound: Sampling in Fully
Dynamic Graph Algorithms

Monika R. Henzinger and Mikkel Thorup

October 8, 1996

Publication History

A preliminary version of this report appeared in theProceedings of Automata, Lan-
uages, and Programming, 23rd International Colloquium, ICALP’96held July 8–
12, 1996 in Paderborn, Germany.
Mikkel Thorup is currently at the University of Copenhagen, Denmark. His elec-
tronic mail address is: mthorup@diku.dk

c
Digital Equipment Corporation 1996

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

In dynamic graph algorithms the followingprovide-or-boundproblem has to be
solved quickly: Given a setS containing a subsetR and a way of generating ran-
dom elements fromS testing for membership inR, either (i) provide an element
of R or (ii) give a (small) upper bound on the size ofR that holds with high prob-
ability. We give an optimal algorithm for this problem.

This algorithm improves the time per operation for various dyamic graph algo-
rithms by a factor ofO(logn). For example, it improves the time per update for
fully dynamic connectivity fromO(log3 n) toO(log2 n).

1 Introduction

In this paper we present a new sampling lemma, and use it to improve the running
times of various fully dynamic graph algorithms.

We consider the followingprovide-or-boundproblem: LetS be a set with a
subsetR � S. Membership inR can be tested efficiently. For a given parameter
r > 1, either

(i) provide an element ofR, or
(ii) guarantee with high probability that the ratiojRj=jSj is less than1=r, that

is thatrjRj < jSj.
This problem arises in the currently fastest fully dynamic graph algorithms

for various problems on graphs, such as connectivity, two-edge connectivity,k-
weight minimum spanning tree,(1 + �)-approximate minimum spanning tree, and
bipartiteness-testing [6]. The connection is made specific in Section 2.

In [6], Henzinger and King solve the problem by samplingO(r log jSj) ele-
ments fromS, returning any element found fromR. This gives an Monte-Carlo
algorithm whose type (ii) answer is false with probability1=jSj�(1). In this paper,
we give a randomized Monte-Carlo algorithm for which the expected number of
random samples fromS isO(r). To be precise, we show the following lemma.

Sampling Lemma Let R be a subset of a nonempty setS, and letr; c 2 <>1.
Sets = jSj. Then there is an algorithm with one of two outcomes:

Case (i) Provide: It returns an element fromR.

Case (ii) Bound: It outputs the possibly false statement “jRj=jSj < 1=r” with
error probability less thanexp(�s=(rc)).

The expected number of samples attributable to a type (i) outcome isO(r), and the
worst-case number of samples attributable to a type (ii) outcome isO(s=c).

The bounds in case (i) and case (ii) are asymptotically optimal. Case (i) is
optimal since it covers the casejRj=jSj = 1=r. For case (ii), note that ifx elements
from S are sampled randomly and no element ofR is found, then the probability
that jRj=jSj � 1=r is approximatelyexp(�x=r). Thus, pickingO(s=c) random
elements is asymptotically optimal for achieving a bound ofexp(�s=rc) on the
error probability.

We prove the sampling lemma in Section 3, in which we first prove a simpler
lemma achieving an expected cost ofO(log log jSj �r) for case (i). This is already a
substantial improvement over theO(log jSj � r) obtained in [6]. We then bootstrap
the technique, giving the desired cost ofO(r).

1

1.1 Applications

The prime application of our sampling lemma is to speed up fully dynamic graph
connectivity, which is the problem of maintaining a graph under edge insertions
and deletions. Queries on the connectivity between specified vertices should be
answered efficiently.

In the literature, fully dynamic graph algorithms are compared using the cost
per insert, delete, and query operation. The best deterministic algorithms for
fully dynamic graph connectivity take timeO(

p
n) per update operation andO(1)

per query [2, 3, 5]. Recently, Henzinger and King gave a fully dynamic con-
nectivity algorithm withO(log3 n) expected amortized time per operation using
Las-Vegas randomization [6]. This should be compared with a lower bound of

(logn= log logn) in the cell probe model [4, 8].

In this papter, we prove a sampling lemma and use it to reduce the bound above
toO(log2 n).

Henzinger and King show that their approach applies to several other fully
dynamic graph problems, for which we also get improved running times. Thus we
get

� O(log3 n) expected time per operation to maintain the bridges in a graph
(the 2-edge connectivity problem);

� O(k log2 n) to maintain a minimum spanning tree in a graph withk different
weights;

� O(log2 n logU=�) to maintain a spanning tree whose weight is a(1 + �)-
approximation of the weight of the minimum spanning tree, whereU is the
maximum weight in the graph,

� O(log2 n) to test if the graph is bipartite, and

� O(log2 n) to test if whether two edges are cycle-equivalent.

2 Improved sampling in fully dynamic graph connectivity

Our results for fully dynamic graph algorithms are achieved by locally improving a
certain sampling bottleneck in the approach by Henzinger and King [6], henceforth
referred to as theHK-approach. Rather than repeating their whole construction, we
will confine ourselves to a self-contained description of this bottleneck, focussing
on connectivity. Our technique for the bottleneck is of a general flavor and we
expect it to be applicable in other contexts.

2

Consider the problem of maintaining a spanning treeT of some connected
graphG = (V;E), n = jV j. If some tree edgee is deleted fromT , we get two
sub-treesT1 andT2. Let R be the set of non-tree edges with end-points in both
T1 andT2. ThenR is exactly the set of edgesf that can replacee in the sense
that T [ffg n feg is a spanning tree ofG. Our general goal is to find such a
replacement edgef 2 R. Alternatively, it is acceptable to discover thatR is sparse
in the following sense: LetS be the set of non-tree edges incident toT1. Then
R � S, and we say thatR is sparseif

rjRj < jSj, wherer = �(logn):

OtherwiseR is said to bedense.
Given an algorithm that either (a) provides a replacement edge at expected cost

t(n), or (b) discovers thatR is sparse at costO(t(n)+jSj), the amortized expected
operation cost of Henzinger and King’s fully dynamic connectivity algorithm is
O(t(n) + log2 n).

Using the data structures from the HK-approach, edges fromS can be sampled
and tested for membership inR in timeO(logn). Also, in timeO(jSj), we can
scan all ofS, identifying all the edges inR.

The HK-approach achievest(n) = O(log3 n) as follows. First,2r lnn random
edges fromS are sampled. If the sampling successfully finds an edge fromR, this
edge is returned, as in (a). Otherwise, hoping for (b), in timeO(jSj), a complete
scan ofS is performed, identifying all edges ofR. If it turns out, however, thatR
is dense, an edge fromR is returned as in (a). The probability of this “mistake”
is the probability of not finding a replacement edge in2r lnn samples despiteR
being dense, which is

� (1� 1=r))2r lnn < 1=n2 = O(1=jSj);

Thus, the expected cost of a mistake isO((log3 n + jSj)=jSj). Adding up, Hen-
zinger and King gett(n) = O(log3 n), which is hence the expected amortized
operation cost for their fully dynamic connectivity algorithm.

We achievet(n) = log2 n by applying our sampling lemma withc = lnn
and r = O(logn). Then, in case (i) of the lemma, we find an element from
R at expected costO(log2 n). In case (ii), the cost isO(logn � jSj= logn) =
O(jSj), matching the cost of a subsequent scanning. According to the lemma, the
probability thatR turns out to be dense isexp(�jSj=rc) = exp(�jSj=O(log2 n)),
so the expected contribution from such a mistaken scan is

O(jSj exp(�jSj=O(log2 n))) = O(log2 n):

3

Thus, we gett(n) = O(log2 n), which is hence the new expected amortized oper-
ation cost for fully dynamic connectivity.

All our other results for fully dynamic graph algorithms are achieved by the
same local improvement.

3 The sampling lemma

The HK-approach solves the provide-or-bound problem as follows:

Algorithm A:

A.1. LetS0 be a random subset ofS of sizer ln s.

A.2. R0 := S0 \R.

A.3. If R0 6= ;, then returnx 2 R0.

A.4. Print “jRj=jSj � 1=r with probability> 1� 1=s.”

Thus, the algorithm provides the first element ofR that it finds. Only if it does not
find one, does it give a bound on the size ofR. Recall from the sampling lemma
that we are willing to pay more for a bound on the size ofR than for an element
of R. Suppose that we have made many samples fromS and that we have only
found one or a few elements fromR. Even if our sample size is not big enough
for the desired high probability bound onR, it may still be fair to hypothesize that
R is small. Instead of just returning the element fromR, based on the hypothesis,
we should rather continue sampling until we reach a sample size big enough for
the desired probability bound onR. The probability that the continued sampling
contradicts our hypothesis thatR is small should be low, so that the expected cost
of such a mistake is low.

We approximate this approach using a step function: To demonstrate a simpli-
fied version of our technique, we first show a weaker lemma in Section 3.1 using
an algorithm with two rounds of sampling and bounding. In Section 3.2 we use
log� s rounds to prove the sampling lemma.

In this section, we make repeated use of the following Chernoff bounds (see [1],
for example): LetB(n; p) be a random variable that has a binomial distribution
with parametersn andp. Then for� � 1,

Pr(jB(n:p)j � (1 + �)E(jB(n; p)j))� e��
2E(jB(n;p)j)=3 (1)

Pr(jB(n:p)j � (1� �)E(jB(n; p)j))� e��
2E(jB(n;p)j)=2 (2)

4

3.1 Sampling in two rounds

Lemma 1 LetR be a subset of a nonempty setS, and letr 2 <>1. Sets = jSj.
Then there is an algorithm with one of two outcomes:

Case (i) Provide: It returns an element fromR.

Case (ii) Bound: It outputs the possibly false statement “jRj=jSj < 1=r” with
error probability less than1=s.

The expected number of samples attributable to a type (i) outcome is4r(ln ln s +
2), and the worst-case number of samples attributable to a type (ii) outcome is
8r ln s+ 4r ln ln s.

Proof: The idea is the following: Instead of just samplingO(r log s) elements
returning any element fromR, we first make aninitial round, where we sample
O(r log log s) elements. If an element fromR is found, we just return it; otherwise,
we believe thatR is sparse, in other words thatjRj=jSj < 1=r. In fact, with ap-
propriately chosen constants, we conclude with error probabilityO(1= log s), that
jRj=jSj < 1=(4r). We now have aconfirming round, where we sampleO(r log s)
elements. If the proportion of elements fromR in this sample is< 1=(2r), then
using Chernoff bounds, we conclude thatjRj=jSj < 1=r with error probability
< 1=s. We have a contradiction to the hypothesis thatR is sparse otherwise and
we return one of the elements ofR found in the confirming round. However, us-
ing Chernoff bounds, we can show that the probability of entering the confirming
round and finding a ratio� 1=(2r) isO(1= log s), giving an expected cost ofO(r)
for contradicting the confirming round.

We are now ready to formally present an algorithm with the properties de-
scribed in Lemma 1.

Algorithm B:

B.1. LetS0 be a random subset ofS of size4r ln ln s.

B.2. R0 := S0 \R.

B.3. If R0 6= ;, then returnx 2 R0.

B.4. LetS1 be a random subset ofS of size8r ln s.

B.5. R1 := S1 \R.

B.6. If jR1j > 4 ln s, then return anyx 2 R1.

B.7. Print “jRj=jSj � 1=r with probability> 1� 1=s.”

5

We show next a bound on the probabilityp that the algorithm returns an element
from R in B.6 (Claim 1A), that is the initial guess of sparsity isnot confirmed.
Afterwards we prove that the Algorithm B satisfies the conditions of Lemma 1.

CLAIM 1A The probabilityp that the algorithm returns an element fromR is �
1= ln s.

PROOF: We consider two cases:

Case 1:jRj=jSj > 1=(4r). The algorithm did not return in B.3, so

p < (1� 1=(4r))4r ln ln s � e� ln ln s = 1= ln s

Case 2:jRj=jSj � 1=(4r). Then the expected value ofjR1j is at most2 ln s. But

p � Pr(jR1j � 4 ln s) � Pr(jR1j � 2E(jR1j)) � e�E(jR1j)=3 < 1= ln s

The second inequality follows by Chernoff bound (1). The last inequality
is trivially satisfied forln s � 1. Otherwise, sincex= ln x � e for any real
x > 1, we have2(ln s)=3 � 2e(ln ln s)=3 > ln ln s .

2

We are now ready to show that Algorithm B satisfies the conditions of Lemma
1.

Case (i) First, we determine the expected number of samples if the algorithm
returns an element fromR. By Claim 1A, the probabilityp that the algorithm
returns an element fromR in Step B.6 is bounded by1= ln s. Thus, the expected
number of samples is

4r ln ln s+ 8r ln s= ln s = 4r(ln ln s + 2)

Case (ii) Second, we consider the case when the algorithm does not return an
element fromR, in other words when the conditions in Steps B.3 and B.6 are not
satisfied. We want to show that the probability of this case is at most1=s.

SupposejRj=jSj > 1=r. We did not return an element fromR in Step B.6,
so jR1j � 4 ln s. However, the expected value ofjR1j is at least4 ln s. Thus, by
Chernoff bound (2), the probability thatR1 is less thanE(jR1j)=2 is bounded by
1=s.

Pr(jR1j < E(jR1j)=2) � e�E(jR1j)=8 = e�(1=2)
28 ln s=2 = 1=s

In the next section we show the general sampling lemma.

6

3.2 Sampling in many rounds

In this section, we will prove the sampling lemma restated below.
Lemma 2 LetR be a subset of a nonempty setS, and letr; c 2 <>1. Sets = jSj.
Then there is an algorithm with one of two outcomes:

Case (i) Provide: It returns an element fromR.

Case (ii) Bound: It outputs the possibly false statement “jRj=jSj < 1=r” with
error probability less thanexp(�s=(rc)).

The expected number of samples attributable to a type (i) outcome isO(r), and the
worst-case number of samples attributable to a type (ii) outcome isO(s=c).

Proof: We will now generalize the construction from the previous section to work
with a sequence of confirming rounds,i = 1; : : : ;�(log� s). In roundi, we will
pick rini random elements fromS, and if at leastni elements fromR are found,
one of these is returned. For the initial round 0,n0 = 1, that is, any element from
R is returned. In the subsequent confirming rounds, the numbersni of elements of
R increase in order to increase our confidence. At the same time, the thresholds
1=ri are increased, in order to minimize the probability that the threshold is passed
in a later round. The concrete values of theni andri are fine tuned relative to the
Chernoff bounds that we use to calculate our probabilities.

Let the increasing sequencen0; n1 : : : be defined such thatn0 = 1 and for
i > 0, ni = a4i(i+ 3), wherea = 64 ln 16 < 178. Let the decreasing sequence
r0; r1; : : : be defined such thatr0 = ln(2n1)2er � 47r and for i > 0, ri =
2er=

Qi
j=1(1 + 1=2j). Sincee >

Q
1

j=1(1 + 1=2j), ri is larger than2r.

ri = 2er=
iY

j=1

(1 + 1=2j) > 2r
1Y

j=i+1

(1 + 1=2j) > 2r

We are now ready to present an algorithm satisfying the conditions of Lemma 2.

Algorithm C:

C.1. i := 0; S�1 := ;;
C.2. Whilerini < 8s=c:

C.2.1. ConstructSi adding random elements fromS toSi�1 until jSij = rini.

C.2.2. Ri := Si \R.

C.2.3. If jRij � ni, then returnx 2 Si \ R

7

C.2.4. i := i+ 1;

C.3. LetSi be a random subset ofS of size8s=c.

C.4. Ri := Si \R.

C.5. If jRij � 4s=(cr), then returnx 2 Si \ R.

C.6. Print “jRj=jSj � 1=r with probability> 1� exp(�s=rc).”
For i > 0, letpi be the probability that the algorithm returns an element fromR in
roundi. Here the round refers to the value ofi in Step C.2.3 or C.5.

CLAIM 2A For all i � 1, the probabilitypi that the algorithm returns an element
fromR is at least1=(ni2i).

PROOF: Consider the following simplified algorithm D: Pickrini random ele-
ments fromS. If at leastni elements belong toR, return one of them, otherwise
do no return any element.

We show below that the probabilitypD that algorithmD returns an element of
R is at most1=(ni2i). Now notice that the probability that algorithm C returns an
element in roundi is at mostpD, since this event happens only ifSi contains at
leastni elements fromR andnone of the previous rounds returned an element of
R. Thus, the lemma follows.

To show the bound onpD, note first that

1=(ni2
i) = 1=(a4i(i+ 3)2i) = 1=(a8i(i+ 3)) > 1=(178 � 8i(i+ 3))

We consider two cases:

Case 1:jRj=jSj > (1 + 1=2i+1)=((1+ 1=2i)ri): First consider the case wherei =
1. ThenjRj=jSj > (1 + 1=22)=((1 + 1=2)r1) = (1 + 1=4)=2er > 1=2er.
Let b be ln(2n1). We did not find any element fromR in any of the2ber
samples in round 0, so

pD � (1� jRj=jSj)2ber < (1� 1=2er)2ber < e�b = 1=(2n1)

Now supposei > 1. Then jRj=jSj > (1 + 1=2i+1)=((1 + 1=2i)ri) =
(1 + 1=2i+1)=ri�1. In roundi � 1 we did not return, sojRi�1j is less than
x = ni�1. However, the expected value ofjRi�1j is

� = ri�1ni�1jRj=jSj> ni�1(1 + 1=2i+1)

By Chernoff bound (2),

pD � Pr(jRi�1j � x) � e�(��x)
2=(2�)

8

For� � ni�1(1 + 1=2i+1), we get

pD � exp
�

�(ni�1=2
i+1)2

2ni�1(1+1=2i+1)

�

< exp(�ni�1=22i+4)

= 16�(i+2) < 1=(178 � 8i(i+ 3)) < 1=(ni2
i) (8i > 1)

Case 2:jRj=jSj � (1 + 1=2i+1)=((1+ 1=2i)ri): First suppose that we are return-
ing in Step C.2.3. ThenjRij is at leastx = ni. However, the expected value
� of jRij is at most

niri(1 + 1=2i+1)=((1 + 1=2i)ri)= ni(1� 1=(2i + 1)
< ni(1� 1=2i+2)

By Chernoff bound (1),

pD � Pr(jRij � x) � e�(x��)
2=(3�)

For� � ni(1� 1=2i+2) we get

pD � exp
�

�(ni=2
i+2)2

3ni(1�1=2i+2)

�

< exp(�ni=(3 � 4i+2))

< 40�(i+3) < 1=(178 � 8i(i+ 3)) < 1=(ni2
i) (8i � 1)

Next suppose that we are returning in Step C.5. ThenjRij is at leastx =
4s=(cr) and the expected value� is at most(8s=c)(1 + 1=2i+1)=ri�1 =
x(1 + 1=2i+1)2r=ri�1 Recall that therj were chosen so that

ri�1=2r = e=

i�1Y

j=1

(1 + 1=2j) >
1Y

j=i

(1 + 1=2j):

Hence
�� x(1 + 1=2i+1)2r=ri�1

< x(1 + 1=2i+1)=((1+ 1=2i)(1 + 1=2i+1) � � �)

< x(1� 1=2i+1)

9

Note thatx > ni�1ri�1=ri > ni�1 since8s=c > ri�1ni�1. Thus, we get
the desired bound onpD.

pD � exp
�

�(x=2i+1)2

3x(1�1=2i+1))

�

< exp(�x=(3 � 22i+2))

� 40�(i+2) < 1=(178 � 8i(i+ 3)) < 1=(ni2
i) (8i � 1)

2

We are now ready to show that the Algorithm C satisfies the conditions of Lemma
2.

Case (i) First, we analyze the expected number of samples attributable to a type
(i) outcome. By Claim 2A, fori > 0, the probabilitypi that the algorithm returns
an element fromR in roundi is bounded by1=(ni2i). The expected number of
samples is thus bounded by54r.

r0 +
P
1

i=1 pirini

� r0 +
P
1

i=1 rini=(ni2
i)

� r0 +
P
1

i=1 2er=2
i

= r0 + 2er � 54r

Case (ii) Second, we consider the case that the algorithm does not return an ele-
ment fromR, in other words that the conditions in Steps C.2.3 and C.5 are never
satisfied. Then, the total sample size is8s=c.

SupposejRj=jSj > 1=r. We did not return an element fromR in Step C.5,
soX = jRij is less thanx = 4s=(cr). However, the expected value� of jRij is
at least8s=(cr). The probabilityp is now calculated as in Case 1 of the proof of
Claim 2A.

p � e�(��x)
2=(2�) � exp

��(4s=(cr))2
2(8s=(cr))

�
� exp(�s=(cr))

10

Acknowledgements

We want to thank Andrei Broder and Lyle Ramshaw for their valuable comments
on the presentation of the paper.

References

[1] D. Angluin, L. G. Valiant, Fast probabilistic algorithms for Hamiltonian
circuits and matchings.J. Comput. System Sci.(18), 1979, 155–193.

[2] D. Eppstein, Z. Galil, G. F. Italiano, Improved Sparsification. Tech. Report
93-20, Department of Information and Computer Science, University of
California, Irvine, CA 92717.

[3] D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, Sparsification - A
Technique for Speeding up Dynamic Graph Algorithms.Proc. 33rd Symp.
on Foundations of Computer Science, 1992, 60–69.

[4] M. L. Fredman and M. R. Henzinger. Lower Bounds for Fully Dynamic
Connectivity Problems in Graphs. To appear inAlgorithmica.

[5] G. N. Fredrickson. Data Structures for On-line Updating of Minimum Span-
ning Trees.SIAM J. Comput.(14), 1985, 781–798.

[6] M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms
with PolylogarithmicTime per Operation.Proc. 27th ACM Symp. on Theory
of Computing, 1995, 519–527.

[7] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
EATCS Monographs on Theoretical Computer Science, Springer-Verlag,
1984.

[8] P.B. Miltersen, S. Subramanian, J.S. Vitter, and R. Tamassia. Complexity
models for incremental computation.Theoretical Computer Science,130,
1994, 203-236.

[9] R.E. Tarjan and U. Vishkin. Finding biconnected components and comput-
ing tree functions in logarithmic parallel time.SIAM J. Computing, 14(4):
862–874, 1985.

11

