May 31, 1996

Research

SRC Report 142

Collabor ative Active Textbooks:

A Web-Based Algorithm Animation System
for an Electronic Classroom

Marc H. Brown and Marc A. Najork

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy istotest thetechnical and practical value of our ideas by building hard-
ware and software prototypes and using them as daily tools. Interesting systemsare
too complex to be evaluated solely in the abstract; extended use allows ustoinvesti-
gate their propertiesin depth. This experience is useful in the short term in refining
our designs, and invaluable in the long term in advancing our knowledge. Most of
the major advances in information systems have come through this strategy, includ-
ing personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it
isin established fields of theoretical computer science, such asthe analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

Collaborative Active Textbooks:

A Web-Based Algorithm Animation System
for an Electronic Classroom

Marc H. Brown and Marc A. Ngjork

May 31, 1996

Publication History

A dightly shorter version of this report will appear in the Proceedings of the IEEE

Symposium on Visual Languages (VL'96) to be held September 3-6, 1996 in
Boulder, Colorado.

©Digital Equipment Corporation 1996

Thiswork may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copiesinclude the following: anotice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Califor-
nia; an acknowledgment of the authors and individual contributors to the work; and
all applicable portions of the copyright notice. Copying, reproducing, or republish-
ing for any other purpose shall require alicense with payment of fee to the Systems
Research Center. All rights reserved.

Abstract

This report describes CAT, a Web-based algorithm animation system. CAT aug-
ments the expressive power of Web pages for publishing passive multimediainfor-
mation with a full-fledged interactive algorithm animation system. It improves on
previous Web-based a gorithm animations by providing a framework that makes it
easy to construct new animations, including those that involve multiple views. Be-
cause views of the same running algorithm may reside on different machines, CAT
is particularly well-suited for electronic classrooms. This strategy is an improve-
ment over the electronic classroom systems we are aware of, which simply display
the same X window on multiple machines. We believe our framework generalizes
to electronic textbooks in arbitrary domains.

1 Background

Thisreport describes CAT, asystem for creating active and collaborative el ectronic
textbooks. By active, we mean that the reader can interact with parts of the text-
book; by collaborative, we mean that a group of people, such as ateacher and a set
of students in an “electronic classroom” setting, can share a common interaction
experience.

We are particularly interested in computer science education. A significant part
of computer science deals with the design and analysis of algorithms. Algorithm
animation, the visualization of the fundamental operations of a running program,
has proven to be a powerful tool in the teaching of algorithms [13].

Our electronic textbook consists of a set of Web pages. A Web page can con-
tain not only text and passive multimedia (e.g. images, movies, and so on), but also
“active objects,” that is, regions of the page that are drawn by programs dynami-
cally loaded through the Web [17]. A typical section of an agorithms textbook de-
scribes and analyzes an agorithm; we use the passive features of the Web page to
givethisconventional description, and the active features to actually implement the
algorithm together with one or more animated, interactive views of it. A videotape
showing CAT in action isavailable [5].

The contents of our pagesis similar in spirit to Gloor’s CD-ROM [10], which
complements the Corman, Leiserson, and Rivest Introduction to Algorithms text-
book. A fundamental difference isthat CAT is collaborative, whereas Gloor’s sys-
temissingle-user. A second difference isthat CAT gives the user control over the
choice and placement of views of a program. A third difference is that we use the
Web as our platform; Gloor used Hypercard.

We are not the first to display “animated algorithms’ on Web pages. there are
numerous Java appl ets showing a gorithmsin action. For example, anice collection
of sorting agorithms has been compiled by Harrison [11]. However, these anima-
tionsarewritten in an ad hoc fashion, without the support of an algorithm animation
system. Assuch, they lack avariety of features, which we shall discuss later.

There are also Web pages that give access to algorithm animations, but the ani-
mations are not part of the Web page. For example, Stasko has a Web page that al-
lows a user to run XTango on aremote machine, with the display set to the client’s
X workstation, exploiting the network transparency provided by the X window sys-
tem [14]. Finally, there are avariety of MPEG and QuickTime movies of animated
algorithms on the Web, such as our animation of Heapsort [3]; obviously, movies
are completely passive.

Although not “ algorithm animation” per se, we should mention I brahim’s use of
the Web as afront-end to (the logical-equivalent of) asymbolic debugger [12]. The

system allows users to run a program on the Web server, and to insert breakpoints
in the code, display the contents of variables, and advance execution either line by
line, or until abreakpoint isreached. Thedisplay of the variablesistext-only, using
HTML forms, and the display is updated by loading new pages.

Our active objects resemble Java applets in that the code for algorithms and
views is downloaded over the network, and then executed by and displayed in the
Web browser [4]. Theinnovation of CAT isthat it displays multiple, simultaneoudy
animated views of an algorithm. The views either may appear on a single page, or
on separate pages. Moreover, multiple users viewing the same page will see the
same animation; those views that allow customization can be customized differ-
ently by each user. Thus, when used in an “€ectronic classroom,” an instructor can
control an animation, and students can al view the animation simply by pointing
their Web browsers at the appropriate page or pages. It is worth noting that stu-
dents can, and indeed must, operate their Web browsers themselves. (Also, CAT is
flexible enough to implement different floor-control schemes, where the instructor
can transfer the control of the shared animation to individual students. However,
we have not implemented this.)

The approach we' ve taken isin stark contrast to the other electronic classroom
systems we are aware of. The most common approach isto use an X protocol mul-
tiplexor, such as XMX and Shared-X, which displays an arbitrary X window on
multiple workstations. The advantage of this approach is that any software can be
used without modification. The drawback is that students are completely passive
and that there is the potentia for significant network traffic.

Ancther difference between CAT and Javarbased applets is the level of pro-
grammer support for programming algorithm animations. Java-based agorithm an-
imations are constructed in an ad hoc fashion. We follow the programming model
pioneered by BALSA [7], and followed by most algorithm animation systems. In
this model, an algorithm is separated from views, and they are connected by way
of “interesting events.” The system provides the glue for relaying the “interest-
ing events’ generated by the algorithm to the views. CAT also provides a high-
level animation library, tailored for algorithm animation. Finally, CAT provides an
algorithm-independent control panel for starting, pausing, and stopping the anima-
tion, and controlling its speed.

Therest of thisreport is organized asfollows: The next section shows CAT ina
classroom setting during alecture on binpacking algorithms. In Section 3, we show
how the binpacking animation was implemented. Next, we describe how CAT is
implemented. We conclude by summarizing the contributions of this work.

2 User Perspective

This section shows how CAT might be used during a lecture on binpacking algo-
rithms.

Figs. 1 and 2 show WebScape, a Mosaic-style Web browser. The instructor’s
screen, Fig. 1, displays a Web page with two views of the agorithm (a “Probes”
view, and below that, a “Packing” view just barely visible) and a control panel.
The control pand contains general controls (“GO”, “PAUSE” or “RESUME”, and
“ABORT” buttons, and a dider for adjusting the speed of the animation) and
algorithm-specific controls (numeric widgets for specifying the number of bins and
blocks). Fig. 2 showsastudent’s screen at the sametimethat Fig. 1 wastaken. The
student is looking at three views of the same algorithm; these views are embedded
into adifferent Web page. The control panel is not part of the student’s Web page;
instead, thereisa“ Glossary” view showing the number of binsand blocks specified
by theinstructor. Below that isthe “Probes’ view (the block numbered 21 isclearly
too large to be inserted into the 6th bin, and it is about to dlide over to the 7th bin
for consideration) and the “ Transcript” view (showing each event generated by the
algorithm, along with the parameters). The student can scroll through the “Tran-
script” view and clear its contents. However, he cannot control the algorithm; this
can only be done through the control panel, currently displayed on the instructor’s
workstation.

One can imagine a more embellished version of this page. For example, there
might be alink to a page containing more detailed views, oriented towards students
having problems understanding the program using just the “ Probes’ and “ Transcript”
views. Similarly, there might bealink to apage with an aternative to the* Packing”
view, visible in Fig. 3, that uses grayscale intensity rather than color hue. Such a
page would be intended for students who are color-blind or have difficulty perceiv-
ing differences in hue. The page shown in Fig. 2 contains a link to the algorithm
source code. A student can follow thislink at any time, and following the link will
not interrupt the animation (of course the animation won’t be visible until the stu-
dent returns to this page).

It's important to realize that an unlimited number of students can be viewing
this same page. CAT ensures that al views will be synchronized. The instructor
controls how long each “interesting event” will take using the slider in the control
pandl. Animations have the same duration on all computers in the classroom, re-
gardless of the type of machine. Thus, on low-end machines, fewer frames will be
displayed for a given event than on high-end machines. Thisisin contrast to the
window multiplexing approach taken by XM X and Shared-X, where the least pow-
erful machine determines the frame rate. In addition, our framework makes little

[WebScape

Back| Forward| Home| Reload| Open...| %iop
Location:

2/3 v |%

hitpetsrc—wamy.pa. dec.comf~mhbéobletsioinpack —I964eacher i

First-Fit Binpacking - Instructor Control Page

1| First-Fit Binpacking - Instructor Control Page

This page contains the control panel for the animation of first-fii binpacking and the " Probes" view. Students
should view the page http: fflocalhostfes21/binpack-firstfit/students.html ,

GO RESUME ABORT

Fast

Mumber of bins: = 10 |=»

Number of blocks: = 25 |8

The Probes View: [Host: | localhost

21

13 (415

1214

The Packing View; |Host: | losalhost

Fig. 1. Aninstructor’s workstation, ash. pa. dec. com during a lecture on first-fit bin-
packing.

(@] WebScape
Back| Forward Home| Reload| Open.. $iop 373 v | % L
Location: | http:fsrc—wmw.pa.dec.com/~mhb¥obletsfinpack-vI36/students.html H

First-Fit Binpacking — Classroom Lecture

First-Fit Binpacking — Classroom Lecture

This leciure covers a sclution lo the Knapsack Froblem, The problem can be stated as follows: Giver a sef of hlocks
each weighing up to { unit, group the blocks into the bins, where each bin can hold up to 1 unit. We’ I consider online
versions af the problem. thal Is, we'll pracess exch block as we encounter &,

The solution we first explore i5 "Firsi-Fit": we examine the bins from left to right and put the block in the first bin
that we encounter that has sufficient room.

The input we are working on is: |Host: | localhost
Number of bins = 10
Number of blocks = 25

The viewr at the left shows the probing to find a new bin, and the wiew af the right is a transcript listing the
fundamental operations of the algerithm as they happen, “Y'ou can examine the algorithm source code if you'd like,

Host: | ash,pa,dec.com . |Host: | ash,pa,dec,con

newBlock (0,54d0y
0

probe ¢1)
probe 2)
probe 43}
probe <4}
prabe {5
prabe {6}
probe {73
pac)

21)
newBlack {0,52d0%
03

prabe {1
prabe {23
prabe {32
probe ¢4}
probe {5}

20
1 10 12|14 16 CLEAR

Fig. 2. A student’sworkstation whenthe screenin Fig. 1 wascaptured. Notethat the student
specified the host ash. pa. dec. comin order to connect with the running algorithm on
that machine.

demand on the network, because the only network traffic are the parameters to each
event.

Another benefit of our framework over XMX and Shared-X is that each stu-
dent has interactive control over the views heis seeing. For example, he can scroll
through the “Transcript” view and clear its contents without affecting the “Tran-
script” view seen by any other student. A more embellished “Probes’ view might
alow astudent to customize the display, for example, by adding color to the blocks.

Fig. 3 shows a different set of Web pages for first-fit binpacking. These pages
are displayed using DeckScape [6], a Web browser that shows different Web pages
in different windows. The page in the upper left contains links to five other pages,
three of which are currently visible, and a control pandl. This figure shows atypi-
cal configuration that a student would encounter when using CAT as an “ electronic
textbook” for self-study. The Web pages are clearly different from thosein Figs. 1
and 2; however, the active objects are exactly the same.

3 Author Perspective

Our framework follows the BALSA approach: Strategically important points of
an algorithm are annotated with procedure calls that generate “interesting events.”
These events are reported to an event manager, which in turn forwards them to all
registered views. Each view responds to interesting events by drawing appropriate
images.

The task of animating an algorithm can be divided into three steps. The first
step isto identify the interesting events. The second is to implement the algorithm
and annotate it with the interesting events. The fina step is to implement one or
more views. Theagorithm and the views are implemented in Oblig, an interpreted
object-oriented language [8].

In our Web-based setting, we also need to create Web pages that contain the
algorithm and the views.

The remainder of this section elaborates on these steps, using the first-fit bin-
packing algorithm as arunning example.

¥ | Chapien T. Sispachisg ﬂhui**ﬂ
g i B~ S o b i M [
| Binpacking - Main Control Page

H This page costin e conrol parl Eor e i athon of B 1%
H| veapmoning. 11 men oomaine ik o pages AN et wire g

Rinpacking - History Yiew
Thia wism i s ooty of U e ha are pookesd i b Lmsening s e Bt & rivrons
LTI RaCH i TR O TR A 4 £ DA W) Pl P B ORI B) o e D

HE Fobel. The isterwi iy of He chips codor irdicsss e oot il stion of B bin
| rmpcting
P [Fa T
= Probes Virm —
» i hoarary Vet =
Packing visu 1=
| = Fisory Ve e | =
| Sy petied o Bl pags M b e Ope O 47 P L 1E
1 ¥R TEn o P m. bRy b of ey pape | = .
2o Y |
Ly RESUME ABORT o e S
Sy | FHFHIFHIHHHIHITHUHHIDES ot : |
- |
Bhadeiy ol b = (& |
Fewbe: sl¥ncia: = e W
Thss v Frie B UWE T T W s e il | e D
HH Theorior of Hha block il icsies B o
E [y B
-
g™
i
e
L]
o
"

Fig. 3. A user interacting with the chapter on binpacking in an “electronic textbook”.

3.1 TheEvents

The “interesting events’ for binpacking algorithms are defined as follows:

set up (nBins[fnt_int], nBlocks[fnt_int])

newBl ock (wt[fnt_real])

probe (b[fmt_int])

pack O
An event definition consists of the name of the event, followed by alist of param-
eters. Each parameter is annotated with a procedure for converting its value into
astring. The proceduresf nt _i nt andf nt _r eal are predefined for converting
integers and reals to strings.

The set up event is generated once at the beginning to define the number of
available bins and the number of blocksto be packed. Each block weighs between 0
and 1 units. Thebinsare numbered starting at 0, and each bin can hold at most 1 unit
of weight. The newBIl ock event is generated whenever the algorithm gets a new
block to pack; the weight of the new block iswt . The pr obe event is generated
when the algorithm checks bin b to see if the new block can be added to it. The
pack event is generated when the algorithm decides to add the new block to the
bin most recently probed.

The following regular expression defines the stream of interesting events gen-
erated by a binpacking algorithm:

setup (newBl ock probe+ pack)*

When designing an algorithm animation, thereisno right or wrong set of events, just
asthereisnoright or wrong way to break alarge systeminto procedures. Weusually
choose to have narrow interfaces, that is, we use as few parameters as possible for
each event. Asaresult, someviews may need to maintain state that is already being
maintained by the algorithm. For example, the “Probes’ view we shall show later
needs to maintain the utilization of each bin, information that is also maintained by
the algorithm.

3.2 TheAlgorithm

Inour framework, an algorithm isdefined through an Obliq object named al g. This
object must have two fields: vbt and go.

Thevbt field is bound to an agorithm-specific input panel that will be incor-
porated into the control panel; in this example, the definition of the panel isloaded
fromtherelative URL “ag.fv’. We'll look at the contents of “alg.fv” later; for now,
it suffices to say that it contains two numeric widgets, named bi ns and bl ocks,
which are used for specifying the number of bins and blocks, respectively.

Thego field isbound to amethod that is called when the user hitsthe* GO” but-
ton in the control panel. This method implements the a gorithm as one would find
it in atext book, along with the annotations for generating the interesting events.

let alg = {
vbt => formfronURL(BaseURL & "al g.fv"),
go =>
neth (self, z)
I et nunBins = formgetint(self.vbt, "bins");

I et nunBl ocks = formgetlnt(self.vbt, "blocks");
z.setup(nunBi ns, nunBl ocks);

let totals = array_new(nunBins, 0.0);
for block = 0 to nunBl ocks-1 do
let ant = real _float(random.int(20, 90))*0.01;
z. newBl ock(ant);
var bin = 0;
| oop
z.probe (bin);
if (totals[bin]+ant)<=1.0 then exit end;
bin := bin+l,;
if binis nunBins then exit end,

end;
if binis nunBins then exit end;
totals[bin] :=totals[bin] + ant;
z. pack();
end;
end

b
Thego method takestwo parameters: sel f referstothe object inwhich the method
is contained, and z is the animation event manager object. This object is responsi-
ble for forwarding interesting events to al registered views, and returning control
to the algorithm only after al views have completed their animations.

Thefirst few lines of the method retrieve the numbers of bins and blocks spec-
ified by the user, and then generate aset up event.

For the sake of completeness, here is the contents of “ag.fv”’, which defines
the algorithm-specific input panel. The user-interface specification iswritten using
FormsVBT [1]:

(VBox

(HBox
(Text RightAlign "Nunber of bins: ")
(Nureric %ins (Mn 1) =10))

(G ue 5)

(HBox
(Text RightAlign "Nunber of blocks: ")
(Nuneric %l ocks (Mn 1) =20)))

3.3 TheViews

This section examines the “ Probes’ view from before. Thisview usesaGraphVBT
widget [9]. GraphVBT isahigh-level animation package based on the metaphor of
agraph consisting of vertices and edges. Each vertex has various éttributes, such as
position, size, shape, color, border width, and label. An edge connects two vertices,
and it has attributes such as color and thickness. Vertices can be repositioned, and
such movement is shown by smooth animation, inspired by the Tango system [15].

In our framework, aview is defined through an Obliq object named vi ew. This
object must haveafiedvbt (inthiscase, boundto aGraphVBT widget), and meth-
ods for each interesting event. Hereis the code:

10

let view = {

vbt => graph_new(),
currVertex => ok,

currW => ok,

| ast Probe => ok,

total s => ok,

setup =>

nmeth (self, nBins, nBlocks)
self.totals := array_new(nBins, 0.0);

graph_cl ear (sel f.vbt);
graph_setWrld(self.vbt, -2.0, float(nBins), 2.0, 0.0);
let vO = graph_newertex(self.vbt);
graph_set Vert exSi ze(v0, 0.0, 0.0);
graph_noveVertex(v0, -10.0, 1.0, false);
let vl = graph_newVertex(self.vbt);
graph_set VertexSi ze(vl, 0.0, 0.0);
graph_noveVertex(vl, float(nBins)+10.0, 1.0, false);
let e = graph_newkdge(vO0, v1);
graph_set EdgeW dt h(e, 0.01);
graph_redi splay (self.vbt);

end,

newBl ock =>

meth (self, w)
let v = graph_newvertex (self.vbt);
graph_set VertexSi ze(v, 1.0, wt);
graph_set VertexCol or (v, "VeryLightGay");
graph_set Vert exBorder (v, 0.01);
graph_noveVertex(v, -1.0, w/2.0, false);
graph_redi spl ay(sel f.vbt);
self.currVertex : = v;
self.currW := w;

end,

probe =>
meth (self, b)
let xpos = 0.5 + float(b);
let ypos = self.totals[b] + (self.currW/2.0);
graph_noveVertex(sel f.currVertex, xpos, ypos, true);
graph_ani nate(sel f.vbt, 0.0, 1.0);

sel f.lastProbe : = b;
end,
pack =>
meth (self)
let b = self.lastProbe;
self.totals[b] := self.totals[b] + self.currW;

graph_set Vert exCol or (sel f.currVertex, "Pink");
graph_redi spl ay(sel f.vbt);
end,

11

The set up method does three things: Firgt, it initializes an array, t ot al s,
which holds the current utilization of the bins. Second, it initializes the GraphVBT
widget, that is, it blanks the widget's display and then defines a world coordinate
system. Third, it draws a horizontal line, midway through the widget. Thelinein-
dicates the maximum capacity of each bin.

The newBl ock method creates a new GraphVBT vertex for the new block.
The shape isrectangular by default, the width isset to 1, the height isset towt , the
color is set to alight gray, and the vertex has a black border whose width is 0.01.
The vertex is then positioned at the far left and made visible. Finally, we store a
handle to the vertex and to the block’s weight (so other events can reposition and
recolor the vertex).

The pr obe method moves the vertex representing the new block to the top of
bin b. This movement is animated smoothly; its speed is determined by the setting
of the dider in the control panel. We then record the bin being probed, for use by
the pack event.

Finaly, the pack method increments the utilization of the bin most recently
probed by the weight of the new block. It then changes the color of the vertex cor-
responding to the new block to pink, and updates the display.

34 TheHTML

CAT uses the file of interesting events to generate a number of auxiliary objects,
such as the animation control object we mentioned before.

In particular, CAT generates “proxy objects’ for each algorithm and view ob-
ject. These proxy objects hide the intricacies of algorithm-view communication
and distributed computations from the author of the algorithm animation. Given an
event file“BPevt” and an algorithm file“alg.obl,” CAT createsthe file “BPalg.obl”
that contains the proxy object for the agorithm. Similarly, there will be a file
“BPview.obl” generated for aview in the file “view.obl.”

The display of an agorithm proxy object shows the control panel and the
algorithm-specific input panel. The display of the view proxy object shows the
view'sdisplay (e.g., aGraphVBT widget) and atype-in field for identifying the ma-
chine on which the algorithm is running.

It is the proxy objects that are actually embedded into Web pages. We use
i nsert,an HTML tag proposed by the World Wide Web Consortium for insert-
ing multimedia objects into HTML pages [16]. The markup for putting the proxy
object stored at URL “BPalg.obl” into adocument is:

<insert code="BPal g.obl " type="application/x-oblet">
</insert>

12

Thei nsert tag aso supports avariety of standard attributes, such as suggested
dimensions, border size, and alignment. If suggested dimensions are not specified,
the preferred dimensions of the display of the proxy object are used.

4 System Perspective

At the heart of CAT isafamily of Web browsers that support active objects written
in Oblig. The most distinguishing feature of Obliq is that it has distributed scope:
objects can reside in different address spaces and on different machines, and are ac-
cessed in a uniform fashion regardless of where they reside. Obliq's inherent sup-
port for distributed computations makes it easy to write active objects that collab-
orate with one another. We call our active objects Oblets (Obliq applets).

The proxy objects we mentioned earlier for the algorithm and for the views are
actually Oblets. CAT uses the event definition file and the user-supplied al g and
vi ewobject files to generate files containing these Oblets. CAT also generates a
“Transcript” view from the event definition file.

In addition to the algorithm and view Oblets, there is an animation control ob-
ject (the z parameter to the al g method in Section 3.2), aso generated from the
event definition file. The animation control object resides on the machine where
the agorithm Oblet runs, and its primary purpose is to communicate information
from the agorithm to the views. To do this, the algorithm control object maintains
alist of view Oblets, and provides a collection of methods that correspond to each
interesting event. Here is the body of a method corresponding to the interesting
event named f 0o:

foo =>

meth (self, argl, arg2, ...)
let thrds =
foreach v in self.views nap
fork(proc() v.view foo(argl, arg2, ...) end, 0)

end;
foreach t in thrds do join(t) end;

end,
The method iterates through the array of view Oblets, and forks athread per Oblet.
These threads call the f 00 method on each user-defined view. Next, the method
waits until all of the threads have completed. Before returning control to the algo-
rithm, the method checks if the user hit the “PAUSE” or “ABORT” button. If the
user hit the“PAUSE” button, the method blocks until the“RESUME” button is hit.

If the user hit the“ABORT” button, an exception is raised, which causes the algo-
rithm to terminate. Complete details are presented in Section 4.2.

13

We should emphasize that the statement v. vi ew. f 0o is actually extremely
powerful. On the surface, it appears to be rather boring: invoke the method f oo
ontheobject v. vi ew. However, because of Oblig's distributed nature, this object
does not need to reside on the same machine where the caller to f oo (i.e., the an-
imation control object) resides. In the electronic classroom setting, the algorithm
Oblet and the animation control object reside on the instructor’s machine, and view
Oblets reside on both the instructor’s and the students' machines.

Theremainder of this section provides more detail s about Oblets, and about the
Oblets that are generated from the user-supplied al g and vi ewobject files.

41 Obletsin a Nutshdll

An Oblet isan Obliq program that defines avariable named obl et . Thisvariable
must contain an Obliq object with at least two fields: vbt andr un. Thevbt field
isbound to awidget that will beinstalled in the Web page when the page containing
the Oblet isloaded. Ther un field is bound to a method that is invoked just after
thevbt field isevaluated.

Asmentioned above, Obligisaninherently distributed language. Obliq objects
can be distributed over heterogeneous machines across the Internet. The only state-
mentsthat are specific to distribution arenet _expor t , which exports an object to
remote parties (through the mediation of anameserver), and net _i npor t ,which
imports a remote object from a nameserver. Once a remote object is imported, it
is indistinguishable from alocal object. Thus, from a programmer’s perspective,
there is no difference between local and remote objects.

Figs. 4 and 5 show a simple distributed application that illustrates the funda-
mentals of Oblets. The application consists of two Oblets running on two different
machines. One Oblet, the server, allows a user to select one of four colors (Fig. 4).
The other Oblet, the client, displays the name of the chosen color inside arectangle
of that color (Fig. 5).

The screen dump in Fig. 4 shows the Web page containing the server Oblet.
The Oblet’s user interface consists of four radio buttons, labeled “Red,” “ Green”,
“Blue,” and “Black.” The FormsVBT description of thisuser interface consists of a
Radi o component containing avertical arrangement of four Choi ce components.
The Radi o isnamed Col or Choi ce,andthe Choi cesarenamed Red, G een,
Bl ue, and Bl ack.

Theobl et abject of the server Oblet hasafield named cl i ent , in addition
to the required vbt and r un fields. The vbt field contains a form based on the
above FormsVBT description. The cl i ent field isinitialized to an object with
one method, changeCol or , which does nothing. Ther un field isamethod that

14

first defines a callback procedure named cb, attaches this callback to the Radi o
component, and finaly exports the obl et object under the name Col Obl et to
the nameserver on machine ash. pa. dec. com

Thecallback procedure cb isinvoked each timethe user clickson aradio button
in the server Oblet. The procedure callsf or m_get Choi ce to determine which
button was pressed. This call returns the name of the Choi ce component, i.e., the
string Red, Gr een, Bl ue, or Bl ack. Thecallback then callsthechangeCol or
method of the cl i ent field, passing the selected color. Initialy, this is a no-op
(sincethechangeCol or method does nothing); asweshall see, thecl i ent field
will be changed to refer to the client obl et object, once the client’s Oblet is cre-
ated.

The screen dump in Fig. 5 shows the Web page containing the client Oblet.
The Oblet’s user interface consists of a colored rectangle surrounding astring. The
FormsVBT description of this user interface consists of aText component named
Col , constrained to be 200 by 100 points, and showing the string “Black” in a48.0
point font, white on a black background.

The obl et object of the client Oblet has a field named changeCol or, in
addition to the required vbt and r un fields. Thevbt field contains aform based
on the FormsVBT description above. Ther un method importsthe server’sobl et
object from the nameserver, and then overrides that object’'scl i ent field to refer
to the client obl et . That is, in the statement

server.client := self;

the object ser ver resides on the server machine, whilesel f resides onthe client
machine. After this statement is executed, the server’'scl i ent field refers to an
object on the client machine. Consequently, the statement

sel f.client.changeCol or(col);

executed by the server’s callback procedure, invokes the changeCol or method
on the client's machine. This method takes the obligatory sel f parameter and a
parameter col . Since changeCol or isinvoked by cb, the col parameter will
be the string Red, Gr een, Bl ue, or Bl ack. The changeCol or method calls
f or m_put Col or Pr op to changethe background color property of itsText com-
ponent, and then calls f or m_put Text to change the string that is displayed.

15

Web page showing the server Oblet:

—| WebScape]

Back| Forwsrd Home| Reload Open..| Siop 33 wew % Y

Location: | hitpi/src-wwiw.pa.dec.com/~najork/141h/server.htm i

A Simple Distributed Cblet: Server Part

Here i5 one of the simplest distributed web-based applications we could think
of. The Oblet below is the "server” part of this application. It gives you a user
interface with four radio buttons, labelled "Red”, "Green”, "Blue”, and "Black”,
The user interface of the corresponding "client” Oblet consists of a text field;
initially, the text is empty and on a white background, When one of the radio
buttons of the "server” Oblet is pressed, the text field on the "client” Oblet will
be updated to show the name of the selected color (e.g. "Red"), and the
background color of the text field will be changed accordingly.

Red
Green

Blue

Black

Description of the server Oblet’suser interface:

(Radi o %Col or Choi ce
(' VBox
(Choi ce %Red "Red")
(Choi ce % een "G een")
(Choice 98l ue "Blue")
(Choice 9Bl ack "Bl ack")))

Oblig codefor the server Oblet:

let oblet = {
vbt => form fromJRL(BaseURL & "server.fv"),
client => {changeCol or => neth(self, col) end},

run =>
net h(sel f)
let cb = proc(fv)
I et col = formgetChoice(fv, "ColorChoice");
sel f.client.changeCol or(col)
end;
formattach(sel f.vbt, "Col orChoice", cb);
net _export("Col Golet", "ash.pa.dec.cont, self);
end

}s

Fig. 4. The“server” Oblet; the corresponding “ client” Oblet appearsin Fig. 5.

16

Web page showing the client Oblet:

—| WebScape =]
Back| Fargard Home| Reload| Open...l Sion 22 wwew |%
Location: |http:ﬂsrc—www.pa‘dec‘comfwvnajorkﬂ41bfc|ient.htm| i

A Simple Distributed Cblet: Client Part

Here i5 one of the simplest distributed web-based applications we could think
of. The Oblet below is the "client” part of this application. It user interface
consists of a text fleld; initially, the text i5 empty and on a white background,

The uger interface of the corresponding “server” Oblet contains four radio
buttons, labelled "Red”, "Green”, "Blue", and "Black”. When one of the radio
buttons of the "server” Oblet is pressed, the text field on the "client” Gblet wrill
be updated fo show the name of the selected color (e.g. "Red"), and the
background color of the text field will be changed accordingly.

Description of the client Oblet’suser interface:

(Shape (Wdth 200) (Height 100) (Label Font (PointSize 480))
(Text %ol (BgCol or "Bl ack")(Col or "Wite") "Bl ack"))

Oblig codefor theclient Oblet:

let oblet = {
vbt => form fromJRL(BaseURL & "client.fv"),
changeCol or =>
net h(sel f, col)

form put Col or Prop(sel f.vbt, "Col", "BgColor", col);
form put Text (sel f.vbt, "Col", col)

end,

run =>

net h(sel f)
l et server = net_inmport("Col Oblet", "ash. pa.dec.conl);
server.client := self;

end

}s

Fig. 5. The“client” Oblet; the corresponding “server” Oblet appearsin Fig. 4.

17

4.2 TheAlgorithm Oblet

Thefile generated for the algorithm, say “BPalg.obl,” contains three parts: Thefirst
part is the algorithm control object, z. The second part is the algorithm code sup-
plied by the author, that is, the object al g shown in Section 3.2. The third part is
obl et , the active object that can be embedded into a Web page. So the structure
of “BPalg.obl” isasfollows:

let z ={...};

let alg ={...};

let oblet = {...};
For didactic reasons, we will first look at the Oblet, and then the animation control
object.

Theagorithm Oblet shows the generic control panel and the algorithm-specific
controls. The r un method has three purposes. It exports the animation control
object z to a nameserver running on the local machineg; it installs the algorithm-
specific controls into the generic control panel; and it defines and attaches callback
procedures to the widgets in the generic control panel. The widgets are the “GO”,
“PAUSE” or “RESUME,” and “ABORT” buttons, and the speed dlider. Hereisthe
FormsVBT description of the control panel, contained in thefile“controlPanel.fv:”

(Bor der
(Rim (Pen 2)
(Border (Pen 2)
(Frane Chisel ed
(R m (Pen 20)
(VBox
(HBox (Label Font (PointSize 140))
(Filter (Button %go (Text %goText "GO')))
(4 ue 20)
(Filter Dormant (Button %ause (Text Y%auseText "PAUSE")))
(d ue 20)
(Filter Dornmant (Button %abort "ABORT")))
(4 ue 20)
(HBox
(Text "Slow")
(Frane Lowered
(Scroller (Mn 10) (Max 100) (Step 1) =50 Y%peed))
(Text "Fast"))
(Qd ue 10)
Bar
(Qdue 10)
(HBox Fill (Generic %alglnput) Fill)))))))

And here isthe code for the agorithm's obl et object:

18

let oblet = {
goThr ead=> ok,

vbt => form fromJRL(BaseURL & "control Panel .fv"),

run =>
met h(sel f)
| et goCall back =
proc(fv)
sel f.goThread : = thread_fork(proc()

z. paused : = fal se;
form put Reactivity(fv, "go", "dormant");
form putReactivity(fv, "pause", "active");
form put Reactivity(fv, "abort", "active");
try alg.go(z) except thread_al erted => end;
form put Reactivity(fv, "go", "active");
form put Reactivity(fv, "pause", "dormant");
form putReactivity(fv, "abort", "dormant");
form put Text (fv, "pauseText", "PAUSE");
end, 0);

end;

| et abortCall back =
proc(fv)
thread_al ert(sel f.goThread);
end;

| et pauseCal |l back =
proc(fv)
I ock z.nmu do
if z.paused then signal (z.cond) end;

let |abel =
if z.paused then "PAUSE" el se "RESUME" end;
form put Text (fv, "pauseText", |abel);
z. paused : = not (z.paused);
end;

end;

| et speedCal |l back =
proc(fv)
let s = formgetlnt(fv, "speed");
graph_set Speed(fl oat (110-s)*0.01);
end;

form put Generic(sel f.vbt, "alglnput", alg.vbt);

formattach(sel f.vbt, "go", goCal | back) ;
formattach(sel f.vbt, "abort", abortCall back);
formattach(sel f.vbt, "pause", pauseCall back);
formattach(sel f.vbt, "speed", speedCall back);
speedCal | back(sel f.vbt);

net _export ("BP", "local host", z);

end,
|
19

The goCal | back forks athread which invokes the go method of the user-
supplied algorithm object. Before calling the go method, the paused flagisset to
false, indicating that the algorithm is not paused, and the “PAUSE” and “ABORT”
buttons are activated while the “GO” button is deactivated. Aswe shall see, press-
ing the “ABORT” button causes the t hr ead_al ert ed exception to be raised.
The call to go is surrounded by an exception handler that catches this exception.
After the go method completes, possibly because it was aborted by the user, the
“GO” button is again activated, the “PAUSE” and “ABORT" buttons are deacti-
vated, and the thread terminates.

Theabor t Cal | back issmple: it setsthe “aert” flag of the thread in which
the algorithm is running.

The “PAUSE” button is used for pausing the algorithm and resuming it again.
Initially, the algorithm isrunning, the button islabeled “PAUSE”, and the paused
flag is false. Pressing the button causes the pauseCal | back to be called. The
label ischanged to “RESUME” and the paused flagis set to true. Aswe shall see,
this will cause the algorithm thread to block on a condition variable when the next
interesting event occurs. Pressing the button again causes the condition variable to
be signaled (thereby resuming the algorithm thread), the label to be changed back
to “PAUSE,” and the paused flag to be set to false.

The speedCal | back, caled when the user manipulates the speed dider,
changes the speed of the animation.

Finaly, here is the definition of the algorithm control object, z, generated by
CAT.

20

let z = {
nmu => nut ex(),
cond => condition(),
paused => ok,
views =>[],

regi sterVview =>
neth (self, view
self.views := self.views @[view;
end,

unr egi ster Vi ew =>
neth (self, view
array_renoveEl enent (sel f.views, view;
end,

setup =>
neth (self, nBins, nBlocks)
let thrds =
foreach v in self.view map
fork(proc() v.view setup(nBins, nBlocks) end, 0)
end;
foreach t in thrds do join(t) end;
if thread_testAlert() then raise(thread_al erted) end;
I ock self.nu do
if self.paused then
thread_al ert Wi t(sel f.nu, self.cond)

end
end;
end,
newBl ock => neth (self, w) ... end,
probe => neth (self, b) ... end,
pack => neth (self) ... end,

b

The object contains a number of agorithm-independent fields and methods, fol-
lowed by one method for each interesting event. Thefirst fields are used to imple-
ment the “PAUSE” and “RESUME” functionality. Thevi ews field isan array of
view Oblets; these Oblets are registered when a user opens a\Web page containing a
binpacking view and connectsto the machinewhere z resides. Ther egi st er Vi ew
and unr egi st er Vi ewmethods maintain thevi ews array.

Recall that the user-defined al g object callsz. set up for communicating in-
formation to the views. The setup method of z iterates through the array of view
Oblets, and forks off athread per Oblet. These threads invoke the set up method
onthe user-defined vi ewobject. Thef oreach ... map ... end construct
returns an array, which in this case contains handles to the forked threads. Next,
set up waitsuntil al the threads have completed.

21

It isworth pointing out that the Oblets contained inthevi ews array may reside
on different machines. Theinherently distributed semantics of Obliq makesthe lo-
cation of an Oblet transparent to the programmer; caling v. vi ew. set up works
regardless of whether v. vi ewisalocal or remote object.

The next line handles the “ABORT” functionality: As we saw, pressing the
“ABORT” button causes the “dert” flag to be set. set up checks if the flag has
been set, and if so, raises an exception. The raising of the exception will cause the
algorithm to terminate, by transferring control to the exception handler in the pro-
cedure goCal | back shown above.

Finally, we handle the “PAUSE” and “RESUME”" functionality: As we saw,
pressing the “PAUSE” button causes the paused flag to be set to true. set up
checks if this flag is true, and if so, blocks on a condition variable. The call to
t hr ead_al ert Wai t will return when the condition variable issignaled or when
the thread is alerted.

The contents of the other event methods, newBIl ock, pr obe, and pack are
similar totheset up method, with set up being replaced by the names of the other
events, and the parameter lists being changed accordingly.

22

4.3 TheView Oblet

Thefilegenerated for aview, say “BPview.obl,” containstwo parts: Thefirst partis
the view code supplied by the author, that is, the object vi ewshown in Section 3.3.
The second part isthe obl et object, needed to make “BPview.obl” an Oblet. The
code for this object is as follows:

let oblet = {
Vi ew => vi ew,
z => ok,
host => "** unconnected **",
vbt => formfronURL(BaseURL & "viewfrane.fv"),

run =>
meth (self)

| et newHost =
proc (host Nane)

let old = self.z

try
self.z := net_inport ("BP", hostNane);
self.z.registerView (self);
if old isnot ok then

ol d. unregi sterViewsel f);

end,
sel f. host := host Nane;
except net_failure =>
end,
form put Text (sel f.vbt, "host", self.host);

end;

| et hostCal | back =
proc(fv)
newHost (f or m get Text (fv, "host"))
end;

form put Generic(sel f.vbt, "contents", view vbt);
formattach(sel f.vbt, "host", hostCall back);
newHost ("1 ocal host");

end,

H
The view Oblet, like any Oblet, hasavbt field and ar un method. In addition, it
has afield vi ew, which is set to the user-specified vi ew object, afield z, which
will be bound to an animation control object, and a field host , the name of the
machine on which z resides.

Thevbt field, thewidget displayed in the Web page, consists of atype-in field
named host for specifying the machine on which the animation control object
resides and the view-specific widget (e.g., a GraphVBT). Here is the widget's
FormsVBT expression, contained in the file “viewframe.fv:”

23

(Border (Pen 1)
(VBox
(HBox
(Text "Host: ")
(Franme Lowered
(Typeln (BgCol or "White") %ost ="local host")))
(Bar 1)
(Generic %ontents)))

The run method installs the view-specific widget, attaches the callback
host Cal | back to host , and calls the procedure newHost , which tries to im-
port the animation control object from the nameserver on the local machine.

Thehost Cal | back retrieves the contents of the type-in field and passesit to
newHost .

The newHost procedure tries to import an animation control object from the
nameserver on the machine host Name. If successful, the view is registered with
the new animation control object. If the view had previously been registered with
another animation control object, it will be unregistered. newHost then caches
the name of the host. Finaly, regardless of whether the import succeeded or nat,
the type-in field is set to the contents of the host field. In this way, the type-in
field will always show whether the view is connected, and if so, to which machine.

5 Conclusion

This report has described CAT, a Web-based a gorithm animation system.

CAT improveson classical agorithm animation systems(e.g., BALSA, TANGO,
Zeus) by combining the power of Web pages for publishing passive multimediain-
formation with interactive algorithm animations.

CAT improves on previous Web-based a gorithm animations (e.g., Javaappl ets)
in that the same running algorithm can be viewed on multiple machines. This fea-
ture makes CAT particularly well-suited for an electronic classroom setting. More-
over, we provide the same level of high-level support for producing agorithm an-
imations asis found in bona fide algorithm animation systems. CAT improves on
Gloor’s Hypercard-based €lectronic textbook for the same reasons.

Finally, CAT improves on existing electronic classroom software by supporting
a higher-leve notion of collaboration than the standard technique of multiplexing
X windows.

Although we have presented CAT in the context of algorithm animation, we be-
lieve that the technique is applicable to other domains amenable to computer ani-
mation and simulation.

24

References

[1] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A Two-View Ap-
proach To Constructing User Interfaces. Computer Graphics, 23(3):137-146,
July 1989.

[2] Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-View
Editing, IEEE Workshop on Visual Languages, pp. 4-9, Oct. 1991.

[3] Marc H. Brown and Marc A. Ngork. “An MPEG Movie of a 3D Animation
of Heapsort.”
http://ww. research. di gital.com SRC/ zeus/ heapsort 3D. 2. npg

[4] Marc H. Brown and Marc A. Najork. Distributed Active Oblets. Computer
Networks and ISDN Systems, 28 (1996) 1037-1052.

[5] Marc H. Brown and Marc A. Ngork. Distributed Active Oblets (video). Re-
search Report #141b, DEC Systems Research Center, Palo Alto, CA, May
1996.

[6] Marc H. Brown and Robert A. Shillner. DeckScape: An Experimental Web
Browser. Computer Networks and ISDN Systems, 27(1995) 1097-1104.

[7] Marc H. Brown and Robert Sedgewick, A System for Algorithm Animation,
Computer Graphics, 18(3):177-186, July 1984.

[8] Luca Cardelli. A Language with Distributed Scope. Computing Systems,
8(1):27-59, Jan. 1995.

[9] John D. DeTreville. The GraphVBT Interface for Programming Algorithm
Animations, IEEE Symp. on Visual Languages, pp. 26-31, Aug. 1993.

[10] Peter A. Gloor, Scott Dynes, and Irene Lee. Animated Algorithms — A Hy-
permedia Learning Environment for Introduction to Algorithms. MIT Press,
Cambridge, MA, 1993.

[11] Jason Harrison. “ Sorting Algorithms Demo.”
http://ww. cs. ubc. cal/ spi der/ harri son/Java/ sorting-deno. ht ni

[12] Bertrand Ibrahim. “World Wide Algorithm Animation.”
http://ww. oac. uci . edu/ i ndi v/ frankl i n/ doc/i brahi nf paper. htm

[13] AndreaLawrence, Albert Badre, and John Stasko. Empirically Evaluating the
Use of Animations to Teach Algorithms. IEEE Symp. on Visual Languages,
pp. 48-54, Oct. 1994.

25

[14] John T. Stakso. “Interact with X Tango Animations.”
http://ww. cc. gat ech. edu/ st asko/ cgi - bi n/ xt angoani m

[15] JohnT. Stasko, TANGO: A Framework and System for Algorithm Animation,
|EEE Computer, 23(9):27-39, Sept. 1990.

[16] World-Wide Web Consortium. “HTML3 Linking and Embedding Model.”
http://ww. w3. or g/ hypertext/WW TR WD-i nsert-951221. ht mi

[17] World-Wide Web Consortium. “ Consortium Announces Active Object Agree-
ment.”
http://ww. w3. or g/ pub/ WAW Mar kUp/ 199512011 nsert _Press

26

