February 15, 1996

SRCraot

Migratory Applications

Krishna A. Bharat
Luca Carddlli

Migratory Applications

KrishnaA. Bharat and Luca Cardelli

February 15, 1996

Thisreport appearsin the Proceedings of the Eighth Annual ACM Symposium on User Inter-
face Software and Technology, Pittsburg, Pennsylvania, 15-17 November 1995.
© 1995 Association for Computing Machinery, Inc. Reprinted by permission.

KrishnaA. Bharat isaPhD student at the Graphics, Visualization & Usability Center of the
College of Computing at the Georgia I nstitute of Technology.
His electronic mail addres is kb@cc.gatech.edu.

© Digital Equipment Corporation 1995

Thiswork may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of feeis granted for nonprofit edu-
cational and research purposes provided that al such whole or partial copiesincludethefol-
lowing: a notice that such copying is by permission of the Systems Research Center of
Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors
and individual contributorsto the work; and all applicable portions of the copyright notice.
Copying, reproducing, or republishing for any other purpose shall requirealicensewith pay-
ment of fee to the Systems Research Center. All rightsreserved.

Abstract

We introduce anew genre of user interface applicationsthat can migrate from
one machine to another, taking their user interface and application contexts with
them, and continue from where they left off. Such applications are not tied to one
user or one machine, and can roam freely over the network, rendering serviceto a
community of users, gathering human input and interacting with people. We envis-
agethat thiswill support many new agent-based collaboration metaphors. The abil-
ity to migrate executing programs has applicability to mobile computing as well.
Userscan havetheir applicationstravel with them, asthey move from one comput-
ing environment to another. We present an el egant programming model for creating
migratory applicationsand describeanimplementation. Thebiggest strength of our
implementation is that the details of migration are completely hidden from the
application programmer; arbitrary user interface applications can be migrated by a
single®migration” command. We address system issues such asrobustness, persis-
tence and memory usage, and also human factorsrel ating to application design, the
interaction metaphor and safety.

Contents

1 Introduction..........coiiiiiiiiiiiiiiiiii it 1
2 ProgrammingModelol 2
2.1 Network Semanticscovviiiiiiiiiiii it iiiiiinnneenn 2
B N = U 4
23 Agent Migration. ...ttt 5
3 Application Migration............cooviiiiiiiiiiiiiiiinn. 7
31 Visual Obliq .. .vvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaaas 7
3.2 Implementing Migrationcooiiiiiiiiiiiiiiiiiinna. 10
3.3 The Visual Obligruntimeccoiiiiiiiiiiiiiiieeeennnnnn. 13
Y ¥ T 1 15
4 A CompleteExamplecoviiiiiiiiiiiiiiiiin.. 16
5 Issues Raised by Migration...................oovviis. 19
6 Related Work..... ...t 20
7 ConcluSionsovviiiiiii ittt i i e e 22
8 Acknowledgments ool 22

O R TN S, « v vt ittt ettt ettt eeeneeeeeennnseeeeennnns 23

1 Introduction

The goal of the human-computer interaction community isto make powerful appli-
cations easy to use, while retaining their full potential. For this purpose metaphors
have been devised; metaphors like overlapping windows, direct manipulation, and
hypermedia. A successful metaphor hides complexity, and allows users to accom-
plishtheir taskswith little effort. Often, ametaphor requires advancesin technol ogy
beforeit can be effectively implemented. Conversely, anew technol ogy often needs
the introduction of new metaphorsto harnessit.

Astheinfrastructure for ubiquitous computing comesinto being, new demands
will be placed on the way applications cope with the needs of mobile and distributed
users. New metaphorswill be necessary to cope with these demands.

Weintroduce anew genreof user interface applications. migratory applications
can migrate from one host to another, maintaining intact the state of their user inter-
face. After migration, aformer host may shut down without affecting the applica-
tion. We di scuss how application migration can beimplemented at the programming
language/environment level. Our approach places some demands on the program-
ming environment, but almost none on the application programmer. No restrictions
are placed, in principle, on the type of the application being migrated. The entire
migration operation can berealized by the execution of asinglecommand. Thesame
technique use for transmitting an application can be used to save the running appli-
cation to file and transmit it over other channelsto be resumed at alater time.

Application migration is useful in the context of many agent-based collabora-
tion metaphors. For example:

1. Applicationsthat follow auser across physical locations: the ubiquitous
computing metaphor. For “eager” behavior, some applications could use
alocation sensing device such asan “ active badge”, to automatically fol-
low the user.

2. Applications that serve a group of people by travelling to each person’s
siteinturn (e.g. ameeting schedul er): the electronic secretary metaphor.

3. Applicationsthat interact with people on auser’s behalf and carry out an
agenda: the interactive agent metaphor.

4. Communication over email that isinteractive and intelligent: theinterac-
tive message metaphor. Unlike previous implementations of “active
mail” [6], the recipient is able to forward the interactive message after
interacting withit.

In addition to self-induced migration as described so far, it is equally easy to
allow a program to be migrated under external control. We could “ drag-and-drop”
programs from one machine to another in the same manner that we move files
between folders, and windows between screens.

Section 2 describes our approach to programming migratory applications. In
Section 3, we show how this paradigm was applied in theVisua Obliq environment
[3] tosupport themigration of (arbitrary) user interface applications. In Section4we
provide awalk-through of the processof creating amigratory application. In Section
5wediscuss someissuesraised by migration. Section 6 listsrelated work. In Section
7 we draw some conclusions.

2 Programming M odel

Our programming model is based on the facilities available in the Obliq distributed
scripting language [7].

2.1 Network Semantics

In Oblig, arbitrary data, including procedures, can be transmitted over the network.
A piece of Obliq datacan be seen as agraph where some nodes are mutable (mean-
ing that they have local state that can be modified by assignment) and where other
nodes areimmutabl e (meaning that they cannot be modified). For example, the pro-
gram text of a procedure is immutable and cannot be modified, while fieldsin an
object are mutabl e because they can be assigned new values.

2.1.1 Network Transmission

When adata graph is passed to a remote procedure, or returned from a remote pro-
cedure, we say that it istransmitted over the network.

The meaning of transmitting adatagraph isthe following (see Figure 1). Start-
ing from agiven root, the graph is copied from the source site to the target siteup to
the point where mutable nodes or network references are found. Mutable nodes
(indicated by shaded boxes) are not copied; in their place, network references to
those nodesaregenerated. Solid pointersrepresent either local or remotereferences.
Existing network references are transmitted unchanged, without following the ref-
erence. Sharing and circularities are preserved.

For example, an Oblig object (one of the basic data structures) is never copied
over the network on transmission, since objects have state. A network pointer to the
object istransmittedinitsplace. Theobject canthen bereferenced remotely through

Transmit

N\

\

A —
From To

Figure 1: Transmission of adatagraph

that network pointer; for example, one of its methods may be remotely invoked.

Arrays and updatable variables are similarly not copied on transmission, since
they have state.

Obliq procedures are first-class data and, like other data, have a value that can
be manipulated and transmitted. The value of aprocedureiscalled aclosure; it con-
sists of the program text of the procedure, plus atable of valuesfor the global vari-
ables of the procedure. Figure 2 shows the closure for a procedure incrementing a
global variable x; the variable x denotes a mutable |ocation containing O.

The closure table contains asingle entry, indicated by “wherex = ...":

A
proc() x:=x+1; x enoD
wherex = ¢—

Figure 2: The closure of aprocedure

Thetransmission of aclosure (Figure 3) followsthe samerules asthe transmis-
sion of any datagraph. When aclosureistransmitted, all the program text iscopied,
sinceit consists of immutable data. The associated collection of valuesfor freevari-
ables s copied according to the general rule. In particular, the locations of global
updatable variables are not copied: network references are generated to their loca-
tion, so that they can be remotely updated.

proc...x ..} end
where x= ('Y

To

Transmit

Figure 3: Transmission of aclosure

2.1.2 Network Copy

In contrast to the default transmi ssion mechani sm, which stopsat mutable nodesand
network references, a special primitive is provided to perform a network copy of a
data graph. This primitive makes a complete local copy of a possibly mutable and
distributed graph.

Copy

7 <

% From % To

Figure 4: Network Copy

Network copy isuseful, for example, when moving auser interface along with
amigrating application.

A user interfaceis normally closely bound to site-dependent resources, such as
windows and threads. Since these resources cannot migrate, a stand-al one snapshot
of the user interfaceisfirst assembled. The snapshot consists of some complex data
structure, including arepresentation of the current state of all thelivewindowsof the
application. This data structure, resembling the graph in the picture above, can be
copied over to the target site, and then converted back to alive interface.

2.2 Agents

An agent isa computation that may hop from site to site over the network [19]. We
review the concepts of agents, agent servers, suitcases, and briefings. In Section 2.3,
we describe an Obliqg implementation of agent hopping.

A suitcaseisapiece of datathat an agent carrieswith it asit movesfrom siteto
site. It contains the long-term memory of the agent. It may include alist of sitesto
vigit, the tasks to perform at each site, and the results of performing those tasks.

A briefing is datathat an agent receives at each site, asit entersthe site. It may
include advice for the agent (e.g. “too busy now, try this other site”), and any site-
dependent data such aslocal file systems and databases.

An agent server, for agiven site, is a program that accepts code over the net-
work, executes the code, and providesit with alocal briefing.

A hop instruction is used by agents to move from one site to the next. This
instruction has as parameters an agent server, the code of an agent, and a suitcase.
The agent and the suitcase are sent to the agent server for execution.

Finally, an agent isauser-defined pi ece of code parameterized by asuitcase and
a briefing. All the data needs of the agents should be satisfied by what it finds in
either the suitcase or the briefing parameters. At each site, the agent inspects the
briefing and the suitcase to decide what to do. After performing some tasks, it typi-
cally executes ahop instruction to move to the next site.

If an agent hasauser interface, it takesasnapshot of theinterface, storesitinthe
suitcase during the hop, and rebuilds the interface from the snapshot at the destina-
tion.

2.3 Agent Migration

Aswesaid inthe previoussection, an agent isaprocedure parameterized with asuit-
case and abriefing; the suitcase travel swith the agent from siteto site, while afresh
briefing is provided at each site. We assume that the agent code is self-contained
(that is, it has no free variables).

Agents move from site to site by executing a hop instruction:

(* definition of the recursive procedureagent *)
| et rec agent =

proc(suitcase, briefing)
(* work at the current site *)
(* decide whereto go next *)
hop(next Site, agent, suitcase);
(* runagent atnext Sit ewithsuitcase *)

end;

In Oblig, agents, suitcases, briefings, and hop instructions are not primitive
notions. They can be fully understood in terms of the network semantics of Section
2.1

Agentsarejust procedures of two parameters. Suitcases and briefings are arbi-
trary piecesof data, such asobjects. Each agent isresponsiblefor the contents of its
suitcase, and each agent server isresponsible for the contents of the briefing. Agent
serversare simplecompute serverswhose maintask isto run agentsand supply them
with appropriate briefings (and maybe check the agent’s credentials).

The hop instruction can be programmed in Obliqg as follows:

| et hop =
proc(agent Server, agent, suitcase)
agent Server (

@ proc(briefing)

fork(
(2 proc()
3 agent (copy(suitcase), briefing);
end) ;
ok
end) ;

end;

Supposeacall hop(agent Server, agent, suitcase) isexecuted at
asourcesite. Here, agent Ser ver is(anetwork referenceto) aremote com-
pute server at atarget site.

Agent

agentSaver = ¢ 1) - [Server Briefing
proc(briefing) J

K@)

| Transmit

where agent =
and suitcase = e

proc(suitcase,

briefing)
Do work; hop(...);
end

From| | To

Figure5: The hop instruction - Part |

Thecal agent Ser ver (...) hastheeffect of shipping the procedure (1) to
theremote agent server for execution. At thetarget site, the agent server executesthe
closure for procedure (1) by supplying it with alocal briefing.

Next, at the target site, the execution of the body of (1) causes procedure (2) to
beexecuted by aforked thread. Immediately after thefork instruction, procedure (1)
returns adummy value (ok), thereby completing the call to hop that originated at
the source site.

Thesourcesiteisnow disengaged, whilethe agent computation carrieson at the
target site. The thread of computation at the target siteis driven by the agent server.
At thetarget site, the forked procedure (2) first executescopy(sui t case) . The
suitcase, at this point of the computation, isusually anetwork pointer to the former
suitcase that the agent had at the source site. The copy instruction (an Obliq primi-
tive) makesacompletelocal copy of the suitcase, asdescribed earlier. Therefore, the

Agent
agent(copy(suitcase),
briefi g?)
where briefing =¢—

and agent =
_and suitcase = 5 ;
m: Copy proc(suitcase,
\Kb-—-—/ briefing)

Do work; hop(...);
end

From| | To

Figure 6: The hop instruction - Part 1
resultof copy(sui t case) isasuitcasewhosestateislocal tothetarget site, suit-
ablefor local use by the agent.

After the copying of the suitcase, the agent migration is complete. The source
site could now terminate or crash without affecting the migrated agent.

Finally (3), the agent isinvoked with the local suitcase and the local briefing as
parameters. The program text of the agent was copied over as part of the closure of
procedure (1). Since the agent has no free variables, it can execute completely
locally, based on the suitcase and the briefing.

In the special case when the suitcase contains the entire application state, we
have amigratory application.

3 Application Migration

We used the agent migration paradigm described in the previous section to imple-
ment migratory applicationsinVisual Obliq.
3.1 Visual Obliq

Visual Obliqgisan environment for rapidly constructing user interface applications
by direct manipulation [18]. It consists of:

* Aninteractive application builder that allows the user interface to be drawn
and programmed. The builder generates code in Obliq.

* Runtime support, consisting of libraries and network services.

In previous work [3] we showed how the Visual Obligq environment supported

the construction of distributed, multi-user applications (I1, in Figure 7), in addition
to traditional, non-distributed applications (1).

Distributed I v
Non I I
Distributed

Static Migratory

Figure 7: The space of networked applications

Here we describe how the environment was extended to support the creation of
migratory, non-distributed applications (111). Thiswas donein amanner transparent
to the user, allowing any non-distributed application (in) to bemigrated by asingle
command. Migratory multi-user applications (IV) are significantly more compli-
cated to implement, since connectivity needsto be maintained asthe migration hap-
pens. We have yet to tackle this class of applications.

Thesupport for distributionin | (describedin [3]) haslittlein common with the
support for migration. Hence we do not describeit here. However Visoblig, the GUI
builder used to draw and program the interface has remained the same.

3.1.1 Visobliq

Figure 8 shows Visobliq in action. The window on the left (in the background) is
called the design window, and the window on theright (in the foreground) isknown
as the attribute sheet. The design window has a palette of widgets at the top, and a
drawing areabel ow, where widgets may be pieced together to form application win-
dows. The application windows thus designed are called forms. The figure shows a
singleform being designed, containing the following widgets: avideo-player, abut-
ton, abrowser, and afile-browser. Widget geometry and the hierarchical nesting of
widgetswithin aform can bemanipul atedinteractively. All other resourcesare spec-
ified viathe attribute sheet.

Double-clicking on awidget causesthe resourcesof thewidget to beloaded into
the attribute sheet, for modification by the programmer. Thisincludes attributesthat
determinethe appearance and interactive behavior of thewidget, aswell asany code
that isattached to the widget. When the resources have been modified, the program-
mer pressesthe ‘Apply’ button to make the changes take effect.

Pressing the ‘Run’ button causes the application to execute within an internal

[E&E_visual Obiiq Editor(i) - <unnamea-

File Edit Layout Code Install at:

Form Editor 1 Choice
[Typein]

248 ki

Browser [® [_Visual Obliq Attribute Sheet |
Frame|| [JBoolean| T =

Um E | General Attributes’
[l

Visual = Name :[saveas Type : [Filebrouser

Bg Color : 4| SlightlyYellouishGrey3o Rim :=[o |%

Fg Color : 4| Black Border : =[_0 |%]

Font: 4| -*-helvetica-bold-*R-*120-* |

Shadow : Flat| Raised [Lovered Ridged| Chiseled| None| 8 |

Reshape : Center PinScaled Horiz. Stretch| Vert. Stretoh

. 't T
Callback : ~ |Foreground Background| . |

Local Remote :
Initial State : [Active Passive| Dormant| Invisible| Apply

| Callback

let fname = SELF.saveas.getText();

let image = SELF.vid.getimage();

volibLocal.saveBinFile(fname,
image);

Figure 8. TheVisobliq application builder
interpreter for testing and debugging. The* Code’ menu option providesafacility to

output codein Oblig, for stand-al one execution withinaVisual Obliqinterpreter. We
talk more about the interpreter and its special featuresto support migration in Sec-
tion 3.3.

3.1.2 Programming asingle-user application
Each form definesaclass of window objects, and can bemultiply instantiated at run-
time. Every instance of a form receives a unique index, and can be referenced
through a global array that bears the form’s name. For example, if the form being
designed in Figure 8 were called MainWin, there would be an array called Mai n-
W n[...], containing referencesto instances of MainWin created at run-time.Wid-
getsareimplemented as objects nested inside the form instance. Suppose the button
labeled ‘ Capture’ were named CaptureBtn, the programmer would refer to the but-
tonwithininstancen of MainWinasMai nW n[n] . Capt ur eBt n.
Whilebuilding asingle-user applicationinVisoblig, the programmer isasked to
write four types of codein Obliq:

i. Calback code, which is attached to a widget
ii. Form support code, which is associated with aform.
iii. Global code. Any other code needed by the application can be placed here.

iv. Initialization code, which is executed when the program starts up and creates
theinitial form instances. After thisthe execution is fully input driven.

The above programming framework is general enough for the construction of
most single-user Ul applications.

3.2 Implementing Migration

The programmer makes the application migrate to a new site by executing the
migration command within acallback. Specifically, one of thefollowing commands
is executed:

e MgrateTo(Host)
e MagrateToServer (Server Nane, Host)

The first command migrates the application to a default agent server called
‘VOM gr at e’, onthe machine named Host . VOM gr at e continuesthe applica-
tion from where it left off, and does not provide any briefing. Thisis sufficient for
basi c application migration. The second command causesthe application to migrate
toacustomized agent server called Ser ver Nane, onthemachinenamedHost . In
both cases the agent server is run by the user who receives the application after it
migrates.

3.2.1 TheMigration Command
The semantics of the migration command isthat it returnst r ue if the application
ismigrated successfully, and f al se upon failure. If it succeeds, the local instance
of the application terminates the moment the callback finishes. The user interfaceis
destroyed and the entire application state gets garbage-collected. Inthe event of fail-
ure, the application continues to execute locally asif nothing happened.

The migration command executes the following steps:

i. Itfirst contacts the agent server at the destination to ensure that the migration
can happen. Upon failureit returnsimmediately with af al se value.

Otherwise...
ii. It checkpoints the state of the user-interface into the Obliq objects that make
up the widget hierarchy.

Thisstep is necessary because widgetsin Visual Obligare high-level “interface
objects’ in Oblig, which realize their presentation using lower-level interactorsin
the local Ul toolkit. Currently, the only toolkit that is supported is Trestle [12], but
if Obliq were ported to a different environment, the local toolkit would be used.
Hence, Visual Obliqwidgetsdo not maintainall of their state explicitly. In particular

10

they do not maintain an up-to-date copy of attributes that can be changed interac-
tively by the user (e.g. the geometry). These attributes are retrieved from the under-
lying toolkit whenever needed; either when the programmer’s code requires them,
or when the user interface state is being checkpointed.

iii. Theuser interfaceis destroyed, breaking links to the UIMS.
iv. Linksto thelocal runtime are explicitly removed.

v. Visoblig prepares a suitcase, and executes the hop instruction discussed in
Section 2.3. Recall that a suitcase is a data structure that gets copied to the
destination. In this case, the suitcase contains a reference to each of the form-
instance arrays in the program.

If the hop instruction executes successfully, t r ue isreturned. Upon failure (if
the network operation rai ses an exception), the command rebuildsthe user interface
from the saved state, in the same way that the agent server at the destination would
have, and returnsf al se.

The hop instruction causes the agent server to perform a network copy of suit-
case. Sincethe suitcase containsreferencesto all form-instance arrays, thisinvolves
copying every piece of datathat isreachable from aform-instance. It is easy to see
that thiswill copy over every piece of the application state that isrelevant to future
execution. If apiece of datais not accessible from any form-instance, it will never
be used, and so it is not copied.

At the source site, due to step iii, all links between the interpreter’s Ul threads
and the application are destroyed. Once the existing callbacks exit, the application
state becomes inaccessible to any thread in the system. The Obliq interpreter has
automatic garbage-collection. Hence shortly after migration, the application state
gets garbage collected.

Step iv ensures that the application state has no references to the Visual Obliq
runtime when it is copied. This was done to prevent the runtime from being copied
aswell. At the new host, the local runtime is patched in, causing the local environ-
ment to take effect.

3.2.2 TheAgent Server

The agent server is an extended Visual Obliq interpreter. In addition to an internal
UIMS thread, the agent server hasa ' migration’ thread to assist incoming agents.

When an application migratesin (at step 1 in Figure 9), the agent performsthe
following operations:

11

Ul

d Created \ Destroyed
Migration & (& :
Thread | : X

l_, Garb
rat% Mlgrat&s CoII ac% e

:' Duration of Visit: @

Figure9: Operation of an Agent Server

i. It performs anetwork copy of suitcase, causing the entire application state to
be copied over.

ii. Referencestothelocal Visual Oblig runtime are added.

iii. For each form-instance in the application, it rebuilds its user interface based
on its saved state. Callbacks are re-attached. This sets up links between the
application and the local UIMSS thread.

When an application migrates out (step 2), linksfrom the UIM S are broken, and
soon its state is garbage-collected (step 3). In this manner, the agent server alows
applications to migrate in and out of the host repeatedly, without running out of
memory. Multiple applications can co-exist within theinterpreter, because they will
not have links to each other.

User-defined agent servers are created by extending the default agent server to
provide application-specific briefing and access control. To be useful, the agent
server needsto have auser interface of itsown to help the user monitor and regulate
theactivitiesof migratory applications. For example, theuser might stipulate: “1 will
entertain only applicationsof type X”; “I will beback attimeY”; “1f you get an agent
from so-and-so, providefileZ asinput” . Thispresupposesan underlying mechanism
for authentication and encryption. Thereiswork in progressto provide secure com-
muni cation and authentication at the Network Objectslayer [5] —thetransport layer
for Visual Oblig.

In practice, there are likely to be other locale-specific resources, such as file-
handles and network connections, that need to be preserved during migration. The
replication of such resources cannot be automated sinceit is highly application and

12

situation dependent. For instance, it is not clear how open files should be treated.
One option would beto have the system reopen all open files upon reaching the des-
tination, but often the two sites may not share acommon file-system. Hence, we let
the application programmer deal with the checkpointing and reinstantiation of such
resources. The programmer isgiven theoption of adding codeto two system-defined
routines: PreM gr at e() and Post M gr at e() , which areinvoked before and
after migration respectively.

3.3 TheVisual Oblig runtime

The ‘Visual Obliq interpreter’ is simply the Obliq interpreter with a set of support
libraries (known astheruntime) preloaded. The original purpose of the runtimewas
to provide accessto thelocal Ul library and implement abstractions needed by dis-
tributed applications.

Recently the runtime was redesigned and extended to meet the needs of migra-
tory applications.

Firstly, sincetheruntimeisclosely tied to thelocal environment, it was decided
that it would not be copied when the application migrates. Hence, all accessto the
runtimeisthrough handleswhich arelocal to theinterpreter inwhichtheapplication
iscurrently resident. The handles are removed before migration, and get patched in
when the application arrives at anew host. Hence, all operations that involve local
system resources such as the network, processor, file-system and the Ul toolkit, are
customized to the local environment.

In addition, the runtime provides the following facilities:

3.3.1 Migration Support
It implements the migration commands described earlier. The runtime at the source
accesses the agent server using aremote-object access mechanism known as ‘ Net-
work Objects [5]. Thenit checkpointsthelocal interface. At thetarget site, the agent
server copies the application state over and uses the local runtime to rebuild the
interface.

The two operations on the interface are implemented thus:

a) Checkpointing the user interface. Thisis done by walking the Visual Obliq
widget hierarchy for each form-instance in the application, and copying rele-
vant state information from the Ul toolkit into the Obliq widget. Any attribute
that cannot be modified by the user (and can only be modified under program
control) need not be checkpointed, since the widget will already have the lat-

13

est value.

b) Rebuilding the user interface. The same mechanism used to create the orig-
inal user interface is used to rebuild it at new sites. The routine walks the
Visua Obliq widget hierarchy for each form-instance and creates for each
widget therein, a corresponding interface using interactorsin the local toolkit.
In doing so it may adhere to the checkpointed geometrical attributes or decide
to override them, e.g. if the application migrates to a portable computer with a
substantially smaller screen, dimensions might shrink. This provides the flexi-
bility needed to cope with the differences between individual machines, while
preserving the appearance of the interface as far as possible.

In our present implementation, we have another intervening layer, FormsvVBT
[2]. FormsVBT allows Visual Obliq widgets to be described in terms of sym-
bolic expressions representing the hierarchical arrangement of (smaller) Ul
components. The runtime generates the symbolic expression corresponding to
each Visual Oblig widget by replacing tokens in a template with the attributes
of the widget. Users can customize the appearance of the widgets displayed
by their agent server by manipulating the template.

Once the user interface has been rebuilt, the runtime re-attaches callbacks so
that interaction can resume.

3.3.2 Safety

Theruntimeisresponsiblefor safety, and protectsthe user from attacks and privacy
violations by the applications that migrate in. It does this by disabling all unsafe
commands (namely commandsthat could be used to damage the user’ senvironment
and/or violate privacy), and instead provides safe alternatives that are subject to
user-specified checks before execution.

InObliq, al unsafe operations arereadily identified by the fact that they require
theuseof “access” handlesto system resources. For instanceapr ocessor handle
is needed by routinesthat create new processes and execute system calls. Similarly
there are handles to provide various levels of access to the file-system. The Visual
Oblig runtime hidesall system handles after having defined a“ safe” version of each
routinethat usesahandle. The saf e-routines have the handlesboundinsidethem. An
alien program can access asafe-routine but not the handleswithiniit. Theseroutines
are considered safe because they compare their op-code and argument list with pat-
ternsin auser-specified configurationfile(called. vor est ri ct), todecidewhich

14

operations are to be allowed and which are to be blocked.

alowed Yes

blocked neither [#allow
processNew Is /tmp/*
filewrOpen /tmp/*
— #block
@roc&ssNaN([XV]D processNew rm

Figure 10: Safe RoutinesinVisual Obliq

Operationsthat are allowed by the configuration file are executed in the regular
manner. When ablocked operation is encountered, the runtime notifiesthe user that
the program is attempting something illegal and aborts the application. When an
unsafe operation fallsin neither category (which isthe default case when no prefer-
ences have been specified) the runtimerewritesthe operation inahumanintelligible
form, and pops up anoticeto ask the user if it should be allowed to go through.

Unlikein Safe-Tcl [13], where a special “Safe” interpreter is required, we are
able to implement safety entirely at the user level. Most users would use a default
.vorestrict fileprovided by the system administrator. The ability to customize
thefile and relax therestrictions is useful within workgroups, wherethereisahigh
level of trust.

3.4 Variants

A variant of migration iscloning. An application is cloned by network copying it to
the new site without destroying it at the original site. One possible application of
cloning isin debugging. When a bug is encountered in an application, the user can
send aclone of the application to the person responsible for debuggingit, instead of
a mere ‘bug report’. Another application would be a divide-and-conquer agent
mechanism, wherein an agent splitsinto multiple agentsthat interact independently
with various users, and later merge or resynchronize.

Obliqg provides a pickle operation, which is very similar to the network copy.
Instead of replicating thedata-graph, it writesit to abuffer. The contentsof the buffer
can be savedto afileor transmitted over another transport e.g. e-mail. At alater point
intime, it can be converted back into the original data-graph, by the complementary

15

unpickle operation. This allows Visual Obliq programs to checkpoint their state to
file when necessary. If agents are expected to be persistent and endure machine
crashes, they will need the ability to periodically save their state to stable storage,
and resume from a saved configuration when the machine restarts.

4 A Complete Example

Wepresent asmall survey agent initsentirety, to demonstrate how easy itisto create
amigratory applicationinVisua Oblig. The agent has an agenda consisting of alist
of hoststo visit.

Gonment sFor m Gonment s

D) Comments Form

<Please type your comments here>

TRANSCRIPT

SuggestSomeone‘ ‘ Done

SuggestBr—— Transcri pt DoneBt n
(read only)

Figure 11: Conmrent sFor m atop-level form

At each host it presents the user with two top-level forms. Comment sFor m
shown in Figure 11, and Sur veyFor m shown in Figure 12", sur veyFor mhas
two questions to be answered by the user, and Coment s For mhas an editor wid-
get at the top, where comments may be typed in.

When a user finishes with the questionnaire she clicks on the button labeled
“Done” to send the agent on to the next user. The read-only “Transcript” window
maintains alog of theinput given by each user. When the agent hasvisited all hosts
in its agenda, it will return to the host where it started. The initial list of users and

T The annotations represent widget names in Visobliq

16

Sur veyFor m— Q1
(@] V' Two Guestions... i

Would you be willing to act as program chair for SIGO.J 795 ?

Yes Only if you can find noone else Ho

Evaluate the success of last year’s conference committee:

Poor Excellent

50

[
Success L@z (read only)

Figure12: Sur veyFor m another top-level form

hosts to visit is supplied by the person who starts the application. Subsequently,
other users may add to the agenda. Users and hosts are added to the agenda viathe
Suggest form (Figure 13), whichispopped up by clicking onthe“ Suggest Some-
on€e” button (in Corment sFor m).

(@ Suggest someone who's not on the list SJggeSt Form

tdarc Brown (ash.pa.dec.com)
Krishna Bharat (alpha&.gvu.gatech.ed

<—— /Agenda

I'd Suggest:- |« AddBt n

Name: - N

Host: Host

Figure13: Suggest For m apopupin Comrent s-

By default, the application is configured to create oneinstance of each top-level
form when it starts up. In this case Conmrent For n{ 0] and Sur veyFor ni 0]
will be created. So no user specified initialization code is necessary.

The global code (shown below) contains a counter, NunVi si t ed, to keep
track of the number of hosts visited, and the arrays, people[...] and
host s[...],tokeeptrack of the agenda. The host name of the originating siteis
saved in Or gi nal Host .

17

var NunVisited = 0, people =[], hosts = [];
| et Oiginal Host = vol i bLocal . get Host Narre() ;

Thefollowing callbacks are added:

Clicking on Suggest Bt n causes Suggest For mto pop up. At design time,
Suggest For mis anchored to Conment sFor m This causes Suggest For m
t o becomeafield within Contrent sFor m InVisual Oblig, SELF isused within
a callback to refer to the current form. Hence the callback for Suggest Bt n isas
follows:

SELF. Suggest For m show() ;

When AddBt nisclicked, thecontentsof thetypeinfields, Nane andHost , are
appended to the arrays, peopl e and host s respectively, and aso to the browser
named Agenda.

| et name = SELF. Nane. get Text () ;

| et host SELF. Host . get Text () ;

peopl e : = people @[nhane];

hosts := hosts @[host];

SELF. Agenda. append(nane & “ (” & host & *)");

Thecallback for thedider named Success copiesthe current slider valueinto
thetypein field named Qn2 :

I et n = SELF. Success. get Val ue();
SELF. Qn2. put Text (fnt_int(n));

When the button labeled “ Done” is clicked, the user’s comments and responses
(tothequestionsinSur veyFor nf 0]) areappendedtotheeditor Tr anscri pt .
Theeditor, Commrent s, containsthe user’scomments. The answer to thefirst ques-
tion is the name of the currently selected choice inside the frame named Qn1. The
names of the three choicesare Yes, Maybe and No (not shown). The answer to the
second question isthe text inside the typein field named Qn2. Then the destination
host, dest , is computed and the migration command is invoked. If the migration
succeedstheloop isexited; otherwiseit triesto migrate to the next host. The codeto
dothisisasfollows:

| et cooments = SELF. Corment s. get Text () ;

18

SELF. Comment s. put Text (

“<P| ease Type Your Comments Here>");
SELF. Transcri pt. appendText (peopl e[NunVi si t ed]
& “ said\n” & comments & “\n”
&"“ M 1. " & SurveyForni0].Qnl. get Choi ce()
& " M 2. " & SurveyForn]0]. 2. getText());

| oop
i f SELF. Agenda. nuntl ements() is NunVisited
t hen
dest := Oiginal Host ;
el se

dest : = hosts[NunmVisited];
NunVisited : = NunVisited + 1;
end;
if MgrateTo(dest) then exit end
end;

The application programmer perceives the migration command as a primitive

operation. In reality the operation M gr at eTo(dest) involves:

5

Contacting the VOM gr at e agent server on dest .
Checkpointing and destroying the user interface.

Performing a network copy of sui t case, an array containing references to
Comment sForn{...] and SurveyForn{...]. Thiscauses Com
ment sForni 0], SurveyForni 0] andall thegloba code to be copied
over aswell.

Rebuilding the interface at dest ; reattaching callbacks.

I ssues Raised by Migration

The ability to migrate applications can substantially change the way we view pro-
grams, and the way we interact with them.

Interaction Techniques. The distinction between executing programs and
data becomes blurry with the ability to migrate and checkpoint applications.
Applications can now be treated as first-class objects on the desktop, and sub-
ject to direct manipulation in the same manner as files and folders. For
instance, the iconic representation of an application could be dragged-and-
dropped (or cut-and-pasted) from one region to another, causing it to move

19

between machines and disks.

e Privacy. The ahility to operate on an application from afar raises privacy and
access-control issues. Does the person who started the application have
“yank” and “kill” privileges? Most people would not like others to know what
applications they have on their desktop; yet users would like to keep track of
the agents they have sent out. It should be possible to restrict access to users
within a group.

» Secrecy. Then there is the issue of privacy in the reverse direction. The user
who receives an agent may violate the privacy of the sender by examining its
hidden agenda. For instance a car dealership may wish to send an agent to a
client, with alist of cars and a strategy to negotiate the price. It should not be
possible for the client to learn what the strategy is, by examining the agent
code or modifying the interpreter. It seems impossible to prevent this from
happening in software. It could possibly be achieved by having atrusted third-
party implement the interpreter in hardware, with encryption of the agent
code.

e Protocal. In any agent-human interaction there is the issue of protocol. How
long does an agent wait for a user to respond before deciding to move on?
Does it leave a note? How does it know if the user is busy or away? It could
look at the idle time. How does a user prevent unwanted agents from bother-
ing him, while keeping the door open for acceptable agents? Do agents have a
classification?

» Heterogeneity. If applications are to migrate between diverse architectures,
the widget set needs to be chosen carefully so that it can be rendered effi-
ciently in al environments. When rebuilding an interface, the checkpointed
state should be interpreted in the light of available resources and local prefer-
ences. Fonts and labels need to change to match the local language.

6 Related Work

Application migration most closely resembles the work on process migration in
Operating Systems| 14, 20], although the aim of processmigrationisto do load-bal-
ancing and improve parallelism. Process migration isusually implemented at alow
level, making no assumptions about the application structure, or even about the pro-
gramming language. The machine architecture and environment are assumed to be

20

very similar, if not identical, at the two ends of the migration. Process migration is
unableto cope directly with applications that keep part of their state externaly, e.g.
when much of the user interface state information is stored within awindow system
server (asin the X window system).

Our priorities are very different. Our focusis on heterogeneity (interoperabilty
with diverse machine architectures), customization to the local environment (the
user interface should be built using the local Ul toolkit), and the flexibility that
comeswith implementing migration at the programming language level. In our sys-
tem, the appli cation programmer canimplement new migration strategiesby re-pro-
gramming the migration mechanism. For instance migration could be limited to
selected parts of an application by appropriately modifying the suitcase. Split and
merge techniques could be used to deploy agentsin parall€l.

Oneof thestrengthsof our designisthat migrationiscompletely captured by the
semantics of the programming language. Thismakesit easy to comprehend the pro-
gram and troubleshoot it if it does not behave as expected. Also, heterogeneity isnot
aprablem, since correct implementations of the language are guaranteed to interop-
erate.

Migratory applications may also be viewed as mobile, interactive agents. The
term “agent” has been used with many different meanings. There are agentsinAl,
in databases, and in application software; classification and search agents (robots
and knowbots) ininformation retrieval [10, 11, 15]; agentswithin adaptive applica-
tions and learning-by-demonstration systems[9]; and assistants in design automa-
tion and help systems [4]. Typicaly, these mobile agents are not interactive; for
example, search agentsoperate silently on behalf of aclient whichinteractswith the
user. Conversely, interactive agentsare usually not mobile acrossmachines; they are
usually “symbiotic” and exist within some application context or workspace; for
example, helpersinlearning-by-demonstration systemssuch asEager [8], and “ Bal-
loon Help” on the Macintosh desktop [1].

Agents that support collaborative work on the other hand reguire to be mobile
or at least distributed, and also need a user interface to interact with users. A major
advantage of our design is that any single-user application in Visual Obliq can be
turned into a mobile, interactive agent by invoking the migration command. When
not in use, an agent can writeits state to disk and be restarted when needed.

Obligresembles Java[17], with its object oriented, multi-threaded features, but
also has integrated support for distributed objects which Java lacks. HotJava [16]
and Safe-Tcl [13] have taken steps to ensure safe execution of external code. Safe-

21

Tcl supports virtually no end-user customization; HotJava allows users to restrict
the execution of incoming programs, based on the host they came from (using
access-lists). A difference between the execution of external programsin these sys-
tems and the migratory applications in Visua Obliq is that in the former case the
applications always begin executing from a default (start) state when they arrive at
an interpreter, instead of continuing from where they left off asin our case. Hence
it would not be possible to forward an arbitrary program to a new user after inter-
acting with it, as one could with a piece of annotated electronic mail.

7 Conclusions

Theability to migrate applications has several applications. In aworld of ubiquitous
computing, users may like their applications follow them —from hometo work and
to a colleague’'s machine. A migratory, interactive application can act as an agent,
moving from one user’s machineto another, interacting with each user, and carrying
out an agenda. Such agents may be short-lived, if they are deployed by auser or a
group for a specific task. They could be long-lived as well and perform arolein a
work-group as a human colleague would. All of this presupposes a mechanism to
migrate arbitrary applications between machines.

We have presented a distributed language semantics that supports application
migration, and an architecturefor migratory applications. The architecture hasbeen
incorporated into the Visual Obliq application programming environment [3]. We
have yet to explore the full potential of this paradigm in collaborative work, but we
have successfully migrated anumber of small to medium size applications. Inthese
cases, the migration operation took between 5 and 45 seconds over alocal areanet-
work, depending on the program size and network traffic.

8 Acknowledgments

We thank Marc H. Brown for founding the Visual Obliq project and being a great
source of help and encouragement.

22

9 References

[1]
[2]

3]

[4]
(5]
6]

[7]
(8]
[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

Apple, “Human Interface Guidelines’, Addison-Wesley, 1994.

Avrahami, G., Brooks, K.P, and Brown, M.H., “A Two-View Approach to
Constructing User Interfaces’, Computer Graphics, 23(3):137-146, 1989.
Bharat, K., and Brown, M.H., “Building Distributed Multi-User Applications
By Direct Manipulation”, Proc. ACM Symposiumon User I nterfaces Software
and Technology, Marina Del Rey, 1994, pp. 71-82.

Bharat, K. and Sukaviriya, P, “Animating User Interfaces with Animation
Servers’, Proc. of UIST’ 93. pp. 69-79.

Birrell, A.D., G. Nelson, S. Owicki, and E. Wobber, “ Network objects’. Proc.
14th Symposium on Operating Systems Principles. 1993.

Borenstein, N. and M.T. Rose, “MIME Extensions for Mail-Enabled Appli-
cations: application/Safe-Tcl and multipart/enabled-mail”, Draft, Bellcore,
Dover Beach Consulting, September, 1993.

Cardélli, L., "A Languagewith Distributed Scope”, Computing Systems, 8(1),
27-59. MIT Press. 1995.

Cypher, A., “EAGER: Programming Repetitive Tasks by Example”, Proc. of
CHI 91, 1991, pp. 33-39.

Cypher, A. [Ed], “Watch What | Do - Programming by Demonstration”, MIT
Press, 1993.

Emtage, A. and Deutsch, P, “Archie: An Electronic Directory Servicefor the
Internet”, Proc. USENIX Winter 1992 Conference, 1992, pp. 93-110.
Goldberg, D., Nichols, D., Oki, B. and Terry, D., “Using Collaborative Filter-
ing to Weave an | nformation Tapestry” , Communications of the ACM, 35(12),
pp. 61-70, 1992.

Manasse, M.S. and G. Nelson, “Trestle reference manual”. Research Report
#68. Digital Equipment Corporation, Systems Research Center. 1991.
Ousterhout, John K., “ Scripts and Agents: The New Software High Ground”,
Invited Talk at the Winter 1995 USENIX Conference, New Orleans, LA, Jan-
uary 19, 1995.

Powell, M. and Miller, B., “Process Migration in DEMOS/MP”, Proc. of Sth
ACM Symposium on Operating System Principles, 1983, pp. 110-119.

Sheth, B., and Maes, P, “Evolving Agents for Personalized Information Fil-
tering”, Proc. of IEEE Conference on Al for Applications. 1993.

Sun Microsystems, “HotJava Browser: A White Paper”, Sun Microsystems
White Paper, 1994.

23

[17] Sun Microsystems, “ The Java Language: A White Paper”, Sun Microsystems
White Paper, 1994.

[18] Shneiderman, B., “Direct Manipulation: A Step Beyond Programming Lan-
guages’, Computer, 16(8), 1983, pp. 57-68

[19] White, J.E., “Telescript technology: the foundation for the el ectronic market-
place”’, White Paper, General Magic, Inc. 1994.

[20] Zayas, E., “Attacking the Process Migration Bottleneck”, Proc. of 11th ACM
Symposium on Operating Systems Principles, 1987, pp. 13-24.

24

