April 3, 1995

SRC remt

A Functional Specification of the Alpha AXP™
Shared Memory Mode

Manfred Broy

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’ sbusiness objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technol ogy, system modelling and management techniques, and
selected applications.

Our strategy isto test thetechnical and practical value of our ideas by building hard-
ware and software prototypesand using them asdaily tools. Interesting systemsare
too complex to be eval uated solely in the abstract; extended usealowsusto investi-
gatetheir propertiesin depth. Thisexperienceisuseful inthe short termin refining
our designs, and invauablein thelong term in advancing our knowledge. Most of
the major advancesin information systems have come through this strategy, includ-
ing personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it
isin established fields of theoretical computer science, such asthe anaysis of ago-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and devel opment communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

A Functional Specification of the Alpha AXP™
Shared Memory Mode

Manfred Broy

April 3, 1995

Manfred Broy is at the Institut fur Informatik, Technische Universitét Miinchen,
D—-80290 Miinchen, Germany.

E-mail: br oy@ nf or mati k. t u- nuenchen. de

This work was partially sponsored by the German Sonderforschungsbereich 342
“Methoden und Werkzeuge fur die Nutzung paralleler Rechnerarchitekturen”

AlphaAXPisaregistered trademark of Digital Equipment Corporation.

(©Digital Equipment Corporation 1995

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in whole or in part without payment of feeis granted
for nonprofit educational and research purposesprovided that al such whole or par-
tial copiesincludethefollowing: anoticethat such copyingisby permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Califor-
nia; an acknowledgment of the authorsand individual contributorsto thework; and
all applicable portionsof the copyright notice. Copying, reproducing, or republish-
ing for any other purpose shall require alicense with payment of fee to the Systems
Research Center. All rightsreserved.

Abstract

We give a functional specification of the Alpha AXP architecture with
special emphasis on the Alpha Shared Memory Model. We keep the speci-
fication as abstract as possible and modular in the sense that we provide an
independent description of the processors and the memory. We show how to
handle a number of critical aspects of the Alphaarchitecture within the func-
tional model, such as the specification of basi c assumptions about the behav-
ior of the processors and the exclusion of causal loops. We use the model for
specifying the notion of lookahead and shortcut optimization for the behav-
iors of the processors. This allows us to define the concept of correct pro-
cessor behavior by using the conservative sequential behavior as areference.
Finally, we extend the model to the constructsfor synchronization in the Al-
pha architecture and include the instructions “read locked” as well as “store
conditiona”.

Contents
1 Introduction

2 TheModd
21 BascComponents
22 ACONS.
2.3 TheModd of the Architecture

3 TheMemory Architecture
3.1 SchedulingtheMemory Requests
3.2 Respondingto the Scheduled Memory Requests

4 The Processors
5 Summary of the Model

6 TheModd at Work
6.1 MathematicsoftheModd
6.2 Causal LOOPS.
6.3 Sequential Executionof Processors
6.4 SpeedingUpExecutions
6.5 Optimizationsof Processor Behavior
6.6 Assumptionsabout Executions.

7 Locking
7.1 ExtensionoftheModd toLocking
7.2 Anaysisof aSimple Locking Discipline.

8 Conclusion
A Appendix: A More Liberal Scheduling Concept

B Appendix: Mathematical Basis

11

12

13
13
14
16
16
17
22

24
24
27

28

28

31

1 Introduction

The Alpha AXP architectureisa RISC architecture that was designed for high per-
formance and longevity (see [AARM 92]). A major design goal was to avoid any
elementsthat would becomelimitationsduring a15-25 year design horizon. Thear-
chitecture allows and supports a factor-of-1000 increase in performance. It alows
multiple instruction streams and the execution of many instructions per clock cy-
cle, aswdll as multiple data streams and instruction stream memory management.
The interaction between the processorsand the memory is highly underspecified to
alow implementationsto be very flexible in adopting future speed-up techniques.

We giveafunctional specification of the Alphaarchitecture and in particular of
the Alpha Shared Memory using a dataflow model. The “nondeterminism” in the
architecture is modeled by underspecification.

The mathematical basisfor the functional modd is*“streams’ and “ stream pro-
cessing functions” (for ashort introduction see the appendix B or, for more details,
[Broy 90]). Every deviceinthe Alphaarchitectureisdescribed by alogica formula
that characterizes the stream processing functions representing the behavior of the
components and the streams flowing between the components. This way the be-
havior of the processors and the behavior of the memory are described by separate
logical formulas. The behavior of the overall system is obtained by a composition
of theformulas describing the behaviors of the subsystems. This structure supports
independent reasoning about the different devices. It ispossibleto reason about the
behavior of the complete system by using the specification of its components.

There are numerous papers that deal with sequential consistency, serializabil-
ity and related aspects of concurrent access to memory and data base systems (see
[Shasha, Smir 88]). For modern machine architectures with caches and concurrent
execution of processors difficult issues of programming arise (see, for example,
[Attiya, Friedmann 94]). Our main motivation is a simple and powerful model of
such architectures. It also allows usto clarify a number of issues of high practical
relevance, such as the exclusion of causal loops and the definition of correct opti-
mi zation. Theseissues have not been addressed sufficiently in theliterature, so far.

The paper isstructured asfollows. Section 2 describesthe basic structureof the
model of the Alpha AXP architecture and its components. In sections 3 and 4 we
give the description of the behaviors of the memory and of the processors. Section
5 summarizes the description. The remaining part of the paper shows how to make
use of the description. In section 6 we study the exclusion of causal loops and ana-
lyze basi c assumptionsabout the behavior of processors. We characterize speed-ups
of the processorsby advanced | ookahead when i ssuing memory requests. We define
the concept of lookahead and shortcut optimi zation of processor behaviors. Thisal-

lows usto define the correctnessfor processor behavior using the strictly sequential
behavior asthereference. Roughly speaking, the behavior of aprocessor is correct
if it isan optimization of the behavior of a strictly sequential processor. We prove
that for such optimizations the results of programs that run without shared mem-
ory are effectively equivalent to the results that we obtain for the processors with
strictly sequentia behavior and a memory that does not reorder memory accesses.

In section 7 we extend the model to memory access with locked loads and con-
ditional stores. We show for a simple example how to prove properties of programs
using synchronization protocols.

In appendix A we give a more liberal scheduling strategy for the memory re-
guests of the processors than the one described in [AARM 92]. In appendix B we
include the essentia's of the mathematics of the functional system model.

2 TheMode

In this section we describe the structure of the mathematical model that we suggest
for the Alphaarchitecture.

2.1 Basic Components

TheAlphaarchitecture consistsof anumber of processorsand amemory. The mem-
ory consists of a set of locationsin which data can be stored. By PRC we denote
the set of processors, by LOC we denote the set of locations, by DATA we denote
the set of datavalues. The set DATA includesinstructions.

2.2 Actions

In the Alpha architecture the relevant actions for the interaction between the pro-
cessorsand thememory areread and write actions, instructionfetches, and memory
and instruction barriers. The table given in Figure 1 lists the syntax of the actions
and introduces some useful selector functions.

However, we prefer to think about the execution of these actions not as one
atomic step but in terms of an interaction between the processors and the memory.
To execute an action, the processor issuesarequest (similarly to aprocedurecall in
a conventional programming language) and the memory respondsto it by a mem-
ory response (similarly to a returned result for a procedure cal). Following this
concept we decompose each of the actions into memory requests and memory re-
sponses. Processors issue memory requests and receive read response messages.
The memory receives memory requests and issues read response messages.

Action Syntax processor | location | data
Read action P: R(x, a) P X a
Write action P: Wx, a) P X a
Instruction fetch P:1(x, b) P X b
Memory barrier P: MB P — —
Instruction memory barrier P: 1 MB P — —

Figure 1: Table of memory actions and selector functions processor, location and
data

Action name Syntax Memory Request | Response
Read action P: R(x, a) P: R?x P: R(x, a)
Write action P: Wx, a) P: Wx, a) —
Instruction fetch P:1(x,b) P: 1 ?x P:1(x,b)
Memory barrier P: MB P: MB —
Instruction memory barrier P: 1 MB P: 1 MB —

Figure 2: Table of actionsand their split into requests and responses

Let P be aprocessor, x be alocation, and a be some data element. A memory
request is one of the following:

awrite request, represented by the action P: W x, a) ;

aread request, represented by the action P: R?X;

amemory barrier request, represented by the action P: MB;

an instruction fetch request, represented by the action P: | ?x;;

or an instruction memory barrier request, represented by the action P: | MB.

By REQ we denote the set of memory requests.

The memory replies to aread memory request by aread response message. A
read response message is represented by P: R(x, a) . The memory replies to an
instruction fetch memory request by an instruction fetch response message. Anin-
struction fetch responsemessageisrepresented by P: | (X, a) . By RFR wedenote
the set of read response and instruction fetch response messages.

Thetablegivenin Figure 2 summarizes the decomposition of actionsinto mem-
ory requestsand responsesto them. For writeactionsand barrier requests, responses
are not needed.

 Processors + Memory ;
| SHIEgILS -
Cv|p ms | S | mm ;CU

Figure 3: Dataflow graph of the Alphaarchitecture

The decomposition of actions into requests and responses has a number of ad-
vantages. Thisway we are able to distinguish between the issue order of memory
requests, determined by the processors, theaccessorder of memory requests, deter-
mined by the memory, and the reception order of the responses by the processors.
Thisallowsusto model the scheduling disciplineof memory access more explicitly
and modularize the model more effectively.

2.3 TheModd of the Architecture

We model the Alphaarchitecture by a dataflow model as givenin Figure 3. In the
dataflow model the processors and the memory are independent unitsthat commu-
nicate asynchronously via message exchange. The processors are connected to the
memory by channels. The channels are denoted by cv, csp, crp , and ct where P
iS aprocessor.

Each processor sends a stream of memory requests to the memory and receives
a stream of read response messages from the memory. In acomputation of the Al-
pha architecture the behavior of each processor P € PRC is modeled by a stream
processing function

fp : RFRY - REQ?

A stream processing function is a prefix continuous function on streams. A short
introduction to the mathematics of streams and stream processing functionsisgiven
in appendix B. There we aso introduce the notation we are using throughout the
paper for writing logical formulas for streams and stream processing functions.

In acomputation a stream is associated with each of the channels cv, csp, crp,
and ct. These streams will be denoted by ¢, Csp, ¢ p , and Ct respectively.

The memory receives the streams of memory requests from the processors and
sends back in response a stream of read response messages. Mathematically the
memory is modeled by a stream processing function

md : (PRC — REQ®) — RFR“

Since each response message is labeled by the identifier of the processor that has
requested it, the stream of read response messages produced by the memory can
easily be splitinto individual streams of responses for each of the processors.

The Alphaarchitecture is modeled asfollows: for every processor P we repre-
sent the history of messages exchanged between the processor and the memory by
theinput stream ¢sp € RFR® and the output stream ¢ p € REQ of the processor.
Of course, the stream ¢ p isthe result of the processor function fp applied to the
stream ¢sp of memory responses. Thisis expressed mathematically as:

Crp = fp(C5p)

By ¢ we denote the mapping that associateswith each processor itsrequest stream
produced by the processorsin PRC. By ¢s we denote the mapping that associates
with each processor its response stream produced by memory for the processor in
PRC. Formally ¢ isamapping that associates a stream of memory requests with
every processor:

¢r : PRC — REQ®

and ¢5 is amapping that associates the input stream of memory request responses
with every processor:
¢s: PRC — RFR?”

We specify the history of messages between the memory and the processors by a
stream cv € RFR® that representsthe stream of all read request responses produced
by the memory. We do not assume any responses for write or barrier requests.

By the split component called D in the data flow graph given in Figure 3 we
obtain the input streams ¢sp for each of the processors from cv.

In thefunctional approach, a distributed system is modeled by associating a set
of monotonic stream-processing functions with each component. An instance of
the behavior of the system, a computation, is obtained as follows: for each compo-
nent one functionis chosen out of the set of stream processing functions modelling
that component. By these functions we associate a stream with each channel that
connects the components. These streams are determined as the least fixpoint for

5

the functions associated with each of the components. In the case of the scheduler,
the choice of the function representing the behavior of the scheduler is constrained
by specific properties of the streams that form the fixpoints. This modelling tech-
nique, where there is a dependency between the selected behavior function and its
actual input stream, is called “input choice specification” and is described in detail
in[Broy 93].

Causdlity is a decisive notion in information processing and message passing
systems. Itimposesa“physical law” ontheflow of information. Roughly speaking,
we understand by the phrase“ actiona is causal for action b” that b cannot take place
before a has happened. In distributed systemsthat consist of a set of components
that exchange messages via channel s between the components, we distinguishtwo
forms of causality:

e component causality: a component cannot issue an output message before it
has received the input required for computing the content of the output mes-
sages. Thisform of causality between input and output for a component is
captured in the functional model by the monotonicity constraint.

o informationexchange causality: amessage isnot received beforeit has been
sent. Thisis captured in the functional model by the least fixpoint principle
for the recursive stream equationsfor the channels.

Thesetwo formsof causality arean integral part of thefunctional systemmodel.
They are the basisfor ruling out “causal loops”.

3 TheMemory Architecture

We formalize the requirements for the behavior of the memory by characterizing
the relation between its input streams and its output stream. The regquirements for
the memory fall into the following two categories:

e Proper memory access scheduling: the memory requests of the individua
processors are rescheduled and merged; the scheduling is restricted with re-
spect to memory barriers and memory instructionbarriersaswell asread and
write requests for the same location.

e Read/writeconsistency: in responseto read requests, those dataelementsare
sent that have been written by the most recent write requestsfor that location
in the access stream.

Both requirements are described in [AARM 92] in asemiformal way that does not
provide explicit answers to a number of critical questions. For instance, it is not
clear whether so-called causal loopsare implicitly excluded. Certainly they are not
explicitly excludedin[AARM 92]. We shall come back to theissue of causal loops
after we have introduced the mathematical model.

To keep the model simple and to achieve a good separation of concerns, we de-
composethefunction md modeling the behavior of thememory into two prefix con-
tinuous stream processing functions, the memory schedul er

ms : (PRC — REQ®) — REQ®

which takes care of the proper memory access scheduling and determinestheaccess
stream and thus the access order, and the memory manager

mm : REQ?” — RFR?

which model sread/write consistency (seeFigure 3). Thefunction md thenissimply
obtained by composing ms and mm. Mathematically we specify the result stream
of the function md for &l the streams of memory requestsr : PRC — REQ® by
the following equation:

md(r) = mm(ms(r))

Preci se specifications of the functions ms and mm are given in the following sec-
tion.

As shown in the data flow diagram given in Figure 3, we specify the history
of messages between the memory scheduler and the memory service by an access
stream

ct € REQ®

and the history of messages between the memory service and the processors by a
stream of read and instruction fetch response messages

cv € RFR”

The stream ¢t denotes sequence of scheduled requests for the memory and deter-
mines the outcome of the function ms. Mathematically, this is expressed by the
following eguation:

ct = ms(cr)

The stream ¢t denotes the access order of the memory requests.
The stream cv denotes the outcome of the function mm. Mathematicaly, this
is expressed by the equation:
¢v = mm(ct)

Istj\ 2nd— | P:1?x P:R?x P:Wx,b) P:M8 P:1M
P: 1 ?x < < < <
P: R?x < < < <
P: Wx, a) < < < <
P: MB < < < <
P: 1 MB < < < < <

Figure4: Tableof relations between requestsin theissue order and the access order

¢From the stream Cv theinput streams ¢sp € RFR® of memory responses for the
individual processors P € PRC can easily be computed.

3.1 Schedulingthe Memory Requests

We give the specification for the function ms by the relation between the streams
¢ p and ct. The function ms merges and reschedulesitsinput streams. Thismerge
and rearrangement follows the rules described in [AARM 92]. In this section we
formalize theserules.

Thetablegiven by Figure 4 istaken from [AARM 92]. It showsthereordering
restrictions that are imposed by the issue streams ¢f p onto the access stream ct.
Thetable expresses the following requirement in terms of the mathematical model:
for every pair of memory requests c;, ¢, for process P for which we havec; < ¢
in the table in Figure 4, their relative order in the issue stream ¢f p and in access
stream ct coincide. Mathematically we write

C1 <Cr=[Cc1 < Cylin[Cp,Ct]
Here (for arbitrary streamsr, t) the proposition
[c1 < colingr, t]

stands for thefollowing two conditions: condition (1) expressesthat all requests c;
andc; inr areeventually scheduledint, and only requeststhat havebeen issued are
scheduled. Its formalization israther straightforward. Every memory request c in
each of theissuestreamsr also appearsintheaccessstreamt. Sinceall requestsare
labeled by the processors, al elements in issue streams of different processors are
distinct. Mathematically expressed condition (1) reads asfollows(for the definition
of thefilter function“x|u” see the appendix B):

I’|{Ci} :tl{ci} forie{l,2}

Condition (2) expresses that the requests ¢; compared to the requests ¢, may not
come later in the stream t than in stream r. In other words, the scheduler may not
move the requests c; to the left over the requests c; to obtain the substream of the
requestsc; and ¢y int fromthatinr. Mathematically expressed, condition (2) reads
asfollows:

Vk € IN : hg(r)licyy E hk®) ey

where
hk(s) = (Sl K]

Here we use the following notation. For astream s we denote by s[1 : k] thefirst k
elements of the stream. If astream s haslessthan k elementsthens[1: k] = s.

Therelationship between the issue streams and the access stream as formalized
above has the following consequence: for every set M of requests of the processor
P that are dl pairwisein the <-relation, the substreams of the requestsin M in the
issue streams and the access stream are identical. Mathematically expressed:

(VC,dEMZC<dVd<C)=>(ffp|M=6t|M

This can be shown for finite streams ¢ p and ¢t by induction on the length of the
stream ct. For infinitestreamsit follows by the continuity of the functionthat filters
out a substream.

Based on the notation introduced above, we can now formulate the correctness
requirement of the scheduling function. We decompose the requirements for the
scheduler into the safety and liveness properties. In afirst step we give just the
safety property. It is represented by a simple predicate characterizing the set of
scheduling functionsthat are correct with respect to safety. The liveness condition
for the function ms is not a simple predicate on ms, but depends a so on the partic-
ular request streams in the dataflow model. A function

ms : (PRC — REQ®) — REQ®

is called asafe scheduling functionif for al request streamsr € (PRC — REQ®)
for whichrp contains only requestsissued by processor P we have

d e REQ® :ms(r)CtA
Ve1,C, Pt <= [c1 <cginfrp, t]

This requirement is a safety condition for the scheduler. It expresses that the re-
quests arein aproper relationship, if they are scheduled at al. It does not express
the liveness property that all requests are eventually scheduled. The liveness con-
dition for the scheduler is not a simple predicate on ms, but depends also on the

9

particular request streams in the data flow model. It will therefore be added as a
constraint for the scheduler functions ms with respect to the stream ¢ in the net-
work modeling the Alphaarchitecturein section 5 where we summarize the model .

3.2 Responding to the Scheduled Memory Requests

The behavior of the memory manager is represented by the function mm, which ex-
ecutesthe memory requestsin the order produced by the memory request schedul er
ms. Its specification israther simple. In responseto each read request the memory
manager sendsthe data element that has been written by the most recently executed
write request. According to the rescheduling of requests, the execution order is not
necessarily identical to the issue order.

Weignoreherethepossibility that thememory may beinitialized by other means
than memory writerequests. Explicitinitializationcan easily beincluded, however.

For our mathematical model, we express read/write consistency by the follow-
ing formula: for al streamsu, w € REQ*, s € REQ® we assume:

W w)lr =) Awlwe = ()
=
mmu—Q WX, a) "w™P: R?x7s) = P: R(x, a) "mmu—Q WX, a) “w™Ss)
A
mmUu—Q WX, a) “w P 1?2x7s)=P: 1 (x,a) "mmu—Q WX, a) “w"s)

where W(x) isthe set of all write requests for location x:
W(x) = {P: WX, a) € REQ : P € PRC A ac DATA}
and RI isthe set of dl the read requests and instruction fetch requests:
RI ={P:R?X: Pe PRCAXeLOC}U{P:1?x: P ePRC AXx e LOC}

The stream cv isthe result of applying the memory function mm to the stream ct of
memory requests.
¢v = mm(ct)

Thestream cv of read request and instruction fetch responses produced by the mem-
ory manager mm can easily be decomposed into one memory request response
stream Csp for each processor P. We specify:

68p = DP(C_)U) where Vv : Dp(v) = U|R(p)

10

wherethe set R(P) of read request responses of the processor P is specified asfol-
lows:
R(P) = {e €« RFR : processor (¢) = P}

Of course, there are other ways to decompose the memory function md. For in-
stance, we may introduce a merge function that interleaves all streams of read re-
guests produced by the processors in a stream of read requests. Using this merge
function we can then either introduce for each processor an individual memory
scheduler that reschedules all memory requests before they are merged, or merge
al streams of read requests produced by the processorsin astream of read requests
and then do the memory scheduling by rescheduling this stream.

4 TheProcessors

The behavior of a processor is modeled by a prefix continuous stream processing
function. In thissection we show only schematically how we model theinstruction
cycle of an Alphaprocessor by such afunction.

A processor has alocal state that consists of al the entriesin its registers and
maybe additional information. The set of states of a processor is denoted by PRC-
State. Initially, a processor starts from an initial state by issuing afinite sequence
of memory requests.

Whenever a processor receives amemory request response, it changesitslocal
stateand issuesafinite (possibly empty) sequence of memory requests. For formal -
izing this behavior of a processor, we introduce the following two functions:

mr : PRCSate x RFR — REQ*

sc : PRCSate x RFR — PRCSate

The function mr yields the sequence of memory requests issued by the processor
in a state when receiving amemory response. The function sc yields the successor
state of the processor. The behavior of the processor P is defined by the function
fp. We specify this function by the following eguation:

fp(s) = init”exec(op, S)

whereop istheinitial state of the processor P, init istheinitial sequence of mem-
ory reguests, and exec is the function

exec : PRCSate x RFR® — REQ?

11

specified by
exec(o,c”s) = mr (o, C)” exec(sc(o, C), S)
Of course, aprocessor P issuesonly memory requestslabeled by P.
We do not give a more detailed description of the individual instructions and
their execution here. We come back to thisissue in section 6.

5 Summary of the Model

In this section we summarize the functional model of the Alpha architecture as a
reminder for the readers.

Asindicated in Figure 3, we assume that the streams ¢f p , €sp and ct are the
least fixpoints of the following equations:

cip = fp(Csp) for all processors P € PRC
CSp = Culrp) for all processors P € PRC
cv = mm(ms(cr))

where for all processors P € PRC thefunction fp and also the functions mm and
ms are stream processing functions. This means in particular that they are prefix
continuous. The function fp isassumed to be a processor behavior. The function
ms is required to be a safe scheduling function. The function mm fulfills the fol -
lowing requirement: for al streamsu, w € REQ*, s € REQ®:

u"wlr = () Awlwey = ()
=
mmu—Q WX, a) “w™P: R?x7s) = P: R(x, a) "mmu—Q WX, a) “w™Ss)
A
mmu—Q WX, a) Tw™P: I ?2x7s) =P: I (x,a) "mmu—Q R(X, a) “w™Ss)

For the function ms we require the following liveness condition: every request cis
eventually scheduled, mathematically expressed:

Cf plicy = MS(Cr p) ()

Thisis aliveness condition that restricts the choice of the scheduling function ms
in additionto the safety propertiesrequired for ms making surethat all requestsare
eventually scheduled.

The prefix monotonicity requirement for the functions models the causality
within the processors and thus the causality within their programs. The least fix-
point property of the streams described by therecursive equationsmodel sthe causal -
ity between the sending and receiving of messages. If either of these requirements
is dropped, then causal loops are no longer excluded.

12

6 TheMode at Work

In this section we start with a short analysis of the functional model and then show
how it can be used to formalize further properties of the processors and their exe-
cution of instruction streams.

6.1 Mathematicsof the M ode

The moddl given in the previous sections is based on the following mathematical
concepts:

e prefix continuous stream processing functions,
e recursive stream equationsand least fixpoint inter pretationsfor them,
e liveness constraintsfor the scheduling function.

These conceptsare well suited as amathematical basisfor dataflow models. Hard-
ware systems can also be understood as dataflow systems. A large number of ex-
amples have demonstrated that the concepts work well for both.

The purpose and benefits of mathematical or formal models for information
processing systems are manifold:

o Mathematical system models provide a consistent and preci se description of
the properties of a system, but nevertheless give freedom by leaving certain
aspects deliberately unspecified; we speak of under specification.

e In the process of deriving mathematical system models from informal de-
scriptions, flaws, inaccuracies and omissions can be detected and clarified.

o Mathematical system modelsprovideareference basisfor understandingand
discussion.

o Mathematical system models provide abasisfor aformal reasoning about a
system, by which specific properties can be derived (and therefore verified).

o Mathematical system models provide a precise requirement specification for
implementations by hardware or software systems.

The functional model given for the Alpha AXP architecture exhibits a number of
typical properties. For instance, every responsein the response stream istriggered
by arequest. This property isformalized by the following definition.

13

Definition 1 (Feasible Response Streams) A responsestreams € RFR* iscalled
feasible for a processor with behavior fp, if al the instances of responsesin s are
triggered by requestsin therequest streams fp (S). A response stream s istriggered
by the request stream fp(S), if every prefix § of the stream s containsfor every in-
stance of aread request and every instance of an instruction fetch request in fp(5)
at most one corresponding response. Mathematically expressed, astream sisafea
sibleresponse stream for the behavior fp of processor P, if for al itsprefixesS C s
the following two conditions are fulfilled:

#(p: R?x) < #fp (S)Irx)

and
#p: | 2xy <#p Sl v
where
R(x) = {P: R(x, a) : a e DATA}
I (x) ={P:1(x, a) :aecDATA}
We then write:

fp —>ps

If theinequalities above are strengthened to equalitiesfor S = s, then the stream s
is called a complete and feasible response stream for the processor behavior fp.

a

It is a straightforward exercise to show that in our model for the Alpha architec-
ture according to the definition of the memory device for every processor P, every
stream Csp is afeasible response stream for fp.

6.2 Causal Loops

In this subsection we study the problem of causal loops. It iswidely accepted that
there is a natural causality flow in information processing systems. More techni-
cally speaking, a particular message val ue cannot be sent by an interactive message
passing system before all values on which it depends have been received.

In the Alphaarchitecturethere are two kinds of processing units, the processors
and the memory. The principle of causality can be applied to both of them. A pro-
cessor cannot issueamemory write request before it receivesthe datato be written.
The memory cannot respond to a read request before it receives the memory write
request that suppliesthat data.

14

To make our discussion more concrete, let uslook at a simple example. We as-
sumethat the processors P and Q executethefollowingtwolittle programs. Weuse
some pidgin assembler language here which has the two commands L D (for load)
and ST (for store) only and works with the local registers of the processors. The
registers are denoted by R1, R2, etc. Consider for the processor P the following
program

LD Rl x
ST Rl y

and for the processor Q the following program

LD R2 y
ST R2 x

Let us assume that initially the value O is stored both in location x and in location
y.

Of course, we may expect that, independent of the scheduling, the effect of ex-
ecuting these programsisthat both thelocations x and y invariantly have the value
0. Now let us consider the following access stream

P.R?x QR?y P Wy, 1) QWXx,?2)

and the corresponding response stream:

P:R(x,2) QR(y, 1)

Thissequence of actionsis certainly read/write consistent (only valuesare read that
have been written before). It also fulfills al the requirements of memory access
scheduling. So one may argue that it is a feasible access stream according to what
isrequired in [AARM 92] for the memory. However, if we consider in addition
the processor functions fp and fq, we realize that this access order violates the
causality requirements of the processors. For the processor P thewrite request can
be issued only after the response to the read request has been received.

One may argue whether the paradoxical behavior of the causal 1oop as demon-
strated aboveisactually admitted or not by the[AARM 92]. Such an exegesisisnot
very productive, however. As soon as one assumes a proper causality flow for the
processors, causal loops are ruled out anyway. We claim that to any realistic pro-
cessor, whatever advanced concepts it includes, the law of causality flow applies.
Therefore, for any hardware, causal |oops are excluded.

15

6.3 Sequential Execution of Processors

We do not want go into the definition of all the detailsof the execution of particular
instructionsin the Alpha AXP architecture. We therefore introduce as a reference
for the behavior of the processors the behavior of a processor with a conservative
sequential execution strategy. Such abehavior isobtained, if the processor sequen-
tially executestheclassical instructioncycle. Thiscyclefirst fetchestheinstruction
indicated by the program counter, then computes the operand address and reads the
operand from the memory or writes avalue into the memory or issues a barrier re-
guest and then starts the cycle again.
Thissequential executionstrategy correspondsinour model toaparticular stream

processing function for the processors P € PRC which we denote by

fot: RFR® — REQ®

Thisfunction will be used as a point of reference for formalizing the correctness of
the behaviors of processors with a nonsequential execution strategy in the follow-

ing.

6.4 Speeding Up Executions

In amost conservativeimplementation every processor issuesjust one memory re-
guest, then waits until it gets the response to this request, and only then issues the
next request. Thisisthe behavior represented by the function f3*.

In contrast to this conservativesequential behavior, amore aggressive processor
may send several memory reguests before it receives some of the responses from
the memory. Thiscan lead to aspeed-upintheinteraction between the memory and
the processor. We call such behavior, where several requests can be issued before
aresponseis received, issuing lookahead requests.

We distingui sh between the following strategies of processorsin issuing looka
head requests.

If aprocessor i ssuesonly memory requestswhoseresponsesare certainly needed
for the execution, we speak of issuing conservative lookahead requests. In this
case, any missing response from the memory will eventually bring the processor
to awaiting state.

A lookahead request processor may evenissue memory read requestsor instruc-
tion fetch requests whose responsesit might not need. We call this strategy issuing
specul ative lookahead requests. It may lead to a considerable speed-up in accesses
to the memory. The price is that some requests may be processed that turn out to

16

be unnecessary. Clearly speculative write requests are not a safe concept and not
considered therefore.

A further optimization can be obtained in cases where it can be recognized in
advance that responses to certain read and instruction fetch requests that appear in
the strictly sequential behavior are irrelevant for the further course of computation.
Such requests need not even be issued. We call this shortcut optimization. One
may arguethat in awell-written program such irrelevant requests should not occur.
However, even when doing multiplication of two values read from the memory, one
of the values may turn out to be not relevant, if the other oneis zero.

Shortcut optimization leads to a more radical change in the behavior of pro-
cessors than lookahead optimizations. Responses to read and instruction fetch re-
quests are generally needed by a processor to get the information (instructionsand
operands) required to continue its execution. Moreover, the arrival of responsesis
used to trigger further requests. Thisismost obviousin the conservative sequential
behavior. The processor issues arequest only when the response to the request is-
sued previously has been received. So there isa causal relation between responses
and the following requests. In lookahead optimizations, read and instruction fetch
requests are issued earlier and more of them may be issued, but at least al the re-
quests that appear in the nonoptimized behavior are eventually issued. Write re-
quests and barrier requests are issued before the corresponding responses are re-
ceived only as long as there are no actual data dependencies. In shortcut optimiza-
tions fewer requests may be issued by avoiding ones whose responses would be
irrdlevant. This may change the causality flow of a processor more radically.

It is one of the basic ideas of the Alpha AXP architecture that processors may
issue lookahead memory requests, in order to speed up the genera execution by
paralelizing the memory accesses. In the following section we give a definition
of the properties required for a processor to make sure that the replacement of a
sequentia processor by a processor with lookahead and shortcut optimi zationsdoes
not changethe effects of the executed programs as|ong as the program runs without
any access to shared memory.

6.5 Optimizationsof Processor Behavior

In this section we define the concept of valid optimization of the behavior of proces-
sors. Not all read request responses in aresponse stream coming from the memory
are actually needed for further computation by the processor. Some read requests
may serve only lookahead purposes and the responsesto those might turn out to be
obsol ete after they have been requested. Similarly, certain responses may beirrel-
evant, since the transmitted values do not really influence the further computation.

17

For instance, if avalue of alocation is requested from the memory and later the
transmitted value is multiplied by O, itsvalue is certainly not relevant. Of course,
in practice it is very difficult to determine whether aresponseisrelevant, sinceir-
relevant responses may even trigger further read requeststhat lead to responsesthat
turn out to be irrelevant, too. Optimized processors neverthel ess may make use of
the fact that a responseisirrelevant. In this case aresponse might even not be re-
quested.

Request streams have two effects on the memory: write requests change the
state of the memory locations and therefore can be effectively observed by other
processors, read and i nstructionfetch requeststrigger responses by the memory and
thisway allow the processor to observe the current state of locations. Memory and
instruction barrier requests restrict the memory access order. So it is nhot important
for the effect of a request stream on the memory, how many barrier requests are
created, but only how they restrict the access order. Thisleads usto the following
definition.

Definition 2 (Feasible Schedulings of Memory Request Streams) For arequest
streamr; € REQ® of processor P € PRC we call arequest streamr, €
(REQ“{P: MB, P: | MB})* afeasible scheduling for the stream 4, if there existsa
stream g € REQ® such that for al requestscy, c; € REQ we have:

C1 < C=[C1 <Cplin[ry,rq]

and
ro =rolm where M = REQ"“{P: MB, P: | VB}

a

For the correctnessof optimizationsit is decisivetoidentify under which conditions
two reguest streams have the same effects for the memory such that they lead to the
same set of possible observations by the processors. We may change the behavior
of a processor such that it issues a different request stream as long as thisis ob-
servably equivalent to the previous request stream. Along theselineswe define the
effective equivalence of request streams. The memory barrier and the instruction
fetch barrier requests restrict only the rescheduling of the memory requests. Two
request streams of aprocessor P are considered to be effectively equivalent, if they
lead to the same effects and therefore can be called observation equival ent.

In thefollowing definition, we do not require that effectively equival ent request
streams have exactly the same substreams of barrier requests. We just require that
they havethe sameread, instructionfetch and writerequestsand they includebarrier
requests that impose the same scheduling restrictionsfor them.

18

Definition 3 (Effective Equivalence of Memory Request Streams) Two
request streamsrq, r, € REQ® are caled effectively equivalent for processor P,
if their sets of feasible schedulings coincide. We writethenry 2 ro.

a

To have abasisto speak about the substreams of relevant and irrel evant responses,
we use the concept of the decomposition of streams.

Definition 4 (Decomposition of Streams) For an arbitrary streams € M two
streams s, and s, are called a decomposition of s, if the stream s can be split into
the substreams s; and s,. Mathematically expressed, if there existsan oracle 8 <
{1, 2}*° such that fori € {1, 2}

s =dis(s, B)
wherethefunctionsdis : M® x {1, 2}* — M are specified by
dis(m™s,i”g8) =mdis(s, B)
and

i #j=dis(m”s, j~B) =dis(s,)
o

Based on this definition we can now define when for a processor a behavior is a
lookahead optimization and when it is a shortcut optimization of another behavior.

Definition 5 (L ookahead Optimization) We consider the two behavior functions
f]_, f2 : RFR® — REQw

for the processor P. The behavior f, is called alookahead optimization of fy, if,
for every response stream s, € RFR® that isfeasible for f,, the following condi-
tion holds: there is adecomposition of s, into aresponsestream s; € RFR® and a
response stream u; such that s; is afeasible response stream for f; and the request
streams f1(s1) and f2(sp) are effectively equivaent.

O

Notethat by the definition above, the processor with behavior f; isarefinement of
the processor with behavior f; since every behavior that f, showsisan optimized
behavior of abehavior of f;.

Shortcut optimizations are more difficult to define. In a shortcut optimizations
certain requestsare not issued. Thiscan be doneif the effects achieved that way are
equivalent to a behavior of the architecture for the nonoptimized issue stream.

19

Definition 6 (Shortcut Refinement of Issue Streams) We define arelation
&1 REQ® x REQ®
that defines the allowed shortcut optimizations. We give axiomatic rules:

(VC1, G i€ < Cp =5 [C1 < Co]in[re,ra]) = r1i->r1
[~ Ty Alp o I — 1~ I3
P MB~MB™r2 5 1 MBI
reP: WX, a) “P: WX, b) “ra-S 1P WX, b) T
7P RPX I~ 1rp
O

This definition essentially expresses that in a shortcut optimization we may leave
out superfluouswriterequests, read requestsand memory barriers. Of course, aread
request may not be left out if the requested value is needed by the processor.

Definition 7 (Shortcut Optimization) Let usconsider thetwo behavior functions
f]_, f2 : RFR® — REQw

for the processor P. Thebehavior f, iscalled a shortcut optimizationof f4, if, for
every response stream s, € RFR® that is feasible for f,, the following condition
holds: there exists a response stream s; that is feasible for f; such that f1(s;) &
f(sp).

a

The definition essentially saysthat in alookahead optimization, for every response
stream feasible for f, we can find aresponse stream for f; such that the response
streams coincide after we get rid of someirrelevant responsesfor f, and theremain-
ing requests are effectively equivalent.

A shortcut optimization can lead to a processor behavior with a quite differ-
ent processor causality. This allows sophisticated optimizationswhere certain re-
guestsand the corresponding responses are recogni zed as unnecessary and therefore
avoided even thoughthey arerelevant in thecontrol flow of f;, sincetherethey trig-
ger further relevant requests.

Conservative sequential execution is very restricted. In every state of the pro-
cessor, the number of issued read and instructionfetch requestsisat most onelarger

20

than the number of received responses. Mathematically, for aprocessor P with the
behavior function 5 the following property holds:

SCCsp = §=0C5p vV 14+ #=#3)r

where RI isthe set of read and instruction fetch requests. To get a less restricted
behavior, we alow that certain requests are issued earlier. We extend the notion of
processor correctness by shortcut and |ookahead optimization. Based on the con-
cept of sequential behavior and optimization, we can now define a notion of cor-
rectness of processor functions.

Definition 8 (Correct Processor Function) A processor P with processor func-
tion
fp : RFRY — REQ®

iscalled correct, if it isashortcut optimization of alookahead optimizationof f5*.
O

Based on this definition, it is possible to prove that the observable behavior of the
Alpha AXP architecture does not depend on the particul ar choice of the processor
functionsaslong as al of the functions are correct.

Theorem 1 (Scheduling Robustness) When al processors P € PRC executethe
sequential behavior represented by 5, the access stream is effectively equivalent
to the access stream obtained, aslong as all processor functions are correct,

- the processors do not share any memory, and instruction fetch |locations and

- writelocationsare digjoint

Sketch of Proof: Since every processor function is correct, we can assume a re-
sponse stream sp and arequest stream rp corresponding to alookahead optimiza
tion for the response stream s3™ and the request streamr - that we obtain for the
sequential behavior such that the following holds: we can decompose the response
stream sp and the request stream rp on one hand into substreams of the response
stream ¢5p and the request stream ¢f p that we obtain for the considered behav-
ior. On the other hand, we can decompose the response stream sp and the request
stream rp into substreams of the response stream s and the request stream r >
that we obtain for the sequential behavior. Hence the request streamsr 5™ and re-
quest streams ¢t p are effectively equivaent.

21

a

Thetheorem showsthat, although different scheduling strategiescan be used aswell
as different strategies for read and instruction fetch lookahead, as long as shared
memory is not used and no writes occur to locationsthat occur in instruction fetch
requests, the produced sequences of memory statesfor each of the processors coin-
cide.

6.6 Assumptionsabout Executions

We have given only avery schematic description of the behavior of the processors,
so far. In this section, we introduce a fundamental assumption about the behavior
of processors. In afirst definition, we introduce the notion of the equivalence of
response streams.

Definition 9 (Equivalence of Response Streams) Two memory response streams
s1, & € RFR are called equivalent and we write:

S~
if read response messages and instruction fetch response messages for the same | o-
cations are identical and in the same order: mathematically expressed, if for all lo-
cations x, the following proposition holds:
S1lLx) = S2lLx)
where

L(x) ={P: R(x,a) :aeDATA}JU{P:1(x, a) :ac DATA}

a

Based on the notion of equivalence of response streams, we next define what it
means that a processor is robust against reorderings of its response stream.

Definition 10 (Response Delay Robustness) For aprocessor P, aprocessor func-
tion

fp : RFR” - REQY
is called response delay robust if, for al short cut optimizations g of fp and all

response streams s; and s that are feasiblefor fp and for which s; ~ s, holds, we
have:

9(s) ~ 9(s)

22

a

Thisleads to the following basic assumption about the behavior of processors:

e Assumption: Response Delay Robustness: for every processor P, its behav-
ior function fp isresponse delay robust.

Response delay robustness makes sure that the behavior of a processor does not
critically depend on the order in which its memory requests are executed, as long
as the scheduling constraints are fulfilled.

Let us next briefly analyze how significant the requirement is that the streams
CSp, Cf p, Ct, Cv are least fixpoints. To answer this question, we also ask whether
there exist solutions to the recursive eguations for these streams that are not |east
fixpoints.

To be able to answer this question we need a further assumption, however. We
did not say anything about the behavior of a processor in the casewhereit getsare-
sponsefor whichit did not send arequest. WWe may assume, however, that a proces-
sor that has terminated its execution and comes to a halt does not issue any further
requests even when it receives further (unrequested) responses.

Definition 11 (Response Satisfaction Property) A processor P withthe behavior
function fp fulfills the response satisfaction property if, for all response streams
s € RFR, thefollowing proposition isfulfilled:

fp —p sAscompletefor fp ASES= fp(s) = fp(5)

Thispropositionexpressesthat the processor P with behavior fp doesnot issuefur-
ther memory requests after all its requests have been satisfied even if it gets further
memory responses that it has not requested.

a

By assuming the response sati sfaction property for all processors, we can provethat
all fixpoints of the recursive equations are unique.

Theorem 2 (Uniqueness of Fixpoints) Let us assume the response satisfaction
property for all processors. If thestreamscsp, ¢ p, Ct, Cv arefixpointsof the defin-
ing equations and fulfill the constraints, then they are least fixpoints.

Proof: Assume the streams ¢sp, ¢f p, Ct, Cv fulfill the equations and constraints
listed in section 5, but are not necessarily least fixpoints of the equations. Assume

23

further that the streams 3p, fp, t, v also fulfill the equations and constraintsfor the
same functions fp, ms, md and furthermore:

SpCCsp AfpC Cip /\fEEt ADLCC

The streams ¢5p are feasible responses for the streams fp. Formally expressed,
we have fp <>p C5p and ¢5p is complete for fp. According to the satisfaction
property of the processors from 3p = ¢sp and fp < p Csp we may conclude
fp = Cf p. By straightforward equational reasoning we obtain

f=ct Al =Cv A% =C5p

This shows that every set of streams that fulfills both the equations and the con-
straintsis aleast fixpoint as long as we assume the response satisfaction property
for all processors. -
This theorem is of some importance for proofs about the execution of Alpha pro-
grams using the functional model. It indicatesthat in proofswe do not haveto rely
on least fixpoint properties, but we may just work with fixpoint properties. Hence
we can work with purely equational reasoning.

The theorem does not say that there is only one fixpoint, it says that there is
only one fixpoint for each feasible scheduler function ms. Due to the underspeci-
fication in the scheduler, there are many different scheduler functions ms that may
have different fixpoints.

7 Locking

In order to synchronize programs properly, we need more sophisticated concepts
than the onestreated so far. For the Alphaarchitectureload |ocked instructionsand
store conditional instructionsare available. So far we have not said anything about
locking. Inthissection, webriefly show how loadswithlocksand conditional stores
can betreated in our model.

7.1 Extension of the Model to Locking

A locked load action is represented by P: K(x, a) . Roughly speaking, a locked
load isaread action that in addition sets alock flag. A following conditional store
succeeds, only if thelock flag isset. A lock flagisalso cleared, if awritereguestis
executed for the location for which the lock flag was set. A successful conditional
storerequest isawrite request.

24

Action name Syntax Memory Request | Response
Load locked P: K(x, a) P: K?x P: R(x, a)
Store conditional successfully || P: S(x, a) P: S(x, a) P: S(x, L)
Store conditional failed P: S(x, a) P: S(x, a) P: S(x, O
Store conditional failed P: S(x, O P: S(x, O P: S(x, O

Figure 5: Table actionsfor locking and their split into requests and responses

Conditional stores can be successful or they may fail. A successful conditional
storeactionisrepresented by P: S(x, a) . A failed conditional storeactionisrepre-
sented by P: S(x, O) . A memory request issued by the processor P for executing
alocked read on location x is represented by P: K?x. A memory request issued
by the processor P for executing a successful conditional store is represented by
P: S(x, a) . A memory request issued by the processor P for executing a failed
conditional storeisrepresented by P: S(x, O) .

It looks strange that a processor can issue a request for afailing store action,
but thisis used to model the following situation. Let us assume that the instruction
stream contains a conditional store instruction. When the processor executes this
instruction, the failure of the corresponding conditional store may depend on the
situationinsidethe processor. Then the processor i ssuesan instruction store request
that is condemned to failure.

Memory requests issued by the processor P for executing locked read or con-
ditional store instructionsboth require responses. A response to a memory request
issued by the processor P for executing alocked read on location x is represented
by P: R(x, a) . A responseto amemory request issued by the processor P for ex-
ecuting a conditiona store is represented by P: S(x, L) , if it was successful. A
memory request issued by the processor P for executing a conditional storeisrep-
resented by the response message P: S(x, O , if it failed.

Thetable given in Figure 5 shows these additional actions and their decompo-
sition into memory requests and responses to them.

L et us assume from now on that the sets of requests REQ and responses RFR
al so containthese additional requestsand responses. A load locked request behaves
like aread request, but in addition may interfere with the execution of conditional
store requests. The conditional storerequest islikeawrite but, sinceit may fail its
failureor successneedsto beindicated to the processor. With respect tothe memory
scheduling there is no difference between locked load and read or between condi-
tional storeand write. Thereisadifference, however, with respect to the read/write
consistency.

25

For convenience, when writing the specification, we use an additional artificial
request message with syntax P: K! x. It standsfor locked |oadsin the access stream
that have been executed already. The execution of alocked |oad request P: K?x in
the access stream leadsto aread response P: R(x, a) with the most recent written
valuea. Intheaccess stream, themarker P: K! x indicatesthe positionin the access
stream, in which the lock has been executed. All other locks of processor P get
cleared.

In our mathematical model, we express read/write consistency for locked loads
by the following formula: for al streamsu, w € REQ*, s € REQ® we assume:

U™ w)|risk = () Awlwx = () AwlnoLp) = W A U|noLpy =0
=
mmu~—Q WX, a) “w P: K?x7s) =
P: R(x,a) “mm@{@~Q Wx, a) “wP: Kl x™s)

where W(x) isthe set of al the write requests for location x:
W) ={P: Wx,a) €e REQ : P € PRC Aa e DATA}

and NOL(P) istheset of al therequestsdifferent from lock markers for processor
P:
NOL(P) = REQ“{P: KI x € REQ : x € LOC}

and RI SK istheset of all requeststhat require responses, namely the set of al the
read requests, instruction fetch requests, store conditional requests, and load locked
requests:

RISK = {PPR?Xx e REQ : P e PRC Axe LOC}U
{P:1?Xx e REQ : P e PRC AXx e LOC}U
{P: K?x e REQ : P e PRC AXx € LOC} U
{P: S(x,a) e REQ : P e PRC AXx € LOC A ae DATA U {C}

This showsthat alocked load request is processed like aread request, but after ex-
ecution a marker is kept indicating the place in the access stream where the lock
occurred.

A conditional storeonlocation y issuccessful if itismarked as successful by the
issuing processor P and if thereisan executed lock P: K! x inthe access stream and
there are no writes to the location x between thislock and the conditional storein
the access stream. The success of a conditional storeis expressed by the following
formula (with a € DATA):

U™ w)risk =) Awlwx =) Awlkp) = () AUlnoLpy = U
=
mmu~P: KIx~w™P: S(y, a) 7s) = P: S(y, L) "mm@{lG~w™P: Wy, a) 7s)

26

where K (P) isthe set of al thelock markers for the process P:
K(P)={P: Klx € REQ : x € LOC}

and W(x) isthe set of all the write requeststo location x as specified above.
A conditional storeto location x failsif there is awrite to location x between
the last locked load and the execution of the store request.

U™ w)lrisk =) Awlwx # () Awlkey) = () AUlnorpy =0
=
mmu~P: KIEx“w™P: S(y, a) 7s) =P: S(y, O "mm(l~w™s)

A conditional store also failsif there is no lock marker that was issued by the pro-
cessor till valid.

Ulrisk = () AUlkp) = ()
=
mmu~P: S(x, a) 7s) =P: S(y, O “mm(u~s)

Thefailure of a conditional store request marked asfailing is expressed by the fol-
lowing formula:

Ulrisk = () AulnoLpy =0
=
mmUu—P: S(x, O 7s) =P: S(x, O ~mm(0~s)

Whether a conditional store request issued by a processor is marked as condemned
tofailure or as successful if not interfered with by another processor isleft unspec-
ified. In [AARM 92], page (1) 4-9, thisis called unpredictable. In the functional
model of a processor, it is part of the specification of the behavior of the proces-
sor to describe under which conditionsa conditional store request is condemned to
failure or as successful. In the mathematical model these conditionscan also beleft
unspecified, and thus unpredictable. However, more sophisticated fairness condi-
tions can aso be formulated.

7.2 Analysisof a Simple Locking Discipline

In this section we show how a simple mutua exclusion scheme doeswork with the
described memory scheduling discipline.

We consider the following mutua exclusion scheme as given in [AARM 92],
page (I) 5-6. Every processor executes the following program, before it gets into

27

its critical phase:

try_again: LDL R1 X

< modifyy >

STC R1 X

BEQ R1 no_store
nostore: BR try_again

Our specification alowsusto concludethat the store conditional request can be suc-
cessful only if it isissued as successful by the processor, and if in the access stream
there is no write to location x between the load locked and the store conditional.
The specification of the memory function alowsusto provethat according to these
facts this simple protocol works.

8 Conclusion

The purposeof thisreport isto giveamathematical model of the Alphashared mem-
ory system. It provides a consistent description of the Alphashared system and of
thelockingrulesasgivenin[AARM 92]. Itis, of course, still asimplification, since
it does not consider interrupts or exceptions.

It is nevertheless helpful for analyzing some of the properties of the Alphaar-
chitecture and the programs that run on it. It moreover clarifies some issues not
treated explicitly in [AARM 92] such asthe treatment of causal |oops.

Thisreport aso showsthe usefulness and flexibility of functional systermm mod-
gs. It demonstrates that functional system specifications can be used to describe
system architectures and properties thereof of considerable complexity.

Acknowledgement: Thiswork wasmainly carried out during my stay at DIGITAL
Systems Research Center in April 1993. The excellent working environment and
stimulating discussionswith the colleaguesat SRC, in particular Jim Horning, Yuan
Yu, and Jim Saxe are gratefully acknowledged. | thank Jim Horning for his careful
reading of a version of the manuscript and his most useful comments.

A Appendix: A MoreLiberal Scheduling Concept

Inthemodel given sofar we haveacoherent memory inthe sensethat all processors
make observations that are consistent with the assumption of a sequentia global

28

memory. Therefore, if two locations x and y that are initially 1 are updated to 2,
then it isimpossible that one process receives the response stream

R(y.2) R(x,1) R(x,2)
asreaction to itsrequest stream
R?y MB R?x MB R?X

and the other process obtains

R(x,2) R(y,1) R(y,?2)
asreaction to itsrequest stream
R?x MB R?y MB R?y

Thisisexcluded by the assumption of consistent updates of a global memory |lead-
ing to seriaizability for the access stream.

We model a more liberal memory scheduling for the Alpha architecture by a
data flow moddl as given in Figure 6. In this data flow model the memory isdis-
tributed. Every processor hasits own copy of the memory. The processorsare con-
nected to their memory by channels. The channelsare denoted by csp, crp, and ctp
where P denotes the corresponding processor.

Each processor sendsa stream of memory requeststo the schedul er and receives
a stream of read response messages from its memory. In a computation of the Al-
pha architecture, the behavior of each processor P € PRC and the function mm
are modeled as before. 1n a computation, a stream is associated with each of the
channelscsp, crp , and ctp. These streams will be denoted by ¢sp, ¢ p , and Ctp
respectively.

We formalize the requirements for the behavior of the scheduler component by
afunction

ms : (PRC — REQ®) — (PRC — REQ®)

which models the proper memory access scheduling and determines the access
streams and thus the access orderings and the memory service

mm : REQ? — RFR?
which model s read/write consistency. The function md thenis simply obtained by

compaosing ms and mm.

29

| Processors \ Memory | |
i CSp, ! P, 1 Crp, Cte, [' CUp, |
i L |ms e i
i csp, ! P, L Crp, Ctey [m ' CUp, |

Figure 6: Dataflow graph of the Alphaarchitecture

We givethe specification for thefunction ms by therel ation between the streams
¢ p and Ctp. The function ms merges and reschedulesitsinput streams.
Two streams s; and s, are called consistent and we write

SRS

SSEVL s
For the function ms we require the following safety conditions:
o for all locations x the access streams are consistent for all processors P and

Q:

ms(r)plwx) X mMs(r)olwx

where

W(x) = {P: WX, a) € REQ : P € PRC A a € DATA}

e for each processor P, the restriction of the access order with respect to the
issue order is obeyed in its access stream; for all r € (PRC — REQ®) we

have
dt e REQ® :ms(r)p Tt A

Ve, e R(P):cp <= [cr < c]in[rp,t]

where
R(P) = {c € REQ : processor (c) = P}

30

e for each processor P in its access stream ms(r)p only read requests for P
occur.

For the schedul er we requirethe following livenesscondition: for any pair of mem-
ory requestscy, ¢, of processor P for which we have ¢; < ¢, inthetablegivenin
section 3, their relative order in the issue stream ¢ p and in access stream ms(cr)
coincide. Expressed mathematically the liveness conditionis

C1 < C2= [C1 < Cg]in[Crp, ms(Cr)p]

Thisis aliveness condition that restricts the choice of the scheduling function ms
in additionto the safety propertiesrequired for ms making surethat all requestsare
eventually scheduled.

B Appendix: Mathematical Basis

A stream represents a communication history for achannel. A stream of messages
over agiven message set M isafinite or infinite sequence of messages. We define

M® =4 M*U M

We briefly repeat the concepts from the theory of streams that are used in the spec-
ifications. More comprehensive explanations can be found in [Broy 90].

e By x™y we denote the result of concatenating two streams x and y. We as-
sumethat x "y = X, if X isinfinite.

e By () we denote the empty stream.

e By ft(x) wedenotethefirst element in astream; if the stream x isempty, it
is undefined.

e By rt(x) wedenotethe stream obtained from x by dropping itsfirst el ement;
if the stream x is empty, the resulting stream is empty.

o If astreamx isaprefix of astream y, wewritex C y. TherelationC iscalled
prefix order. It isformally specified by

—~

XCy=¢gt 3Zze M?: X" z=y

31

The behavior of deterministic interactive systems with n input channelsand m out-
put channelsis modeled by (n, m)-ary stream processing functions

fr(M?)" - (M*)™
We use some notions from domain and fixpoint theory that are briefly listed:

e A stream processing function is called prefix monotonic, if for al tuples of
streams x, y € (M®)" we have

XCy= f(X)C f(y)

By LIS we denote aleast upper bound of aset S, if it exists.

e A set Siscalled directed, if for any pair of elementsx and y in Sthere exists
an upper boundin S.

e A stream processing function f is called prefix continuous if f is prefix
monotonic and for every directed set S € M we have:

fwS=u{f(x):xe S}

A partially ordered setiscalled compl eteif every directed set hasaleast upper
bound.

The set of streams and the set of tuples of streams are complete. Note that every
directed set of streams has aleast upper bound.

In specificationsweusethefilter functionininfix notation. Let Sbean arbitrary
subset of theset M and x € M® be a stream over M. We specify:

(M™X)[s=XImMp <= ~(ME)

(M X)|ls=m"(X|m,) &mMe S

Olme = ()
Furthermore we use the function

#: M? — IN U {oo}
that yieldsthe length of astream. It is specified by (for m € M):

#)=0

32

#mM™X) = 14 #x

We model the behavior of interactive components by sets of continuous (and there-
foreby definition al so monotonic) stream processi ng functions. Monotonicity mod-
els causality between input and output. Continuity models the fact that for every
behavior the systems reaction to infinite input can be predicted from the reactions
of the component to all finite prefixes of thisinput®. Monotonicity reflects the fact
that in an interactive system previous output cannot be changed when further in-
put arrives. The empty stream represents the information “further communication
unspecified”.

A specification describes a set of stream processing functionsthat represent the
behaviors of the specified systems. If this set is empty, the specification is called
inconsistent. If the set contains exactly one e ement, then the specificationis called
determined. If thisset hasmorethen one element, then the specificationiscalled un-
derdetermined and we al so speak of under specification. An underdetermined spec-
ification can also be used to describe hardware or software unitsthat are nondeter-
ministic. An executable system descriptionis called nondeterministic, if it is un-
derdetermined. Then the underspecification in the description of the behaviors of
a nondeterministic system allows nondeterministic choices carried out during the
execution of the system. In the functional modeling of interactive systemsthereis
no difference in principle between underspecification and the operational notion of
nondeterminism. In particular, it doesnot make any differencein such aframework
whether these nondeterministic choices are taken before the execution starts or step
by step during the execution.

1This does not exclude the specification of more elaborate liveness properties including fairness.
Note, fairnessis, in general, a property that hasto do with “fair” choices between an infinite number
of behaviors.

33

References

[AARM 92]

[Attiya, Friedmann 94]

[Broy 90]

[Broy 93]

[Shasha, Smir 88]

R.L. Sites (ed.): Alpha Architecture Reference Manual.
DIGITAL Press 1992

H. Attiya, R. Friedmann: Programming Alpha Based
Multiprocessorsthe Easy Way. Unpublished Manuscript.

M. Broy: Functiona Specification of Time Sensitive
Communicating Systems. REX Workshop. In: J. W. de
Bakker, W.-P. de Roever, G. Rozenberg (eds.): Step-
wise Refinement of Distributed Systems. Lecture Notes
in Computer Science 430, Springer 1990, 153-179

M. Broy: Functional Specification of Time-Sensitive
Communicating Systems. In. ACM Transactions on
Software Engineering and Methodology 2:1, 1993, 1-46

D. Shasha, M. Smir: Efficient and Correct Execution of
Parallel Programs that Share Memory. In; ACM Trans-
actions on Programming Languages and Systems. 10:2,
1988, 282-312.

34

