April 15, 1996

SRC remt

Distributed Active Objects

Marc H. Brown and Marc A. Najork

aliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art in computer
systems. From our establishment in 1984, we have performed basic and applied research to support
Digital’s business objectives. Our current work includes exploring distributed personal computing
on multiple platforms, networking, programming technology, system modelling and management
techniques, and selected applications.

Our strategy isto test the technical and practical vaue of our ideas by building hardware and soft-
ware prototypes and using them as daily tools. Interesting systems are too complex to be evaluated
solely in the abstract; extended use allows us to investigate their properties in depth. This experi-
enceisuseful inthe short termin refining our designs, and invaluable in the long term in advancing
our knowledge. Most of the major advances in information systems have come through this strat-
egy, including personal computing, distributed systems, and the Internet.

We aso perform complementary work of a more mathematical flavor. Some of it isin established
fields of theoretical computer science, such as the analysis of algorithms, computational geometry,
and logics of programming. Other work explores new ground motivated by problems that arise in
our systems research.

We have a strong commitment to communicating our results; exposing and testing our ideas in the
research and development communities leads to improved understanding. Our research report se-
ries supplements publication in professional journals and conferences. We seek usersfor our proto-
type systems among those with whom we have common interests, and we encourage collaboration
with university researchers.

Robert W. Taylor, Director

Distributed Active Objects

Marc H. Brown and Marc A. Ngjork

April 15, 1996

Publication History

This report will appear in the proceedings of the Fifth International World Wide Web Conference,
May 6-10, 1996, ht t p: / / wwbconf . inria.fr/.

©Digital Equipment Cor poration 1996

Thiswork may not be copied or reproduced in whole or in part for any commercia purpose. Per-
mission to copy in whole or in part without payment of feeis granted for nonprofit educational and
research purposes provided that all such whole or partial copies include the following: anotice that
such copying is by permission of the Systems Research Center of Digital Equipment Corporation
inPalo Alto, California; an acknowledgment of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any
other purpose shall require alicense with payment of feeto the Systems Research Center. All rights
reserved.

Abstract

Many Web browsers now offer some form of active objects, written in a variety of lan-
guages, and the number and types of active objects are growing daily in interesting and in-
novative ways. This report describes our work on Oblets, active objects that are distributed
over multiple machines. Oblets are written in Oblig, an object-oriented scripting language
for distributed computation. The high-level support provided by Oblets makes it easy to
write collaborative and distributed applications.

1 Oveview

One of the most exciting recent developments in Web-browser technology is active objects, where
the browser downloads a program, executes it, and displays the program’s user interface in a Web
page. Sun’sHotJava browser with Java appl ets pioneered active objects, showing Web pageswith a
widerange of content, from bouncing ballsto spreadsheets to simulated science experiments. Many
browsers now offer some form of active objects, written in avariety of languages.

This report describes distributed active objects, that is, active objects that can communicate
with other active objects located on different machines across the Internet. High-level support for
distributed computation makes it easy to write groupware, computer-supported cooperative work
(CSCW) applications, and multi-player games as active objects.

Our environment for writing distributed active objects is based on Obliq [Cardelli95], an
objected-oriented scripting language that was specifically designed for constructing distributed
applications in a heterogeneous environment. We call active objects written in Obliq Oblets
(Obliq applets). We have also built afamily of Web browsers (DeckScape [Brown94], WebCard
[Brown95], and WebScape) capable of running Oblets.

Obliq supports distributed computation by implementing all objects as network objects [Bir-
rell93]. The methods of anetwork object can beinvoked by other processes, in addition to the pro-
cessthat created the object. Theinitial connection between two processes occurs when one process
registers an object with a name server under a unigue name, and another process subsequently im-
ports the object from that name server. Once the connection is established, network objects can be
passed to other processes just as ssimply as passing any other type of data.

For network objects, method calls and field accesses have the same syntax regardless of where
the object resides. It might reside in the same address space as the cadler, or in a different ad-
dress space either on the caller’'s machine or on some other (possibly different type of) machine.
Thus, from a programmer’s perspective, there is no difference between local and remote objects.
Asaresult, network objects provide a uniform way for communication among Oblets, regardless
of whether the Oblets are on the same Web page or on different Web pages displayed by different
browsers on different machines. Moreover, network objects communicate directly, without server
intervention. Thus, Oblets do not impose any load on an HTTP server, nor does a heavily loaded
server affect their performance.

Therest of thisreport consists of four sections with increasingly complex examples, followed
by areview of related work. The next section introduces fundamental concepts by showing asim-
ple, non-distributed Oblet for adding two numbers. Section 3 shows the basics of distribution by
developing atwo-person game of tic-tac-toe. Section 4 shows a prototypical CSCW application—
achat room. The chat room alows an arbitrary number participants. The final example, Section
5, shows how to coordinate severa different Oblets by developing a multi-view animation of an
algorithm.

2 A SimpleOblet

An Oblet isan Obliq program that defines avariable named obl et . Thisvariable must contain an
Obliq object with at least two fields: vbt andr un. Thevbt fieldisbound to awidget that will be
installed on the screen when the Web page containing the Oblet isloaded. Ther un field is bound
to amethod that isinvoked just after the vbt field is evaluated.

Oblets are placed into HTML documents viai nsert , an HTML tag proposed by the World
Wide Web Consortium (W3C) for inserting multimedia objectsinto HTML 3 pages[HTML3]. The
markup for putting the Oblet at URL f 00. obl into adocument is:

<insert code="foo.o0bl" type="application/x-oblet"> </insert>

Thei nsert tag also supports avariety of standard attributes, such as suggested dimensions, bor-
der size, and alignment. If suggested dimensions are not specified, the preferred dimensions of the
widget contained in the Oblet’svbt field are used.

The following screen dump shows a simple Oblet for adding two numbers:

= AOSF/WebScape [N I
Back| Forward Home| Reload| Open..| Siop %
Location: | hitp:/src-wwaw.pa.dec.com:B0/~najorkMAWAWS/simple/ §

A Simple Oblet
A Simple Oblet
Below is an Oblet for adding two numbers.
= RS 5| == 12

The user interface for that Oblet, defined by aFormsVBT s-expression [Avrahami89], is stored
inthefileadder . f v:

(HBox
(Nurmeric % uml)
(Text "+")
(Nureric %unR)
(Text "=")
(Text %sum "0"))

A user interfacein FormsV BT isahierarchical arrangement of components. These include pas-
sivevisua elements(e.g., Text), basic interactors (e.g., Nurer i ¢), modifiersthat add interactive
behavior to other components (e.g., But t on), and layout operators that organize other components
geometrically (e.g., HBox). Components can be further categorized as a split, filter, or leaf, based
on the number of child components they support. A split can have any number of children (e.g.,
HBox), afilter has exactly one child (e.g., Bor der), and aleaf has no children (e.g., Text).

A component in FormsV BT can be given aname so that its attributes can be queried and modi-
fied at runtime. Names are also used for attaching callback procedures to interactors. Inthis Oblet,
the two Numrer i ¢ interactors are named numl and nun®, and the Text component where the
sum will be displayed is named sum

The source for this Oblet is as follows:

| et doAdd =
proc (fv)
let n1 = formgetint (fv, "numl");
let n2 = formgetint (fv, "num");
formput Text (fv, "sunl, fnmt_int (nl+n2))
end;

let oblet = {
vbt => form fromJRL (BaseURL & "adder.fv"),
run =>
meth (self)
formattach (self.vbt, "numl", doAdd);
formattach (self.vbt, "numR", doAdd);
end

}s

This Obliq program defines two variables: doAdd and obl et . Variable doAdd is a procedure
that retrieves the values of both numeric interactors, and stores their sum in the component named
sum

Variable obl et isan object with two fields, vbt andr un. Thevbt field isbound to aform,
awidget that displays a FormsVBT s-expression. The procedure f or m f r omJRL takes a URL
as an argument and returns a form whose description is stored at this URL. The global variable
BaseURL is the Oblet’s absolute URL up through the last dash. The r un method in this Oblet
just attaches the callback procedure doAdd to the two numeric interactors. This procedure will
be invoked whenever the user clicks on the plus or minus buttons of either interactor, or types a
number into the editing field between the buttons. The form in which the event occurred is passed
as an argument to the callback procedure. Recall that when the Web page containing this Oblet is
loaded, the vbt field will be evaluated and the result displayed on the page, the r un method will
be invoked, and finally the page will become visible.

3 A Distributed Game Oblet

This section describes an Oblet for playing tic-tac-toe. We'll first develop asingle-site game; then,
we' |l show how to extend this game to two sites. The following screen dumps show the first three
moves in the single-site game:

AOSF/WebScape [
Back| Forward Home| Reload Open..| Siop %

= AOSF/WebScape] —]
Back| Forward Home| Reload Open..| Siop %

Location: | hitp://src-wwaw.pa.dec.com:B0i~najorkMAWANS/sp—ti/ §

Location: | hitp://src-wwaw.pa.dec.com:B0i~najorkMAWANS/sp—ti/ §

Single-Site Tic-Tac-Toe

Single-Site Tic-Tac-Toe

Single—Site Tic-Tac-Toe Single—Site Tic-Tac-Toe
Belows 15 an Oblet for playing Tic-Tac-Toe. It is meant to be Belows 15 an Oblet for playing Tic-Tac-Toe. It is meant to be
plagyed by two players sitting in front of the same computer and plagyed by two players sitting in front of the same computer and
taking turns with the mouse. taking turns with the mouse.

X is next Q is next

b
RESET RESET
=] AOSF/WebScape []

Back| Farward Home| Reload| Open..| &iop %
Location: | hitpifsrc—www.pa.cec.com:B0i~najorkians/sp—tt §

Single-Site Tic-Tac-Toe

Single-Site Tic-Tac-Toe
Below 15 an Oblet for playing Tic-Tac-Toe, It is meant to be

played by two players sitting in front of the same computer and
taking turns with the mouse.

X is next

RESET

The FormsVBT description for this Oblet contains a message line that indicates whose turn it
is, agame grid consisting of nine squares, and a“RESET” button at the bottom that is used to clear
the squares. The message line isa Text component named st at us. Each sguare of the game
grid consists of aBut t on and a Text component. The But t on components are named bt n1,
..., bt N9, and the Text components are named | ab1l, ...,| ab9. The “RESET” button is named
r eset . Findly, the form’stop-level component has the name boar d.

4

The code for the Oblet is as follows:

| et otherPlayer =
proc (p)
if pis "X" then "O' else "X" end
end;

let oblet = {
vbt => formfromJRL (BaseURL & "tic-tac-toe.fv"),
c => ok,

reset =>
meth (self)
for i =1 to 9 do
form put Text (self.vbt, "lab" & fnt_int(i), "");
end;
end,

nove =>
meth (self, |abel, player)
form put Text (self.vbt, |abel, player);
form put Text (self.vbt, "status", otherPlayer(player) & " is next");
end,

next Turn =>

meth (self)
self.c := otherPl ayer(self.c);
end,
run =>
meth (self)
self.c := "X";

| et doReset =
proc(fv)
self.reset ();
end;

| et doPress =

proc (m
let label = "lab" & fnt_int(m;
if formgetText (self.vbt, label) is "" then

sel f.nove (I abel, self.c);
sel f.nextTurn ();
end;
end;

formattach (self.vbt, "reset", doReset);
for i =1to 9 do
let p = proc(fv) doPress(i) end;
formattach (self.vbt, "btn" & fnt_int(i), p)
end;
end

}s

ThisOblet, in addition to therequired vbt fieldand r un method, also hasafield c and methods
reset,move, and next Tur n. Thefield ¢ will be a string indicating the player about to move,
either “X” or “O”. Ther eset method clears the label displayed in each square of the game grid.
The nove method stores the string pl ayer into the Text component whose name is | abel ,
and also updates the message line to indicate whose turn is next. The next Tur n method changes
whoseturnitis, that is, it changes the value of the field c. The last two methods use the procedure
ot her Pl ayer , which takes one player’s symbol and returns his opponent’s symbol.

The body of the r un method initializes field ¢, and then attaches callback procedures to the
various interactors on the board. Procedure doReset is attached to the “RESET” button; it will
invoke the r eset method of the object obl et . A procedure p is attached to each of the nine
buttons, bt n1, ..., bt n9. This procedure effectively captures the value of i , the index of each
square on the game grid. When p isinvoked (in response to a user clicking in a square), it cals
procedure doPr ess(i), which checks that the square is empty, and if so, invokes the Oblet’'s
nove and next Tur n methods.

We now convert the single-site version of tic-tac-toe into a two-site, distributed version. The
following figure shows asnapshot of atwo-site gamein progress. Theleft image showsthe browser
(WebScape) used by player “O", the right image shows the browser (DeckScape) used by player
“X”. The message line indicates that player “X” is next, and the Oblet of player “O” isgrayed out,
indicating that it is non-responsive for the time being.

=] AOSF/WebScape [] = DeckScape =
Back| Farwurd Home| Reload Open..| Siop % Filew | Decks~
Location: | hitpy/sre-uww.pa.dec.com:B0/~najorkAMaSimp-tiy § @ ¥ |Home Deck | Merge|2/4 B|«|»|T
Distributed Version of Tic-Tac-Toe http//src—www . pa.dec.com/~najork/¥y¥ H| D
A Distributed Versi ¢ .| ADistributed Version
1stripuie ersion o q
Tic_TacT of Tic-Tac-Toe
Ic=1ac-1o0¢ Below iz an Oblet for playing Tic-Tac-Toe, It
Below is an Oblet for playing Tic-Tac—Toe. It is meant to be 15. meant 10 be played by two plagers, using two
played by two players, using two different computers. different computers.
® is ned A is next
o @
ec.com/home
% 5 o
. Syster
4
e
R RESET h Center, locat
GEi 5. Wework in s
T ing, Programmi,

The changes to the Oblet code are remarkably simple. First, we extend the obl et toinclude
an extrafield, opp, which isthe obl et of the opponent. Second, we use the field ¢ in adightly
different way: In the single-site version, ¢ was astring that indicated whose turn it was; it changed
after eachturn. Inthetwo-siteversion, itisalso astring, but it never changes. Rather, itisinitialized
to the player in whose browser the Oblet is run. Finally, there are changes to the next Tur n and
r un methods. Hereisthe entire Oblet, with unchanged parts elided:

l et otherPlayer = ...

let oblet = {

vbt = ...,
c => ok,
opp => ok,
reset = ...,
nove => ...

next Turn =>

meth (self)
if formgetReactivity(self.vbt, "board") is "active" then
formput Reactivity(self.vbt, "board", "dormant");
el se
formput Reactivity(self.vbt, "board", "active");
end;
end,
run =>
meth (self)
try
self.opp := net_inport ("TicTacToe", "ash.pa.dec.conl);
sel f. opp.opp : = self;
self.c := "X";
except net_failure =>
net _export ("TicTacToe", "ash.pa.dec.cont, self);
formputReactivity (self.vbt, "board", "dormant");
self.c :="0';
end;

| et doReset =
proc(fv)
self.reset ();
sel f.opp.reset ();
end;

| et doPress =

proc (m
let label = "lab" & frmt_int(m;
if formgetText (self.vbt, label) is "" then

sel f.nove (I abel, self.c);
sel f. opp. nove (| abel, self.c);
sel f.nextTurn ();
sel f.opp. next Turn ();
end;
end;

formattach (self.vbt, "reset", doReset);
for i =1to 9 do
let p = proc(fv) doPress(i) end;
formattach (self.vbt, "btn" & fnt_int(i), p)
end;
end

}s

We start a game by visiting the tic-tac-toe Web page, which causes the tic-tac-toe Oblet to be
loaded and its r un method to be invoked. The first part of the r un method attempts to import
an object called Ti cTacToe from the name server at machine ash. pa. dec. com This call
succeeds if there already isaplayer waiting for agameto begin. Inthiscase, the opponent’'s obl et
isstored in our opp field, our obl et isstored in our opponent’s opp field, and we choose “X” to
be our symbol. If the attempt to import Ti c Tac Toe fails, then we export our obl et to the name
server a ash. pa. dec. com make our game board dormant (i.e., grayed out and unresponsive
to mouse activity), and choose “O” as our symbol. For the sake of simplicity, we ignore the race
condition of more than one player executing this code simultaneoudly.

The change to the doReset callback is smple: we invoke the r eset method not only on
our obl et , but also on our opponent’s obl et . The change to the doPr ess calback is similar:
rather than invoking nove and next Tur n only on our obl et , we aso invoke these methods on
our opponent’s obl et . The rest of the r un method is unchanged: callbacks are attached to the
interactors.

The final change in the Oblet is to the next Tur n method. In the single-site version, we
changed the value of field ¢ from “X” to “O” and vice versa. Here, we change the reactivity of
the game board from active to dormant and vice versa. Therefore, each player can press a button
only when it is his turn to move.

It isworth emphasizing that sel f . opp denotes an object that resides on the opponent’s ma-
chine. This implies that the assignment to sel f. opp. opp and the execution of the
sel f.opp.reset,sel f.opp. nove,and sel f. opp. next Tur n method calls take place
on this other machine.

4 A Distributed Chat Room Oblet

Oblets are flexible enough to alow distributed computations to have arbitrary topologies. In the
tic-tac-toe example, we had two obl et objects performing peer-to-peer communication. In this
example, we use astar topology to implement amulti-person chat room. At the center of the star, we
have aconference control object; at the periphery arethe Oblets belonging to the participants. When
auser types into his chat room Oblet, it informs the conference controller of the new text, which
then relays the update to all the participating Oblets; in other words, Oblets do not communicate
with other Oblets directly. Our chat room aso provides a mechanism for floor control.

Thefollowing threeimages show the chat room Obl et running in different browsers (WebScape,
WebCard, and DeckScape). Each browser is running on a different machine. The participants in
the chat room are Moe, Larry, and Curly. Currently the floor iswith Moe, asindicated by the status
line over the editing region and by the color of the editing region in Moe's browser.

=] WebScape Al = WebCard: 6 bboards |
P2 5

Back Forward Home Reload| Open... siep 0 GB v |Folders|Browse| = | = | inbox

“ 67 11/10 rustan Re: Java Conference at Sun| comp. graphics,opengl

Location: | hitp//sro—www padec.comi~naorkMiaichatrooms H i B9 11710 Torustan Ret Java Conference at Sunl iTF{comp. infosystens. annou

B3 11/10 gnelson Re: Java Conference at Sun comp, Lang, java
70 11410 Totgnelson Ret Jaua Conference ot Sun comp, Lang, odu1a3

Chat Room 71 11713 whb oblets/home. html<{iz out of comp. 1ang. visual

72 11/15 Toinajork <<FYl: I made a couple of {*comp., 0 ne-windows .pr

A Chat Room Oblet

The Oblet below implements a "chat room”, a text editing window that
i5 shared among an arbitrary number of users on different machines.
Type your name into the type—in field at the bottom of the Gblet, A Chat Room Oblet
Pressing the "Grab floor" button gives you exclusive control over the
main editing window. The status line at the top indicates who currently
has control over the editing windows.

Detach | Back |Forward Step | Goodiesw | 2/2 |chatH

The Oblet below implements a "chat room", a text editing window that
15 shared among an arbitrary number of users on different machines.
Type your name infto the type-in field af the bottom of the Cblet.

The floor is with Moe Pressing the "Grab floor” button gives you exclusive control over the
- main editing window. The status line af the top indicates who currently
Lerrey, Qrilg, &FE o0 HEme has control over the editing window.
Yes, Moe ...

Yes, 1'm here, The floor is with Moe

Listen what T have to say: Larry, Curly. are you there?

Yes, Moe ..,
Yes, I'm here,

Listen uhat I have to say:

Your Name: | Hoe Grab Floor
Your Name: | Larry Grab Floor
—| DeckScape |
Filew | Decks~
|® v |beckz
I
@] ¥ [Home Deck Merge |2/2 B|a/% 7 A=

htip//sre-www . pa.dec.com/~hajork’WWW5/chatroom/ |H D

A Chat Room Oblet

The Oblet below implements a "chat room", a text editing window A
that is shared among an arbitrary number of users on different
machines. Type your name into the type—in field at the bottom of [
the Oblet. Pressing the "Grab floor” button gives you exclusive
control over the main editing window, The status line at the top
indicates who currently has control over the editing window.

&

The floor is with Moe ¢

Larry, Curly, are you thers?

Yes, Moe ...

Er
Yes. I'm here, g
Listen what [have to say: i
&

Your Name: | Curly Grab Floor

Hereisthe FormsVBT s-expression for the chat room Oblet:

(Rim (Pen 10)
(VBox
(Text % loorWth "The floor is free right now')
(d ue 10)
(Shape (Wdth 300) (Height 200)
(Frame Lowered
(Filter Passive
(TextEdit (BgCol or "Wiite") %wminEditor))))
(G ue 10)
(HBox
(Text "Your Nane:")
(Frame Lowered (Typeln (BgCol or "White") %wyNane))
Fill
(Button %grabFl oor "Grab Floor"))))

Thef | oor Wt h component is the message line above the large editing region; it will contain a
message indicating who owns the floor. The mai nEdi t or isthe large (300x200) editing region.
TheFi | t er component surrounding the region is used to set the reactivity of the region; in the
passive state, the region is unresponsive to mouse and keyboard activity, but it is not grayed out,
as it would be in the dormant state. The type-in field where each participant identifies himself is
named ny Narre. Finally, the “Grab Floor” button has been given the name gr abFl oor .

Asweshall see, callback procedures will be attached to the“ Grab Floor” button and to the large
editing region. When the user clicks on the“ Grab Floor” button, the message line on all participat-
ing Oblets will indicate who ownsthe floor (using the contents of the type-in field of the Oblet now
owning the floor), the editing region on all Oblets (other than the one owning the floor) will become
passive, and the editing region in the Oblet owning the floor will become active and its color will
change to pink. When the user who owns the floor types a keystroke into the editing region, all of
the participating Oblets will be notified of the updated text.

Recall that Oblets do not communicate with other Obletsdirectly. Rather, they use aconference
control object to report the changes, and this object then relaysthe changesto the other Oblets. Here
is the definition of the conference control object:

10

I et ProtoConfControl = {
oblets =>[],
onFl oor => ok
contents => ""

regi ster =>

meth (self, oblet)
self.oblets := self.oblets @[oblet];
obl et. updat eText (self.contents);
if self.onFloor isnot ok then

obl et.transferFl oor (self.onFloor);

end;

end,

t ransfer Fl oor =>
meth (self, nane)
sel f.onFl oor := nane;
foreach o in self.oblets do
o.transferFl oor (name);
end;
end,

updat eText =>
meth (self, contents)
sel f.contents : = contents;
foreach o in self.oblets do
0. updat eText (contents);
end;
end

}s

Theobl et s datafield isan array of the Oblets that have registered themselves with the con-
ference control object. Each element of this array isan obl et that typically resides on a differ-
ent machine. The onFl oor datafield is the name of the user who currently has the floor, and
the cont ent s data field contains the current contents of the editing region. These two fields are
needed in order to initialize the display of a new participant entering this chat room.

Ther egi st er method will be called by anew Oblet obl et whenitisinitialized, as part of
itsr un method. The new Oblet is appended to the obl et s array, and then it is notified both of
the current contents of the editing region and of the owner of the floor, if thereis one.

Thet r ansf er Fl oor method will be caled by an Oblet when the user clicks on the “ Grab
Floor” button. This method storesin onFl oor the name of the user who now owns the floor, and
then iterates through all of the Oblets in the conference, invoking thet r ansf er Fl oor method
on each Oblet to inform it of the new floor owner.

Finaly, theupdat eText method will be called on each keystroke by the Oblet that owns the
floor, passing in the current contents of the editing region. (Passing just the keystroke is not suffi-
cient, since asingle character could result in various editing actions, depending on the key bindings
used by theOblet.) Theupdat eText method storesincont ent s the new contents of the editing
region and then updates all of the Oblets in the chat room by invoking the updat eText method
on each one.

11

We are now ready to examine the code for the Oblet:

let oblet = {
vbt => form fronURL (BaseURL & "chatroomfv"),

transferFl oor =>
meth (self, nane)
formputReactivity (self.vbt, "mainEditor", "passive");
form put BgCol or (self.vbt, "nmainEditor", color_naned("white"));
form put Text (self.vbt, "floorWth", "The floor is with " & nane);
end,

updat eText =>
meth (self, contents)
form put Text (self.vbt, "mainEditor", contents);

end,
run =>
meth (self)
var conf Control = ok;
try
confControl := net_inmport("ConfControl", "ash. pa.dec.contl);
except net_failure =>
conf Control := ProtoConfControl;
net _export (" ConfControl", "ash. pa.dec.con', confControl);
end;

| et doG abFl oor =
proc (fv)
confControl .transferFl oor (formgetText (fv, "nyNanme"));
formputReactivity (fv, "mainEditor", "active");
form put BgCol or (fv, "mainEditor", color_naned("pink"));
end;

| et doKeyEvent =
proc (fv)
conf Control . updat eText (form.getText (fv, "mainEditor"));
end;

confControl .register (self);

formattach (self.vbt, "grabFl oor", doG abFl oor);

formattach (self.vbt, "mainEditor", doKeyEvent);
end

}s

The Oblet defines two methods, t r ansf er FI oor and updat eText ; aswejust saw, these
methods will be invoked by the conference control object in response to auser in an arbitrary Oblet
in the chat room grabbing the floor or typing into the editing region, respectively. These methods
are straightforward: thet r ansf er FI oor method makes the editing region passive and sets its
background to be white, and then updates the message line. Theupdat eText message changes

the contents of the editing region.

12

The Oblet’sr un method first contacts the name server on the machineash. pa. dec. comto
obtain a conference control object registered under the name Conf Cont r ol . If there is such an
object, it is stored in the variable conf Cont r ol . Otherwise, a new conference control object is
registered with the name server and also stored in conf Cont r ol . Asin the tic-tac-toe example,
we do not show the code necessary for preventing the race condition of several users executing the
try-except statement simultaneously. After defining callback procedures doGr abFl oor and
doKeyEvent , this Oblet registers itself with the conference controller, and finally attaches the
callback procedures to the “Grab Floor” button and to the editing region.

The doG abFl oor calback procedure invokes the t r ansf er Fl oor method on the
conf Cont r ol object (which then callsthet r ansf er FI oor method on all Oblets in the chat
room, including this one), and then makes its own editing region active and colored pink. The
doKeyEvent calback procedure simply invokestheupdat eText method ontheconf Cont r ol
object, passing to it the text in the editing region.

Again, it isimportant to point out that invoking a method mon the conf Cont r ol object is
donejust by calling conf Cont r ol . m() ,regardless of wheretheconf Cont r ol object resides.
In this example, the conference control object will be local to the Oblet that creates it, and remote
to all other Oblets.

There are many features that could be added to the chat room in afairly straightforward way.
For example, it would be nice to be able to prevent another user from taking away the floor, to
allow usersto leave the chat room, to create new chat rooms, to see existing chat rooms, to handle
exceptions that might result from network partitions, and so on. In addition, one can easily imagine
more efficient implementations, such as reporting only changes to the editing region rather than
reporting the region’s entire contents after each keystroke.

13

5 Obletsfor Algorithm Animation

Oblig's network objects provide a uniform and elegant way for objects to communicate, regard-
less of the address space they exist in and the machine they reside on. The two previous examples
showed the obvious use for network objects: to communicate among objects on different machines.
The example in this section uses network objects to allow Oblets running in the same browser (on
the same Web page or on different Web pages) to communicate. This could be achieved through
simpler mechanisms; after all, all Oblets on the same browser are in the same address space. How-
ever, network objects minimize the number of concepts needed by aprogrammer, since they handle
this case in the exact same way as the distributed case. Moreover, network objects make it easy to
reuse Obletsin distributed settings without any code changes.

= WebScape e
Back| Forward Home Reload| Open... Hlop %
Location: | hitp:#sre—www.pa.dec.com/~najorkMAMWS/binpack 1/ i

Animation of Binpacking - Integrated Version

Animation of Binpacking

This page shows an animation of the first—fit binpacking algorithm, It contains three Oblets: a control panel, a transcript
view, and a graphics view, The Oblets communicate via Network Objects,

The Control Panel

The control panel allows the user to adjust the number of bins and the number of weights, to start the animation, and to
adjust its speed,

@@ Number of bins: = 0 |
Mumber of weights: = 20 | p

Slow # Fast

The Views

The transcript view shows a log of the interesting events generated by the algorithm, The "clear” button clears the log. The
graphics view shows a graphical representation of the bins and the weights contained therein, A new wreight that is about to
be added appears on the left side of the view, and then jumps from bin to bin, probing for the first bin that is sufficiently
empty.

obe (0,7100,5,0,63d0)
obe (0.710,5.0.51d03
ohe €0,71d0,7,0.0d0)
ok (0.71d0,7,0.71d0)
ahlzight. (17,0,54d0
ohe (0,540,0.0, 95403

Probe (05440, 1,0.91d0) 12
| probe 0,54d0,2,0,5300000000000001d0>
ohe (0,54d0,3,0.0d0)

obe (0,540, 4.0.75d0)

Clear

14

This example uses network objects to coordinate multiple Oblets in the domain of algorithm
animation [Brown84]. A typica agorithm animation system hasacontrol panel and a collection of
views, each initsownwindow. The control panel isused for specifying data, starting the algorithm,
controlling the animation speed, and so on. In order to animate an algorithm, strategically important
points of its code are annotated with procedure calls that generate interesting events. These events
arereported to the algorithm animation system, which in turn forwards them to all interested views.
Each view responds to interesting events by updating its display appropriately.

The screen dump on the previous page shows an animation of first-fit binpacking. The control
panel and the views are implemented by separate Oblets.

We use an event manager object, similar to the conference control object in the chat room ex-
ample, to relay interesting events from the algorithm to the views. For each interesting event there
is a corresponding method both in the event manager object and in each view Oblet. When an in-
teresting event occurs, the algorithm Oblet invokes the corresponding method of the event manager
object, which in turn relays the event to each view. Typically, views react by showing some ani-
mation reflecting the changes in the program. In order for the animation in the views to happen si-
multaneoudly, the event manager forks athread for each registered view, the thread callstheview’'s
method corresponding to the interesting event, and the event manager waits until al of the threads
have completed before returning to the algorithm.

For example, when a binpacking algorithm istrying to insert aparticular weight winto abin b
that already contains anumber of weightstotalinguptoant ,itcallsz. pr obe(w, b, ant) . The
pr obe method of the event manager object z isimplemented as follows:

let z = {
views =>[],
probe =>
meth (self,w b, ant)
|l et threads =
foreach v in self.view nmap
l et closure = proc() v.probe(w b,ant) end;
t hread_f or k(cl osure)
end;
foreach t in threads do
thread_j oin(t)
end;
end;

}s

The screen dump on the previous page showed the Oblets for the control panel and each view
al on the same Web page. However, there is no need for the Oblets to be located on the same
page. In fact, if we put each Oblet on a separate page, the user can dynamically select the set of
views visible (or even have more than one copy of any view). In the screen dump on the following
page, the Web page containing the control panel has links for pages containing the various views.
Clicking on such alink brings up a page for the view, which the DeckScape browser can optionally
display in a separate window.

15

—| DeckScape []
Filew | Decks~

® ¥ |Home Deck Merge|2/2 B &/ % 7

http://sre-www.pa.dec.com/~najork/WWWS5/binpack-man) H D

| Binpacking - Main Control Page

This page containg the control panel for the animation of first—fit
binpacking, It also contains links to pages with various views of

binpacking:
o aa @ ¥ Deck6 Merge 2/2 B 4% 7 H
s Transcript View - -
s Graphics View http://src-www.pa.dec.com/~najorklWWW5/binpa H D

COnly one instance of this page should be open at any given time.
Howrever, you can open up an arbitrary number of view pages.

Binpacking - Graphics View

Mumber of bins: = 10 | The graphics view shows a graphical representation of the
@ﬁ bins and the weights contained therein, A new weight that
is about to be added appears on the left side of the view, and
then jumps from bin to bin, probing for the first bin that is
sufficiently empty.

Number of weights: = 20 | =

|® v |Decks Merge|2/2 B «/= 7
http://sre-www.pa.dec.com/~hajork/WWW5/binpack- H D

I Binpacking - Transcript View

The transcript view shows a log of the inferesting events
generated by the algorithm, The "clear” button clears the log.

probe {0,37d0,5,0,72d0}

probe (0,37d0,6,0,0d03

pack (0.37d0,6.0,37d0}

newlleight (10,0,83d03

probe (0,83d0,0,0,89d0)

probe (0.83d0,1,0.3000000000000001407
probe {0.89d0,2,0.88d0) 1
probe (0,83d0,3,0,97d0)

probe 10,8340, 4,0,75d0)

probe (0.89d0.5,0.72d0)

probe {0,83d0,6,0,37d0}

probe (0,89d0,7,0,0d03

pack {(0.89d0,7.0,89d0}

i newlleight. {11,0,45d0Y

probe (0,45d0,0,0,89d0)

probe (0.45d0,1,0.3000000000000001407
probe {0,45d0,2,0,88d0)

probe (0,45d0,3,0,97d0)

probe (0.45d0,4,0.75d0)

probe {0.45d0.5,0.72d0}

Clear

At first blush, it would appear that this example uses network objects merely for the coding el-
egance they offer, rather than for any of their distributed aspects. That is, in the two screen dumps
in this section, al of the Oblets exist in the same address space, namely that of the browser. How-
ever, because Oblets are network objects, we have far more flexibility. For instance, we can usethe
Oblets— without any changes— in an Electronic Classroom setting. In such asetting, theinstruc-
tor and all students run Deckscape on their individual machines (using the same name server). The
instructor uses the control page Oblet to drive the animation, and each student sees a set of views
portraying the workings of the algorithm. This scenario is explored in depth elsewhere [Brown96].

16

6 Reated Work

Oblets bring together active objects and distributed computation. The best known language for
active objects is Java [Java)]. HotJava was the first browser to support Java applets; in the mean-
time support for Java applets has been integrated into Netscape Navigator. Most major commercial
browser vendors have subsequently announced intended support for Java applets.

The most serious potential competitor to Java-based browsers is probably Microsoft’s Internet
Explorer, which plans to integrate support for active objects written in Visual Basic (aswell asfor
those written in Java) [Microsoft]. However, the current version of Internet Explorer does not sup-
port active objects.

In the research community, a number of browsers have been devel oped that support other lan-
guages for writing active objects. Most of these browsers are written in interpreted languages and
support active objects written in the same language. Examples include Hush [vanDoorn95] and
Surflt! [Surflt!], implemented in Tcl/Tk; MMM [MMM], implemented in CAML/Tk; and Grail
[Grail], implemented in Python.

None of the browsers and languages mentioned above has any high-level support for distributed
programming. However, the HORB system [HORB] addsthe equivalent of network objectsto Java.
It consists of a name server and a compiler that creates network object classes based on Javainter-
face specifications. Unlike Oblig, HORB is afirst-order language, meaning that only data, but not
computations, can be migrated over the network. Also, HORB does not provide distributed garbage
collection.

Obliq[Cardelli95] isalexically-scoped language that supports distributed object-oriented com-
putation. It has been integrated into commercial Web browsers by defining an Oblig MIME type
and configuring the browser to use the Obliq interpreter as an external viewer [Bharat95]. Many
other distributed languages exist, commercialy (e.g., General Magic's Telescript [Telescript]) and
in academia (e.g., Orca [Bal92]). However, we are not aware of any such language having been
integrated with a Web browser.

17

7 Conclusion

The example Oblets shown in this report have been small, for didactic reasons. However, Obliqis
a full-strength programming language with access to arich set of libraries, including multimedia
objects and even Web pages.

The DeckScape browser below shows a“Virtual TV” Oblet; the main screen and each of the
buttons show live video streams. New video streams can be added by typing the IP address of a
video server into the type-in field.

— 11

File + Decks v

@] w |/Home Deck Merge [7/9 B @ || T

hittp:ffsre - wrw . pa.tec comi-najork WWa ivideor H|D
A Virtual TV Oblet

Oblig is implemented in Modula-3, and it gives the programmer access to much of the
underlying Modula-3 Lbrares. One of these libraries is Trestle, san object-oriented
window system that provides abstractions for a varety of mulimedia objects, from
document viewers to video widgets.

The Obler below implements a “virmal TV" with a type-in field to select new channels,
and a set of buttons to flip between existing ones

® Be=_see »
FRANC ¥ Deck2

g dec.com/pub/DECISRCiresea

Deck Scape: An Experin

PostScript —— HTML

Marc H. Brown and Robert A. S

Maxch 1, 1295
13 poges

This report describes DeckScape, an experiment;
metaphor. A deck consists of a collection of We
once. Asg the nser traverses links, new pages ap
using a hackground thread, so all visible pages 1
copy pages betwween decks, and decks cen be us
ag hotlists, query results, and breadth-first exps

This report has an accompanying videotape, repo

Host: | aerial,pa,dec,com DeckSecape: An Experimental Web Bron
Marc H. Brown and Robert A. Shillner
Time: 7 minmt

The WebScape browser on the next page shows an Oblet that implements the look-and-fed of
DeckScape, but uses a different color for the main canvas. Within this Oblet, we are visiting Web
pages containing the various binpacking animation Oblets we saw before. This Oblet consists of
about 500 lines of Oblig code and 200 lines of FormsV BT user-interface specification.

18

WebScape

RN

Back| Forwazrd Home

Reload| Open...

Location: | httpi/src—www.padec.comd~najorkAAWAWS/deckscape/

Stop %
i

Web Browser Cblet

A Web Browser Oblet

Oblig is expressive enough to construct web browser oblets, The Oblet below implements a web browser with the same look and feel as

DeckScape, [t consists of around 500 lines of Oblig and 220 lines of FormsVEBT s-expressions,

File v Decks v

@] ¥ Deck1

Merge |3/4 B &« » T

Binpacking - Main Control Page

H| D

binpacking:

® Transcript % iew
® CGiraphics View

® v |De
Binpackit]

The traf
generatf Slo

Binpacking —- Main Control Page

This page contains the control panel for the animation of First-fit
binpacking, 1t also contains links to pages with varigus views of

COnly one instance of this page should be open at any
Hewrever, you can open up an arbitrary number of

Mumber of bins: = 10 |4k

Mumber of weights: = 2 |

@ ¥ Deck3 Merge |3/3 B & # ¥

Binpacking - Graphics View H D

Binpacking — Graphics View

The graphics view shows a graphical representation of the
bins and the weights contained therein, A new weight that is
about to be added appears on the left side of the vievw, and
then jumps from binto bin, probing for the first bin that is
sufficiently empty.

probe (0, 45d0,2.0,74d0)
probe (0,45d0,4,0, 0400
pack (0.45d0,4,0, 45403
neuklsight ¢8.0,65d00

probe (0.65d0, 0.1, 0d0y
probe {0.65d0,1.0,87d03
probe (0,B5d0,2.0,9340)
probe (0,E5d0, 3.0, 74d0)
probe (0,E5d0,4.0,45d0)
probe (0, E5d0, 5,0, 0doy
pack (0,B5d0,5,0,E6d00
newleight $9,0,42d00

probe (0,42d0,0,1, 0403
probe (0.42d0,1.0.87d0)
probe (0.42d0,2.0,93d03

Clear

We have not explored the issues of security and fault tolerance, both very important and very
real problems. In the area of security, Web browsers should be able to authenticate the origin of
an Oblet and to protect the user against malicious Oblets. In the area of fault tolerance, Oblets
should be able to gracefully handle disruption of network services and nonavailability of network

resources.

Many analysts feel that two of the most important technology themes for the remainder of the
decade are the Web and using computersfor collaboration. Oblets provide an elegant programming
framework for bringing collaborative and distributed applications to the Web.

19

References

[Avrahami89]

[Bal92]

[Bharat9s]

[Birrel|93]

[Brown84]

[Brown94]

[Brown95]

[Brown9g]

[Cardelli95]

[Grail]

[HTML3]

Gideon Avrahami, Kenneth P. Brooks, Marc H. Brown.
A Two-View Approach To Constructing User Interfaces.
Computer Graphics, 23(3):137-146, July 1989.

H.E.Bal, M.F.Kaashoek, and A.S.Tanenbaum.
Orca: A Language for Parallel Programming of Distributed Systems.
| EEE Transactions on Software Engineering, 18(3):190-205, March 1992

Krishna Bharat and Luca Cardélli.

Distributed Applications in a Hypermedia Setting.
Proc. of the 1st Intl. Workshop on Hypermedia Design,
pages 185192, June 1995.

Andrew D. Birrell, Greg Nelson, Susan Owicki, and Edward P. Wobber.
Network Objects.

Proc. of the 14th ACM Symposium on Operating System Principles,
pages 217-230, December 1993.

Marc H. Brown and Robert Sedgewick.
A System for Algorithm Animation.
Computer Graphics, 18(3):177-186, July 1984.

Marc H. Brown and Robert A. Shillner.
DeckScape: An Experimental Web Browser.
Computer Networks and ISDN Systems, 27(1995) 1097-1104.

Marc H. Brown.

Browsing the Web with a Mail/News Reader.

Proc. of the 8th ACM Symposium on User Interface Software and Technology,
pages 197-198, November 1995.

Marc H. Brown and Marc A. Ngjork.

Collaborative Active Textbooks: A Web-Based Algorithm Animation System
for an Electronic Classroom.

Research Report #142, Digital Equipment Corporation Systems Research
Center, Palo Alto, CA (May 1996).

Luca Cardelli.
A Language with Distributed Scope.
Computing Systems, 8(1):27-59, January 1995.

Grail Home Page.
http://nonty.cnri.reston.va.us/grail-0.2/

HTML3 Linking and Embedding Model.
http://ww. w3. or g/ hypertext/WW TR VWD-i nsert-951221. ht m

20

[HORB]

[Javal

[Microsoft]

[MMM]

[Surflt!]

[Telescript]

[vanDoorn95]

HORB Home Page.
http://ring.etl.go.jp/openlab/horb/

Java: Programming for the Internet.
http://java. sun. com

Internet Development Tool box.
http://ww. m crosoft.com | NTDEV/

MMM Browser Home page.
http://pauillac.inria.fr/"rouai x/ nmm

Surflt!
http://pastinme. anu. edu. au/ Surflt/

Telescript.
http://ww. genmagi c. coni Tel escri pt/i ndex. ht ml

Matthijs van Doorn and Anton Eliéns.
Integrating Applications and the World-Wide Web.
Computer Networks and 1SDN Systems, 27(1995) 1105-1110.

21

