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Preface

0.1 The central question

For work in computer-aided geometric design, as for countless other purposes, we
must understand the structure of the univariate polynomials. In particular, we must
be able to test for linear dependence. If we know the n + 1 coefficients of each of
n + 1 polynomials of degree n, we can test for dependence simply by computing
an (n + 1)-by-(n + 1) determinant. But there are times — such as when using
polar forms [43] to study splines — when what we know about each polynomial
is its n roots, rather than its n + 1 coefficients. At such times, we can compute
the coefficients from the roots, up to an irrelevant scale factor, and then proceed as
before. For example, in the quadratic case, the three nonzero polynomials

f1(X) = r1(X − a1)(X − b1) = r1(X
2 − (a1 + b1)X + a1b1)

f2(X) = r2(X − a2)(X − b2) = r2(X
2 − (a2 + b2)X + a2b2)

f3(X) = r3(X − a3)(X − b3) = r3(X
2 − (a3 + b3)X + a3b3)

are linearly dependent just when the 3-by-3 determinant∣∣∣∣∣∣
1 a1 + b1 a1b1

1 a2 + b2 a2b2

1 a3 + b3 a3b3

∣∣∣∣∣∣
is zero, the numbers (ri ) being the irrelevant scale factors. In the cubic case, the
four nonzero polynomials

g1(X) = r1(X − a1)(X − b1)(X − c1)

g2(X) = r2(X − a2)(X − b2)(X − c2)

g3(X) = r3(X − a3)(X − b3)(X − c3)

g4(X) = r4(X − a4)(X − b4)(X − c4)

are linearly dependent just when∣∣∣∣∣∣∣∣
1 a1 + b1 + c1 a1b1 + a1c1 + b1c1 a1b1c1

1 a2 + b2 + c2 a2b2 + a2c2 + b2c2 a2b2c2

1 a3 + b3 + c3 a3b3 + a3c3 + b3c3 a3b3c3

1 a4 + b4 + c4 a4b4 + a4c4 + b4c4 a4b4c4

∣∣∣∣∣∣∣∣ = 0.

xi
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P
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B1

A2

B2 A3
B3

Figure 0.1: A complete quadrangle with vertices (P, Q, R, S) and the quadrangu-
lar set

{{Ai , Bi }
}

i∈[1..3] formed by stabbing that quadrangle with the line m.

In the quadratic case, projective geometry provides an elegant alternative test.
Given four points (P, Q, R, S) in the plane with no three collinear, as shown in
Figure 0.1, the six lines that join those four points in pairs form an instance of
the configuration called the complete quadrangle. The line PQ is called oppo-
site to the line RS, and similarly for the pairs {PR, QS} and {PS, QR}. Three
pairs of points along a line m are said to form a quadrangular set when they are
the intersections of m with the three pairs of opposite lines of some instance of
the complete quadrangle. For example, in Figure 0.1, the three pairs {A1, B1},
{A2, B2}, and {A3, B3} form a quadrangular set. Once we fix a coordinate sys-
tem for the line m, any pair of points {A, B} on m gives rise to a pair of coordi-
nates {a,b}, and those coordinates, in turn, are the roots of a quadratic polynomial
f (X) = r(X − a)(X − b) that is uniquely determined, up to the irrelevant scale
factor r. It is a classical result that, given three pairs of points on m, the three poly-
nomials so determined are linearly dependent just when the three pairs of points
form a quadrangular set.

Here is the central question that sparked this research: Is there a projective con-
figuration that provides an analogous geometric test for the linear dependence of
four cubic polynomials? Since that configuration would be a cubic analog of the
complete quadrilateral, we shall call it the complete cubangle. (Don’t worry: We
use that horrid name only in this preface.) Does the complete cubangle exist?

Let’s flesh out the analogy between the quadratic and cubic cases, so that we
can see what properties the complete cubangle should have. An instance of the
complete quadrangle consists of three pairs of lines in the plane, certain triples of
which are constrained to be concurrent (that is, to pass through a common point).
By analogy, an instance of the complete cubangle should consist of four triples of
lines in the plane — or, more likely, four triples of planes in 3-space — constrained
by certain required incidences. Let us say that four triples of points along a line m
in 3-space form a cubangular set when they are the intersections of m with the
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four triples of planes of some instance of the complete cubangle. Once we fix a
coordinate system for the line m, any triple of points {A, B,C} on m determines
a triple of coordinates {a,b, c} and hence determines a cubic polynomial g(X) =
r(X − a)(X − b)(X − c) uniquely, up to the scale factor r. The analogy requires
that, given four triples of points on m, the four cubic polynomials so determined
are linearly dependent just when the four triples of points form a cubangular set.

Ta-da! The complete cubangle does exist — that is, there is a configuration
that fulfills this analogy. An instance of the complete cubangle consists of twelve
planes, two lines, and thirteen points in 3-space, constrained by various incidences.

And that’s not all! The complete cubangle is just one member of a large fam-
ily of configurations, some familiar and some novel, which we can define using the
notion of a budget partition. The complete cubangle is associated with the budget
partition (2,1,1), while other budget partitions give rise to other configurations.
Defining these configurations and studying their properties involves an intriguing
combination of old-fashioned geometry and modern combinatorics. From geom-
etry, we use projective frames, projective transformations, and null systems; from
combinatorics, we use matroids, minors, and representations.

0.2 A duality warning

One beautiful aspect of projective geometry is the principle of duality, which lets
us interchange the concepts ‘point’ and ‘hyperplane’, provided that we also inter-
change the concepts ‘lies on’ and ‘passes through’. The complete cubangle con-
sists of four triples of planes in 3-space, constrained by their incidences with two
lines and thirteen points. The dual configuration consists of four triples of points
in 3-space, constrained by their incidences with two lines and thirteen planes. As
we discuss in Section 2.6, it turns out to be more convenient to focus on the dual
configuration. That is why Chapter 1 begins by discussing, not the complete quad-
rangle, but its dual, which is called the complete quadrilateral.

0.3 The accompanying videotape

This monograph is being published as Research Report 134a from the Systems Re-
search Center of the Digital Equipment Corporation. Report 134b is a 46-minute
videotape, titled Introducing the Budget Configurations. The videotape animates
the configurations in 3-space that are associated with the budget partitions (2,1,1)
and (1,1,1,1), the former being the dual of the complete cubangle. One goal of
the videotape is to give non-mathematicians some idea of what this work is all
about. The other goal is to convince you that you want to read this monograph.
If you are already convinced, there is no need to watch the tape — though you
might enjoy doing so.
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Chapter 1

Preview

The preface describes the central question out of which this monograph grew. This
preview summarizes the results of the monograph, to give you some sense, in ad-
vance, of where we are heading. It’s not going to be until Chapter 2 that we finally
get around to introducing the material in depth.

1.1 Prerequisites

In order to understand this monograph, you have to know something about projec-
tive geometry and something about matroids.

Projective geometry is a standard topic. Good places to start are the books
by Coxeter [8] and by Samuel [48]. A valuable supplement, particularly as re-
gards computations using homogeneous coordinates and Plücker coordinates, is
Stolfi’s book [50] — although Stolfi discusses oriented projective geometry, which
we don’t need, because our matroids are not oriented [5].

As for matroids, the books by Oxley [37] and by Welsh [52] are fine sources.
Because matroid theory isn’t yet as standard a topic as projective geometry, we
take the time, in Chapter 3, to review the definition of a matroid and some of the
elementary properties of matroids.

1.2 Configurations and dependent polynomials

The complete quadrilateral, an instance of which is shown in Figure 2.2 on page 7,
is a projective configuration with six points and four lines. It is a standard re-
sult that the complete quadrilateral characterizes the dependence of three quadratic
polynomials. As for what it means to ‘characterize dependence’, two theorems are
involved, which we shall call the Projection Theorem and the Witness Theorem.
(Warning: Those names are not standard, as discussed in Section 2.5.)

Given any instance of the complete quadrilateral and given any point in the
plane O, we can project the six vertices of the quadrilateral from O to get six lines

1
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through O. The Projection Theorem says that the three univariate, quadratic poly-
nomials that have the slopes of those six lines as their roots are always linearly
dependent.

Conversely, suppose that we take any six numbers that are the roots of three
linearly dependent quadratics, we take any point O in the plane, and we draw the
six lines through O with those slopes. The Witness Theorem says that there exists
an instance of the complete quadrilateral whose six vertices lie on those six lines,
and which hence witnesses to the linear dependence of those three quadratics. Fur-
thermore, there is a natural sense in which the witnessing quadrilateral is unique:
Any two witnessing quadrilaterals are related by a projective transformation of the
plane that fixes the point O and fixes every line through O.

Here is the first half of the good news in a nutshell:

There is a projective configuration B2,1,1 in 3-space — consisting
of twelve points, two lines, and thirteen planes — that characterizes
the dependence of four cubic polynomials in the same way that the
complete quadrilateral in the plane characterizes the dependence of
three quadratic polynomials.

In particular, there are cubic analogs of the Projection Theorem and the Witness
Theorem that hold for the configuration B2,1,1. Note that we project an instance of
the configuration B2,1,1 from a line o in 3-space, rather than from a point O in the
plane. The twelve vertices of the configuration determine twelve planes through
the line o, the slopes of which are the roots of four cubic polynomials that are al-
ways linearly dependent.

1.3 The budget matroids

A matroid is an algebraic structure that describes the pattern of incidences — the
collinearities, coplanarities, and the like — that are required of the points in a pro-
jective configuration (it being understood that every incidence that is not required
is forbidden). So, roughly speaking, ‘matroid’ is the modern term for ‘projective
configuration’. If the matroid M describes the incidences of some configuration
C, then a representation of M is the same thing as an instance of C; and a matroid
is representable when it has representations.

The incidences of the complete quadrilateral are described by a matroid that
we shall call B2,1. The justification for that name comes from the other half of the
good news:

For each partition b = b1+· · ·+bk of an integer b into at least two
positive parts, we can define an associated matroid, which we shall
call the budget matroid Bb1,...,bk . A surprising number of these budget
matroids are representable. In particular, the complete quadrilateral
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is described by the matroid B2,1, while the configuration in 3-space
proclaimed above is described by the matroid B2,1,1.

In more detail, let b = b1 + · · · + bk be some partition of an integer b into
at least two positive parts. The budget matroid Bb1,...,bk has rank b and has, as its
ground set, a matrix 

E11 E12 . . . E1k

E21 E22 . . . E2k
...

...
...

...

Eb1 Eb2 . . . Ebk


consisting of bk points. The rules for independence in the matroid Bb1,...,bk force
the b points in the j th column to lie in a common flat subspace of dimension bj , for
each j in [1. .k]. Also, for each possible way of choosing b points so that precisely
one is chosen from each row and so that, for each j , precisely bj are chosen from
the j th column, the b points so chosen must lie in a common hyperplane. Here are
geometric descriptions of the representations of the budget matroids of rank b = 3:

• B2,1: the six vertices of a complete quadrilateral in the plane.

• B1,1,1: the nine points of a Pappus configuration in the plane, as shown in
Figure 4.1 on page 39.

Here are similar descriptions for rank b = 4:

• B3,1: the four vertices of a tetrahedron in 3-space, together with the four
points where a line cuts its four faces.

• B2,2: the eight vertices of a Möbius pair of tetrahedra — that is, two tetrahe-
dra with the vertices of each lying on the faces of the other.

• B2,1,1: twelve points in 3-space, four on a plane, four each on each of two
lines, and with 12 other coplanarities in a certain pattern. This is the config-
uration that characterizes the dependence of four cubic polynomials.

• B1,1,1,1: sixteen points in 3-space, four each on each of four lines and with
24 coplanarities in a certain pattern.

We prove two general results about the representability of the budget matroids:
Every budget matroid Bm,n with two parts is representable over the rationals, as is
every matroid Bm,1,1 with three parts, two of which are ones. The latter result can
be interpreted as generalizing Pappus’s Theorem from the plane to (m+ 1)-space.
In the particular case m = 2, the latter result gives us one construction for repre-
sentations of the budget matroid B2,1,1.

To show that the matroid B2,1,1 characterizes the dependence of cubic polyno-
mials, we develop a different construction for its representations — one that makes



4 CHAPTER 1. PREVIEW

the choices in a different order. This second construction exploits the properties of
null systems, the little-known cousins of the well-known polar systems that are as-
sociated with quadric hypersurfaces. We use the same null-system machinery also
to construct representations of B1,1,1,1, the most complicated of the budget matroids
of rank 4.

1.4 The bad news about the quartic case

It would be satisfying to find, for each n, a projective configuration in n-space that
geometrically characterized the dependence of n+1 polynomials, each of degree n.
Since the budget matroid B2,1 in the plane — better known as the complete quadri-
lateral — characterizes the dependence of three quadratics and the matroid B2,1,1 in
3-space characterizes the dependence of four cubics, it is natural to ask whether the
matroid B2,1,1,1 in 4-space perhaps characterizes the dependence of five quartics.
Unfortunately, the answer seems to be no. The matroid B2,1,1,1 is representable,
but it has so few representations that they characterize a property of five quartics
that is stronger than linear dependence.



Chapter 2

Introduction

2.1 The quadratic case

The quadratic polynomial X2 − (u + v)X + uv has the pair of scalars {u, v} as
its roots.1 Let us say that three pairs of scalars

{{u1, v1}, {u2, v2}, {u3, v3}
}

form a
2-dependent block when the three quadratic polynomials with those pairs as their
roots are linearly dependent, that is, when the determinant∣∣∣∣∣∣

1 u1 + v1 u1v1

1 u2 + v2 u2v2

1 u3 + v3 u3v3

∣∣∣∣∣∣
is zero. Note that the order of the two scalars {ui, vi } in a pair doesn’t affect the
2-dependency of the block, nor does the order of the three pairs.

By the way, you can think of the scalars that we deal with, such as ui and vi ,
as either rational numbers, real numbers, or complex numbers, as suits your fancy.
More formally, we fix some field of scalars in which to carry out our numeric com-
putations and over which to build our projective spaces. Unless otherwise stated,
we require only that the scalar field have characteristic zero — that property being
all that we need for the bulk of our arguments. Of course, when we want to illus-
trate a geometric construction with a picture, it is simplest to assume that the field
of scalars is the real numbers.

The algebraic condition of 2-dependence corresponds to a simple geometric
condition involving a conic curve in the plane. Let O be a point in the plane, and
let
{{a1,b1}, {a2,b2}, {a3,b3}

}
be three pairs of lines through O, as shown (over

the real numbers) in Figure 2.1. Each of the lines has a scalar slope, and when
those slopes form a 2-dependent block of scalars, we shall refer to the block of
lines itself as 2-dependent. To test a block of lines for 2-dependence, let k be any

1The expression {u, v} denotes a pair of roots, even when u = v; that is, the curly braces here
indicate a suite [45] or multiset or bag, rather than a set. But please ignore all degenerate cases, as
much as you can, until Section 2.4.

5
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O

a1

b1a2

b2

a3

b3

Hh1

h2

h3A1

B1

A2

B2

A3

B3

k

Figure 2.1: A 2-block of lines, all passing through a common point O, whose
2-dependence is demonstrated by the concurrence of three chords of a conic curve
k that also passes through the point O.

conic passing through the point O. Any line through O intersects the conic k at O
itself and at one other point. Let hi := Ai Bi be the chord of the conic k joining the
residual intersections of the lines ai and bi , for i in [1 . . 3]. It is straightforward
to check (see Exercise 2.1-4) that the block of lines

{{a1,b1}, {a2,b2}, {a3,b3}
}

is
2-dependent just when the three chords h1, h2, and h3 of the conic k are concurrent
— that is, pass through a common point H .

It is a fascinating result of classical projective geometry that 2-dependence can
be characterized in an even simpler way, at the cost of some loss of symmetry. The
four auxiliary lines a, q, r, and s in Figure 2.2 intersect at the six points

A1 := a ∩ q B1 := r ∩ s

A2 := a ∩ r B2 := q ∩ s

A3 := a ∩ s B3 := q ∩ r.

These six points and four lines are called a complete quadrilateral. More precisely,
they are an instance of the classical configuration called the complete quadrilat-
eral; that is, the name of the pattern is used also for instances of that pattern. For i
in [1 . . 3], the two points Ai and Bi are called opposite, since they lie on no com-
mon line. Because of the loss of symmetry, as we discuss shortly, we shall specify
a complete quadrilateral by giving its six points {(A1, B1), (A2, B2), (A3, B3)} as
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O

a1

b1a2

b2

a3

b3

A1

B1

A2B2

A3

B3

a

q r

s

Figure 2.2: The same 2-block of lines as in the previous figure, but with their
2-dependence demonstrated, this time, by a witnessing complete quadrilateral.

an ordered block, that is, as an unordered triple of ordered pairs. So, for each pair
of opposite vertices (Ai , Bi ), we know which of them is the A-point and which is
the B-point. The A-points of the three pairs are collinear, along the auxiliary line
a; and the A-point of any pair is collinear with the B-points of the other two pairs,
along some other of the auxiliary lines.

Given an ordered block of points that form a complete quadrilateral and given
any point O in the plane, we can project the three pairs of points from the point O
— which is called, in this context, the center of the projection — to get an ordered
block of lines {(a1,b1), (a2,b2), (a3,b3)} through O. It turns out that this block of
lines is always 2-dependent. We call this result the Projection Theorem, and we
discuss its proof in Section 2.5.

Conversely, given any ordered block of lines through a common point O that
is 2-dependent, there exists a complete quadrilateral each of whose six vertices lies
on the appropriate line and which hence witnesses to the 2-dependence. Of course,
this witnessing quadrilateral is not unique. It is clear that any projective transfor-
mation of the plane that fixes the point O and fixes every line through O carries
any witnessing quadrilateral to another quadrilateral that is also a witness. But the
witnessing quadrilateral is unique up to such transformations; that is, any witness-
ing quadrilateral can be mapped to any other by a projective transformation of the
plane that fixes both the point O and every line through O. We call this converse
result the Witness Theorem, and we discuss its proof also in Section 2.5.

Figure 2.2 is simpler than Figure 2.1 in many respects; for instance, Figure 2.2
has one less point and has no curves. But it is important to realize that some of the
inherent symmetries of the problem, which are preserved in Figure 2.1, are broken
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O

b3

a3

b1

a1

a2

b2

B3

A3

B1

A1

A2

B2

A3′

B1′

B2′

B3′

A1′

A2′

Figure 2.3: An unordered block of lines and two complete quadrilaterals that wit-
ness to the 2-dependence of that block, but under different orderings thereof.

in Figure 2.2. (Coxeter [9] relates this broken symmetry to the axioms for projec-
tive geometry.) Suppose that we arbitrarily select the line a1 from the pair {a1,b1}
and the line a2 from the pair {a2,b2}. Even after we have made those selections,
the two lines a3 and b3 in Figure 2.1 play completely symmetric roles. But not so
in Figure 2.2: The point A3 on the line a3 is collinear with A1 and A2, while the
point B3 is not. Thus, once we have ordered two of the three pairs in Figure 2.2,
the third pair acquires an order as well. We can swap any even number of pairs
without changing anything. If we swap an odd number of pairs, we still don’t af-
fect the 2-dependency of the block of slopes; but we do change the structure of the
witnessing quadrilaterals.

Something must be done about this broken symmetry, lest the uniqueness claim
in the Witness Theorem fail. Figure 2.3 shows a 2-dependent, unordered block of
lines

{{a1,b1}, {a2,b2}, {a3,b3}
}

through a point O. It also shows two complete
quadrilaterals, one on the left and one on the right. The one on the left witnesses to
the 2-dependence of the obvious ordered block {(a1,b1), (a2,b2), (a3,b3)}, while
the one on the right witnesses, instead, to the 2-dependence of the ordered block
{(a1,b1), (a2,b2), (b3,a3)}, in which the single pair (a3,b3) has been swapped.
Note that no projective transformation that fixes O and every line through O can
possibly map the left quadrilateral to the right one. Any such transformation would
have to map A1 7→ A′1, A2 7→ A′2, and A3 7→ B′3; but the points A1, A2, and A3

are collinear, while the points A′1, A′2, and B′3 are not.
Thus, when talking about witnessing quadrilaterals, we cannot allow the three

pairs of a block to be swapped arbitrarily. We shall respond to this situation by the
simple expedient of forbidding swapping altogether. That explains why we de-
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fined a complete quadrilateral to be an ordered block of points. When a complete
quadrilateral witnesses to the 2-dependence of a block of lines or slopes, we treat
that block also as ordered.

Exercise 2.1-1 Count the degrees of freedom in the Witness Theorem, so as to
verify that its claims of existence and uniqueness are at least plausible.

[Answer: Fix a center point O in the plane, and consider 2-dependent blocks of
lines through O and the complete quadrilaterals that witness to their 2-dependence.
There are five degrees of freedom in choosing such a 2-dependent block: six scalar
slopes, related by one equation. There are eight degrees of freedom in choosing a
complete quadrilateral: two in each of its four lines. Thus, for each 2-dependent
block of lines through O, there must be a 3-parameter family of quadrilaterals that
witness to the 2-dependence of that block. The Witness Theorem says that any
such witness can be mapped to any other by a projective transformation of the plane
that fixes both the point O and every line through O. There are eight degrees of
freedom in an arbitrary projective transformation of the plane — any four points,
no three collinear, to any other four such points. Of those eight, it takes four to fix
two chosen lines through O, which fixes the point O as well. It takes one more to
fix all of the remaining lines through O. The three degrees of freedom that are left
are just enough to map any witness to any other.]

Exercise 2.1-2 Given five lines a1, a2, b1, b2, and b3 through a point O in the
plane, use a complete quadrilateral to construct the unique sixth line a3 through
O that makes the ordered block {(ai,bi )}i∈[1..3] of lines 2-dependent.

[Answer: Choose Bi arbitrarily on bi , for i in [1 . . 3], thus using up the three
degrees of freedom that are involved in choosing a witness. Then construct A1 :=
a1 ∩ B2 B3, A2 := a2 ∩ B1 B3, A3 := A1 A2 ∩ B1 B2, and a3 := OA3.]

Exercise 2.1-3 In this exercise, the field of scalars must be ordered; for simplicity,
let’s use the real numbers. A pair {ui, vi }of real numbers is said to separate another
pair {uj , vj } when the product (uj − ui)(uj − vi)(vj − ui)(vj − vi) is negative. Let{{u1, v1}, {u2, v2}, {u3, v3}

}
be six distinct, real numbers that form a 2-dependent

block. Show that either each pair separates both of the other pairs or else no two
pairs separate each other.

[Hint: In Figure 2.1, does the point H lie inside or outside of the conic k? Al-
ternatively, in Figure 2.2, the auxiliary lines a, q, r, and s divide the real projective
plane into seven regions: four triangles (two of which are finite) and three quadri-
laterals (one of which is finite). Does the center point O lie in a triangle or in a
quadrilateral?]

Exercise 2.1-4 Verify that the three chords h1, h2, and h3 of the conic in Figure 2.1
are concurrent just when the six lines

{{a1,b1}, {a2,b2}, {a3,b3}
}

through O form
a 2-dependent block.
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[Hint: We can choose our coordinate system on the projective plane so that the
point O is the origin and the conic k is the standard parabola Y = X2. The line
through O with slope t then cuts the conic k at the point (X,Y ) = (t, t2). Letting
the scalars ui and vi , for i in [1 . . 3], denote the slopes of the lines ai and bi , it
follows that the chord hi is the line with the equation Y − (ui + vi )X + uivi = 0.
Deduce from this that the three chords are concurrent just when the six slopes are
2-dependent.]

2.2 Generalizing to n > 2

To what extent does this theory generalize to degrees n greater than 2?
Let’s define an unordered n-block — of scalars, points, lines, planes, or what-

ever — to be an unordered (n+1)-tuple of unordered n-tuples. An ordered n-block,
on the other hand, is an unordered (n + 1)-tuple of ordered n-tuples.

It is easy to define n-dependence algebraically, for any n. We say that an un-
ordered n-block of scalars

{{uij }j∈[1..n]

}
i∈[0..n] is n-dependent when the n+1 poly-

nomials
(X − u01)(X − u02) · · · (X − u0n)

(X − u11)(X − u12) · · · (X − u1n)
...

...
...

...

(X − un1)(X − un2) · · · (X − unn)

of degree n that have those n-tuples as their roots are linearly dependent. We can
test this by forming an (n + 1)-by-(n + 1) matrix whose i th row consists of the
elementary symmetric polynomials in the entries ui1 through uin of the i th tuple and
checking whether the determinant vanishes. For example, the unordered 3-block
of scalars

{{ui, vi ,wi}
}

i∈[0..3] is 3-dependent just when∣∣∣∣∣∣∣∣
1 u0 + v0 +w0 u0v0 + u0w0 + v0w0 u0v0w0

1 u1 + v1 +w1 u1v1 + u1w1 + v1w1 u1v1w1

1 u2 + v2 +w2 u2v2 + u2w2 + v2w2 u2v2w2

1 u3 + v3 +w3 u3v3 + u3w3 + v3w3 u3v3w3

∣∣∣∣∣∣∣∣ = 0.

Before we can test for n-dependence geometrically, we first have to decide how
to encode scalars geometrically; we’re going to use the slopes of the hyperplanes in
a pencil of hyperplanes in n-space. Recall that a pencil consists of all of the hyper-
planes that pass through a fixed flat subspace of dimension n−2, which is called the
center of the pencil. So the hyperplanes in a pencil form a one-parameter family,
with slope as the parameter. For example, when n = 2, we test the 2-dependence of
a 2-block of lines in the plane, all passing through a common center point. When
n = 3, we test the 3-dependence of a 3-block of planes in 3-space, all passing
through a common center line. (In this case, where the center of the pencil is a line,
that line is also called the axis.) Let’s say that an n-block of hyperplanes, all in a
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common pencil, is n-dependent just when the slopes of those hyperplanes form an
n-dependent block of scalars. As we discuss in Section 2.5, it doesn’t matter what
scale we use to measure slopes.

It is easy to test for n-dependence geometrically using a curve. The role that is
played by a conic when n = 2 is played, in the general case, by a rational normal
curve of degree n in projective n-space [15, 47]. For example, when n = 3, the
relevant curve is a twisted cubic in 3-space — one example of which is the curve
given parametrically by t 7→ (t, t2, t3). Let

{{αi , βi , γi }
}

i∈[0..3] be an unordered
3-block of planes, all through a common line o. Choose a twisted cubic k that in-
tersects the center line o at two points — that is, so that o is a chord of k. Any
plane through o intersects k at three points: the two points where o intersects k
and one residual intersection. Given a triple of planes {α,β, γ } through o, let A,
B, and C denote the residual intersections of those three planes with the twisted
cubic k, and let η be the plane η := ABC. The block of planes

{{αi , βi , γi }
}

i∈[0..3]
is 3-dependent just when the four planes ηi := Ai BiCi determined by the residual
intersections are concurrent.

But it isn’t at all clear how to take the test for 2-dependence that is based on
complete quadrilaterals and to generalize that into a test for n-dependence. Is there
a projective configuration in n-space that characterizes n-dependence in the same
way that the complete quadrilateral in the plane characterizes 2-dependence? For
example, when n = 3, is there some pattern of collinearities and coplanarities that
we can impose on twelve points in 3-space so that, for any twelve points with those
incidences and for any additional line o, projecting the twelve points from o will re-
sult in twelve planes whose slopes are 3-dependent? Conversely, given any twelve
planes whose slopes are 3-dependent, does there always exist an instance of this
hypothetical configuration that witnesses to that 3-dependence? The main goal of
this monograph is to study such a configuration — one for which cubic analogs of
both the Projection and Witness Theorems hold.

Recall that using a complete quadrilateral to test for 2-dependence breaks some
of the inherent symmetry, which is why we introduced ordered 2-blocks. Since the
symmetry gets broken already when n = 2, it seems likely that it will be broken
also when n > 2. Hence, just as we defined an instance of the complete quadri-
lateral to be an ordered 2-block of points in the plane, we expect an instance of
its cubic analog to be an ordered 3-block of points in 3-space. And we expect the
Witness Theorem in the cubic case to talk about such an instance as witnessing to
the 3-dependence of an ordered 3-block of planes, all in a common pencil.

Exercise 2.2-1 When does the 1-block
{{u0}, {u1}

}
formed by two singletons of

scalars have the property of 1-dependence?
[Answer: When u0 = u1.]

Exercise 2.2-2 Suppose that we fix all but one of the scalars in the (n + 1)-by-n



12 CHAPTER 2. INTRODUCTION

matrix 
u01 u02 . . . u0n

u11 u12 . . . u1n

u21 u22 . . . u2n
...

...
. . .

...

un1 un2 . . . unn


.

Show that there is typically a unique value for the final scalar that makes the rows
of the resulting matrix form an n-dependent block. What can happen in atypical
cases?

[Hint: Consider the cases−1 −1
1 1
0 u

 and

0 0
0 1
0 u

 .
Keep in mind, in the former case, that not all lines have finite slope.]

Exercise 2.2-3 Justify the geometric test for 3-dependence based on a twisted cu-
bic curve, hence generalizing Exercise 2.1-4 to the cubic case.

[Hint: We can choose our coordinate system on projective 3-space so that the
center line o is the Z -axis and the twisted cubic k is given parametrically by the
function t 7→ (t, t2, t3). Note that the line o intersects the cubic k at the origin,
where t = 0, and also at the point at infinity on the Z -axis, where t = ∞. The
equation of a plane through o has the form Y = t X , and we can treat the t in this
equation as the slope of the plane. The plane Y = t X with slope t then has the
point (t, t2, t3) as its residual intersection with the cubic k. Letting ui , vi , and wi ,
for i in [0 . . 3], denote the slopes of the planes αi , βi , and γi , show that the plane
ηi determined by the three residual intersections has the equation

Z − (ui + vi +wi)Y + (uivi + uiwi + viwi)X − uiviwi = 0.

Deduce from this that the four planes (ηi) are concurrent just when the four triples
of slopes are 3-dependent.]

2.3 Configurations versus constructions

Our goal is to find a configuration in 3-space that characterizes 3-dependence in the
same way that the complete quadrilateral in the plane characterizes 2-dependence.
To clarify what that means, we should discuss several things that could be our goal,
but aren’t. For one thing, it is not our goal simply to devise a geometric construc-
tion that tests for n-dependence.

When n = 2, given three pairs of lines through a common point, we can test
them for 2-dependence geometrically as follows: We use five of them to construct
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a complete quadrilateral, as in Exercise 2.1-2, and we then check to see if the sixth
comes out properly. The resulting complete quadrilateral witnesses either to the
2-dependence of the six slopes or to their lack of 2-dependence. The case n = 3 is
similar. Given four triples of planes through a common line, we can use any eleven
of them to construct an instance of the configuration B2,1,1 that witnesses either to
the 3-dependence of the twelve slopes or to their lack of 3-dependence.

But there are lots of constructions that test for n-dependence; devising such a
construction is too easy to be a worthwhile goal. When n = 2, the construction
based on complete quadrilaterals is probably the simplest, and it is hence featured
in textbooks.2 But we make no claim that, when n = 3, the construction based on
the configuration B2,1,1 is the simplest or the best. It may be in the running for the
shortest, but it involves lots of degenerate cases that would require special treat-
ment, as discussed in Section 9.6. Our central interest is the configuration itself,
not the associated construction.

Just how easy is it to test for n-dependence with a construction? The simplest
constructions in the plane are those that can be carried out using only a straight-
edge. There is no standard name for the geometric tool in n-space that is analogous
to a straightedge, but it is clear what it should do; we shall call it a flat-side. (To
carry out a geometric construction in the plane, you look through your pile of scrap
lumber for a strip with a straight edge; to carry out a construction in 3-space, you
look instead for a board with a flat side.) In the plane, a straightedge lets us mark
a line ` in such a way that the unique point common to ` and to a second, marked
line is distinguished as doubly marked. In 3-space, a flat-side lets us mark a plane
π in such a way that the line common to π and to a second marked plane is distin-
guished as doubly marked, while the point common to π and to two other marked
planes is distinguished as triply marked. A flat-side in n-space lets us mark hyper-
planes in an analogous way.

It is well known that addition and multiplication can be carried out geometri-
cally, using a straightedge in the plane. Hence, we can test n-dependence geomet-
rically for any n with just a straightedge, by mimicking the algebraic definition:
Construct the determinant of the (n + 1)-by-(n + 1) matrix — that is, construct a
segment whose length represents that determinant — and test it for zero. We can
shorten the construction quite a bit by moving from the plane to n-space. Instead
of constructing the determinant itself, we set up a coordinate system in n-space, we
construct the n + 1 points whose homogeneous coordinates are given by the rows
of the matrix, and we then use a flat-side to test whether those n+1 row-points lie
on a common hyperplane.

We can devise another construction that tests for n-dependence by exploiting a
rational normal curve of degree n. Of course, with a flat-side as our only tool, we
can’t draw the rational normal curve itself. But there is no need to do so. Using

2Actually, it is the dual construction, based on complete quadrangles, that is generally featured
in textbooks, such as Coxeter [8]. See Section 2.6.
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only a flat-side, we can choose such a curve and we can construct the residual in-
tersections of the n(n+ 1) given hyperplanes with that chosen curve, as discussed
in the following exercises; and that is enough.

Exercise 2.3-1 Implement the test for 2-dependence based on a conic curve — the
one shown in Figure 2.1 — using only a straightedge.

[Hint: Choose four points O ′, P1, P2, and P3 so that no three of the five points
(O,O ′, P1, P2, P3) are collinear. There is a unique projective correspondence be-
tween the pencil of lines through O and the pencil through O ′ in which the line
pi := OPi corresponds to the line p′i := O ′Pi , for i in [1 . .3]. The intersections of
corresponding lines in those two pencils trace out a conic k. Let a′1 be the line in
the O ′ pencil whose cross ratio with respect to (p′1, p′2, p′3) is the same as the cross
ratio of a1 with respect to (p1, p2, p3). The residual intersection A1 of the line a1

with the conic k is the point A1 := a1 ∩ a′1.]

Exercise 2.3-2 Using only a flat-side, implement the test for 3-dependence based
on a twisted cubic curve.

[Hint: Given twelve planes through the line o, choose two lines o′ and o′′ that
are skew to each other and to o, and choose three points P1, P2, and P3 in general
position. There are unique projective correspondences between the three pencils
of planes with axes o, o′, and o′′ in which the planes πi := Span(o, Pi ), π ′i :=
Span(o′, Pi ), andπ ′′i := Span(o′′, Pi ) correspond, for i in [1. .3]. The intersections
π ∩ π ′ ∩ π ′′ of corresponding planes in the three pencils trace out a twisted cubic
through P1, P2, and P3 of which the lines o, o′, and o′′ are chords.]

2.4 Dealing with degeneracies

The claims made in the previous sections are true generically, but some of them
may fail in degenerate cases, where a case is degenerate when some polynomial
relation among the input parameters that usually doesn’t hold happens to hold. For
example, we treated slopes above as finite scalars, and they usually are; but there
do exist lines with infinite slope. There are fundamentally two ways to deal with
a degenerate case: Either we handle it or we outlaw it.

We handle a degenerate case by extending our definitions in some clever way,
after which that case is no longer degenerate. For example, there is a standard way
to handle the degenerate case of lines with infinite slope. We represent a slope, not
as a single scalar u, but as the ratio u↑ : u↓ of two scalars3 u↑ := 1y and u↓ := 1x ,
which are called homogeneous coefficients — ‘homogeneous’ because multiplying
them both by the same nonzero scalar doesn’t change their ratio. Either of the ho-
mogeneous coefficients can be zero, but not both, and the slope of a vertical line is
represented by the ratio u↑ : u↓ = 1 : 0. In this way, we can extend the algebraic

3Which can be euphoniously read ‘u high’ and ‘u low’.
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definition of n-dependence to handle infinities — that is, we can extend it from the
affine line to the projective line. In the quadratic case, the polynomial with the two
ratios u↑ : u↓ and v↑ : v↓ as its two roots is (u↓X − u↑)(v↓X − v↑), and the three
polynomials

(u↓1 X − u↑1)(v
↓
1 X − v↑1) = u↓1v

↓
1 X2 − (u↓1v↑1 + u↑1v

↓
1)X + u↑1v

↑
1

(u↓2 X − u↑2)(v
↓
2 X − v↑2) = u↓2v

↓
2 X2 − (u↓2v↑2 + u↑2v

↓
2)X + u↑2v

↑
2

(u↓3 X − u↑3)(v
↓
3 X − v↑3) = u↓3v

↓
3 X2 − (u↓3v↑3 + u↑3v

↓
3)X + u↑3v

↑
3

are linearly dependent just when∣∣∣∣∣∣∣
u↑1v

↑
1 u↑1v

↓
1 + u↓1v

↑
1 u↓1v

↓
1

u↑2v
↑
2 u↑2v

↓
2 + u↓2v

↑
2 u↓2v

↓
2

u↑3v
↑
3 u↑3v

↓
3 + u↓3v

↑
3 u↓3v

↓
3

∣∣∣∣∣∣∣ = 0. (2.4-1)

In forming this determinant, we dropped the minus signs in the middle column,
as we have been doing all along; we also swapped the first and third columns, to
make the highs come before the lows in each row, as is the case in the ratio u↑ : u↓.

Projective geometry adroitly handles the many degenerate cases that are asso-
ciated with parallelism in a similar way. It extends n-dimensional affine space into
n-dimensional projective space by moving from n affine coordinates (X1, . . . , Xn)

to n+1 homogeneous coordinates [x0, x1, . . . , xn], where Xi = xi : x0. Following
Stolfi [50], we shall use square brackets to delimit the homogeneous coordinates
of a point and angle brackets to delimit the homogeneous coefficients of a hyper-
plane. So the hyperplane 〈c0, c1, . . . , cn〉 passes through the point [x0, x1, . . . , xn]
just when c0x0+c1x1+· · ·+cnxn = 0. Dividing through by the weight coordinate
x0 of the point converts this equation into c0 + c1 X1 + · · · + cn Xn = 0, which is
the inhomogeneous equation of that same hyperplane.

If we don’t know how to handle a degenerate case, we can outlaw it. For exam-
ple, consider defining 2-dependence using a conic curve, as in Figure 2.1. Some
of the degenerate cases that arise are straightforward to handle:

• One of the lines through O, say a1, might be tangent to the conic k — in
which case we set A1 := O.

• The two lines in a pair, say a1 and b1, might coincide — in which case the
chord h1 becomes a tangent.

• Two of the pairs of lines might coincide, say {a1,b1} = {a2,b2} because
a1 = b2 and a2 = b1, causing the two chords h1 and h2 to coincide — in
which case the three chords are bound to concur.

But there is one degenerate case that must simply be outlawed: the case in which
the conic k through the point O factors as the union of two lines.
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Sometimes, it is simpler to outlaw a degenerate case, even though it could be
handled. For example, we want the Projection Theorem to hold; so we must de-
fine the notion ‘complete quadrilateral’ in such a way that projecting the six ver-
tices of any complete quadrilateral, as in Figure 2.2, gives six lines whose slopes
are 2-dependent. We clearly can’t allow all four of the auxiliary lines a, q, r, and
s to coincide and the six points of intersection {(A1, B1), (A2, B2), (A3, B3)} to
vary arbitrarily and independently along that common line. But lesser degenera-
cies wouldn’t hurt: three of the lines being concurrent, two of them coinciding,
even three of them coinciding. Despite this, we shall opt for simplicity — and fol-
low the textbooks — by insisting, as part of our definition of a complete quadrilat-
eral, that no three of its four lines are concurrent. In a similar way, when defining
our cubic analog of the complete quadrilateral, we shall stipulate that every inci-
dence that is not required is forbidden.

In the quadratic Projection and Witness Theorems, there are also issues of de-
generacy about the location of the complete quadrilateral with respect to the cen-
ter point O of the projection. The approach taken in the textbooks is to outlaw
any 2-block of lines in which two lines in different pairs coincide. Exercise 2.4-3
below explains why that prohibition suffices to eliminate all of the troublesome
degeneracies. Adopting that approach and fixing a center point O leads to the fol-
lowing tidy results:

Projection Theorem If none of the four lines of a complete quadrilateral passes
through the center point O, then projecting the three pairs of vertices of that
quadrilateral from O gives an ordered, 2-dependent block of lines in which
no line in any pair coincides with any line in any other pair.

Witness Theorem Conversely, suppose that we are given any ordered, 2-depen-
dent block of lines through O in which no line in any pair coincides with
any line in any other pair. Then, there exists a complete quadrilateral whose
six vertices lie on the appropriate lines and none of whose four lines passes
through O. Furthermore, any two such witnessing quadrilaterals are related
by a unique projective transformation of the plane that fixes the point O and
every line through O.

Note that the two lines in a single pair are allowed to coincide. They do so
precisely when the center point O lies on a diagonal of the complete quadrilateral,
the diagonals of a complete quadrilateral being the three lines that join the opposite
pairs of vertices. Indeed, the center point O may lie at the intersection of two of the
three diagonals, as shown in Figure 2.4, and this is an important special case. In
the pencil of lines through a point O, a line f is called the harmonic conjugate [10]
of a line g with respect to two distinct lines a and b just when the block of lines{{a,a}, {b, b}, { f, g}} is 2-dependent.

In the cubic Projection and Witness Theorems, degeneracy is a harder problem:
There are more degenerate cases, they are harder to recognize, and they cause a
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O

a

b

f g

Figure 2.4: Two pairs of lines {a,b} and { f, g} through a common point O that
form a harmonic set; that is, each line of each pair is the harmonic conjugate of its
mate with respect to the two lines of the other pair.

wider variety of troubles. Note that it is easy to recognize the 2-dependent blocks
that might cause trouble, because, as shown in Exercise 2.4-3, they all have at least
two entries that are equal. In contrast, a 3-dependent block can cause trouble even
when all twelve of its entries are distinct — see Exercise 2.4-4 for an example.
We discuss some of the degenerate cases of the cubic Projection and Witness The-
orems in Section 9.6, and we speculate on how they might be handled. But, in
proving those theorems, we take the coward’s way out by restricting ourselves to
the generic case — those instances in which no troublesome degeneracies arise.

Exercise 2.4-2 Convince yourself that an ordered block {(Ai , Bi )}i∈[1..3] of points
in some projective space forms a complete quadrilateral in the strict sense — that
is, where we forbid every incidence that is not required — just when

• none of the
( 6

2

) = 15 pairs of points coincides;

• every one of the
( 6

4

) = 15 quadruples of points is coplanar; and

• among the
( 6

3

) = 20 triples of points, just the following four are collinear:
{A1, A2, A3}, {A1, B2, B3}, {B1, A2, B3}, and {B1, B2, A3}— those four cor-
responding to the four auxiliary lines a, q, r, and s in Figure 2.2.

Exercise 2.4-3 Suppose that u v

w x
y z


is a 2-dependent block of scalars; so the determinant

1 :=
∣∣∣∣∣∣
1 u + v uv
1 w + x wx
1 y + z yz

∣∣∣∣∣∣
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is zero. If either entry in some pair equals either entry in some other pair, show that
a second equality also holds, and show that any entry not involved in either equal-
ity can be varied freely, while holding all other entries fixed, without destroying
the 2-dependence. Conversely, if there exists any entry that can be varied freely
without destroying the 2-dependence, show that some entry in some pair equals
some entry in some other pair.

[Hint: For the first part, we can assume without loss of generality that u = w,
in which case the determinant1 factors as1 = (x−v)(y−u)(z−u). Since1 = 0,
some other equality must hold, and any entry not involved in either equality can
be varied freely.

For the second part, solving the equation1 = 0 for z yields

z = uvw + uvx − uvy +wxy − uwx − vwx

xy +wy −wx + uv − vy − uy
.

Suppose that z can be varied freely, which means that both the numerator N and
denominator D of that fraction are zero. It then follows that

(w + x − u − v)N − (wx − uv)D = (w − u)(w− v)(x − u)(x − v) = 0,

so some entry in the first pair equals some entry in the second pair.]

Exercise 2.4-4 Note that, in the 2-dependent block0 1
0 1
0 1

 ,
we can vary both of the elements in any single row freely and independently, with-
out destroying the 2-dependence. Show that the analogous property holds of the
following 3-dependent block, even though all of its entries are distinct:

1 9 −10
−1 −9 10
5 6 −11
−5 −6 11


That is, show that the 4-by-4 matrix formed from the coefficients of the cubic poly-
nomials with those triples of roots not only has determinant zero, but actually has
rank only 2.

2.5 Proving the quadratic case

Now that we know precisely what the quadratic cases of the Projection and Witness
Theorems say, we should discuss how to prove them.
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The Projection and Witness Theorems do not appear, as such, in standard texts
on projective geometry, for the excellent reason that 2-dependence is an algebraic
notion, not a geometric one. But those books do provide pieces which we can as-
semble into a proof. Coxeter [12] shows that the six lines

{{ai,bi }
}

i∈[1..3] through a
point O are the projections of the six vertices of a complete quadrilateral just when
there exists an involution — that is, a self-inverse projectivity — of the pencil of
lines through O that swaps ai with bi , for each i. Maxwell [33] shows that such an
involution exists precisely when the three chords of the conic in Figure 2.1, that is,
the lines hi := Ai Bi for i in [1. .3], are concurrent. And we already showed, in Ex-
ercise 2.1-4, that the three chords (hi) are concurrent precisely when the six slopes
have the algebraic property of 2-dependence. That chain of reasoning suffices to
prove the Projection Theorem and the existence half of the Witness Theorem.

That assembled proof has a couple of unfortunate aspects: It doesn’t establish
the uniqueness half of the Witness Theorem, and it relies on the concept of an in-
volution — a concept that would be somewhat clumsy to generalize to the cubic
case. Fortunately, it isn’t hard to prove the Projection Theorem and both halves
of the Witness Theorem directly. Let’s do that, since proving the quadratic case
directly will help to prepare us for proving the cubic case, in Chapter 9.

We begin with an overdue lemma about n-dependence. When we are testing
an n-block of hyperplanes for n-dependence, it doesn’t matter what scale we use
to measure the slopes of the hyperplanes in that pencil; that is, we can take any
three distinct hyperplanes in that pencil — whichever ones we like — and assign,
to them, the slopes 0, 1, and∞.

Lemma 2.5-1 The relation of n-dependence is projectively invariant, meaning the
following. Let

{{uij }j∈[1..n]

}
i∈[0..n] be any unordered n-block, and form a derived

n-block
{{vi j }j∈[1..n]

}
i∈[0..n] by setting

vi j := auij + b

cuij + d
,

where a, b, c, and d are fixed scalars with ad − bc nonzero. Then, the derived
block is n-dependent just when the original block is.

Proof If we rewrite each entry uij of the original block as a ratio u↑i j : u↓i j of ho-
mogeneous coefficients, we can express the corresponding entry vi j of the derived
block as the ratio v↑i j : v↓i j , where v↑i j := au↑i j + bu↓i j and v↓i j := cu↑i j + du↓i j .

The original block is n-dependent just when the polynomials

Ui (X) := (u↓i1 X − u↑i1) · · · (u↓in X − u↑in),

for i in [0 . . n], are linearly dependent. In a similar way, the derived block is
n-dependent just when the polynomials

Vi(Y ) := (v↓i1Y − v↑i1) · · · (v↓in Y − v↑in)
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are linearly dependent. But we have

Vi(Y ) = (a − cY )n Ui

(
dY − b

a − cY

)
,

and neither substituting the expression (dY − b)/(a − cY ) for the variable X nor
multiplying through by the fixed polynomial (a−cY )n has any effect on the linear
dependence. tu

Theorem 2.5-2 (Projection Theorem, quadratic case) Let O be any point in the
plane, and let the six points {(Ai , Bi )}i∈[1..3] be the vertices of any complete quadri-
lateral, none of whose four lines passes through O. The six lines {(ai ,bi )}i∈[1..3]

joining O to the vertices of the quadrilateral then form a block that is 2-dependent
and in which no line in any pair coincides with any line in any other pair.

Proof In order for a line in one pair to coincide with either of the two lines in
either of the other two pairs, the center O of the projection would have to lie on
one of the four lines of the quadrilateral, which is forbidden. So it suffices to show
2-dependence, which we shall do using analytic geometry, after choosing our co-
ordinate system with some care.

The four points B1, B2, B3, and O are four points in the plane, with no three
collinear. So we can choose our coordinate system so that those four points have
the homogeneous coordinates

B1 = [1,0,0]

B2 = [0,1,0]

B3 = [0,0,1]

O = [1,1,1].

That makes three of the four lines of the quadrilateral have simple coefficients. Re-
call that, by our convention, the point with homogeneous coordinates [w, x, y] lies
on the line with homogeneous coefficients 〈c,d, e〉 just when cw + dx + ey = 0.
So the line q = A1 B2 B3 of the quadrilateral has the homogeneous coefficients
q = 〈1,0,0〉, while we similarly have r = B1 A2 B3 = 〈0,1,0〉 and s = B1 B2 A3 =
〈0,0,1〉. The fourth line a = A1 A2 A3 of the quadrilateral, however, has homoge-
neous coefficients about which we know very little; let’s say that a = 〈 f, g,h〉.

It is easy to calculate the homogeneous coordinates of the points (Ai ) in terms
of the homogeneous coefficients f , g, and h of the line a; we have

A1 = [0,h,−g]

A2 = [−h,0, f ]

A3 = [g,− f,0].



2.5. PROVING THE QUADRATIC CASE 21

We can then calculate the homogeneous coefficients of the six lines that connect
the center point O to the six vertices of the quadrilateral:

a1 = 〈−g − h, g,h〉 b1 = 〈0,1,−1〉
a2 = 〈 f,− f − h,h〉 b2 = 〈−1,0,1〉
a3 = 〈 f, g,− f − g〉 b3 = 〈1,−1,0〉.

Our next task is to choose a definition of slope, in the pencil of lines through
the center point O; by Lemma 2.5-1, it doesn’t matter which definition we choose.
Let’s adopt, as our measure of slope, the first homogeneous coefficient divided by
the last — so the three distinct lines b1, b2, and b3 have the slopes 0, −1, and∞.
(The middle coefficient doesn’t appear explicitly in this recipe, but it is not being
ignored; we apply this recipe only to lines through the point O, whose three ho-
mogeneous coefficients sum to zero.)

We then test for 2-dependence by plugging those slopes into the 3-by-3 deter-
minant in Equation 2.4-1, getting∣∣∣∣∣∣

0 g + h −h
− f f − h h

f − f − g 0

∣∣∣∣∣∣ ,
and simple algebra shows that this determinant is identically zero. tu
Theorem 2.5-3 (Witness Theorem, quadratic case) Let O be any point in the
plane and let {(ai,bi )}i∈[1..3] be any ordered, 2-dependent block of lines through
O in which no line in any pair coincides with any line in any other pair. Then,
there exist complete quadrilaterals {(Ai , Bi )}i∈[1..3], each of whose six vertices lies
on the corresponding line and none of whose four lines passes through O. Further-
more, any two such quadrilaterals are related by a projective transformation of the
plane that fixes O and every line through O.

Proof Since no line in any pair coincides with any line in any other pair, we de-
duce from Exercise 2.4-3 that the condition of 2-dependence determines each line
uniquely, given the other five lines. In particular, the line a3 is so determined.

To construct a witnessing quadrilateral, we proceed as in Exercise 2.1-2. We
choose a point Bi on the line bi , for each i in [1. .3], being careful only that the three
points B1, B2, and B3 are not collinear and that none of them coincides with O. We
then construct the points A1 := a1 ∩ B2 B3 and A2 := a2 ∩ B1 B3, neither of which
can possibly coincide with O. Since the lines a1 and a2 are distinct, we deduce
that the line a := A1 A2 does not pass through O. We construct the point A3 :=
a ∩ B1 B2 and the line a′3 := OA3. The six points {(A1, B1), (A2, B2), (A3, B3)}
form a complete quadrilateral, none of whose four lines passes through O. Hence,
from the Projection Theorem, it follows that the ordered block of lines {(a1,b1),

(a2,b2), (a′3,b3)} is 2-dependent. Since the relation of 2-dependence determines
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o

H1 H2 H3
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k

Figure 2.5: A 2-block of points along a line o whose 2-dependence is demonstrated
by the collinearity of the three points (Hi), each of which is the intersection of a
pair of tangents of a conic curve k, of which the line o is also a tangent.

the line a3 uniquely, given the other five lines, the lines a3 and a′3 must coincide,
so the quadrilateral that we have constructed is a witness.

The only freedom of choice that we had, in carrying out this construction, was
to select the point Bi on the line bi , for i in [1 . .3]. It follows that every witnessing
quadrilateral can be produced by that construction, provided that the points (Bi) are
chosen correctly. If {(A′i , B′i )}i∈[1..3] and {(A′′i , B′′i )}i∈[1..3] are any two witnessing
quadrilaterals, the unique projective transformation of the plane that maps the four
points (O, B′1, B′2, B′3) to (O, B′′1 , B′′2 , B′′3 ) fixes O and every line through O and
also carries the first witnessing quadrilateral to the second. tu

2.6 The dual point of view

Figures 2.1 and 2.2 show two geometric tests of 2-dependence, one based on a
conic curve and the other based on a complete quadrilateral. In both cases, the six
scalars being tested are encoded as the slopes of six lines through a common point.
Recall that duality in the projective plane interchanges the concepts of ‘point’ and
‘line’. The duals of the situations in Figures 2.1 and 2.2 — shown in Figures 2.5
and 2.6 — are also geometric tests of 2-dependence. But the six scalars being
tested in Figures 2.5 and 2.6 are the coordinates of six points along a common line.

In Figure 2.5, we have an unordered 2-block
{{A1, B1}, {A2 , B2}, {A3 , B3}

}
of points, all lying on a common line o. There is a conic k of which o is a tan-
gent line and there are three collinear points H1, H2, and H3 with the property
that the tangents ai and bi from Hi to the conic k intersect o at Ai and Bi . In Fig-
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A
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S

Figure 2.6: The same 2-block of points along the same line o as in the previous fig-
ure, but here demonstrated to be a quadrangular set by the existence of the complete
quadrangle with vertices (A, Q, R, S).

ure 2.6, we interpret the same six points along the same line o as an ordered 2-block
{(A1, B1), (A2, B2), (A3, B3)}. There are four auxiliary points A, Q, R, and S with
the property that the points {(Ai , Bi )}i∈[1..3] are located where the line o stabs the
lines

a1 := AQ b1 := RS

a2 := AR b2 := QS

a3 := AS b3 := QR.

The four auxiliary points and the three pairs of opposite lines joining them are
called a complete quadrangle.4 Three pairs of points on a common line have the
conic-based property of Figure 2.5 if and only, as in Figure 2.6, they are a cross
section of a complete quadrangle, and they are then called a quadrangular set.

Figures 2.5 and 2.6 geometrically characterize the same algebraic notion of
2-dependence that is characterized in Figures 2.1 and 2.2: If we choose any projec-
tive coordinate system on the line o, the six points

{{A1, B1}, {A2 , B2}, {A3 , B3}
}

form a quadrangular set just when their coordinates along o form a 2-dependent
block of scalars. Thus, it makes no essential difference which of the dual geomet-
ric situations we discuss. The situation in Figures 2.5 and 2.6 is the one generally
presented in textbooks. For our purposes, however, it is more convenient to talk
about the situation in Figures 2.1 and 2.2.

Why is that? Our goal is to study projective configurations that characterize
n-dependence, which means that we have to make a choice. As in Figure 2.2, we
can test the n-dependence of the slopes of an n-block of hyperplanes by requir-
ing that those hyperplanes result from projecting the points of some instance of
a configuration C. Of course, the configuration C will involve various flat sub-
spaces of various dimensions; but it must involve an n-block of points, and we

4Indeed, Figure 2.6 is quite similar to Figure 0.1, except that the point P has been relabeled A,
the line m has been relabeled o, and the separation properties — as discussed in Exercise 2.1-3 —
of the pairs {Ai , Bi} are different. In Figure 2.6, each pair separates both of the other pairs, while,
in Figure 0.1, no two pairs separate each other.
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are likely to think of its other flats as built up by joining certain subsets of those
points. Alternatively, as in Figure 2.6, we can test the n-dependence of the coordi-
nates of an n-block of points by requiring that those points result from stabbing the
hyperplanes of some instance of the dual configuration C∗. The configuration C∗

also involves various flats of various dimensions; but it must involve an n-block
of hyperplanes, and we are likely to think of its other flats as formed by intersect-
ing certain subsets of those hyperplanes. The two situations are dual, and hence
completely equivalent. But it is somewhat simpler to talk about building a config-
uration by working up, starting from an n-block of points, rather than by working
down, starting from an n-block of hyperplanes. This is especially true when ma-
troids are involved, since the tradition is to represent a matroid by mapping the
elements of its ground set to points, rather than to hyperplanes.

Don’t get confused between the duality of projective geometry and the duality
of matroid theory. The duality of projective geometry interchanges points and hy-
perplanes, as we have been discussing. The duality of matroid theory associates,
with each matroid of rank r on s points, a dual matroid of rank s−r on those same
s points. We are going to define a family of matroids, and each of those matroids
does have a dual. But we shall have no further occasion to mention those dual ma-
troids in this monograph. As that fact suggests, we aren’t going to be appealing
to any deep results of matroid theory; instead, we use matroids merely as a formal
framework in which to talk about projective configurations.

Exercise 2.6-1 Given a 3-block
{{αi , βi , γi }

}
i∈[1..4] of planes in 3-space, all pass-

ing through a common line o, we discussed in Section 2.2 how to test the resulting
block of slopes for 3-dependence geometrically, using a twisted cubic curve. Du-
ally, given a 3-block

{{Ai , Bi ,Ci }
}

i∈[1..4] of points in 3-space, all lying on a com-
mon line o, describe how to test the resulting block of coordinates for 3-depen-
dence geometrically, using a twisted cubic.

[Hint: Choose your twisted cubic so that o is the line where two osculating
planes intersect.]

2.7 Auxiliary points in configurations

We can now clarify our goal a bit further. We want to find a configuration in 3-space
that characterizes the notion of 3-dependence in the same way that the complete
quadrilateral characterizes 2-dependence. It’s going to turn out that we don’t want
our goal configuration to include any auxiliary points, and we don’t want its twelve
key points to be coplanar.

Figure 2.7 shows the ten points and seven lines of Figure 2.6, with the six points
along the line o further projected from a new point O. Since the coordinates of the
six points {(Ai , Bi )}i∈[1..3] along o form a 2-dependent block, the slopes of the six
lines {(ai,bi )}i∈[1..3] through O also form a 2-dependent block.



2.7. AUXILIARY POINTS IN CONFIGURATIONS 25

A1

A2

A3 B1

B2
B3

A
Q

R

S

O

a1

a2

a3

b1
b2

b3

Figure 2.7: A configuration with six, collinear key points and four auxiliary points
that tests 2-blocks of lines for 2-dependence.

Compare Figure 2.7 with Figure 2.2. In both cases, we have projected some six
points of a configuration from a new point O, getting six lines through O whose
slopes are 2-dependent. Thus, we can think of the ten solid points and the seven
solid lines in Figure 2.7 as forming a configuration that, like the complete quadri-
lateral, characterizes 2-dependence.

Are the Projection and Witness Theorems true for the solid configuration in
Figure 2.7? The Projection Theorem holds, as does the existence half of the Wit-
ness Theorem. But the uniqueness half of the Witness Theorem fails. It fails be-
cause Figure 2.7 involves the four auxiliary points (A, Q, R, S), in addition to
the six key points whose projections have 2-dependent slopes. We take this as
evidence that auxiliary points are bad, and we hereby restrict our search to con-
figurations in 3-space that have no auxiliary points. That is, we demand that the
twelve key points of our goal configuration be constrained only by collinearities
and coplanarities among themselves, without any help from auxiliary points.

The configuration in Figure 2.7 cheats in a second way: Its six key points are
collinear. This is cheating because it trivializes the projection operation. As we
move the projection point O in Figure 2.7 around, the resulting block of slopes
does vary. But it follows trivially, from the 2-dependence of the block of coordi-
nates of the key points along their common line, that the resulting block of slopes
is always 2-dependent. For the complete quadrilateral in Figure 2.2, where the
key points are not collinear, moving the projection point O makes the block of
slopes vary in a richer way. To avoid this second flavor of cheating, we restrict our
search to configurations in 3-space whose twelve key points are not collinear or
even coplanar, but instead span all of 3-space.
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Figure 2.8: A configuration with six, collinear key points and eight auxiliary points
that could test 2-blocks of lines for 2-dependence.

Exercise 2.7-1 There are lots of configurations that characterize 2-dependence, if
we allow the six key points to be collinear and we allow auxiliary points to exist.
Figure 2.8 shows an interesting example. The auxiliary points P1 through P4 are
collinear, as are the auxiliary points Q1 through Q4. The six key points are the
cross-joins Aij := Pi Qj ∩ Pj Qi , for 1 ≤ i < j ≤ 4, which we also require to be
collinear. (This requirement implies that the two quadruples (P1, P2, P3, P4) and
(Q1, Q2, Q3, Q4) have the same cross ratio.) Prove that the 2-block

{{A12, A34},
{A13, A24}, {A14, A23}

}
formed by the six key points is 2-dependent.

By the way, the common line a on which all six of the key points lie is called
the axis [11] of the projectivity from the line p to the line q that maps the four
points (P1, P2, P3, P4) to the four points (Q1, Q2, Q3, Q4).

[Hint: One strategy applies Pappus’s Theorem to the hexagon P1 Q3 P4 Q2 P3 Q4

to deduce that the three points G := P1 Q3 ∩ P3 Q2, H := P1 Q4 ∩ P4 Q2, and A34

are collinear. Then consider the complete quadrangle whose four vertices are P1,
Q2, G, and H . ]

2.8 Matroids

When is it that six points form an instance of the complete quadrilateral? Any four
of the six points must be coplanar and certain triples of them must be collinear. In
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addition, because we have agreed to forbid every incidence that is not required, the
remaining triples must not be collinear and no two of the six points may coincide.
Thus, we can think of the complete quadrilateral as a set of abstract points and a
rule that says, for each subset of those points, whether the k points in that subset
must or must not lie in a common (k − 2)-flat.5 In this monograph, we shall refer
to any such rule as a projective configuration. Warning: In classical projective ge-
ometry, such a rule has to have lots of other properties, including a high degree of
numeric symmetry, before it can be called a configuration. We discuss that narrow
sense of the word ‘configuration’ in Section 4.5.

In describing the incidences that are required by a configuration, there is no
need to use separate terms, such as ‘collinear’ and ‘coplanar’, for sets of different
sizes; the single term ‘incident’ will do for all. Call k points in some projective
space mutually incident when they lie in a common (k − 2)-flat. Algebraically,
this means that the k vectors of homogeneous coordinates are linearly dependent.
So four points are mutually incident when they are coplanar; three points, when
they are collinear; two points, when they coincide; and one point, when it is inde-
terminate — that is, all of its homogeneous coordinates are equal to zero.6 When
k points are not mutually incident, we shall call them mutually skew.

Note that every superset of a mutually incident set is also mutually incident; for
example, if the three points A, B, and C are collinear, then the four points A, B, C,
and D must be coplanar. To make this property hold also when the smaller set is
empty, we make the convention that the zero points in the empty set ∅ are mutually
skew, rather than mutually incident; this agrees with the standard convention that
the empty set of vectors is linearly independent.

An instance of a configuration in some projective space maps each abstract
point of the configuration to a concrete point in that projective space so that pre-
cisely the required incidences hold. Note that, since we have defined the notion of
a configuration quite broadly, it is easy to come up with configurations that have
no instances. For example, one way to guarantee that no instances exist is to fool-
ishly require that the set of points S be mutually incident while forbidding the set
T from being mutually incident, for some T ⊃ S. Another way is to foolishly
require that the empty set ∅ be mutually incident.

We are mostly interested in configurations that do have instances. Hence, when

5We use the term ‘m-flat’ to mean a flat subspace of dimension m; thus, a line is a 1-flat and a
plane is a 2-flat. Be warned that many authors writing about matroids use ‘m-flat’ to mean a flat of
rank m, which has dimension m − 1.

6It is often desirable, as Stolfi [51] points out, to augment projective space with a unique null
object of each dimension. The traditional names ‘indeterminate point’, ‘indeterminate line’, and so
forth for these null objects have the advantage that they encode the dimension in a very natural way.
Using the term ‘indeterminate point’ has the severe disadvantage of making it forever afterwards
unclear, when we assume that P is a point in a projective space, whether we are allowing P to be
indeterminate or not. In this monograph, fortunately, the indeterminate point arises only while we
are reviewing matroids and their representations. It never arises thereafter because the particular
matroids that we define have no single-element dependent sets — that is, no loops.
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designing our configurations, it behooves us to avoid the two sorts of foolishness
just mentioned. There is a third, less obvious sort of foolishness that we should
also avoid, and any configuration that avoids all three is called a matroid. More
formally, as we review in Chapter 3, a matroid is a configuration that satisfies a
certain three axioms. Those axioms are not strong enough to guarantee that every
matroid has instances; but they do eliminate three sorts of foolishness, at least, and
they thereby ensure that the combinatorial structure of the configuration has some
nice properties. What we are calling an instance of a configuration is called, in ma-
troid theory, a representation of the matroid. Not every matroid is representable;
but every configuration that has any instances is a representable matroid.

The cubic analog of the complete quadrilateral, which is the configuration for
which we are searching, turns out to correspond to a particular representable ma-
troid, which we shall call B2,1,1. As that fancy name suggests, the matroid B2,1,1

belongs to a family of matroids: the budget matroids, which we define in Chap-
ter 4. There is a budget matroid Bb1,...,bk associated with each partition b = b1 +
· · · + bk of an integer b into nonnegative parts, at least two of which are positive.
The complete quadrilateral is the budget matroid B2,1 — and hence that matroid
characterizes 2-dependence. In an analogous way, the matroid B2,1,1 characterizes
3-dependence. Unfortunately, this pattern doesn’t continue: The matroid B2,1,1,1

characterizes some property that is stronger than 4-dependence.
Each of the parts bj in the partition b = b1 + · · · + bk that determines the

budget matroid Bb1,...,bk actually plays a double role. From the point of view of
matroid theory, there is no reason not to separate those two roles, assigning them
to independent parameters bj and dj . Chapter 5 does this, thereby defining a larger
family of matroids, which we call the budgetary matroids. From a geometric point
of view, however, this generalization seems to be of little value. Indeed, many of
the budgetary matroids turn out not to be representable at all.

The representability of the budget matroids makes for a happier story. If the
budget matroid Bb1,...,bk is representable, it is fairly easy to see that the budget ma-
troids that result from reducing or eliminating one or more parts in the partition
b = b1 + · · · + bk are also representable. So, in proving representability, the easy
cases are those with few parts and with small parts. In Chapter 6, we show that ev-
ery budget matroid of the form Bm,n, with precisely two parts, is representable over
the rational numbers and hence over every field of characteristic zero. In Chapter 7,
we show the same result for the budget matroids of the form Bm,1,1. Neither proof
is very difficult, but both are fairly long. The latter proof involves a theorem that
can be interpreted as generalizing Pappus’s Theorem to higher dimensions.

Since the budget matroid Bm,1,1 is representable for every positive m, the par-
ticular matroid B2,1,1 is representable. Unfortunately, the scheme that we develop
for constructing representations of the matroids Bm,1,1 in Chapter 7 doesn’t seem to
be helpful in studying the relationship between the matroid B2,1,1 and the concept
of 3-dependency. To get a handle on that relationship, we need a different con-
struction, one that makes its choices in a different order. That second construction
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is based on null systems.

Exercise 2.8-1 Let P be a finite set of points in a projective space. Show that the
points in P are mutually skew just when, for all ways of partitioning P into two
subsets P = Q∪ R, the flats Span(Q) and Span(R) are skew in the standard sense
of the word ‘skew’ — that is, they do not meet.

2.9 Null systems

The Principle of Duality in projective geometry tells us that the entire structure
of projective n-space is preserved if we interchange, for each k, the notion of a
k-flat with the notion of an (n− k − 1)-flat, provided that we also interchange the
notion ‘lies in’ with the notion ‘passes through’. If S is a projective n-space, its
dual space, written S∗, is the n-space whose points are the hyperplanes of S, and
vice versa. The double dual S∗∗ is thus S, once again.

A polarity is a self-inverse (or involutive) projective transformation from a pro-
jective space S to its dual S∗. For example, if S is a plane, a polarity maps each
point P of S to a line P∗ of S and maps each line ` to a point `∗ in such a way that:

• For all points P, we have P∗∗ = P.

• For all lines `, we have `∗∗ = `.
• For all points P and lines `, the point P lies on the line ` if and only if the

line P∗ passes through the point `∗.

The line P∗ is called the polar line of the point P in the chosen polarity, and the
point `∗ is called the ‘polar point’ or pole of the line `. In 3-space, a polarity maps
a point P to its polar plane P∗, a line ` to its polar line `∗, and a plane π to its
‘polar point’ or pole π∗.

Polarities come in two distinct types, called — somewhat confusingly — polar
systems and null systems [23].

Polar systems are the ones most often discussed in textbooks [8, 48];. They are
intimately related to quadric hypersurfaces, and we are going to review this rela-
tionship algebraically in Section 8.1. For now, let’s recall the geometric intuition
by considering a nondegenerate conic k in the real projective plane. Given any
point P outside of the conic k, there are two tangents to k that pass through P, and
there is a unique line P∗ that joins the two points of tangency. Conversely, given
any line ` that intersects the conic at two points, we can intersect the tangents at
those two points to get back to the point `∗. This mapping from P to P∗ can be
extended into a polarity on the entire plane, and such polarities are called polar
systems. Note that, in the polar system associated with a conic, a point P lies on
its own polar line P∗ just when P lies on the conic.
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In 3-space, it is nondegenerate quadric surfaces that have associated polar sys-
tems. The polar plane of a point P is the plane P∗ containing all of the points of
the quadric at which the tangent cone from P to the quadric touches the quadric —
a point P on the outside of a non-ruled quadric, such as an ellipsoid, is the easiest
case to visualize. Just as in the planar case, a point P lies on its polar plane P∗ just
when P lies on the quadric.

Null systems are a different type of polarity, perhaps even prettier than polar
systems. But they don’t get talked about very often, largely because they exist only
in spaces of odd dimension — so there are no null systems in the plane. The distin-
guishing feature of a null system is that every point P lies on its polar hyperplane
P∗, not just the points on some quadric hypersurface.

One geometric situation in 3-space in which null systems arise is the study of
twisted cubic curves. Given a twisted cubic and given some point P, there are at
most three points on the cubic at which the osculating plane to the cubic passes
through P. When there are three such points, the plane P∗ that they determine
always passes through P; for further discussion of this fascinating fact and its re-
lationship to the notion of harmonic conjugacy, see Exercise 9.5-2. This mapping
from the point P to the plane P∗ can be extended to a null system on the entire
3-space, and thus twisted cubics are one source of null systems.

In Chapter 8, we review polarities in general, using linear algebra, and we show
that every polarity is either a polar system or a null system. We show how to define
a null system in 3-space by using a skew-Pappian hexagon: a hexagon whose ver-
tices lie, alternately, on two skew lines. In the special case in which those two lines
are both coordinate axes, we give explicit formulas for computing in the associated
null system.

Exercise 2.9-1 Suppose that the point P lies inside the nondegenerate conic k in
the real projective plane. Give several recipes for finding the line P∗ that is polar
to P in the polar system associated with k.

[Answer: One recipe is to find the two conjugate, complex lines through P that
are tangent to the complexification of k. The line P∗ is the real line that joins the
two conjugate, complex points of tangency. Alternatively, we can stick to the real
numbers by drawing any two lines ` and m through P, each of which must intersect
the conic k at two points. The polar P∗ is the line joining `∗ to m∗.]

2.10 The cubic case and beyond

By exploiting null systems, we can construct representations of the budget matroid
B2,1,1 in a different way, a way that helps to clarify the relationship with the con-
cept of 3-dependency. Chapter 9 uses this approach to prove the cubic analogs of
the Projection Theorem and the Witness Theorem, thus verifying that the budget
matroid B2,1,1 does indeed characterize 3-dependence.
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1&2: Introduction

3: Matroids

4: Budget matroids

5: Budgetary matroids

6: Bm,n

7: Bm,1,1

8: Null systems

9: B2,1,1

10: B1,1,1,1

11: Open questions

Figure 2.9: The dependencies between the chapters in this monograph.

As it happens, our machinery based on null systems also yields a way to con-
struct representations of the budget matroid B1,1,1,1, as we discuss in Chapter 10.

We close in Chapter 11 by discussing some open questions.
Figure 2.9 gives a rough indication of the dependencies between the chapters

in this monograph. The most significant choice comes after Chapter 4, at which
point a reader might reasonably jump to any one of following four chapters.





Chapter 3

A review of matroids

3.1 The axioms

We shall define matroids by talking about their independent sets — in particular, by
giving the axioms that the family of independent sets must satisfy. When matroid
theory is applied to the study of projective configurations, the word ‘independent’
means ‘required to be mutually skew’, while ‘dependent’ means ‘required to be
mutually incident’.

A matroid is a finite set G, called the ground set, together with a family I of
subsets of G, called the family of independent sets, subject to the following three
axioms:

Empty-Set Axiom The empty set is independent: ∅ ∈ I .

Subset Axiom Every subset of an independent set is independent: If Y ∈ I and
X ⊆ Y , then X ∈ I .

Augmentation Axiom Given two independent sets of different sizes, there is al-
ways an element of the larger, not already in the smaller, that can be added
to the smaller without destroying its independence: If X ∈ I and Y ∈ I
with |Y | > |X |, then there exists e ∈ Y \ X such that X ∪ {e} ∈ I . (Note
that we use a backslash to denote the operation ‘set minus’.)

We claimed, in Section 2.8, that any configuration that has any instances is a
matroid. In support of this claim, we pointed out that the Empty-Set Axiom and
the Subset Axiom must hold of any such configuration. To finish the job, note
that the Augmentation Axiom holds as well. For example, suppose that the sets
X = {P, Q, R} and Y = {A, B,C, D} are both independent in some instance of a
configuration. Then, the four points A, B, C, and D do not lie in any single plane,
so at least one of them must lie outside of the plane PQR; that one can be added
to the set X without destroying its independence.

33
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3.2 Elementary notions

One of the pretty things about matroids is that there are simple systems of axioms
that describe them from lots of different points of view. So far, we have been talk-
ing about a matroid in terms of its independent sets. Alternatively, we could talk
about its bases, its circuits, its rank function, its flats, its spanning sets, or what
have you. We shan’t be needing those other axiom systems, but we shall be using
some of the concepts on which they are based. For more about these topics, see
Chapter 1 of Oxley [37].

Let S be any subset of the ground set of a matroid M — so S is not necessarily
independent. An independent subset T ⊆ S is called maximal when adding any
element of S \ T to T would destroy its independence. Given two independent
subsets X ⊆ S and Y ⊆ S of different sizes, the Augmentation Axiom tells us
that the smaller cannot be maximal; so all of the maximal, independent subsets of
a set S have the same cardinality. That common cardinality is called the rank of
the set S. For example, in the complete quadrilateral shown in Figure 2.2, both the
independent set {A1, A2} and the dependent set {A1, A2, A3} have rank 2.

In the special case where the set S is the entire ground set of the matroid, there
is some special terminology. A maximal independent subset of the entire matroid
is called a base, and the common cardinality of all of the bases is called the rank of
the matroid. For example, the complete quadrilateral is a matroid of rank 3, with
{B1, B2, B3} and {A1, A2, B1} as two of its bases.

Next, we turn from maximal independent sets to minimal dependent sets. A
dependent set in a matroid is called a circuit when removing any element from
it would destroy its dependence.1 In a typical matroid, there are circuits of vari-
ous cardinalities; for example, in the complete quadrilateral once again, the sets
{A1, A2, A3} and {A1, A2, B1, B2} are both circuits.

A subset of a matroid is called a flat when adding any element to it would in-
crease its rank. The entire matroid is trivially a flat, whose rank equals the rank
of the matroid. A hyperplane is a flat whose rank is one less than the rank of the
matroid, while the words line and plane are used for flats of ranks 2 and 3. For
example, in the complete quadrilateral, the set {A1, A2, A3} is both a line and a
hyperplane.

It follows from the axioms that the intersection of any two flats is always a flat,
so there is a unique smallest flat containing an arbitrary set S. That flat is called the
span of S. For example, in the complete quadrilateral, the span of the set {A1, A2}
is the line {A1, A2, A3}. Another way to define a base is as a minimal set whose
span is the entire matroid. Another way to define a hyperplane is as a maximal set
whose span is less than the entire matroid.

1While we are using matroids to encode the incidence patterns of points in projective configu-
rations, they are used also to encode the cycle structure of graphs, and that latter context is where
the term ‘circuit’ comes from.
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Figure 3.1: A complete quadrangle, together with its three diagonal points.

3.3 Representations

A representation of a matroid M is a function that maps the elements of the ground
set of M to points in some projective space in such a way that a set of k elements is
independent precisely when the k points that represent those elements are mutually
skew — that is, when the k vectors of homogeneous coordinates of those points are
linearly independent.

A representation of a matroid is allowed to map certain of its elements to the
indeterminate point — the null object of dimension 0, all of whose homogeneous
coordinates are zero. Indeed, if a singleton set {e} is dependent in the matroid, the
element e must be mapped to the indeterminate point by any representation. Such
an element e is called a loop.2 On the other hand, elements of a matroid that are
not loops must be mapped to determinate points by any representation.

A representation of a matroid is also allowed to map distinct elements to the
same point. Suppose that the two-element set {e, f } in a matroid is dependent, but
that neither e nor f is a loop — which means that the set {e, f } is also a circuit.
The element e must then be mapped to the same determinate point as f by any
representation. In this situation, the two elements e and f are called parallel.3

Whether a matroid is representable or not can depend on the choice of the scalar
field, the field over which our projective spaces are built. There are matroids that
are representable over any field, matroids that are representable over some fields
but not over others, and matroids that are not representable over any field. In this
monograph, we are primarily interested in representability over the standard fields
of characteristic zero: the rationals, the reals, and the complexes; but Exercises
3.3-1, 4.2-2, and 6.2-3 are exceptions to that rule.

Exercise 3.3-1 Figure 3.1 shows a complete quadrangle, lying in the real projec-
tive plane, along with its three diagonal points U := AQ ∩ RS, V := AR ∩ QS,
and W := AS ∩ QR, the points where the three pairs of opposite sides intersect.
Note that the diagonal points are not collinear. Verify that they would be collinear
just if the characteristic of the scalar field were 2. Using this, find two matroids
of rank 3 on seven points, the first of which is representable just over those fields

2‘Loop’ is another term that is motivated by the application of matroids to graph theory.
3Another term motivated by graph theory.
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of characteristic 2, while the second is representable just over those fields whose
characteristic is not 2. These two matroids are known as Fano and non-Fano.

[Hint: We can choose a coordinate system for the plane in which the vertices
of the quadrangle have the homogeneous coordinates A = [1,1,1], Q = [1,0,0],
R = [0,1,0], and S = [0,0,1]. The diagonal points then have the coordinates
U = [0,1,1], V = [1,0,1], and W = [1,1,0], so they are collinear just when
2 = 0. The non-Fano matroid has, as its dependent sets, all sets of size at least
four, along with the six triples of points that are collinear in Figure 3.1. In the Fano
matroid, the triple {U,V ,W} is also dependent.]

3.4 Minors

There are two ways to make a matroid smaller, one obvious and the other less so.
Let M be a matroid, let H be a subset of its ground set G, and suppose that we
want to build a matroid M ′ on the smaller ground set G ′ := G \ H . The obvious
approach is to take, as the independent sets of M ′, precisely those subsets of G ′

that, viewed as subsets of G, are independent in M. This process is called deleting
the elements of H , and the resulting matroid is written M\H . In the less obvious
approach, we choose some maximal independent subset I of H — it follows from
the axioms that it doesn’t matter which we choose — and we let a subset X ′ of G ′

be independent in M ′ precisely when the subset X := X ′∪ I of G is independent in
M. This process is called contracting4 the elements of H , and the resulting matroid
is written M/H . A matroid M ′ is called a minor of a matroid M if we can get from
M to M ′ by some sequence of deletions and contractions.

It is easy to see that deletions preserve representability. If H is any subset of
the ground set of a matroid M, any representation of M can be converted into a
representation of the deleted matroid M\H by simply forgetting about the points
to which the elements of H were mapped.

It is only slightly trickier to show that contractions also preserve representabil-
ity. Let M be a representable matroid, let H be a subset of its ground set G, and
fix some representation ϕ of M, say in a projective space S of dimension n. The
points ϕ(H ) to which the elements of H are mapped span a certain flat F in S,
say of dimension k. Consider all flats of dimension k + 1 in S that contain all of
the points in ϕ(H ) and hence include F . Those (k + 1)-flats themselves are the
‘points’ of a projective space S ′ of dimension n− k − 1. For example, the lines in
3-space through a fixed point form a projective plane, while the planes in 3-space
through a fixed line form a projective line.5 We can construct a representation ϕ′ of
the contracted matroid M/H in the space S ′ by mapping each element e of G \ H
to the (k + 1)-flat ϕ′(e) := Span(ϕ(H ∪ {e})). Typically, the span of the points in
ϕ(H ∪ {e}) is a (k + 1)-flat in S that includes F , so it is a point of S ′. When e is

4Yet another term motivated by graph theory.
5In these examples, it doesn’t matter whether the ambient 3-space is projective or affine.
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a loop in the contracted matroid M/H , the point ϕ(e) lies in the flat F , and we set
ϕ′(e) to be the indeterminate point of S ′.

Exercise 3.4-1 Let M be a matroid of rank r. The element e of M does not belong
to any base just when e is a loop. In this case, show that deleting e and contracting
e produce the same matroid M\{e} = M/{e}, whose rank is r. On the other hand,
suppose that the element e of M belongs to every base; such an element e is called
a coloop. In this case also, show that deleting e and contracting e produce the same
matroid M\{e} = M/{e}, but its rank is r−1. If the element e is neither a loop nor
a coloop, show that deleting e gives a matroid M\{e} of rank r, while contracting
e gives a matroid M/{e} of rank r − 1.





Chapter 4

The budget matroids

4.1 Initial examples

Each budget matroid Bb1,...,bk is associated with a partition b = b1 + · · · + bk of
a total budget b into k column budgets b1 through bk. To motivate the definition
of the budget matroids, let’s consider a couple of examples of partitions and their
associated matroids.

We begin with the partition 3 = 1 + 1 + 1. The budget matroid B1,1,1 turns
out to be the Pappus matroid — the matroid whose representations are instances
of the configuration that arises in Pappus’s Theorem.

As shown in Figure 4.1, let A1, A2, and A3 be collinear points in the plane, let
B1, B2, and B3 also be collinear,1 and, whenever {i, j, k} = {1,2,3}, let Ci :=
Aj Bk ∩ Ak Bj . Pappus’s Theorem tells us that the three intersection points C1, C2,
and C3 of the opposite sides of the hexagon A1 B2 A3 B1 A2 B3 are also collinear. If

1I apologize for overusing the letter ‘B’: When a B has a single subscript, it denotes a point;
when it has multiple subscripts, it denotes a budget matroid.

A1 A2 A3

B1
B2 B3

C1
C2

C3

Figure 4.1: An instance of the Pappus configuration.
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A1

A2

A3
P1

P2

P3

Figure 4.2: An instance of the complete quadrilateral — as in Figure 2.2, but with
the vertices (Bi) relabeled (Pi).

we arrange the nine points of the Pappus configuration in a matrix, like this,


1 1 1

A1 B1 C1

A2 B2 C2

A3 B3 C3

,
we can describe the nine lines of the configuration as follows:

• The three points in a column are collinear. (But the three points in a row are
not so constrained.)

• For each of the six possible ways of choosing one point from each row so that
one is taken, also, from each column, the three points so chosen are collinear.

By the way, we often write the j th column budget bj at the head of the j th column,
as a reminder. In this example, all three column budgets are 1.

As a second example, consider the partition 3 = 2+1. A representation of the
budget matroid B2,1 is, it turns out, precisely a complete quadrilateral, as shown in
Figure 4.2. If we arrange the six points of such a quadrilateral in the matrix


2 1

P1 A1

P2 A2

P3 A3

,
its four lines can be described as follows:

• The three points in the A column are collinear, while the three points in the
P column are constrained only to be coplanar.

• For each of the three possible ways of choosing one point from each row so
that two are taken from the P column and one from the A column, the three
points so chosen are collinear.
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As for naming the points in a representation of a budget matroid, our standard
convention will be to number the rows and to associate the letters A, B, C, and
so forth with the columns, from left to right. But for matroids of the special form
Bm,1,1,...,1, where all of the column budgets except the first are ones, it is often con-
venient to use a special letter for the first column and to start with A for the second
column. Here, for the matroid B2,1, we have used the letter P for the first column,
on the grounds that ‘P’ stands for ‘(co)planar’.

Note that we are failing to exploit all of the available symmetry in the two ex-
amples above. The four lines of a complete quadrilateral play entirely symmetric
roles. But to describe that quadrilateral as a representation of the matroid B2,1, we
must choose one of its four lines to become the A column. In a similar way, to
describe a Pappus configuration as a representation of the matroid B1,1,1, we must
choose one of its three families of three disjoint lines to become the three columns.

Failing to exploit a symmetry is often a mistake, but the unexploited symme-
tries in those two cases are sporadic accidents. Consider a larger budget matroid,
say the matroid B1,1,1,1 associated with the partition 4 = 1+ 1+ 1+ 1:


1 1 1 1

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

.
A representation of B1,1,1,1 consists of sixteen points in 3-space with the following
two properties:

• The four points in each column are collinear.

• For each of the 24 possible ways of choosing one point from each row so that
one is taken also from each column, the four points so chosen are coplanar.

Since lines and planes are flats of different dimensions, there is no chance that some
additional symmetry of the configuration might intermix the four lines required
by the first property with the 24 planes required by the second. (For more about
when such intermixing is possible and when it isn’t, see the analysis of the auto-
morphisms of the budget matroids in Exercises 4.3-2 and 4.3-3.)

Exercise 4.1-1 (from Jorge Stolfi, and in preparation for Sections 10.3 and 10.4)
If we write a point in the projective plane as a triple [w, x, y] of homogeneous
coordinates, verify that the nine points

A B C
1 [1,0,0] [0,1,0] [0,0,1]
2 [ p,q,q] [q, p,q] [q,q, p]
3 [q, p, p] [ p,q, p] [ p, p,q]
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A1

A2

A3

B1

B2

B3

C1

C2

C3

Figure 4.3: A representation of the Pappus matroid B1,1,1 in which all six permu-
tations of the A, B, and C columns can be achieved via Euclidean symmetries.

form a Pappus configuration — that is, they represent the budget matroid B1,1,1 —
whenever the ratio p/q does not lie in {−2,−1,−1

2 ,0,1,∞}. What goes wrong
for each of the six forbidden ratios?

Figure 4.3 shows an embedding in the Euclidean plane of the case p/q = 3.
Note that the three lines A1 A2 A3, B1 B2 B3, and C1C2C3 are concurrent. Indeed,
those lines will concur for any ratio p/q, at the point [1,1,1]. That concurrence is
not required in a representation of the matroid B1,1,1 — indeed, it did not happen
in Figure 4.1 — but it is allowed. It is allowed despite the fact that, for any subset
S of the nine points of the matroid, whenever the points in S are not required to be
mutually incident, they are required to be mutually skew.

These Pappus configurations are particularly symmetric: Any permutation of
the three homogeneous coordinates w, x , and y gives us a projective transforma-
tion of the plane that is a symmetry of the configuration in which the rows are
preserved and the columns are correspondingly permuted. Furthermore, when the
configuration is embedded in the Euclidean plane as in Figure 4.3, those six projec-
tive transformations become Euclidean transformations — in fact, the symmetries
of the equilateral triangle4Ai BiCi .

[Hint: When p/q = −2, the points A2, B2, and C2 all lie on the line with
homogeneous coefficients 〈1,1,1〉— which, in Figure 4.3, is the line at infinity.]

4.2 The definition

With those three examples to guide us, we can now define the budget matroids.
We’re going to call them ‘matroids’ right from the start, even though we shan’t
get around to proving that the matroid axioms are satisfied until Section 5.3.

Let b = b1 + · · · + bk be some partition of a nonnegative integer b, called the
total budget, into k nonnegative parts, called the column budgets. For reasons that
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we discuss in Exercise 4.4-3 and Section 5.1, we require that at least two of the
column budgets be positive, which implies that k ≥ 2. We are going to define a
budget matroid associated with this partition, which we shall denote by Bb1,...,bk . A
representation of the matroid Bb1,...,bk involves bk points in projective (b−1)-space,
which we think of as organized into a b-by-k matrix:


b1 b2 bk

E11 E12 . . . E1k

E21 E22 . . . E2k
...

...
...

...

Eb1 Eb2 . . . Ebk


Note that we have written the j th column budget at the head of the j th column, as
we did in the three examples above. The column budgets constrain the locations
of the points in two ways:

• The b points in the j th column are constrained to lie in a common flat of
dimension bj .

• For each of the
( b

b1 ... bk

)
possible ways of choosing one point from each row

so that, for all j in [1 . .k], precisely bj points are taken from the j th column,
the b points so chosen are mutually incident — that is, rather than spanning
the entire ambient (b− 1)-space, they lie in a common hyperplane.

Let X be a subset of the matrix (Eij ) of points that contains precisely one point
from each row and contains, for each j in [1 . . k], precisely bj points from the
j th column. We shall call such a set X perfect, on the grounds that it meets each
column budget perfectly. Note that the multinomial coefficient

( b
b1 ... bk

)
counts the

perfect sets. The second rule above requires that, in any representation of the bud-
get matroid Bb1,...,bk , every perfect set of points must be mutually incident. Hence,
in the budget matroid Bb1,...,bk itself, every perfect sets of elements is going to be
dependent.

To define the matroid Bb1,...,bk , we need a set of elements and a rule for inde-
pendence. The ground set of the matroid Bb1,...,bk is the set of entries of a b-by-k
matrix

e :=


b1 b2 bk

e11 e12 . . . e1k

e21 e22 . . . e2k
...

...
...

...

eb1 eb2 . . . ebk

,
which we shall refer to as the ground matrix. We define a subset X of the ground
matrix e to be perfect when X contains precisely one element from each row and,
for each j , contains precisely bj elements from the j th column. We define a subset
X of e to be independent when it satisfies the following three rules:



44 CHAPTER 4. THE BUDGET MATROIDS

Ambient Rule X contains at most b elements overall;

Column Rule X contains at most bj + 1 of the b elements in the j th column, for
each j in [1 . . k]; and

Perfect Rule X has no perfect subsets.

What is the effect of these three rules?
When talking about the Pappus configuration B1,1,1 and the complete quadri-

lateral B2,1, we implicitly assumed that all of the points involved lay in a common
plane. In the general case, we want all of the points in any representation of the
budget matroid Bb1,...,bk to lie in an ambient projective space of dimension b − 1
and hence of rank b. The Ambient Rule guarantees this by making any set with
more than b elements dependent.

Furthermore, we want the b points in the j th column to lie in a common flat of
dimension bj and hence of rank bj + 1. The Column Rule guarantees this in an
analogous way.

As for the Perfect Rule, if a set X has a proper subset that is perfect, then X
must contain more than b elements, so X also violates the Ambient Rule. Thus,
in the presence of Ambient Rule, the effect of the Perfect Rule is just to make the
perfect sets themselves dependent, as we intended to do.

The special case of a zero column budget deserves comment. For one thing, if
bj = 0, then the Column Rule forces all of the elements of the j th column to lie in a
common 0-flat — that is, to coincide, say at some point Zj . But more importantly,
none of the elements of the j th column belong to any perfect set. Hence, the point
Zj does not participate in any incidences that involve any other points; instead, it
lies in the ambient space in general position with respect to the other points of the
representation. Exercise 4.2-2 shows that zero column budgets are not of much
geometric interest.

Exercise 4.2-1 Construct a representation of the budget matroid B1,1.
[Answer: Map the four elements of the ground matrix to the points

( 1 1

P Q
Q P

)
,

where P and Q are any two distinct points along a line.]

Exercise 4.2-2 Construct a representation of the budget matroid B2,1,0,0,...,0 in the
projective plane, where there are, say, a thousand columns whose budgets are zero.
Note that you wouldn’t succeed if the projective plane were built over a small finite
field.
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[Answer: Map the six elementse11 e12

e21 e22

e31 e32


of the first two columns of the ground matrix to the six vertices


2 1

P1 A1

P2 A2

P3 A3


of some complete quadrilateral. For j > 2, map all three elements e1 j , e2 j , and e3 j

of the j th column to a common point Zj in the plane, where the points Z3 through
Z1002 are chosen so that

• none of them lies on the line determined by any two vertices of the quadrilat-
eral (neither on a line of the quadrilateral itself nor on one of its diagonals),

• none of the lines determined by any two of them passes through any vertex
of the quadrilateral, and

• no three of them are collinear.]

Exercise 4.2-3 Recall that the rank of a matroid is the common cardinality of all
of its maximal independent sets. Show that the rank of the budget matroid Bb1,...,bk

is the total budget b := b1 + · · · + bk.
[Hint: The Ambient Rule guarantees that the rank is at most b. To show that

it is at least b, it suffices to construct some independent set with b elements. One
choice is to take the top bj elements from the j th column, for all j in [1 . . k]. Note
that the resulting set is not perfect, because we have required that at least two of
the column budgets be positive.]

Exercise 4.2-4 Recall that a circuit in a matroid is a minimal dependent set. Show
that the circuits of the budget matroid Bb1,...,bk are precisely

perfect circuits the perfect sets,

column circuits the subsets — if any — of the j th column of size bj + 2, and

ambient circuits those sets of size b+ 1 that do not include any perfect circuit or
any column circuit as a subset.

Exercise 4.2-5 A matroid is called simple when all of its dependent sets have size
at least 3; that is, there are no circuits of size 1 or size 2 — no loops and no parallel
pairs. Which budget matroids are simple?

[Answer: No budget matroid has any loops. A budget matroid has parallel
pairs either when its total budget is 2 or when some column budget is 0.]
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4.3 Further examples

Let’s explore the world of budget matroids a bit, by taking various partitions b =
b1+ · · ·+ bk and seeing what matroids Bb1,...,bk we get. Since we have agreed that
zero column budgets are not of much geometric interest, let’s consider partitions
into at least two parts, all of which are positive.

For each partition b = b1+· · ·+bk that we consider, we want to get some geo-
metric intuition for what a representation of the budget matroid Bb1,...,bk looks like.
Among other things, we want to count the degrees of freedom that are involved.
If M is any representable matroid, let us denote by #(M) the number of degrees
of freedom that are involved in choosing a representation of the matroid M, sitting
in a fixed projective space of the appropriate dimension — which is one less than
the rank of M. We know from Exercise 4.2-3 that the rank of the budget matroid
Bb1,...,bk is simply its total budget b := b1 + · · · + bk , so the appropriate dimen-
sion for the ambient space when computing the freedom #(Bb1,...,bk) is b− 1. For
example, a representation of the budget matroid B2,1 is a complete quadrilateral,
lying in some plane, so we have #(B2,1) = 8 — two degrees of freedom in each of
the quadrilateral’s four lines. If the matroid M is not representable, we shall write
#(M) = ⊥.

Warning: This counting of degrees of freedom is one situation where the prop-
erties of the scalar field might make a difference. For example, in Chapter 10, we
study a construction for a generic representation of the budget matroid B1,1,1,1 that
has twenty free, scalar parameters. But one step of that construction involves solv-
ing a quadratic equation; so the construction may fail, if we attempt to carry it out
over a scalar field in which some scalars don’t have square roots. Thus, we have
#(B1,1,1,1) = 20 over the complex numbers, but it is not clear whether that same
result holds over the rationals or over the reals. In those cases where it makes a
difference, let’s agree to count degrees of freedom over the complex numbers. In-
deed, as we discuss in Section 11.1, what we really mean by the informal phrase
‘degrees of freedom’ is the dimension of some variety, and it is easiest to talk about
varieties and their dimensions over a field of scalars, like the complex numbers,
that is algebraically closed.

The only budget matroid of rank 2 whose column budgets are all positive is
B1,1. As we saw in Exercise 4.2-1, a representation of B1,1 consists of two points
on a line, so we have #(B1,1) = 2.

There are two budget matroids of rank 3 whose column budgets are all positive:
the complete quadrilateral B2,1 and the Pappus configuration B1,1,1. We pointed
out a moment ago that #(B2,1) = 8. It is just as easy to calculate that #(B1,1,1) =
10: five degrees of freedom in the three collinear A-points and five more in the
B-points, after which the C-points are uniquely determined.

The Pappus configuration differs from the complete quadrilateral in an impor-
tant respect: the Pappus constraints are redundant. It takes twelve degrees of free-
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dom to choose six arbitrary points in the plane, and, if those points are to form
a complete quadrilateral, four triples of them must be collinear. Each collinear-
ity costs one degree of freedom, so — because those four constraints are nonre-
dundant — we are left with #(B2,1) = 12 − 4 = 8 degrees of freedom. In the
Pappus case, on the other hand, it takes eighteen degrees of freedom to choose
nine arbitrary points in the plane, and the Pappus configuration has nine collinear-
ities, each of which naively costs one degree of freedom. But we do not have
#(B1,1,1) = 18 − 9 = 9. Instead, enforcing all nine collinearities together costs
only eight degrees of freedom, since Pappus’s Theorem tells us that any eight of the
collinearities together imply the ninth.2 Hence, we have #(B1,1,1) = 18−8 = 10,
in agreement with our earlier count. Redundancies of this type become more and
more prevalent, as the budgets increase.

4.3.1 The partition 4 = 3+ 1

We continue our explorations by moving to rank 4. A representation of the budget
matroid B3,1 consists of eight points in 3-space:


3 1

T1 A1

T2 A2

T3 A3

T4 A4

.
The four T -points span the entire 3-space, so they are the vertices of a tetrahe-
dron, while the four A-points are collinear, along a line a. There are four perfect
constraints, which require the point Ai to lie in the plane spanned by {Tj , Tk , Tl },
whenever {i, j, k, l} = {1,2,3,4}. Thus, the A-points are located where the line
a cuts the faces of the T tetrahedron. We have #(B3,1) = 16, since there are three
degrees of freedom in each vertex Ti of the tetrahedron and an additional four in
the choice of the line a.

Note that the complete quadrilateral of Figure 4.2, which represents the matroid
B2,1, can be described in a analogous way: The three P-points are the vertices of
a triangle and the three A-points are located where some line a cuts the sides of
that triangle. This pattern extends to the matroid Bm,1 for any m. The m+1 points
in the first column are the vertices of an m-simplex, and the points in the second
column are located where some line cuts the m + 1 facets of that simplex.

2The ninth is implied by the other eight over any commutative field. One can also construct
projective planes over division rings of scalars that are not commutative, and Pappus’s Theorem
does not hold in such planes. In this monograph, however, we always require that the field of scalars
be commutative.
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4.3.2 The partition 4 = 2+ 2

A representation of the budget matroid B2,2 consists of eight points in 3-space,


2 2

A1 B1

A2 B2

A3 B3

A4 B4

,
with no three collinear and with precisely the following eight sets of four coplanar
— the two columns and the six perfect sets:

A1, A2, A3, A4

B1, B2, B3, B4

A1, A2, B3, B4

A1, B2, A3, B4

A1, B2, B3, A4

B1, A2, A3, B4

B1, A2, B3, A4

B1, B2, A3, A4

A simple way to describe those eight sets is to note that each set has one point
from each row of the matrix and an even number of points from each column.
Looked at in this way, the eight sets fall into three classes, since the three possi-
ble column counts are (4,0), (0,4), and (2,2). But we can reduce the number of
classes from three to two if we relabel the eight points with one pair swapped, as
follows:

C1 := A1 D1 := B1

C2 := A2 D2 := B2

C3 := A3 D3 := B3

C4 := B4 D4 := A4

In terms of the C and D labels, the coplanar sets are those that consist of one point
from each row and an odd number from each column. So the possible column
counts are (3,1) and (1,3) — that is, the eight sets have the form {Ci ,Cj ,Ck , Dl }
and {Di , Dj , Dk ,Cl }, for {i, j, k, l} = {1,2,3,4}.

Thus, we have a C-tetrahedron and a D-tetrahedron with the property that, for
each l in [1 . . 4], the vertex Dl lies on the face plane of the C-tetrahedron that is
opposite the vertex Cl , and vice versa. Two tetrahedra positioned in this way are
called a Möbius pair, that configuration being one of the ones studied in classi-
cal projective geometry [21]. The Möbius pair matroid B2,2 is our third example,
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along with the complete quadrilateral B2,1 and the Pappus configuration B1,1,1, of
a budget matroid whose representations are already famous on other grounds.

The eight coplanarities in a Möbius pair have a redundancy of much the same
sort as the nine collinearities in a Pappus configuration: If any seven of the eight
coplanarities hold, the eighth must hold as well. (We review the proof of this stan-
dard result in Section 6.1.) Because of this redundancy, it costs only seven degrees
of freedom to make all eight coplanarities hold, so we have #(B2,2) = 24−7 = 17.

Exercise 4.3-1 Construct an explicit Möbius pair in Euclidean 3-space.
[One answer: Let the four A-points be the vertices of an equilateral triangle,

together with its centroid, lying in some plane α. Note that, whenever {i, j, k, l} =
{1,2,3,4}, the lines Ai Aj and Ak Al in α are orthogonal. Let the B-points form a
congruent figure, located in a plane β parallel to α, but rotated by ninety degrees.
The lines Ai Aj and Bk Bl will then be parallel, so the perfect set {Ai , Aj , Bk, Bl }
will be coplanar.]

Exercise 4.3-2 What automorphisms are there of the budget matroid Bb1,...,bk ? For
simplicity, let’s restrict ourselves to cases in which all of the column budgets are
positive.

An automorphism must permute the bk elements of the ground matrix in such
a way that the dependency of sets is preserved. We can always permute the rows of
the ground matrix as wholes arbitrarily, so every budget matroid has b! automor-
phisms. In addition, we can clearly interchange any two columns that have the
same budgets. Call an automorphism trivial when it simply combines some per-
mutation of the rows with some budget-preserving permutation of the columns. (If
we were allowing zero column budgets, a trivial automorphism could also permute
arbitrarily the elements of any column whose budget is zero.)

Show that each of the four budget matroids B1,1, B2,1, B1,1,1, and B2,2 has a
nontrivial automorphism.

[Hint: For B1,1, swap one diagonal; for B2,1, swap two of the three rows; for
B1,1,1, cyclically rotate the i th row i places; for B2,2, swap two of the four rows.]

Exercise 4.3-3 Let Bb1,...,bk be a budget matroid in which all of the column budgets
are positive and in which at most one of them exceeds b−3; in particular, let’s say
that b1 ≥ · · · ≥ bk ≥ 1 and that b2 ≤ b − 3. Note that this condition rules out
precisely the four budget partitions discussed in the previous exercise. Show that
all of the automorphisms of the matroid Bb1,...,bk are trivial.

[Hint: Let’s call a flat of the budget matroid Bb1,...,bk a full flat when it has rank
less than b and cardinality precisely b. Each perfect set is a full flat of rank b − 1
— that is, a full hyperplane. In addition, the b points in the j th column form a full
flat of rank bj + 1. Those are the only full flats. The full flat formed by the first
column may be a hyperplane; but for any j in [2 . . k], we have bj + 1 < b − 1,
so the full flat formed by the j th column is not a hyperplane. Hence, the elements
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of the j th column must be mapped, as a set, to the elements of the j ′ th column, for
some j ′ with bj = bj ′ . Since every column except the first is mapped, as a set, to
some column with the same budget, that property must hold for the first column
also, by the process of elimination.

Now, consider some element eij . In any column other than the j th, the element
of that column in the i th row is uniquely distinguished by the property that there are
no perfect sets — and hence no full hyperplanes — that contain both that element
and eij . So the automorphism must transform the rows as wholes.]

4.3.3 The partition 4 = 2+ 1+ 1

The last two budget matroids of rank 4 are the ones that we shall spend much of
this monograph studying.

A representation of the matroid B2,1,1 consists of twelve points in 3-space, for
which we shall use the column letters P, A, and B:


2 1 1

P1 A1 B1

P2 A2 B2

P3 A3 B3

P4 A4 B4


The four P-points are coplanar; the four A-points are collinear, as are the four
B-points; and the twelve perfect sets, of the form {Pi , Pj , Ak , Bl} for {i, j, k, l} =
{1,2,3,4}, are coplanar.

There are 36 degrees of freedom involved in choosing twelve arbitrary points
in 3-space. Each perfect coplanarity costs 1 degree of freedom. The coplanarity
of the four P-points also costs 1, while the collinearities of the A-points and the
B-points cost 4 each. Thus, if the perfect constraints and the column constraints
were all nonredundant, we would have #(B2,1,1) = 36 − 12 − 1 − 4 − 4 = 15.
In fact, we shall see later — by two different constructions — that #(B2,1,1) = 19.
Thus, there are four dimensions’ worth of redundancy among the constraints, up
from the one dimension’s worth in the Pappus and Möbius-pair cases.

4.3.4 The partition 4 = 1+ 1+ 1+ 1

As we mentioned in Section 4.1, a representation of the budget matroid B1,1,1,1

consists of sixteen points in 3-space:


1 1 1 1

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

.
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The four points in each column are collinear, while the 24 perfect sets are coplanar.
Choosing sixteen arbitrary points in 3-space involves 48 degrees of freedom.

Naively, we would expect the coplanarity of each perfect set to cost 1 and the col-
linearity of each column to cost 4, leaving only 48 − 24 − 16 = 8 degrees of
freedom. But, in fact, we shall find that #(B1,1,1,1) = 20. Thus, the redundancy
among the constraints amounts to a full twelve degrees of freedom — the highest
that we’ve seen so far. This high level of redundancy makes a representation of
B1,1,1,1 a tightly interwoven geometric structure.

4.4 Budget minors of budget matroids

There is a natural sense in which a big budget matroid has lots of little budget ma-
troids sitting inside it — as minors. If one budget matroid is a minor of another,
we’ll call the former a budget minor. We’ll state two simple results about budget
minors in this section, though we shan’t prove them until Section 5.6, where we
can prove slightly more general versions with no more work.

Proposition 4.4-1 Eliminating a zero part from the budget partition gives a budget
minor. That is, if M := Bb1,...,bk is any budget matroid and we let M ′ denote the
matroid M ′ := Bb1,...,bk,0, then M is a minor of M ′.

Exercise 4.2-2 provides an example of this: The complete quadrilateral B2,1 is
a budget minor of the matroid B2,1,0,...,0. To get from the latter to the former, we
simply delete all of the elements in the columns with zero budgets.

Proposition 4.4-2 Reducing the parts of the budget partition also gives a budget
minor, as long as at least two parts remain positive. That is, if M := Bb1,...,bk and
M ′ := Bb′1,...,b

′
k

are two budget matroids with bj ≤ b′j for all j in [1 . . k], then M
is a minor of M ′.

This is more interesting. For an example, let’s check that the complete quadri-
lateral B2,1 is a budget minor of the matroid B3,1. Consider some representation


3 1

T1 A1

T2 A2

T3 A3

T4 A4

.
of B3,1, sitting in 3-space. Suppose that we put our eye at some vertex Ti of the
tetrahedron, and we look out at the six points that are not in the i th row. The lines
through our eye form the ‘points’ of a projective plane. The face of the tetrahedron
opposite the vertex Ti projects down into a triangle in that plane, while the line a
projects down into a line. Since the points {Ti , Tj , Tk, Al } are coplanar, for any
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{i, j, k, l} = {1,2,3,4}, the lines Ti Tj , Ti Tk , and Ti Al are also coplanar — which
means that, in the plane of lines through Ti , the projected images of the points Tj ,
Tk, and Al are collinear. So, what we see is a complete quadrilateral.

Thinking about the matroid B3,1 itself, rather than a representation of it, what
we have done is to contract the i th element of the T column, while deleting the
other element of the i th row. More generally, in the situation of Proposition 4.4-2,
we contract some b′j −bj elements of the j th column, for each j , chosen so that no
two contracted elements come from the same row, and we delete all of the other
elements of any row that contains a contracted element.

By the way, when working with budget minors, it may seem unfortunate that
we have required at least two of the column budgets of a budget matroid to be pos-
itive. For example, what do we see if we put our eye at the point A4, in the repre-
sentation of B3,1 above? Answer: The points T1, T2, and T3 appear to be collinear,
while the points A1, A2, and A3 appear to coincide, but don’t appear to lie on the
line through the three T ’s. This is a representation of a perfectly respectable ma-
troid of rank 3, which it would be quite natural to denote B3,0. Let’s say that an
all-or-nothing matroid is the matroid Bb1,...,bk that results from a budget partition
in which precisely one part is positive, while all of the others are zero. We could
have defined the class of budget matroids to include the all-or-nothing matroids.
But doing so costs quite a bit in complexity, as the following exercise suggests —
enough that the costs seem to outweigh the benefits.

Exercise 4.4-3 As samples of the complexities associated with the all-or-nothing
matroids, show that:

• For m ≥ 1, the matroid Bm has rank m − 1, rather than m.

• For m ≥ 2, the matroid Bm,0 has rank m, all right, but it has #(Bm,0) = m2−2
degrees of freedom, as opposed to the m2 − 3 predicted by the formula in
Theorem 6.2-2, the Bm,n Representation Theorem.

4.5 Projective configurations in the narrow sense

Lots of the budget matroids are representable, and their representations are intrigu-
ing geometric structures. Since the study of projective configurations was once
quite a popular field, it is a bit surprising that the budget matroids weren’t well
studied long ago. One reason why the classical geometers may have overlooked
the budget matroids is that they defined the term ‘configuration’ more narrowly
than we. As we discuss in this section, they required a configuration to have a high
level of symmetry, at least in a certain numeric sense. The budget matroids don’t
have that symmetry, and that may explain why they were overlooked.

Actually, whether a configuration does or does not have a certain symmetry can
depend upon how we interpret that configuration. The budget matroids don’t have
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the required numeric symmetry when they are interpreted in the obvious way. But
Jorge Stolfi came up with a devious way to reinterpret a budget matroid, thereby
converting it into a structure that does meet the classical definition of a projective
configuration. We’ll discuss Stolfi’s trick in this section also. Keep in mind that
the Stolfi Trick is mostly of historical and nomenclatural interest. Applying the
Stolfi Trick to a budget matroid obfuscates its structure, and that generally isn’t
helpful. But it is worth noting that the classical demand for numeric symmetry did
not slam the door completely on the budget matroids; there was still a tiny crack
through which they could have slipped.

4.5.1 The required numeric symmetry

What is a ‘configuration’, in the narrow sense? Classically, an arrangement in the
plane involving p points and q lines is called a configuration of type (pr,qs) if each
of the p points lies on r of the lines and each of the q lines passes through s of the
points [20]. Note that the four parameters p, q, r, and s must satisfy pr = qs,
since both of those products count the total incidences between points and lines.
For example, a complete quadrilateral has six points, each lying on two lines, and
has four lines, each passing through three points; so it is a configuration of type
(62,43) — and we have 6 · 2 = 4 · 3 = 12.

In a space of any dimension, we can speak of a configuration of points and hy-
perplanes of type (pr ,qs). Consider 3-space, for example. A Möbius pair of tetra-
hedra is a configuration of points and planes of type (84,84): eight points, each
lying on four planes, and eight planes, each passing through four points. Classi-
cal geometry also talks about configurations of flats other than points and hyper-
planes, such as configurations of points and lines in 3-space. But a configuration
always involves flats of only two different dimensions, say small and large, with
every small flat lying on the same number of large flats and every large flat passing
through the same number of small flats. There is no such thing as a configuration
of points, lines, and planes in 3-space, for example — at least, not in this classical
sense of the word ‘configuration’.

Unfortunately, the budget matroid Bb1,...,bk involves noteworthy flats of various
dimensions. Each perfect set is mutually incident, its b points lying on a common
hyperplane, of dimension b−2; there are

( b
b1 ... bk

)
such noteworthy flats. But the b

points in the j th column also lie on a common flat, which is also noteworthy; and
its dimension is bj , which is typically less than b− 2. That suggests that represen-
tations of budget matroids typically are not configurations in the narrow sense.

4.5.2 The Stolfi Trick

But Jorge Stolfi realized that a little trickery can get around this problem. We can
encode a column flat of dimension bj by using some number nj of hyperplanes.
These nj hyperplanes are in general position except that they all include the column
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flat, and there are enough of them so that the intersection of all of them is precisely
the column flat.

What constraints are there on the numbers (nj )? Each hyperplane reduces the
dimension of their intersection by at most 1, so we must have nj ≥ b − bj − 1, in
order to reduce the dimension all the way from b−1 down to bj . On the other hand,
there is typically no upper limit on nj . But there are upper limits in two special
cases. If bj = b− 1, so that the b points in the j th column span the entire ambient
(b − 1)-space, we must have not only nj ≥ 0, but actually nj = 0. Similarly,
if bj = b − 2, so that the points in the j th column lie in a common hyperplane,
we must have not only nj ≥ 1, but actually nj = 1 — since we don’t want two
hyperplanes in our projective configuration to be required to coincide.

By the way, just as we don’t want two hyperplanes to be required to coincide,
we also don’t want two points to be required to coincide; such a thing would surely
have troubled the classical projective geometers. Hence, we shall restrict ourselves
to budget partitions (b1, . . . ,bk) in which all of column budgets are positive.

How close are we to having a configuration of points and hyperplanes? The
hyperplane corresponding to each perfect set contains precisely b points. Each of
the nj hyperplanes that we are using to encode the j th column flat also contains pre-
cisely b points: the b points in the j th column. So we are in pretty good shape. All
that remains is to arrange that every point lies on the same number of hyperplanes,
and we can do that by choosing the counts (nj ) appropriately.

In fact, we can typically choose the counts (nj ) in an infinite variety of ways
and still do that. Consider the budget matroid B5,3,1, for example — let’s optimisti-
cally assume that this matroid is representable, sitting in 8-space. Applying the
Stolfi Trick, each point in the first column lies in the n1 hyperplanes that encode the
first column’s 5-flat, as well as in

( 8
4 3 1

) = 280 of the hyperplanes that correspond
to perfect sets. Each point in the second column lies in n2 column hyperplanes, plus( 8

5 2 1

) = 168 of the perfect hyperplanes. And each point in the third column lies in
n3 column hyperplanes, plus

( 8
5 3 0

) = 56 perfect hyperplanes. To achieve the re-
quired numeric symmetry, it suffices to arrange that n1+280 = n2+168 = n3+56,
subject to the side conditions n1 ≥ 3, n2 ≥ 5, and n3 ≥ 7. The solution is to set
n1 := m + 3, n2 := m + 115, and n3 = m + 227, for any nonnegative integer
m. Thus, we can view a representation of B5,3,1 as a configuration of points and
hyperplanes in 8-space of type (27m+283, (3m + 849)9), for any nonnegative m.

For a budget matroid Bb1,...,bk in which no column budget bj exceeds b−3, this
process cannot fail, since the side conditions put only lower bounds on the counts
(nj ). But if bj ≥ b − 2 for some j , we have to analyze more carefully, because
some of the side conditions are then equalities. The cases that require extra care are
all contained in the three families Bb−1,1, Bb−2,2, and Bb−2,1,1, and those families
are dealt with in the first three exercises below. So we conclude the following.

Proposition 4.5-1 (Stolfi Trick) Let b = b1+· · ·+bk be any partition of the inte-
ger b into at least two positive parts. There exists at least one sequence (n1, . . . ,nk)
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of nonnegative counts with the property that a representation of the budget matroid
Bb1,...,bk in (b− 1)-space can be interpreted as a projective configuration of points
and hyperplanes in the narrow sense by the trick of encoding its j th column flat as
the intersection of nj otherwise unconstrained hyperplanes.

Exercise 4.5-2 For any b ≥ 3, show that there are unique column counts n1 and
n2 that make the Stolfi Trick work for the budget matroid Bb−1,1. The case b = 2
works also, in a sense, but it is a delicate matter to discuss a configuration of points
and hyperplanes in the line, where hyperplanes are the same things as points.

[Answer: The counts n1 and n2 must satisfy the relation n1 + b − 1 = n2 + 1
and the side conditions n1 = 0 and n2 ≥ b − 2. In addition, when b ≤ 3, the side
condition n2 ≥ b − 2 tightens to the equality n2 = b − 2. But n2 works out to be
n2 = b − 2 in any case.]

Exercise 4.5-3 For any b ≥ 3, show that there are unique column counts n1 and
n2 that make the Stolfi Trick work for the budget matroid Bb−2,2.

[Answer: We must satisfy the relation n1 + (b − 1)(b − 2)/2 = n2 + b − 1
and the side conditions n1 = 1 and n2 ≥ b − 3. In addition, when b ≤ 4, the side
condition n2 ≥ b − 3 tightens to the equality n2 = b − 3. Solving, we find that
n2 = (b − 2)(b− 3)/2, which is at least b − 3 for all integers b and equals b − 3
for b = 3 or b = 4.]

Exercise 4.5-4 For any b ≥ 3, show that there are unique column counts n1, n2,
and n3 that make the Stolfi Trick work for the budget matroid Bb−2,1,1.

[Answer: We must satisfy the relation n1 + (b − 1)(b − 2) = n2 + b − 1 =
n3+b−1 and the side conditions n1 = 1, n2 ≥ b−2, and n3 ≥ b−2. In addition,
when b = 3, the side conditions n2 ≥ 1 and n3 ≥ 1 tighten to the equalities
n2 = n3 = 1. Solving, we find that n2 = n3 = (b− 2)2, which is at least b− 2 for
all integers b and equals b − 2 = 1 when b = 3.]

Exercise 4.5-5 For example, suppose that we use the Stolfi Trick to interpret a
representation of the budget matroid B2,1,1 as a configuration in the narrow sense.
What do we get?

[Answer: a configuration of points and planes in 3-space of type (127,214).
We have n1 = 1 and n2 = n3 = 4, so each of the two column lines is encoded as
the intersection of four planes.]





Chapter 5

The budgetary matroids

In the budget matroids, the j th column budget bj is used for two purposes: as the
dimension of the common flat in which all of the points of the j th column must lie
and as the number of points from the j th column that any perfect set must contain.
Those two parameters of the j th column don’t have to be the same; but the cases
in which they are the same seem to have the most intriguing geometric properties.

We shall reserve the name ‘budget matroid’ for those cases in which those two
parameters of each column are the same. We shall use the clumsy term ‘budgetary
matroid’ for the more general situation in which those two parameters of each col-
umn are fairly independent. The budget matroids are an interesting subclass of the
budgetary matroids — interesting because so many of them are representable.

In this chapter, we generalize from the budget matroids to the budgetary ma-
troids, but we then argue, by looking at a slew of examples, that the budgetary
matroids are pretty boring. If you get really bored, remember that our study of the
budget matroids in general picks up again in Chapter 6, while Chapter 8 is where
we prepare for the study of the budget matroid B2,1,1 in particular.

5.1 The parameters of a budgetary matroid

To define a budgetary matroid, we need both some partition b = b1+· · ·+bk of a
total budget b into k column budgets (b1, . . . ,bk) and also a separate sequence of
integers (d1, . . . ,dk). A representation of the budgetary matroid Bd1,...,dk

b1,...,bk
is going

to involve bk points:


d1

b1

d2

b2

dk

bk

E11 E12 . . . E1k

E21 E22 . . . E2k
...

...
...

...

Eb1 Eb2 . . . Ebk


57



58 CHAPTER 5. THE BUDGETARY MATROIDS

The column budget bj is the number of points from the j th column that any perfect
set must contain; so the number of rows in the matrix of points is still the total
budget b and the number of perfect sets is still

( b
b1 ... bk

)
. The new parameter dj ,

which we shall call the j th column dimension, is the dimension of the span of the
b points in the j th column. A budget matroid is a budgetary matroid in which the
dimensions equal the budgets, so dj = bj for all j .

What constraints should we place on the parameters (dj ) and (bj ), the dimen-
sions and the budgets? Let’s study that question starting with a blank slate. In
particular, let’s try to justify why, when defining the budget matroids, we required
at least two of the column budgets to be positive.

First, if the total budget b were zero, then the empty set would be perfect and
hence dependent, which would violate the Empty-Set Axiom. We want to end up
with a matroid, so we require that b be positive, which implies that k must be pos-
itive as well.

For any j in [1 . . k], the b points in the j th column of the matrix can’t possibly
span a flat of dimension greater than b − 1. We want the parameter dj to measure
the dimension of that span; so we require that dj < b, for all j .

In the opposite direction, how small a value of dj is permissible? If dj < bj−1
for any j , the whole notion of a perfect set becomes irrelevant. In order to be per-
fect, a set has to contain bj elements from the j th column. But any set that contains
more than dj+1 elements from a flat of dimension dj is already dependent, on those
grounds alone — so, when dj + 1 < bj , the constraint on perfect sets never comes
into play. For example, suppose that we start with the complete quadrilateral


2
2

1
1

P1 A1

P2 A2

P3 A3

,
which is the budget matroid B2,1

2,1. (Note that each column is now headed with both
its dimension and its budget.) What would happen if we reduced the dimension d1

for the first column from 2 to 0? The resulting structure, if it were legal, would be
called B0,1

2,1. In a representation


0
2

1
1

P1 A1

P2 A2

P3 A3


of this structure, the three points in the first column would have to lie in a common
0-flat, that is, would have to coincide: P1 = P2 = P3. Once that was true, a per-
fect set such as {P1, P2, A3} and a non-perfect set such as {P1, P2, A1} would both
be dependent, and for the same reason, so the essential character of the budgetary
matroids would be lost. We therefore require that dj ≥ bj − 1, for all j .
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We now pause to consider a special case. Suppose that all of the column bud-
gets other than the j th are zero, so bj = b; we called this the all-or-nothing case,
in Section 4.4. The constraint dj ≥ bj −1 then implies that dj ≥ b−1. But, when
bj = b, the b elements in the j th column form a perfect set — indeed, they form
the unique perfect set. They are hence dependent, so the most that they can do is to
span a flat of dimension b− 2. We want dj to measure the dimension of that span,
which contradicts the inequality dj ≥ b − 1. We respond to this contradiction by
outlawing the all-or-nothing case; we require that bj < b for all j , which means
that k ≥ 2 and that there are at least two columns with positive budgets.

Returning to the main thread, we are already requiring that dj ≥ bj − 1, for
all j ; but if dj = bj − 1 for any j , the resulting structure typically isn’t a matroid.
Since we want matroids, we shall actually require the stronger inequality dj ≥ bj .
For an example of what goes wrong if we don’t, suppose that we tried to reduce the
dimension d1 in the complete quadrilateral from 2 to 1, getting the structure B1,1

2,1:


1
2

1
1

P1 A1

P2 A2

P3 A3


The only effect of reducing d1 from 2 to 1 is to make the three P-points be collinear,
that is, to make the set {P1, P2, P3} dependent. The sets X := {P1, P2} and Y :=
{P2, P3, A3} are independent in the original matroid B2,1

2,1, and they remain inde-
pendent when d1 is reduced, since neither X nor Y contains all three P-points. In
order for the Augmentation Axiom to hold, there must exist some element of Y
that we can add to X without destroying independence. But there is no such ele-
ment: The element P2 is in X already, the set X∪{P3} = {P1, P2, P3} is dependent
because d1 = 1, and the set X∪{A3} = {P1, P2, A3} is dependent because it is per-
fect. Analogous examples of sets X and Y can be constructed in almost all cases
in which dj = bj − 1 for some j , as shown in Exercise 5.1-1.

In summary, we henceforth require the following: There must be at least two
columns with positive budgets and, for all j , the column dimension dj must lie in
the left-closed, right-open interval [bj . . b).

Exercise 5.1-1 Given column dimensions (dm) and budgets (bm)with dm ≥ bm−1
for all m but with dj = bj − 1 and 0 < bj < b for some j , show that the resulting
structure Bd1,...,dk

b1,...,bk
is not a matroid. In particular, find sets X and Y that violate the

Augmentation Axiom.
As for the side conditions 0 < bj < b, we are already requiring that bj < b.

The case bj = 0 and dj = −1 does not cause a violation of the matroid axioms, but
we are going to outlaw that case anyway, just to simplify things. If we did make
it legal to set dj to −1 when bj was 0, doing so would force all of the points in
the j th column to be indeterminate — that is, in the resulting matroid, all of those
elements would be loops.
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[Hint: Let P be any perfect set, let i and i ′ be row indices with the property
that Eij is in P but Ei′j is not, and let j ′ be the unique column index with Ei′ j ′ in
P. It suffices to take X := P \ {Ei′j ′ } and Y := P ∪ {Ei′ j } \ {Eij }.]

5.2 The definition

The budgetary matroids are just like the budget matroids, except that, in defining
independence, the Column Rule talks about the column dimension dj , rather than
the column budget bj . Let’s spell everything out, though, to avoid any confusion.

Let (b1, . . . ,bk) be any nonnegative integers of which at least two are positive,
let b — the total budget — denote the sum b := b1+ · · · + bk, and let dj , for each
j in [1 . . k], be any integer in the half-open interval [bj . .b). We hereby define the
budgetary matroid Bd1,...,dk

b1,...,bk
, which has, for each j , the budget bj and the dimension

dj associated with its j th column. The elements of the ground set are the entries of
a b-by-k matrix

e :=


d1

b1

d2

b2

dk

bk

e11 e12 . . . e1k

e21 e22 . . . e2k
...

...
...

...

eb1 eb2 . . . ebk

,
which we shall refer to as the ground matrix. We define a subset X of the ground
matrix e to be perfect when X contains precisely one element from each row and,
for each j , contains precisely bj elements from the j th column. A subset X of e is
independent when it has the following three properties:

Ambient Rule X contains at most b elements overall;

Column Rule X contains at most dj + 1 of the b elements in the j th column, for
each j in [1 . . k]; and

Perfect Rule X has no perfect subsets.

In the special case in which the budgets and the dimensions are equal — that
is, when bj = dj for all j in [1 . . k] — the budgetary matroid Bd1,...,dk

b1,...,bk
is a budget

matroid, and we shall omit the dimensions when we write it: Bb1,...,bk = Bb1,...,bk
b1,...,bk

.
Let’s consider B2,2

2,1 as a simple example of a budgetary matroid. It is just like
the complete quadrilateral B2,1, except that the dimension d2 associated with the
second column has been increased from 1 to 2. A representation of the matroid
B2,2

2,1 consists of six points


2
2

2
1

P1 A1

P2 A2

P3 A3


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in the plane, where the three perfect sets are required to be collinear, but the three
A-points are forbidden from being collinear. So we have a triangle 4P1 P2 P3, to-
gether with three noncollinear A-points, one on each side of the P triangle. Note
that relaxing the collinearity constraint on the A-points gives us back one degree
of freedom: While #

(
B2,1

2,1

) = 8, we have #
(
B2,2

2,1

) = 9.

Exercise 5.2-1 Given some complete quadrilateral Q, whose six points represent
the budget matroid B2,1, describe what three points must be added to Q in order to
represent each of the budgetary matroids B2,1,1

2,1,0 and B2,1,2
2,1,0.

[Answer: In the first case, the three new points must be collinear, but no two
may coincide; in the second case, they must not be collinear. In both cases, the
three new points must lie in the same plane as the quadrilateral Q, but none of them
may lie on the line determined by any two points of Q and the line determined by
any two of them must not pass through any point of Q.]

5.3 They really are matroids

It is finally time to verify that the budgetary matroids — and among them, the bud-
get matroids — really are matroids.

Proposition 5.3-1 Let b = b1 + · · · + bk be a partition of the total budget b into
nonnegative, integral column budgets (bj ), at least two of which are positive. For
each j in [1 . .k], let the column dimension dj lie in the half-open interval [bj . .b).
For each i in [1 . . b], let Ri denote the i th row of the b-by-k ground matrix e :=
(eij )i∈[1..b], j∈[1..k], and, for each j in [1 . . k], let Cj denote its j th column. We say
that a subset X of the ground matrix e is perfect when

• |X ∩ Ri | = 1 for all i in [1 . . b] and

• ∣∣X ∩ Cj

∣∣ = bj for all j in [1 . . k].

Finally, we say that a subset X of e is independent when:

Ambient Rule |X | ≤ b;

Column Rule
∣∣X ∩ Cj

∣∣ ≤ dj + 1, for all j in [1 . . k]; and

Perfect Rule X has no perfect subsets.

The ground set e, when equipped with this family of independent subsets, forms a
matroid, which we denote Bd1,...,dk

b1,...,bk
.

Proof The Empty-Set Axiom is easy: The empty set has zero elements overall,
zero elements in each column, and is not perfect, so it satisfies all three rules.
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The Subset Axiom is also easy. Deleting an element from an independent set
doesn’t increase the number of elements overall, doesn’t increase the number of
elements in any column, and doesn’t add any new subsets that might be perfect.

The hard part is verifying the Augmentation Axiom. It is helpful to introduce
some nomenclature. Given some set X ⊆ e, we call the i th row of X empty when
X ∩ Ri = ∅, and we call the j th column of X

• tight when
∣∣X ∩ Cj

∣∣ = dj + 1;

• snug when
∣∣X ∩ Cj

∣∣ ∈ [bj . . dj ];

• loose when
∣∣X ∩ Cj

∣∣ < bj ; and

• baggy when
∣∣X ∩ Cj

∣∣ < bj − 1.

With this nomenclature, the Column Rule says that, for every j , the j th column of
X is either tight, snug, or loose. Some of the loose columns may actually be baggy.
Note that, if a set X has either some row that is empty or some column that is loose,
then X can’t have any perfect subsets, so X satisfies the Perfect Rule.

Let X and Y be independent sets with |Y | > |X |. We want to find an element
eij in Y \ X that can be added to X without destroying independence. We have
|X | < |Y | ≤ b, so adding any single element to X won’t cause the augmented X
to have too many elements overall, and hence to violate the Ambient Rule. But
we must choose the new element with some care, lest the augmented X violate the
Column Rule or the Perfect Rule.

We are going to consider five cases, in sequence. At the outset, note that there
must be at least one column of X that is loose, since |X | < b.

Case 1: Suppose that, for some j , the j th column of X is snug and the j th

column of Y contains some element that isn’t in X ; that is, suppose that bj ≤∣∣X ∩ Cj

∣∣ ≤ dj and that (Y \ X)∩Cj 6= ∅. In this case, we can choose any element
in (Y \ X) ∩ Cj and add that element to X without destroying independence. The
j th column of X either remains snug or becomes tight, so the Column Rule still
holds. And any column of X that was loose — and there was at least one such —
remains loose in the augmented X , so the Perfect Rule also holds.

In what follows, we can assume that the first case does not pertain; that is, for
every j for which the j th column of X is snug, we have (Y \ X) ∩ Cj = ∅, which
implies that

∣∣Y ∩ Cj

∣∣ ≤ ∣∣X ∩ Cj

∣∣. So Y is either snug or loose in such columns.
On the other hand, if the j th column of X is tight, we have

∣∣X ∩ Cj

∣∣ = dj + 1 and∣∣Y ∩ Cj

∣∣ ≤ dj + 1, the latter because Y is independent. But Y has more elements
than X overall. Therefore, for one or more columns j where X is loose, we have
(Y \ X) ∩ Cj 6= ∅.

Case 2: Suppose that X has two loose columns. We choose a column m of X
that is loose and in which (Y \X)∩Cm 6= ∅, and we add any element of (Y \X)∩Cm

to X . Adding an element to a loose column certainly doesn’t violate the Column
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Rule. The Perfect Rule holds because, while we may be moving the m th column
from loose to snug, there is some other column of X that was loose and that remains
loose.

Case 3: This case is very similar to Case 2. Suppose that X has only one loose
column, the m th, but that column is actually baggy. We must have (Y \X)∩Cm 6= ∅,
so we add any element of (Y \ X)∩Cm to X . The m th column remains loose even
after the augmentation, so both the Column and Perfect Rules hold.

In what follows, we can assume that none of the first three cases pertains. Thus,
there is precisely one column that is loose in X , say the m th, but this column is not
baggy. It follows from this and the constraint |X | < b that, in fact, |X | = b − 1,
|Y | = b, and, for all j 6= m, we have

∣∣X ∩ Cj

∣∣ = bj and (Y \ X) ∩ Cj = ∅.
Case 4: Suppose that, in the m th column, Y has at least two elements that X

doesn’t have; that is, |(Y \ X) ∩ Cm | ≥ 2. Since |X | = b−1, we know that X has
at least one empty row; choose one of them. Because we have at least two elements
of Y \ X in the m th column to pick from, we can find one to add to X that does not
spoil our chosen empty row.

Case 5: In the remaining case, we can assume that Case 4 also fails to pertain,
which means that |(Y \ X) ∩ Cm | = 1. Since

∣∣(Y \ X) ∩ Cj

∣∣ = 0 for all j different
from m, we deduce that |Y \ X | = 1. Since we also have |Y |− |X | = 1, it follows
that X ⊂ Y . We can hence take the unique element of Y \X and add it to X without
destroying independence. tu

5.4 Weakening the rules for independence

Given column budgets (bj ) and dimensions (dj), the budgetary matroid Bd1,...,dk
b1,...,bk

arises out of the interplay among the three rules that define the notion of indepen-
dence: the Ambient Rule, the Column Rule, and the Perfect Rule. In this section,
we attempt to justify those three rules by considering what would happen if we
omitted one of the three.

What would happen if we kept the Ambient and Perfect Rules, but dropped the
Column Rule? Then, every set with less than b elements would be independent,
every set with more than b elements would be dependent, and, among the sets with
b elements, precisely the perfect sets would be dependent. Note that, if a set X has
b − 1 elements, there is at most one perfect set that includes X . From this alone,
it is straightforward to check that the resulting structure would be a matroid of a
standard type, called a paving matroid [39].

If we kept the Ambient and Column Rules, but dropped the Perfect Rule, we
would again get a matroid of a standard type: a truncation of a direct sum of uni-
form matroids [40].

So what about omitting the Ambient Rule? Since the Ambient Rule was ar-
guably the least well motivated of the three rules to begin with, it is particularly
interesting to study what happens when we omit that rule — or perhaps just weaken
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it somewhat. We’ll call a weakened version of the Ambient Rule successful when
the structure that results from the Column Rule, the Perfect Rule, and that weak-
ened Ambient Rule is still a matroid.

If we weaken the Ambient Rule too far, we lose all hope of being successful. In
particular, whenever the total budget b is at least 3, there are some sets of size b+1
that satisfy both the Column Rule and the Perfect Rule but that must be classified
as dependent, in order for the resulting structure to be a matroid. To construct such
a set, let P be any perfect set in the structure Bd1,...,dk

b1,...,bk
with b ≥ 3, and let f , g, and

h be any three elements of P with f and g in different columns. Let f ′ be the
element that is in the same row as f and the same column as g, and let g′ be the
fourth vertex of that rectangle. Consider applying the Augmentation Axiom to the
sets X := P ∪ { f ′} \ {g} and Y := P ∪ { f ′, g′} \ {h}. Here are pictures of what
the sets P, X , and Y might look like, with the budget partition (b1,b2) = (2,1):


2 1

f f ′

g′ g
h -

 :


2 1

P -
- P
P -

,


2 1

X X
- -
X -

,


2 1

Y Y
Y Y
- -

.
We have |X | = b and |Y | = b + 1. Neither X nor Y has any perfect subsets,
since each has an empty row. And both X and Y satisfy the Column Rule, since
dj ≥ bj for all j . So, if we weaken the Ambient Rule far enough, the set Y will be
independent, as well as X . But adding either of the elements of Y \ X = {g, g′}
to X results in a set that has a perfect subset, and hence violates the Perfect Rule.
If we want to satisfy the Augmentation Axiom, we must preserve enough of the
Ambient Rule to classify the set Y as dependent.

When the parameters (bj) and (dj ) satisfy bj = dj > 0 for all j — that is,
for those budgetary matroids that are budget matroids and all of whose column
budgets are positive, which are the cases of primary interest — much more is true:
There is no way to weaken the Ambient Rule at all and still be successful. To see
this, recall from Exercise 4.2-4 that the circuits (the minimal dependent sets) of the
budget matroid Bb1,...,bk are of three types:

perfect circuits the perfect sets,

column circuits the subsets of column j of size bj + 2, and

ambient circuits those sets of size b+ 1 that do not include, as a subset, any per-
fect circuit or column circuit.

Let’s refer to the perfect and column circuits as the key circuits, since they will
remain circuits, even if the Ambient Rule is somehow weakened. Suppose that
M is some other matroid on the same ground set as the budget matroid Bb1,...,bk ,
and suppose that all of the key circuits of Bb1,...,bk are circuits also in M. As the
next exercise shows, it follows from those assumptions alone that the rank of M
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is at most b. Hence, in these cases, weakening the Ambient Rule however slightly
would mean that we would no longer have a matroid.

Exercise 5.4-1 Show that the Ambient Rule can’t be successfully weakened when
bj = dj > 0 for all j . In particular, let M be any matroid whose ground set is the
ground matrix of the budget matroid Bb1,...,bk . Show that, if every key circuit of the
matroid Bb1,...,bk is a circuit also in M, then the rank of M is at most the total budget
b = b1 + · · · + bk.

[Hint: Let P be any perfect set, let j be any column index, let f be an element
of the j th column that belongs to P, let g be an element of the j th column that
does not belong to P, and let X denote the set X := P ∪ {g} \ { f }. Because
|X | = b, it suffices to show that all of the elements of the ground matrix e lie in the
flat Span(X), where that span is computed in the matroid M. Since the perfect set
P is a circuit in M, the element f depends on the elements in the set P \{ f }, which
is a subset of X ; hence, f lies in Span(X). The set X ∪ { f } = P ∪ {g} exceeds
the dimension for the j th column by precisely 1; it follows that every element of
the j th column depends on some subset of X ∪ { f }, and hence lies in Span(X).
Show next, by considering new perfect sets, that every element in the same row
as f belongs to Span(X). Conclude that, in fact, all of the elements of the ground
matrix e must belong to Span(X).]

Exercise 5.4-2 Show that the Ambient Rule can be successfully weakened, even
when bj = dj for all j , if at least one of the column budgets is zero. In particular,
after reviewing Exercise 4.2-2, consider those matroids M on the same ground set
as the budget matroid B2,1,0,0,...,0 and with the property that every key circuit of
B2,1,0,0,...,0 is a circuit also in M. Find such a matroid M whose rank is 1003.

[Hint: Put the points Z3 through Z1002 in general position with respect to the
plane of the complete quadrilateral.]

Exercise 5.4-3 Show that the Ambient Rule can sometimes be successfully weak-
ened, even when bj is positive for all j , if the dimensions (dj ) aren’t equal to the
budgets (bj ). In particular, consider the budgetary matroid B2,2,2

1,1,1, whose key cir-
cuits are precisely the six perfect sets. Find a matroid M of rank 4 on the same
3-by-3 ground matrix 

2
1

2
1

2
1

A1 B1 C1

A2 B2 C2

A3 B3 C3


as B2,2,2

1,1,1 in which all six of those perfect sets are circuits.
[Hint: Let the circuits of M be precisely the perfect sets, the 2-by-2 subma-

trices, and the unions of a row and a column. To check that M is a matroid, we
can either verify the circuit-based axioms for a matroid or — probably easier —



66 CHAPTER 5. THE BUDGETARY MATROIDS

A1

A2

A3

B3

B1

B2

C2

C3

C1

r1 r2

r3

s1

s2

s3

Figure 5.1: A representation in 3-space of a matroid of rank 4 that has, as circuits,
all six of the key circuits of the budgetary matroid B2,2,2

1,1,1. (Imagine the points A1

and A3 as being above the plane of the paper, while B2 and C2 are below it.)

construct a representation. To do the latter, let r1, r2, and r3 be three skew lines in
3-space and let s1, s2, and s3 be three of their common transversals, as shown in
Figure 5.1. (We are going to study this configuration of nine points and six lines
in Section 9.3, where we call it a grid.) We set Ai := ri ∩ si , Bi := ri+1 ∩ si−1, and
Ci := ri−1 ∩ si+1 for i in [1 . . 3], where all subscripts are interpreted modulo 3.

By the way, a matroid theorist [42] would think of this matroid M as the dual of
the cycle matroid of the complete bipartite graph K3,3. The nine edges of the graph
K3,3 correspond to the nine points in Figure 5.1, while its six vertices correspond
to the three lines (ri ) and the three lines (si).]

5.5 The representability of budgetary matroids

What makes the budget matroids interesting, as a subclass of the budgetary ma-
troids, is that so many of them are representable. Turning that statement around,
what makes the budgetary matroids boring — at least, to a geometer — is that so
few of them are representable. Our goal in this section is to report on some numeric
experiments that support that latter claim.



5.5. THE REPRESENTABILITY OF BUDGETARY MATROIDS 67

To introduce those numeric experiments, let’s take each of the example bud-
get matroids Bb1,...,bk that we considered in Chapter 4, and let’s study the various
budgetary matroids Bd1,...,dk

b1,...,bk
that result from relaxing the dimension constraints on

the columns by various amounts. We shall refer to a matroid of the form Bd1,...,dk
b1,...,bk

,
where dj > bj for at least one j in [1 . . k], as a budgetary relaxation of the budget
matroid Bb1,...,bk . Warning: The term ‘relaxation’ has a technical meaning in ma-
troid theory that is similar in spirit to this, but is definitely not the same concept;
see Exercise 5.5-1.

The matroid B1,1 = B1,1
1,1 doesn’t have any budgetary relaxations, so there is

nothing to say.
As for the complete quadrilateral B2,1 = B2,1

2,1, the only way to get a budgetary
relaxation is to raise the dimension d2 from 1 to 2. As we discussed in Section 5.2,
a representation of the budgetary relaxation B2,2

2,1 consists of a triangle together with
one point on each of its sides, and we have #

(
B2,2

2,1

) = 9.
The Pappus configuration B1,1,1 is a more interesting case. Starting from B1,1,1

1,1,1,
we can raise either one, two, or all three of the column dimensions (dj ) from 1 to
2, and the results are as follows:

#
(
B1,1,1

1,1,1

) = 10 #
(
B1,2,2

1,1,1

) = 11

#
(
B1,1,2

1,1,1

) = ⊥ #
(
B2,2,2

1,1,1

) = 12.

Recall that the Pappus configuration B1,1,1
1,1,1 itself has nine collinearities, but they

are redundant: Requiring any eight of them forces the ninth to hold as well, by
Pappus’s Theorem, so we have #

(
B1,1,1

1,1,1

) = 18− 8 = 10. If we relax a single col-
umn dimension from 1 to 2, the resulting budgetary matroid B1,1,2

1,1,1 requires eight of
the Pappian collinearities, but forbids the ninth, and hence is not representable over
any field. Indeed, in matroid theory, the relaxation B1,1,2

1,1,1 is called non-Pappus, and
it serves as a standard example of a matroid whose unrepresentability has nothing
to do with the characteristic of the field of scalars. If we relax two or three columns,
however, the matroids return to representability; there is no redundancy, so the de-
grees of freedom are easy to count.

5.5.1 The partition 4 = 3+ 1

Moving on to rank 4, recall that a representation of the budget matroid B3,1 consists
of the four vertices of a tetrahedron in 3-space, together with the four points where
a line cuts its four faces. Recall also that #(B3,1) = 16.

What happens if we raise the dimension d2 of the budget matroid B3,1 = B3,1
3,1,

to get a budgetary relaxation? There are no redundancies among the constraints,
so all possible relaxations are representable and counting the degrees of freedom
is easy. If we relax the constraint on the four points of the second column from
collinearity to coplanarity, the cost of that column constraint goes down from 4 to
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1, so the overall freedom goes up to #
(
B3,2

3,1

) = 19. If we let the four points in the
second column points span the entire ambient 3-space, we have #

(
B3,3

3,1

) = 20.

5.5.2 The partition 4 = 2+ 2

Recall that a representation of the budget matroid B2,2 consists of the eight vertices
of a Möbius pair of tetrahedra. Recall also that the eight coplanarity constraints on
those eight points are redundant: If any seven of the eight coplanarities hold, the
eighth must hold as well. So we have #(B2,2) = 24− 7 = 17.

Our choices, in making a budgetary relaxation, are to increase either one or
both of the column dimensions from 2 to 3. If we increase just one of them, the
resulting matroid B2,3

2,2 is unrepresentable, since it requires seven of the Möbius-
pair coplanarities, while forbidding the eighth. So we have #

(
B2,3

2,2

) = ⊥. If we
increase both, the six coplanarity constraints remaining in the relaxation B3,3

2,2 are
nonredundant, and we have #

(
B3,3

2,2

) = 24− 6 = 18.

5.5.3 The partition 4 = 2+ 1+ 1

Recall that a representation of the budget matroid B2,1,1 consists of twelve points


2 1 1

P1 A1 B1

P2 A2 B2

P3 A3 B3

P4 A4 B4


in 3-space. Recall also that a naive count of the degrees of freedom would lead one
to guess that #(B2,1,1) = 36− 21 = 15, while the truth is that #(B2,1,1) = 19.

This high level of redundancy among the constraints causes lots of the bud-
getary relaxations of the budget matroid B2,1,1

2,1,1 to be unrepresentable. Here is what
seems to be the situation:

#
(
B2,1,1

2,1,1

) = 19 #
(
B3,1,1

2,1,1

) = ⊥
#
(
B2,1,2

2,1,1

) = ⊥ #
(
B3,1,2

2,1,1

) = ⊥
#
(
B2,1,3

2,1,1

) = ⊥ #
(
B3,1,3

2,1,1

) .= 20

#
(
B2,2,2

2,1,1

) .= 22 #
(
B3,2,2

2,1,1

) .= 22

#
(
B2,2,3

2,1,1

) = ⊥ #
(
B3,2,3

2,1,1

) .= 23

#
(
B2,3,3

2,1,1

) .= 23 #
(
B3,3,3

2,1,1

) .= 24

Warning: The number 19 and the five unrepresentable cases are facts, proved later
in this monograph (Theorem 7.3-1 and Exercises 7.2-2 and 7.2-4). The numbers
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in the other six cases are the authors’ educated guesses, supported by numeric ex-
periments — hence the use of the dotted equal sign ‘

.= ’.
Assuming that all of the numbers are correct, what do they mean? The final

relation #
(
B3,3,3

2,1,1

) .= 24 tells us that 24 degrees of freedom remain if we require
only the 12 perfect constraints, so those 12 constraints are nonredundant. If we add
to those 12 the constraint that any single column be coplanar, the freedom drops
to 23, so the new constraint is also nonredundant: #

(
B2,3,3

2,1,1

) .= #
(
B3,2,3

2,1,1

) .= 23.
Once the four P-points are coplanar, however, a theorem of projective geome-

try comes into play: When the twelve perfect coplanarities hold and the P column
is coplanar, Theorem 7.2-1 tells us that the A and B columns must have spans of
the same dimension. It follows that the budgetary relaxations B2,1,2

2,1,1, B2,1,3
2,1,1, and

B2,2,3
2,1,1 are unrepresentable. Also, if we require the P and A columns to be copla-

nar, the B column is forced to be coplanar as well; thus, the freedom for the case
#
(
B2,2,2

2,1,1

)
is 22, rather than 21. Considering this case naively, one might suspect

that, given the perfect coplanarities, the three column coplanarities are mutually
redundant, with any one following from the other two. But coplanarities are quar-
tic equations on the homogeneous coordinates, not linear ones; so naive reason-
ing about redundancy can fail. It turns out that requiring both the A and the B
columns to be coplanar does not force the P column to be coplanar: Instead of
having #

(
B3,2,2

2,1,1

) = ⊥, we have #
(
B3,2,2

2,1,1

) .= 22. That is, suppose that we require
the perfect coplanarities and the coplanarities of the A and B columns. The re-
sulting system of 14 quartic equations seems to define a reducible variety with at
least two components of dimension 22. Throughout one of those components, the
P column is also coplanar; but the P column is not coplanar at a generic point of
another of those components.

We have three budgetary relaxations of B2,1,1 left to consider, in all of which the
P points are not coplanar. It costs four degrees of freedom to make the A-points
collinear, and those four constraints are independent of the twelve perfect con-
straints; so, if that is all that we require, we have #

(
B3,1,3

2,1,1

) .= 20. But Exer-
cise 7.2-4 shows that, once the A-points are collinear, requiring the B-points to
be coplanar — which would naively reduce the freedom to 19 — either forces
the B-points to be collinear and the P-points to be coplanar or else forces some
degeneracy. So the two remaining relaxations are unrepresentable: #

(
B3,1,1

2,1,1

) =
#
(
B3,1,2

2,1,1

) = ⊥.

Exercise 5.5-1 Let M be a matroid and let X be a subset of M that is both a cir-
cuit and a hyperplane. So X itself is dependent, every proper subset of X is in-
dependent, no element not in X lies in Span(X), and |X | = rank(M). It is well
known [38] that we can build a matroid M ′ that differs from M only in that the set
X is independent in M ′ — and hence X is a base of M ′. The process of going from
M to M ′ is called relaxing the circuit-hyperplane X . For example, the budgetary
matroid B3,1,1

2,1,1 is the result of relaxing the circuit-hyperplane {P1, P2, P3, P4} in the
budget matroid B2,1,1.
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Let the matroid Bd1,...,dk
b1,...,bk

be some budgetary relaxation of the budget matroid
Bb1,...,bk

b1,...,bk
. When is it the case that we can get from the latter to the former by relaxing

some set of circuit-hyperplanes?
[Answer: Only occasionally, because the j th column of the budget matroid

Bb1,...,bk is a circuit-hyperplane only when bj = b − 2. That relationship holds
only for the first columns of Bm,2 and Bm,1,1, for any positive m. (It holds also for
the second columns of B2,1 and B2,2 and for all three columns of B1,1,1, but those
cases are symmetric.)]

5.5.4 The partition 4 = 1+ 1+ 1+ 1

Recall that a representation of the budget matroid B1,1,1,1 consists of sixteen points
in 3-space: 

1 1 1 1

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

,
The four points in each column are collinear, while the 24 perfect sets are coplanar.
A naive count of the degrees of freedom would lead one to guess that #(B1,1,1,1) =
48 − 40 = 8, while the truth — at least, over the complex numbers — is that
#(B1,1,1,1) = 20. So the redundancy accounts for 12 degrees of freedom.

The more redundancy there is among the constraints of a budget matroid, the
more likely it is that a random budgetary relaxation of that matroid will be unrep-
resentable. Here is what seems to be the story for the matroid B1,1,1,1:

#
(
B1,1,1,1

1,1,1,1

) = 20

#
(
B1,1,1,2

1,1,1,1

) = ⊥
#
(
B1,1,1,3

1,1,1,1

) = ⊥
#
(
B1,1,2,2

1,1,1,1

) = ⊥
#
(
B1,1,2,3

1,1,1,1

) = ⊥
#
(
B1,1,3,3

1,1,1,1

) = ⊥
#
(
B1,2,2,2

1,1,1,1

) .= ⊥ #
(
B2,2,2,2

1,1,1,1

) .= 21

#
(
B1,2,2,3

1,1,1,1

) .= ⊥ #
(
B2,2,2,3

1,1,1,1

) .= ⊥
#
(
B1,2,3,3

1,1,1,1

) .= ⊥ #
(
B2,2,3,3

1,1,1,1

) .= 22

#
(
B1,3,3,3

1,1,1,1

) .= ⊥ #
(
B2,3,3,3

1,1,1,1

) .= 23 #
(
B3,3,3,3

1,1,1,1

) .= 24

Warning: Only the first six lines in this table are proven facts (Proposition 10.1-2
and Exercise 5.6-3); the rest merely report on the authors’ numeric experiments —
but let’s view the entire table as correct, in the following paragraph.
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The last line #
(
B3,3,3,3

1,1,1,1

) .= 24 implies that the 24 perfect constraints them-
selves are nonredundant. The gap between this and the first line #

(
B1,1,1,1

1,1,1,1

) = 20
is only 4. Indeed, if we require even one of the four columns to be collinear, that
uses up all four of those degrees of freedom, apparently forcing all four columns
to be collinear. The remaining subtle point is that requiring any three columns
to be coplanar seems to force the last column to be coplanar as well; so we have
#
(
B2,2,2,3

1,1,1,1

) .= ⊥ and #
(
B2,2,2,2

1,1,1,1

) .= 24− 3 = 21.

5.5.5 The partition 5 = 2+ 1+ 1+ 1

We have now covered all of the budget matroids of rank at most 4. Note that, as
the number k of parts in the partition b = b1 + · · · + bk increases and as the parts
themselves increase, the percentage of the budgetary relaxations Bd1,...,dk

b1,...,bk
that are

representable goes down. This trend continues aggressively: In larger examples,
it is often the case that none of the budgetary relaxations are representable.

One example that will be important to us in Chapter 11 is the budget matroid
B2,1,1,1, a representation of which consists of 20 points in 4-space:



2 1 1 1

P1 A1 B1 C1

P2 A2 B2 C2

P3 A3 B3 C3

P4 A4 B4 C4

P5 A5 B5 C5

.
This matroid is definitely representable (Section 11.5 gives a rational representa-
tion), and numeric experiments suggest that #(B2,1,1,1)

.= 30; but it seems that all
of the budgetary relaxations of B2,1,1,1 — up through and including B4,4,4,4

2,1,1,1 — are
unrepresentable.

Here is some of the reasoning behind that claim; for more details, see Sec-
tion 11.6. To determine that #(B2,1,1,1)

.= 30, we find some rational representation
R of the matroid B2,1,1,1 and we compute the Jacobian matrix of the constraints at
the point R. For the representation R that the authors studied, that Jacobian turns
out to have rank 50. Since choosing 20 arbitrary points in 4-space involves 80 de-
grees of freedom, we conclude that the local dimension at R of the variety of rep-
resentations is 80 − 50 = 30, so 30 is a good guess for the freedom #(B2,1,1,1).
Note that

( 5
2 1 1 1

) = 60 of the constraints are perfect constraints. Since the rank
of the entire Jacobian is only 50, this means that the perfect constraints themselves
must be redundant. To determine how redundant they are, by themselves, we com-
pute the rank of just those sixty rows of the Jacobian matrix; and we again get 50.
So, in the neighborhood of the representation R, some 50 of the perfect constraints
imply the other ten perfect constraints and all of the column constraints. If the be-
havior at R is typical, it follows that all of the budgetary relaxations of B2,1,1,1 are
unrepresentable.
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5.5.6 Some larger partitions

So it seems likely that none of the budgetary relaxations of the matroid B2,1,1,1 are
representable; but that matroid has four columns. It is worth noting that the same
phenomenon arises also when there are only three columns, once the budgets for
those three columns get high enough. On the other hand, that phenomenon prob-
ably doesn’t arise when there are only two columns.

In the 3-column case, the authors found a rational representation R of the bud-
get matroid B3,3,1. The rank of the Jacobian of all of the constraints, at R, turned
out to be 68. Since a representation consists of 21 points in 6-space, which means
126 degrees of freedom, we conclude that #(B3,3,1)

.= 58 would be a good guess.
Furthermore, the rank at R of just the

( 7
3 3 1

) = 140 rows of the Jacobian that came
from the perfect constraints was also 68. This suggests that none of the budgetary
relaxations of B3,3,1 — up through and including B6,6,6

3,3,1 — is representable.
As for the case of only 2 columns, we get the most perfect constraints, for a

fixed total budget, when that total budget is divided in half. The authors investi-
gated the following cases:

#
(
B2,2

2,2

) = 17 #
(
B3,3

3,3

) = 42 #
(
B4,4

4,4

) = 77 #
(
B5,5

5,5

) = 122

#
(
B3,3

2,2

) = 18 #
(
B5,5

3,3

) .= 44 #
(
B7,7

4,4

) .= 83 #
(
B9,9

5,5

) .= 134

The facts in the upper row are from Theorem 6.2-2; the guesses in the lower row re-
sult from calculating the ranks of appropriate Jacobians. Even though the number
of perfect constraints is growing quite rapidly, as we move from left to right, the
redundancy among those constraints grows rapidly enough that the column con-
straints continue to play an important role — they do not become consequences of
the perfect constraints.

But whatever the fine details might turn out to be, the big picture seems clear.
Starting with Chapter 6 of this monograph, we shall focus almost exclusively on
the budget matroids, since they seem so much more likely to be representable than
their budgetary relaxations.

5.6 Budgetary minors of budgetary matroids

It is often the case that one budgetary matroid is a minor of another, in which case
we refer to the former as a budgetary minor. This relationship is worth noting be-
cause, when M is a minor of M ′ and M is not representable, we get an easy proof
that M ′ is not representable either. In this section, we use appropriate deletions
and contractions to prove two results about which budgetary matroids are minors
of which others.

Our first proposition says that deleting a zero column budget from the partition
of a budgetary matroid M ′ always leads to a budgetary minor M, regardless of the
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dimension of the deleted column. In this case, the ground matrix of the budgetary
minor M has the same number of rows as M ′, but one less column.

Proposition 5.6-1 Let M be a budgetary matroid M := Bd1,...,dk
b1,...,bk

, and let b :=
b1 + · · · + bk be its total budget. For any value of dk+1 in the range [0 . . b), the
budgetary matroid M ′ := Bd1,...,dk,dk+1

b1,...,bk,0 has M as a minor.

Proof In the larger matroid M ′, let Ck+1 denote the elements in the last column,
and let X be any set of elements with X ∩ Ck+1 = ∅. It is easy to check that X
is independent in M ′ if and only if that same set X is independent in the smaller
matroid M. Thus, we have M = M ′\Ck+1. tu

Our second proposition says that reducing a column budget by one in the par-
tition of a budgetary matroid M ′ also leads to a budgetary minor M, as long as the
dimension of the affected column is reduced by one also, the dimensions of the
other columns are reduced by one, if necessary, to keep them less than the reduced
total budget, and at least two column budgets remain positive after the reduction.
In this case, the ground matrix of the budgetary minor M has the same number of
columns as M ′, but one less row.

Proposition 5.6-2 Let M be a budgetary matroid M := Bd1,...,dk
b1,...,bk

, and let m in the
interval [1 . . k] be the index of a column in M. Define the augmented column
budgets (b′j ) by the rules

b′m := bm + 1

b′j := bj for j 6= m;

so the m th column budget goes up by 1, while all others stay the same, and hence
the total budget b′ = b + 1 goes up by 1. Also, define the augmented column
dimensions (d ′j ) by the rules

d ′m := dm + 1

d ′j := dj when j 6= m and dj ≤ b − 2

d ′j ∈ {b − 1,b} when j 6= m and dj = b − 1;

so the m th column dimension goes up by 1 as well, while all others stay the same,
except that any column dimension that starts out at b − 1, which is the old upper
bound, may either stay the same or increase by 1 to b, the new upper bound. The
augmented budgetary matroid M ′ := B

d ′1,...,d
′
k

b′1,...,b
′
k

then has M as a minor.

Proof We contract some element of the m th column of the matroid M ′ — say the
last, eb′m — and we delete all of the other elements in that same row. To show that
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this works, let X denote any subset of the smaller matroid M. We must show that
X is independent in M just when the set X ′ := X ∪ {eb′m} is independent in M ′.

The set X ′ has precisely one more element overall than does X . But the total
budget b′ is also one larger than the total budget b; so the set X satisfies the Am-
bient Rule in M just when X ′ satisfies that same rule in M ′.

The Column Rule in the m th column is similar. Letting Cj denote the j th column
of M ′, we have |X ′ ∩ Cm | = |X ∩ Cm |+ 1, because of the new element eb′m in X ′.
But the column dimension d ′m also exceeds the dimension dm by 1.

As for the Column Rule in the j th column for some j 6= m, the sets X ∩Cj and
X ′ ∩ Cj have the same elements. If dj = d ′j , then the Column Rule holds for X
in M just when it holds for X ′ in M ′. If dj = b − 1 and d ′j = b, then the Column
Rule holds both for X in M and for X ′ in M ′.

It remains to consider the Perfect Rule. If the set X has a perfect subset Y in
the matroid M, then the set X ′ has the perfect subset Y ′ := Y ∪ {eb′m} in M ′. Con-
versely, if the set X ′ has any perfect subset Y ′, the element eb′m must belong to Y ′,
since eb′m is the only element of X ′ in the last row; and the subset Y := Y ′ \ {eb′m}
of X is then perfect in M. tu

Exercise 5.6-3 The budgetary relaxation B1,1,2
1,1,1 of the Pappus matroid B1,1,1 is not

representable over any field. Using just that fact and the two results of this section,
which budgetary relaxations of the matroids B2,1,1 and B1,1,1,1 can you conclude are
not representable?

[Answer: In the former case, B2,1,2
2,1,1, B2,1,3

2,1,1, and B3,1,1
2,1,1; in the latter case, B1,1,1,2

1,1,1,1,
B1,1,1,3

1,1,1,1, B1,1,2,2
1,1,1,1, B1,1,2,3

1,1,1,1, and B1,1,3,3
1,1,1,1. Comparing with the data in Sections 5.5.3

and 5.5.4, we see that, in both cases, about half of the budgetary relaxations that are
unrepresentable can be shown to be so simply because they have the non-Pappus
matroid B1,1,2

1,1,1 as a budgetary minor.]



Chapter 6

Representing the matroid Bm,n

The budget matroids are an interesting subclass of the budgetary matroids because
so many of the former are representable. Indeed, to the best of the authors’ current
knowledge, it might be the case that every budget matroid is representable over the
rational numbers. We shan’t come close to proving that wild conjecture. But we
shall show that two infinite families of budget matroids are representable over the
rationals. In this chapter, we consider the budget matroids Bm,n that have just two
columns.

In addition to demonstrating representability, we shall also count the degrees of
freedom involved, showing that #(Bm,n) = m2+3mn+n2−3. Recall that #(Bm,n)

denotes the number of degrees of freedom involved in choosing a representation
of Bm,n, lying in some fixed projective space of the appropriate dimension, which
is m + n − 1.

6.1 The case m = n = 2 of a Möbius pair

The case n = 1 (or, symmetrically, the case m = 1) is easy. A representation of
the budget matroid Bm,1 consists of an m-simplex in m-space along with the m+1
points where a line cuts the facets of the simplex. There are m degrees of freedom
in each of the m + 1 vertices of the simplex and an additional 2m − 2 degrees of
freedom in the choice of the line, for a total of m2 + 3m − 2, which agrees with
the formula above.

Thus, the first tricky case is the case B2,2 of a Möbius pair of tetrahedra. Recall
that a representation of the matroid B2,2 consists of eight points


2 2

A1 B1

A2 B2

A3 B3

A4 B4


75
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in 3-space, with the A-points, the B-points, and the six perfect sets coplanar.
We can construct such a representation in a fixed 3-space as follows. Choose

the plane β, in which the B-points will lie — that’s three degrees of freedom —
and choose the four points (Bi) in the plane β so that no three are collinear —
that’s another eight. Choose a line c in the plane β that intersects the six sides of
the complete quadrangle with vertices (Bi) in six distinct points; that is, the line c
must not pass through any of the four vertices of the quadrangle nor through any
of the three diagonal points Bi Bj ∩ Bk Bl , where {i, j} ∪ {k, l} = {1,2,3,4}. And
choose a plane α through the line c, but distinct from β, so that c = α ∩ β. There
are two degrees of freedom in the choice of the line c and one more in the choice
of the plane α; so the current total freedom is fourteen.

It remains to choose the points (Ai ) in the plane α. But we must be careful,
when making these choices, to arrange that the six perfect sets end up being copla-
nar. Note that each perfect set has the form {Ai , Aj , Bk, Bl }, where i < j , k < l,
and {i, j, k, l} = {1,2,3,4}. Making those four points coplanar means arranging
that the two points Ai Aj ∩ c and Bk Bl ∩ c on the line c coincide, as shown in Fig-
ure 6.1. Let Cij ;kl denote the point Bk Bl ∩c. Choose the point A1 arbitrarily in the
plane α, but not on c; and choose the point A2 arbitrarily on the line A1C12;34, but
not coincident with either A1 or C12;34. Everything else is forced: We must choose
A3 to be the point where the lines A1C13;24 and A2C23;14 intersect, and we must
choose A4 similarly to be the point where A1C14;23 meets A2C24;13. This guaran-
tees that all six perfect sets are coplanar except possibly for {A3, A4, B1, B2}. But
the six points

{{C12;34,C34;12}, {C13;24,C24;13}, {C14;23,C23;14}
}

on the line c result
from stabbing a complete quadrangle in the plane β; so they form a quadrangular
set, and any one of them is determined by the other five. The four points (Ai ) in
the plane α determine another complete quadrangle, which the line c stabs at five
of the same points; so the sixth point must also be shared, that is, the line A3 A4

must meet c at the point C34;12.
Since choosing the points A1 and A2 involves an additional three degrees of

freedom, the grand total is seventeen, which agrees with the formula above.
Note that Figure 6.1 has a lot in common with Figure 2.3. Figure 2.3 shows a

2-block of lines, all through a common point, and shows two complete quadrilat-
erals that witness to the 2-dependence of the six slopes. Dually, Figure 6.1 shows
a 2-block of points, all on a common line, and shows two complete quadrangles
that witness to the 2-dependence of the six coordinates. In Figure 2.3, there is no
projective transformation that takes the first complete quadrilateral to the second
while fixing all lines through O, because one of the three pairs gets swapped. In
Figure 6.1, there is no projective map from the plane α to the plane β that carries
the first quadrangle to the second while fixing every point along the line c, because
all three pairs get swapped. To see concretely that no such projective map exists,
note that the lines in the plane α passing through the three points C12;34, C13;24,
and C14;23 concur at A1, while the lines in the plane β passing through those three
points are not concurrent.
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A1

A2

A3

A4
B1

B2 B3

B4

C12;34

C13;24

C14;23

C23;14

C24;13

C34;12

cα β

Figure 6.1: Constructing a representation of the budget matroid B2,2 in 3-space.
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We have shown, so far, that the eight points (Ai ) and (Bi) constructed as above
will have all of the incidences that are required for a representation of the budget
matroid B2,2. But will they be free of forbidden incidences? To check this, since
subsets of a mutually skew set are automatically mutually skew, it suffices to check
that all of the bases of the matroid B2,2 are mapped, by our construction, to sets of
four points that are not coplanar.

We required the six points (Cij ;kl ) to be distinct. This implies that neither A3

nor A4 ends up along the line c, so any base consisting of one A-point and three
B-points is non-coplanar. It also implies that no three of the four points Ai are
collinear in the plane α, so any base consisting of three A-points and one B-point
is also non-coplanar. The remaining bases have the form {Ai , Aj , Bk′ , Bl′ } where
i < j and k′ < l′, but the sets of row indices {i, j} and {k′, l′ } are not disjoint.
The line Ai Aj meets the line c at the point Cij ;kl , while the line Bk′ Bl′ meets the
line c at the distinct point Ci′ j ′;k′l′ . It follows that the base {Ai , Aj , Bk′ , Bl′ } is also
non-coplanar.

6.2 The general case

Extending these arguments from the case B2,2 to the case Bm,n for any positive m
and n involves a fair amount of fussy detail, but doesn’t require much in the way of
new ideas. The only interactions between the A-points, lying in their m-flat, and
the B-points, lying in their n-flat, occur along the line where those two flats meet.
And what we have, lying along that line, are lots of overlapping quadrangular sets,
each of which can be analyzed separately.

We begin with an easy lemma that we shall use also in Chapter 7.

Lemma 6.2-1 Let P1 through Pn be n mutually skew points in a projective n-space
S, and let π = Span(P1, . . . , Pn) be the hyperplane of S that they span. Let A1

through An be any n points of S, none lying in the hyperplane π . There exists a
unique point B that lies in all n of the hyperplanes

Hi := Span(P1, . . . , Pî , . . . , Pn , Ai ),

for i in [1 . . n] — that is, the intersection
⋂

i∈[1..n] Hi = {B} is a flat of dimension
0 — and the intersection point B does not lie in π .

Proof Any n hyperplanes intersect in at least a point, so the challenge is to show
that the intersection β :=⋂i∈[1..n] Hi contains just one point. Note that the points
P1 through Pn are the vertices of an (n − 1)-simplex in the hyperplane π , whose
n facets are the (n − 2)-flats

π ∩ Hi = Span(P1, . . . , Pî , . . . , Pn).
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Since no point is common to all of the facets of a simplex, it follows that the inter-
section π∩β is empty. Since the flat β is skew to the hyperplaneπ , it must consist
of a single point B that does not lie in π . tu

Theorem 6.2-2 (Bm,n Representation) For any positive m and n, the budget ma-
troid Bm,n is representable over the rationals, and the number of degrees of freedom
involved in choosing a representation, lying in a fixed projective space of dimen-
sion m + n − 1, is #(Bm,n) = m2 + 3mn + n2 − 3.

Proving this theorem will occupy us for the rest of Chapter 6. If you get bogged
down in the proof, feel free to skip on to Chapter 7.

6.2.1 The initial choices

Fix a projective space S of dimension m + n− 1. To construct a representation of
Bm,n in the space S, we first pick an n-flat β, lying in S; this involves (n+1)(m−1)
degrees of freedom. Next, we choose the points (Bi), for i in [1 . . m + n], lying
in the flat β, which involves (m + n)n degrees of freedom. Of course, every set
of at least n + 2 of the B-points must be mutually incident, since they all lie in a
common n-flat. But we constrain our choices of the (Bi) so that those are the only
incidences; that is, every set of at most n + 1 of the B-points is mutually skew.

Given a subset J ⊆ [1 . . m + n], let us denote by βJ the subspace βJ :=
Span({Bj | j ∈ J }) of β. And let us use the term t-set to describe any subset
J ⊆ [1 . . m + n] that has t elements. Because we have chosen the B-points to
be in general position within the n-flat β, we have dim(βJ) = |J | − 1 whenever
|J | ≤ n+1. In particular, for any (n+1)-set J , we have βJ = β. For any n-set J ,
we have dim(βJ) = n − 1, so the flat βJ is a hyperplane in β. If J and J ′ are two
distinct n-sets, the two hyperplanes βJ and βJ ′ must be distinct, since βJ∪J ′ = β.
It follows that their intersection βJ ∩ βJ ′ has dimension n − 2.

Choose a line c in the flat β that is skew to the (n − 2)-flat βJ ∩ βJ ′, for all
pairs of distinct n-sets (J, J ′). And choose any m-flat α that intersects the n-flat β
precisely in the line c. The choice of c involves 2(n − 1) degrees of freedom and
the choice of α involves (m−1)(n−1), so our running total is now 3mn+n2−2.

For every n-set J , the hyperplane βJ in β cannot include the entire line c, since
βJ ∩ βJ ′ is skew to c for any n-set J ′ distinct from J . So the hyperplane βJ in-
tersects c at a unique point. By analogy with the case m = n = 2 above, we
should denote that point of intersection by CI ;J , where I denotes the m-set I :=
[1 . . m + n] \ J that is complementary to the n-set J . But, to save writing, we
shall instead denote it simply by CI . If (I ; J ) and (I ′; J ′) are any two distinct par-
titions of the set [1 . . m + n] into an m-set and an n-set, the fact that βJ ∩ βJ ′ is
skew to c implies that the points CI := βJ ∩ c and CI ′ := βJ ′ ∩ c are distinct. So
there are

(m+n
m

)
distinct points (CI ) along the line c, one for each partition (I ; J )

of [1 . . m + n] into an m-set I and an n-set J .
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6.2.2 Goals for choosing the A-points

Our next task is to choose the points (Ai ), lying in the m-flat α. We want the inci-
dence structure of the A-points in α to be completely analogous to the structure of
the B-points in β. Our first goal in this regard is that we want every set of at most
m+ 1 of the A-points to be mutually skew. That is, letting αI denote the subspace
αI := Span({Ai | i ∈ I }) of α, we want dim(αI ) = |I |−1 whenever |I | ≤ m+1.
Since subsets of a mutually skew set are mutually skew, it suffices to make sure,
for every (m + 1)-set I , that αI = α. Our second goal is that, for any m-set I , the
flat αI — which we have already said should be a hyperplane — should intersect
the line c at the single point CI .

If those two goals are met, then the incidence structure of the A-points in α
will be completely analogous to that of the B-points in β. For example, given any
two distinct m-sets I and I ′, the (m − 2)-flat αI ∩ αI ′ will be skew to c, since the
hyperplanes αI and αI ′ in α intersect c precisely in the distinct points CI and CI ′ .

Our plan for achieving these goals involves an induction on the weight of the
subset I , where we define the weight w(I ) of a set I ⊆ [1 . . m + n] to be the
number of its elements that exceed m; so we havew(I ) := ∣∣I ∩ [m+ 1 . .m+ n]

∣∣.
We therefore formalize our two goals as follows:

Goal1 The property G1(t) holds when, for all (m+1)-sets I with weight w(I ) =
t , we have αI = α.

Goal2 The property G2(t) holds when, for all m-sets I with weight w(I ) = t , we
have dim(αI ) = m − 1 and αI ∩ c = {CI }.

Note that we have included, as part of Goal2, the assertion that the flat αI is a hy-
perplane. If we were able to prove G1(t) for all t before worrying about Goal2,
then this aspect of Goal2 would follow automatically. But we are actually going to
establish the two goals using a simultaneous induction. The base cases are G1(1),
G2(0), and G2(1). The inductive steps show that

• For all t ≥ 2, the property G2(t − 1) implies G1(t).

• For all t ≥ 2, the properties G1(t − 1), G1(t), G2(t − 2), and G2(t − 1)
together imply G2(t).

6.2.3 Choosing the A-points

Choose the points A1 through Am−1 to be mutually skew in the flat α and so that the
(m − 2)-flat that they span is skew to the line c. That involves (m − 1)m degrees
of freedom. The m points {A1, . . . , Am−1,C[1..m]} are then mutually skew, so their
span

π := Span(A1, . . . , Am−1,C[1..m])
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is a hyperplane in α. We choose the point Am to lie in the hyperplane π , subject
to some nondegeneracy conditions that we discuss in a second. The choice of Am

involves a final m−1 degrees of freedom, for a grand total of m2+3mn+n2−3,
as claimed.

Choosing the point Am in the hyperplane π forces the set {A1, . . . , Am ,C[1..m]}
to be mutually incident, but we constrain the choice of Am so that no proper subset
of that set is mutually incident. Among other things, this implies that the m points
{A1, . . . , Am } span the entire hyperplane π , so we have π = Span(A1, . . . , Am ).
Since we chose the (m − 2)-flat Span(A1, . . . , Am−1) to be skew to the line c, the
hyperplane π can’t intersect c in more than a single point; so we have π ∩ c =
{C[1..m]}.

We have finished making choices, but we haven’t finished constructing all of
the A-points. Let k be an index in the interval [m+ 1 . .m + n]. Our choice of the
point Ak is constrained by our need to arrange things so that, for each i in [1 . .m],
the m points {A1, . . . , Aî , . . . , Am , Ak }will span a hyperplane in α whose intersec-
tion with the line c consists of the single point C[1..m]∪{k}\{i} . Turning this around,
we must choose the point Ak to lie in the hyperplane

Hi,k := Span(A1, . . . , Aî , . . . , Am ,C[1..m]∪{k}\{i} ).

Note that the flat Hi,k is a hyperplane, and not something smaller, because the point
C[1..m]∪{k}\{i} does not lie in π = Span(A1, . . . , Am ). We are now in perfect shape
to appeal to Lemma 6.2-1, from which we conclude that the hyperplanes Hi,k , for
i in [1 . . m], intersect in a unique point. We call that point Ak . Lemma 6.2-1 also
tells us that the point Ak does not lie in π .

6.2.4 The base cases hold

As a result of choosing the A-points in this way, we claim that the three base cases
G1(1), G2(0), and G2(1) of the induction hold.

To see that G1(1) holds, note that any (m+1)-set I of weight 1 has the form I =
[1 . .m]∪{k}, for some k in [m+ 1 . . n]. We have αI = Span(A1, . . . , Am , Ak ) =
Span(π ∪ {Ak }) = α, since Lemma 6.2-1 tells us that Ak does not lie in π .

As for G2(0), the unique m-set of weight 0 is the set [1 . . m], and we have
α[1..m] = Span(A1, . . . , Am ) = π . We have already observed that π is a hyper-
plane in α and that π ∩ c = {C[1..m]}.

We claim that G2(1) also holds. An m-set I of weight 1 has the form I :=
[1 . .m]∪{k} \ {i} for some i in [1 . .m] and some k in [m+ 1 . .m+ n]. Since the
point Ak does not lie in the hyperplaneπ , the flat Span(A1, . . . , Am , Ak ) is all of α;
so the flat Span(A1, . . . , Aî , . . . , Am , Ak ) = αI is a hyperplane. Our choice of Ak

guaranteed that this hyperplane contains the point CI . It remains to show that the
hyperplane αI does not contain the entire line c, which we shall do by showing that
the (m − 2)-flat Span(A1, . . . , Aî , . . . , Am ) is skew to c. The case i = m is easy,
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since, in choosing the points A1 through Am−1, we constrained the (m − 2)-flat
Span(A1, . . . , Am−1) to be skew to c. So suppose that i < m. We constrained the
choice of the point Am to guarantee that the (m−2)-flat Span(A1, . . . , Aî , . . . , Am )

does not contain the point C[1..m]. But that flat cannot contain any other point on
the line c either, because C[1..m] is the only point on the line c that lies in the entire
hyperplane π = Span(A1, . . . , Am ). Thus, the flat Span(A1, . . . , Aî , . . . , Am ) is
skew to c, for any i in [1 . . m], which completes the proof of G2(1).

6.2.5 The easy inductive step

We claim that G2(t − 1) implies G1(t), for any t ≥ 2.
Let I be any (m+1)-set of weight t; we must show that αI = α, that is, that the

set {Ai }i∈I is mutually skew. Let k and l be two indices in the set I∩[m+1. .m+n].
Note that this set has cardinality at least 2, sincew(I ) = t ≥ 2. The sets I \{k} and
I \{l} are both m-sets of weight t−1. From the assumption G2(t−1), we conclude
that dim(αI\{k}) = m−1 and that the hyperplane αI\{k} intersects c precisely in the
point CI\{k} ; and similarly with k replaced with l. Since the points CI\{k} and CI\{l}
are distinct, it follows that the flat αI is all of α.

6.2.6 The hard inductive step

We claim also — and this is the heart of the whole proof, and the place where quad-
rangular sets get involved — that G1(t−1), G1(t), G2(t−2), and G2(t−1) together
imply G2(t), for any t ≥ 2.

Let I be any m-set of weight t; we must show that dim(αI ) = m − 1 and that
αI ∩ c = {CI }. Let k and l be any two indices in the set I ∩ [m + 1 . . m + n],
which must exist because w(I ) = t ≥ 2. Let i and j be any two indices in the
set [1 . . m] \ I , which must exist for the same reason. Let P denote the set P :=
I \ {k, l}, and let Q denote the set Q := [1 . . m + n] \ (I ∪ {i, j}). So we have
|P| = m − 2, |Q| = n − 2, and the set [1 . . m + n] is partitioned into the three
parts [1 . . m + n] = P ∪ Q ∪ {i, j, k, l}.

Consider the four index sets P ∪ {i, j, k}, P ∪ {i, j, l}, P ∪ {i, k, l}, and P ∪
{ j, k, l}. Each of these is an (m+ 1)-set; the first two have weight t − 1, while the
latter two have weight t . From the assumptions G1(t−1) and G1(t), we conclude
that the flat αP∪{i, j,k} coincides with α, and similarly for the other three index sets.
In addition to salting those facts away for the future, it follows from the relation
αP∪{i,k,l} = α that the flat αI = αP∪{k,l} is a hyperplane — that is, dim(αI ) = m−1
— which is one of the claims that we are trying to show.

The set of all (m − 2)-flats in α that include the fixed (m − 3)-flat αP forms a
projective plane U . Projecting any point R in α \ αP from the flat αP produces a
unique ‘point’ Span(αP ∪ {R}) in this plane U , and we shall denote that ‘point’ as
R̃ := Span(αP ∪ {R}). In particular, we are interested in the four ‘points’ Ãi , Ãj ,
Ãk , and Ãl in the plane U . The fact that the flat αP∪{i, j,k} coincides with α tells us
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that the three ‘points’ Ãi , Ãj , and Ãk in the plane U are not collinear, and similarly
for the other three triples. Thus, the four ‘points’ Ãi , Ãj , Ãk , and Ãl determine a
nondegenerate complete quadrangle in the plane U ; call that quadrangle D.

Next, we consider the five index sets P∪{i, j}, P∪{i, k}, P∪{i, l}, P∪{ j, k},
and P ∪ { j, l}, omitting the sixth choice I = P ∪ {k, l}. All six are m-sets. Of the
five that we are considering, the first has weight t−2, while the others have weight
t−1. From the assumption G2(t−2), we conclude that dim(αP∪{i, j }) = m−1 (as
we already knew) and that the hyperplane αP∪{i, j } in α cuts the line c at the unique
point CP∪{i, j } . From the assumption G2(t−1), we make similar conclusions about
the four pairs {i, k}, {i, l}, { j, k}, and { j, l}. The fact that the hyperplanes αP∪{i,k}
and αP∪{ j,k} cut the line c at distinct points implies that the (m − 2)-flat αP∪{k} is
skew to c. It follows that the hyperplane αI = αP∪{k,l} intersects c at a unique
point, say X . We need to show that X = CI .

If we project the hyperplane αP∪{i, j } down from the flat αP into the projective
plane U , we deduce that the ‘line’ Ãi Ãj in U that joins the ‘point’ Ãi to the ‘point’
Ãj cuts the ‘line’ c̃ := {R̃ | R ∈ c} at the unique ‘point’ C̃P∪{i, j }. Similar results
hold with the pair {i, j} replaced by any of the other four pairs. Since the ‘line’
c̃ cuts five of the six sides of the complete quadrangle D at five distinct ‘points’,
we deduce that c̃ does not pass through any vertex of the quadrangle D; so the
quadrangle D cuts out, along c̃, three pairs of ‘points’ that form a quadrangular
set:

{{C̃P∪{i, j }, X̃}, {C̃P∪{i,k}, C̃P∪{ j,l} }, {C̃P∪{i,l} , C̃P∪{ j,k} }
}
.

But there is also a complete quadrangle E sitting in the n-flat β, and we can
reason about all six of its sides, since there is no induction going on over there.
More precisely, the set of all (n − 2)-flats in β that include the fixed (n − 3)-flat
βQ forms a projective plane V . Each point R in β \βQ determines a unique ‘point’
R̄ := Span(βQ ∪ {R}) in the plane V , and the four points B̄i , B̄j , B̄k , and B̄l are
the vertices of a complete quadrangle E in V . The side B̄i B̄j of the quadrangle
E cuts the ‘line’ c̄ := {R̄ | R ∈ c} at the ‘point’ C̄P∪{k,l} , and similarly for the
other five sides. (Don’t be confused by our abbreviated notation; remember that,
if we weren’t lazy, we would be denoting the point CP∪{k,l} as CP∪{k,l};Q∪{i, j }.) It fol-
lows that the six points

{{C̄P∪{i, j }, C̄P∪{k,l} }, {C̄P∪{i,k} , C̄P∪{ j,l} }, {C̄P∪{i,l} , C̄P∪{ j,k} }
}

form a quadrangular set along the line c̄. Since five points of a quadrangular set
uniquely determine the sixth, we deduce that X = CP∪{k,l} , which completes the
induction.

6.2.7 Checking the incidences

It remains to show that the A-points and B-points, chosen as above, do represent
the budget matroid Bm,n.

Did we achieve every required incidence? The A-points lie in the m-flat α and
the B-points lie in the n-flat β. Also, for every partition (I ; J ) of [1 . .m+ n] into
an m-set I and an n-set J , the perfect set of points {Ai | i ∈ I } ∪ {Bj | j ∈ J } is
mutually incident, because the flats αI and βJ both meet the line c at the point CI .
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To show that we have avoided every forbidden incidence, it suffices to check
that we have mapped every base of the matroid Bm,n to a mutually skew set of m+n
points — a set that spans all of S. There are three types of bases. A base of the first
type has the form {Ai | i ∈ I }∪{Bj | j ∈ J }where I is any (m−1)-set and J is any
(n+1)-set. We have βJ = β, while αI is some (m−2)-flat in α. Note that adding
one new element to the set I to produce an m-set I ′ ⊃ I gives us a hyperplane αI ′

in α that cuts the line c at the point CI ′ . Since the point CI ′ varies, depending upon
which m-set I ′ ⊃ I we choose, the (m − 2)-flat αI must be skew to c. It follows
that Span(αI ∪βJ ) = S. The second type of base is symmetric, with m+ 1 points
in the A column and n − 1 in the B column. A base of the third and final type has
the form {Ai | i ∈ I }∪{Bj | j ∈ J ′}where I is an m-set and J ′ is an n-set, but the
partitions (I ; J ) and (I ′; J ′) of [1 . . m + n] are distinct. The span of such a base
includes the flats αI and βJ ′, so it contains the two distinct points CI and CI ′ along
c, so it includes the entire line c, so it includes both α and β, so it coincides with
S. And that, at long last, finishes the proof of the Bm,n Representation Theorem.

Exercise 6.2-3 (For matroid mavens) We have finally finished proving that the
budget matroid Bm,n is representable over the rationals. If it were also binary (that
is, representable over the Galois field of order 2), it would follow from standard
results that it was regular (that is, representable over all fields). And indeed, the
budget matroids B1,1 and B2,1 are both binary and regular. But show that those
two are the only budget matroids Bb1,...,bk that are binary.

[Hint: Recall from Exercise 4.2-4 what the circuits of a budget matroid are. It
is a standard result that a matroid is binary if and only if the symmetric difference
C4D of any two distinct circuits C and D always includes a circuit [41]. Let X be
the subset of Bb1,...,bk of size b that contains, for each j , precisely the top bj elements
in the j th column. Show that one can typically find two distinct elements f and g
so that C := X ∪ { f } and D := X ∪ {g} are circuits (of the type called ambient
circuits in Exercise 4.2-4), and note that the symmetric difference C4D = { f, g}
is too small to include any circuit. Why are the cases B1,1 and B2,1 atypical?]



Chapter 7

Representing the matroid Bm,1,1

As the number of parts in the partition b = b1+· · ·+bk increases and as the parts
themselves increase, it rapidly becomes quite unclear whether or not the budget
matroid Bb1,...,bk is representable. But for the simplest of the budget matroids with
three columns, those of the form Bm,1,1, we can still get a general representability
result over the rational numbers. Already in this case, however, avoiding forbidden
incidences is much harder than it was in the case of the budget matroids Bm,n, with
only two columns.

7.1 The case m = 2 of the matroid B2,1,1

Let’s begin by considering the matroid B2,1,1 — the one that we are eventually go-
ing to show characterizes the dependence of four cubic polynomials. Recall that a
representation of B2,1,1 consists of twelve points


2 1 1

P0 A0 B0

P1 A1 B1

P2 A2 B2

P3 A3 B3


in 3-space. The four A-points lie on a common line a, the four B-points lie on
a common line b, and the four P-points lie on a common plane π . Furthermore,
each of the twelve perfect sets {Pi , Pj , Ak , Bl } for {i, j, k, l} = {0,1,2,3} must be
coplanar. Note that, in this chapter, it is convenient to index the four rows starting
at 0, rather than at 1.

Suppose that we choose any planeπ in 3-space and four points (Pi ) in the plane
π with no three collinear. We choose a line a whose intersection with π — call it
Aπ := a∩π — is not on any line joining two of the P-points. And we choose four
distinct points (Ai ) on the line a, none coinciding with Aπ . Whenever {i, j, k, l} =
{0,1,2,3}, the point Bl is restricted to lie in the three planes Pi Pj Ak , Pi Pk Aj , and

85
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Pk Pj Ai . By Lemma 6.2-1, those three planes intersect at a unique point Bl , which
does not lie in the plane π . But are the four points (Bl) so determined collinear?
It turns out that they are; in fact, much more is true.

Note that the A-points did not have to be collinear, in order to enable the con-
struction of the B-points. Given any sequence of four A-points, none lying in π ,
we get a sequence of four B-points, none lying in π ; and the relationship between
the sequences (Ai ) and (Bi) is symmetric. It turns out that the spans of the two se-
quences (Ai ) and (Bi) always have the same dimension. Furthermore, this result
generalizes from 3-space to projective space of any dimension.

7.2 The n-Space Pappus Theorem

Theorem 7.2-1 (n-Space Pappus) Let S be a projective space of dimension n,
and let π be a hyperplane in S. Let (P0, . . . , Pn) be n + 1 points lying in π , but
with no n of them mutually incident; so the points (Pi) form a projective frame
for the hyperplane π . We say that two sequences (A0, . . . , An) and (B0, . . . , Bn)

of points in S \π are compatible just when, for all n(n+ 1) pairs (i, j) with i and
j in [0 . . n] and i 6= j , the n + 1 points{

P0, . . . , Pî , . . . , Pĵ , . . . , Pn , Ai , Bj

}
lie in a common hyperplane. There is a unique sequence (Bi) of points in S \ π
that is compatible with any given sequence (Ai ) of such points, and we have the
equality dim(Span(Ai )) = dim(Span(Bi)).

Note that, when n = 2, this theorem is essentially Pappus’s Theorem in the
plane: Given three distinct points (P0, P1, P2) along a line, the collinearity of the
three points (A0, A1, A2) implies the collinearity of the three compatible points
(B0, B1, B2), where compatibility means that the triple of points {Pi , Aj , Bk} is
collinear whenever {i, j, k} = {0,1,2}. Thus, this theorem constitutes one pos-
sible generalization of Pappus’s Theorem from the plane to n-dimensional space.

Proof The existence of a unique sequence (Bi) compatible with a given sequence
(Ai ) is simple to see. For any j in [0. .n], the n points {P0, . . . , Pĵ , . . . , Pn} are mu-
tually skew by assumption, spanning the hyperplane π . Since none of the points
(Ai ) lies in π , we conclude from Lemma 6.2-1 that the point Bj is uniquely deter-
mined by the n constraints that it lie in each of the hyperplanes

Span(P0, . . . , Pî , . . . , Pĵ , . . . , Pn , Ai ),

for i in [0 . . n] \ { j}, and the point Bj so determined does not lie in π .
The interesting result is that dim(Span(Ai )) = dim(Span(Bi)). We shall use

analytic geometry to show this, choosing our coordinate system carefully. Since
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the points (Pi) form a projective frame for the hyperplane π , we can choose our
coordinate system for points [x0, . . . , xn] in the n-space S so that the hyperplane
π has the equation x0 = 0 and so that the homogeneous coordinates of the points
(Pi) are given by the rows of the matrix

p :=



0 1 2 3 . . . n

P0 0 1 1 1 . . . 1
P1 0 1 0 0 . . . 0
P2 0 0 1 0 . . . 0
P3 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

Pn 0 0 0 0 . . . 1

.

Note that we have chosen P0 to be the unit point of the projective frame, hence
singling it out from the other P-points. Treating the index 0 specially, in this way,
builds an asymmetry into our coordinate system, and that seems unavoidable.

Since none of the A-points are allowed to lie in the hyperplane π , we can ar-
range that their coordinates are given by the rows of the matrix

a :=



0 1 2 3 . . . n

A0 1 0 0 0 . . . 0
A1 1 c11 c12 c13 . . . c1n

A2 1 c21 c22 c23 . . . c2n

A3 1 c31 c32 c33 . . . c3n
...

...
...

...
...

. . .
...

An 1 cn1 cn2 cn3 . . . cnn

.

Giving the point A0 the simple coordinates [1,0,0, . . . ,0] builds a second asym-
metry into our chosen coordinate system, an asymmetry between the A-points and
the upcoming B-points. This second asymmetry could be eliminated, but only by
splitting the difference, which would introduce annoying factors of 1

2 .
Claim: The coordinates of the compatible points (Bj ) are then given by the

rows of the matrix b:

b :=



0 1 2 3 . . . n
B0 1 c11 c22 c33 . . . cnn

B1 1 0 c22 − c21 c33 − c31 . . . cnn − cn1

B2 1 c11 − c12 0 c33 − c32 . . . cnn − cn2

B3 1 c11 − c13 c22 − c23 0 . . . cnn − cn3
...

...
...

...
...

. . .
...

Bn 1 c11 − c1n c22 − c2n c33 − c3n . . . 0


To verify this claim, let (i, j) be any pair with i and j in [0 . . n] and i 6= j ; we
must show that the points{

P0, . . . , Pî , . . . , Pĵ , . . . , Pn , Ai , Bj

}
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lie in a common hyperplane — that is, that the matrix formed by replacing the i th

and j th rows of p with Ai and Bj has determinant zero. If neither i nor j is 0, this
boils down to checking that the matrix


0 i j

P0 0 1 1
Ai 1 cii ci j

Bj 1 cii − cij 0


has zero determinant, which it does; the common hyperplane in this case has the
homogeneous coefficients

〈
0

cij − cii ,0, . . . ,0,
i
1,0, . . . ,0,

j
−1,0, . . . ,0 〉.

The special cases i = 0 and j = 0 are even easier:

( 0 j
A0 1 0
Bj 1 0

)
and

( 0 i
Ai 1 cii

B0 1 cii

)
.

It remains to show that rank(a) = rank(b), which we can do by converting one
matrix into the transpose of the other using elementary row and column operations.
Start with the matrix b. Subtracting the top row from each row below it gives us

1 c11 c22 c33 . . . cnn

0 −c11 −c21 −c31 . . . −cn1

0 −c12 −c22 −c32 . . . −cn2

0 −c13 −c23 −c33 . . . −cn3
...

...
...

...
. . .

...

0 −c1n −c2n −c3n . . . −cnn


.

Adding appropriate multiples of the leftmost column to each column to its right
then gives us the matrix

1 −1 −1 −1 . . . −1
0 −c11 −c21 −c31 . . . −cn1

0 −c12 −c22 −c32 . . . −cn2

0 −c13 −c23 −c33 . . . −cn3
...

...
...

...
. . .

...

0 −c1n −c2n −c3n . . . −cnn


,

which differs from the transpose of a only by some unimportant signs. tu
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Exercise 7.2-2 Show that the three budgetary relaxations B2,1,2
2,1,1, B2,1,3

2,1,1, and B2,2,3
2,1,1

of the budget matroid B2,1,1 are not representable over any field. Recall that the
first two of these were shown to be unrepresentable also in Exercise 5.6-3.

[Answer: Letting n = 3 in the n-Space Pappus Theorem tells us at once that
the column dimensions of the A and B columns must be the same.]

Exercise 7.2-3 What about those budgetary relaxations B3,?,?
2,1,1 of the budget ma-

troid B2,1,1 in which the P column dimension is 3 — that is, the P-points are not
coplanar? Note that the twelve perfect coplanarities still hold, and they still suffice
to determine the B-points from the P-points and the A-points. Find the homoge-
neous coordinates of the B-points, assuming that the P-points are given by the
rows of the matrix

p :=


P1 1 0 0 0
P2 0 1 0 0
P3 0 0 1 0
P4 0 0 0 1

,
while the A-points are given by

a :=


A1 a11 a12 a13 a14

A2 a21 a22 a23 a24

A3 a31 a32 a33 a34

A4 a41 a42 a43 a44

.
[Answer: The B-points are given by the rows of the matrix

b :=


B1 a21a31a41 a22a31a41 a21a33a41 a21a31a44

B2 a11a32a42 a12a32a42 a12a33a42 a12a32a44

B3 a11a23a43 a13a22a43 a13a23a43 a13a23a44

B4 a11a24a34 a14a22a34 a14a24a33 a14a24a34

.


Exercise 7.2-4 Using the preceding exercise, show that the budgetary matroids
B3,1,1

2,1,1 and B3,1,2
2,1,1 are not representable over any field. Note that the first of these

was shown to be unrepresentable also in Exercise 5.6-3.
For context, recall that #

(
B3,1,3

2,1,1

) = 20: three degrees of freedom in each of
the four P-points, three each in A1 and A2, and one each in A3 and A4, after which
the B-points are determined.

[Hint: Replace the points A3 and A4, which are generic points in 3-space in the
previous exercise, with generic points on the line A1 A2 — say, A3 = u3 A1+v3 A2

and A4 = u4 A1 + v4 A2 — and verify that det(b) then factors as

det(b) = u3u4v3v4(u3v4 − u4v3)
∏

1≤i< j≤4

(a1ia2 j − a1 j a2i).

Thus, the B-points can be coplanar only when there is some degeneracy: either two
of the A-points coincide or the line containing the four A-points intersects one of
the six edges of the P-point tetrahedron.]
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7.3 The general case

Theorem 7.3-1 (Bm,1,1 Representation) For any positive m, the budget matroid
Bm,1,1 is representable over the rational numbers, and the number of degrees of
freedom involved in choosing a representation, lying in a fixed projective space S
of dimension m + 1, is #(Bm,1,1) = m2 + 6m + 3.

The proof of this theorem, like the proof of the Bm,n Representation Theorem,
is long. The good news is that you aren’t as likely to get bogged down this time.
The bad news is that we are going to use the concepts introduced in this proof, in
Chapter 9, to analyze what can go wrong when constructing a representation of
the matroid B2,1,1 that witnesses to the 3-dependence of four cubic polynomials.
So skipping this proof will limit the depth of your understanding of Chapter 9.

7.3.1 The plan of attack

We use n as an abbreviation for m+1. We index the three columns with the letters
P, A, and B and the m + 2 rows with the integers [0 . . m + 1] = [0 . . n].

The basic plan of attack is obvious. We choose any hyperplane π in S; that
involves m+ 1 degrees of freedom. We choose the points (Pi ) for i in [0 . .m+ 1]
to form a projective frame for π ; that involves m(m + 2) degrees of freedom. We
choose some line a, not lying in the hyperplane π — another 2m degrees of free-
dom. Finally, we choose m + 2 points (Ai ) on a, none lying in π , which involves
a final m+2 degrees of freedom, for a total of m2+6m+3. Invoking the n-Space
Pappus Theorem with n := m + 1, we let (Bi) be the unique sequence of points
that is compatible with the sequence (Ai ), and we observe that the points (Bi)will
be collinear. The resulting P-points, A-points, and B-points have all of the inci-
dences required for a representation of Bm,1,1. The hard part is to show that they
don’t have any forbidden incidences. Indeed, they will have forbidden incidences
in special cases; but they won’t in the generic case.

7.3.2 Choosing the coordinate system

As in the proof of the n-Space Pappus Theorem, we can choose our coordinate
system on the space S so that the homogeneous coordinates of the P-points are
given by the rows of the matrix

p :=



0 1 2 3 . . . n

P0 0 1 1 1 . . . 1
P1 0 1 0 0 . . . 0
P2 0 0 1 0 . . . 0
P3 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

Pn 0 0 0 0 . . . 1

,
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while the point A0 has the coordinates A0 = [1,0,0, . . . ,0]. When proving the
n-Space Pappus Theorem, the point Ai had the coordinates Ai = [1, ci1, . . . , cin ],
for i in [1 . . n]. But we here want to constrain the points (Ai ) to lie on a common
line a. One convenient way to do that is as follows.

Let Aπ := a ∩ π be the point where the line a cuts the hyperplane π , and let
[0, v1, . . . , vn] = Aπ be some set of homogeneous coordinates for the point Aπ .
Now, the point A1 lies on the line a = A0 Aπ . Hence, for any finite, nonzero scalar
u1 that we choose, there is a unique projective coordinate system for the line a in
which the three distinct points A0, Aπ , and A1 are assigned the coordinates 0,∞,
and u1. In that coordinate system for the line a, the points A2 through An have
finite, nonzero coordinates, which we shall denote u2 through un.

There is a unique way to extend our chosen coordinate system for the hyper-
plane π to a coordinate system for the entire space S so that, in addition to the
point A0 getting the coordinates [1,0,0, . . . ,0], the point A1 gets the coordinates
[1,u1v1, . . . ,u1vn]. In that unique coordinate system for S, the point Ai , for i in
[2 . . n], must have the coordinates [1,uiv1, . . . ,uivn], where the scalars (ui) are
as defined above. So the homogeneous coordinates of the A-points are given by
the rows of the matrix

a :=



0 1 2 3 . . . n
A0 1 0 0 0 . . . 0
A1 1 u1v1 u1v2 u1v3 . . . u1vn

A2 1 u2v1 u2v2 u2v3 . . . u2vn

A3 1 u3v1 u3v2 u3v3 . . . u3vn
...

...
...

...
...

. . .
...

An 1 unv1 unv2 unv3 . . . unvn

.

Note that, for i in [1 . . n], we have the inhomogeneous equation Ai = A0+ ui Aπ .
Given that those are the A-points, the same argument as in the proof of the

n-Space Pappus Theorem shows that the coordinates of the B-points are given by
the rows of the matrix

b :=



0 1 2 3 . . . n
B0 1 u1v1 u2v2 u3v3 . . . unvn

B1 1 0 u2(v2 − v1) u3(v3 − v1) . . . un(vn − v1)

B2 1 u1(v1 − v2) 0 u3(v3 − v2) . . . un(vn − v2)

B3 1 u1(v1 − v3) u2(v2 − v3) 0 . . . un(vn − v3)
...

...
...

...
...

. . .
...

Bn 1 u1(v1 − vn) u2(v2 − vn) u3(v3 − vn) . . . 0

.

Note that these points (Bi) are indeed collinear. Letting Bπ denote the point Bπ :=
[0,u1, . . . ,un] in the hyperplane π , the point Bi , for i in [1 . . n], lies on the line
b := B0 Bπ , at a position determined by the parameter vi . In fact, we have the
inhomogeneous equation Bi = B0 − vi Bπ .
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Just as in the proof of the n-Space Pappus Theorem, our chosen coordinate
system treats the A-points and the B-points asymmetrically. But that asymmetry
manifests itself only in the coordinates that are assigned to points outside of the hy-
perplane π . In particular, the asymmetry does not affect the parameters (ui) and
(vi). We have Aπ = a ∩ π = [0, v1, . . . , vm] and, symmetrically, we have Bπ =
b ∩ π = [0,u1, . . . ,um]. Alternatively, we can define the scalars (u1, . . . ,um) as
the coordinates of the points (A1, . . . , Am ) in some projective coordinate system
for the line a that assigns the coordinates 0 and∞ to A0 and Aπ . Symmetrically,
the scalars (v1, . . . , vm) are the coordinates of the points (B1, . . . , Bm) in some co-
ordinate system for the line b that assigns the coordinates 0 and∞ to B0 and Bπ .

Each of the parameter vectors [u1, . . . ,un] and [v1, . . . , vn] is homogeneous,
and thus represents n − 1 = m degrees of freedom. If we think of the parameters
(ui) as the homogeneous coordinates of the point Bπ , they are obviously homo-
geneous. Of course, we introduced the scalar ui , instead, as the coordinate of the
point Ai in some coordinate system for the line a that assigns coordinates 0 and∞
to A0 and Aπ . But the parameters (ui) are also homogeneous when thought of in
that way: The ratio ui : uj is determined by the cross ratio (Ai , Aj , A0, Aπ ), but
we can rescale all n parameters (u1, . . . ,un) without changing anything.

Note that the two parameter vectors [u1, . . . ,un] and [v1, . . . , vn] determine the
entire configuration, up to a projective transformation of the ambient space S. The
m degrees of freedom in each of the homogeneous parameter vectors combine with
the (m+2)2−1 = m2+4m+3 degrees of freedom in a projective transformation
of the (m + 1)-space S to account for the grand total of m2 + 6m + 3 degrees of
freedom.

7.3.3 The residual matrix of a base

We claim that, for generic choices of the two parameter vectors [u1, . . . ,un] and
[v1, . . . , vn], the resulting configuration will be free of forbidden incidences and
will hence represent the budget matroid Bm,1,1. It suffices to consider each base of
Bm,1,1 and to rule out pairs of parameter vectors that make the m+ 2 points in that
base mutually incident. Our hope is that each base will rule out only those pairs of
parameter vectors that satisfy some algebraic relation. The bad thing — which we
must show does not happen — would be for one of the bases to rule out all pairs
of parameter vectors.

We can classify the bases of the matroid Bm,1,1 by the number of points that they
have in each column. Since no independent set is allowed to have more than bj+1
points in the j th column, no base can contain more than two A-points or more than
two B-points. Thus, for m large, the bulk of the points in any base are P-points.
We test the points of a base for incidence by forming an (m+2)-by-(m+2)matrix
whose rows are their coordinates and testing the determinant for zero. Since the
bulk of the points in any base are P-points, the bulk of the rows of this matrix will
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have the form [0, . . . ,0,1,0, . . . ,0], with only one nonzero entry. When comput-
ing the determinant, we can delete each such row and delete each column in which
any such row has its single 1. What remains — let’s call it the residual matrix —
is of bounded size.

7.3.4 The determinants of the residual matrices

To cut down on the number of cases in what follows, let’s introduce u0 := 0 and
v0 := 0 as alternative names for zero. We can then rewrite the matrices a and b so
that the top row looks just like all of the rest:

a =



1 u0v1 u0v2 u0v3 . . . u0vn

1 u1v1 u1v2 u1v3 . . . u1vn

1 u2v1 u2v2 u2v3 . . . u2vn

1 u3v1 u3v2 u3v3 . . . u3vn
...

...
...

...
. . .

...

1 unv1 unv2 unv3 . . . unvn


and

b =



1 u1(v1 − v0) u2(v2 − v0) u3(v3 − v0) . . . un(vn − v0)

1 u1(v1 − v1) u2(v2 − v1) u3(v3 − v1) . . . un(vn − v1)

1 u1(v1 − v2) u2(v2 − v2) u3(v3 − v2) . . . un(vn − v2)

1 u1(v1 − v3) u2(v2 − v3) u3(v3 − v3) . . . un(vn − v3)
...

...
...

...
. . .

...

1 u1(v1 − vn) u2(v2 − vn) u3(v3 − vn) . . . un(vn − vn)


.

Using the convention that u0 = v0 = 0, we can capture the determinants of the
residual matrices associated with all possible bases in Table 7.1. Each of the eight
rows in this table describes a possible vector of column populations for a base.
For example, in the third row, any m of the P-points and any two of the A-points
together form a base. The fourth row is special, in that, when choosing m of the
P-points, one A-point, and one B-point, we must avoid choosing precisely one
point with each of the possible indices [0 . .m+ 1] — that would give us a perfect
set, which is not a base. We specify which A-points and which B-points are chosen
by listing their indices, in the obvious way. But, for P-points, we use the process of
elimination, listing instead the indices of the points that are not chosen. Claim: In
each row of Table 7.1, the formula in the rightmost column gives the determinant
of the (m+ 2)-by-(m+ 2)matrix formed by assembling the coordinate vectors of
the m + 2 chosen points.

Let’s verify the determinant in the seventh row, the case (m − 1,1,2), as an
example; the other cases are similar. We form a base by taking all of the P-points
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#P’s

{left}
#A’s

{taken}
#B’s

{taken} determinant of residual matrix

m + 1

{e}
1

{i}
0

{} ±1

m + 1

{e}
0

{}
1

{k} ±1

m

{e, f }
2

{i, j}
0

{} ±(vf − ve)(uj − ui)

m

{e, f }
1

{i}
1

{k} ±
∣∣∣∣∣∣
1 ue v f

1 u f ve

1 ui vk

∣∣∣∣∣∣
m

{e, f }
0

{}
2

{k, l} ±(u f − ue)(vl − vk)

m − 1

{e, f, g}
2

{i, j}
1

{k} ±(uj − ui)

∣∣∣∣∣∣
1 ve ue(ve − vk)

1 v f u f (vf − vk)

1 vg ug(vg − vk)

∣∣∣∣∣∣
m − 1

{e, f, g}
1

{i}
2

{k, l} ±(vk − vl )

∣∣∣∣∣∣
1 ue ve(ue − ui)

1 u f v f (u f − ui)

1 ug vg(ug − ui)

∣∣∣∣∣∣
m − 2

{e, f, g,h}
2

{i, j}
2

{k, l} ±(uj − ui)(vl − vk)

∣∣∣∣∣∣∣∣
1 ue ve ueve

1 u f v f u f v f

1 ug vg ugvg

1 uh vh uhvh

∣∣∣∣∣∣∣∣
Table 7.1: Bases in a potential representation of the budget matroid Bm,1,1
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except for Pe, Pf , and Pg and combining them with Ai and with Bk and Bl . We
can assume that the indices in each group are sorted, with e < f < g and k < l.
Because of our convention that u0 = v0 = 0, we don’t have to single out the
subcases i = 0 and k = 0 as special. But the subcase e = 0 might still be special,
so far as we know. When e > 0, the residual matrix is 4-by-4:



0 e f g

P0 0 1 1 1

Ai 1 uive uiv f uivg

Bk 1 ue(ve − vk) u f (vf − vk) ug(vg − vk)

Bl 1 ue(ve − vl) u f (vf − vl) ug(vg − vl )


(7.3-2)

It is clear that the determinant of this matrix is divisible by the difference vl − vk ,
and it is straightforward to check that the quotient is the 3-by-3 determinant∣∣∣∣∣∣

1 ue ve(ue − ui)

1 u f v f (u f − ui)

1 ug vg(ug − ui)

∣∣∣∣∣∣
given in Table 7.1. In the subcase e = 0, the residual matrix is only 3-by-3:


e = 0 f g

Ai 1 uiv f uivg

Bk 1 u f (vf − vk) ug(vg − vk)

Bl 1 u f (v f − vl) ug(vg − vl )

 (7.3-3)

But now the convention u0 = v0 = 0 comes to our rescue once again. Note that, if
we set e = 0 in Matrix 7.3-2, the eth column becomes [1,0,0,0], which means that
we can delete the eth column and the 0th row. What is left is precisely Matrix 7.3-3.
Therefore, the formula given for the case (m − 1,1,2) in Table 7.1 works also in
the special subcase e = 0. By similar arguments, all of the formulas in Table 7.1
work also when e = 0.

7.3.5 The six primitive degeneracies

It remains to verify, using the formulas in Table 7.1, that for no base of the ma-
troid Bm,1,1 does the determinant of the residual matrix, viewed as a polynomial in
the variables [u1, . . . ,un] and [v1, . . . , vn], reduce to zero. Since we have to study
each polynomial a little, to verify that it isn’t zero, we might as well calculate what
its irreducible factors are. Each irreducible factor of such a polynomial encodes a
primitive degeneracy that we must avoid, by being careful when we choose the
parameter vectors [u1, . . . ,un] and [v1, . . . , vn]. In fact, we might as well build a
catalog of the various types of primitive degeneracies. It turns out that there are
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six types: six bad ways in which the positions of the A-points and the B-points,
along the lines a and b, can be related to each other.

We ruled out the first type of primitive degeneracy a while back, before we
thought about building a catalog. We shall say that a degeneracy of Type 1a arises
when the point Ai lies in the hyperplane π , for some i in [0 . . n], that is, when
the points Ai and Aπ coincide. Similarly, if Bi = Bπ , then we have a degener-
acy of Type 1b. Note that, as Ai approaches Aπ , the parameter ui approaches∞.
Thus, we have ruled out all degeneracies of Type 1 as soon as we assume that the
parameters (ui) and (vi ) are all finite.

A degeneracy of Type 2a arises when Ai = Aj for some i 6= j in [0 . . n], and
of Type 2b when Bi = Bj . Recall that Ai = Aj just when ui = uj , so degeneracies
of Type 2a correspond to linear factors of the form uj −ui , while those of Type 2b
correspond to vj − vi . Such linear factors arise frequently in Table 7.1.

We now tackle Table 7.1, case by case. Four of the eight are easy. In the cases
(m+1,1,0) and (m+1,0,1), the determinant of the residual matrix is±1, so there
are no factors to consider. In the cases (m,2,0) and (m,0,2), there are factors, but
they are all of the form uj − ui or vj − vi , and hence reflect Type-2 degeneracies.

The case (m,1,1) is the trickiest to analyze. Table 7.1 gives the formula∣∣∣∣∣∣
1 ue v f

1 u f ve

1 ui vk

∣∣∣∣∣∣ = u f vk − uive + uivf − u f v f + ueve − uevk .

Note that, if {i, k} = {e, f }, this determinant does vanish. But that is all right,
because the corresponding set of points is perfect, and hence is not a base. What
other subcases are there? If i = e, two of the six terms in the determinant cancel,
and the four that remain factor as the product (u f − ue)(vk − v f ). Since i = e
but {i, k} 6= {e, f }, we must have k 6= f ; so both of these factors reflect Type-2
degeneracies. A similar analysis handles the subcases i = f , k = e, and k = f ;
so let us assume that {i, k}∩{e, f } = ∅. The only remaining issue is whether i and
k coincide or not. In either subcase, however, there is no cancellation: the six-term
determinant is nonzero and irreducible, encoding a primitive degeneracy that we
can and must avoid. We shall refer to these two types of degeneracies as Type 3
and Type 4, according as i = k or i 6= k.

Let’s consider the case (m − 1,2,1) next. Table 7.1 gives the determinant∣∣∣∣∣∣
1 ve ue(ve − vk)

1 v f u f (vf − vk)

1 vg ug(vg − vk)

∣∣∣∣∣∣ ,
multiplied by the factor of a Type-2 degeneracy, which we ignore. The issue here
is whether k belongs to the set {e, f, g}. If k = e, for example, four of the twelve
terms of the determinant cancel, and the eight that remain factor as the product of
three Type-2 factors: (u f − ug)(vf − ve)(vg − ve). A similar analysis handles the
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subcases k = f and k = g. When k /∈ {e, f, g}, there is no cancellation and
the twelve-term determinant is irreducible, so it encodes another type of primitive
degeneracy that we must avoid — which we shall call Type 5a.

The case (m − 1,1,2) is symmetric, including a twelve-term degeneracy of a
type just like Type 5a, but with A and B interchanged. We shall call it Type 5b.

Finally, we come to the case (m− 2,2,2), for which Table 7.1 gives, ignoring
Type-2 factors, the determinant∣∣∣∣∣∣∣∣

1 ue ve ueve

1 u f v f u f v f

1 ug vg ugvg

1 uh vh uhvh

∣∣∣∣∣∣∣∣ .
The four indices e, f , g, and h must be distinct, so no splitting into subcases is
needed. The determinant has 24 terms and is irreducible; we shall refer to the de-
generacies that result as Type 6.

Since none of the residual matrices has zero as its determinant, it follows that
generic choices of the parameter vectors [u1, . . . ,un] and [v1, . . . , vn] will avoid
all degeneracies, which completes the proof of Bm,1,1 Representation Theorem.

7.4 The primitive degeneracies geometrically

In the process of proving the Bm,1,1 Representation Theorem, we built a catalog
of the six types of primitive degeneracies: the six things to watch out for, when
deciding where to put the A-points and the B-points along their lines. Each primi-
tive degeneracy can be defined either algebraically, in terms of the parameters (ui)

and (vi), or geometrically, in terms of the A-points and B-points. Our goal in this
section is to find the geometric characterizations for Types 3 through 6.

Given some representation of the budget matroid Bm,1,1, recall that one way to
define the associated homogeneous parameters [u1, . . . ,um+1] is as the coordinates
of the points (A1, . . . , Am+1) in some projective coordinate system for the line a
that gives the points A0 and Aπ := a ∩ π the coordinates 0 and∞. Similarly, the
parameters [v1 . . . , vm+1] are the coordinates of the points (B1, . . . , Bm+1) along
the line b. But let’s focus, not on the coordinate systems, but on the sequences of
points (A0, A1, . . . , Am+1; Aπ ) and (B0, B1, . . . , Bm+1; Bπ) themselves. Note that
each sequence consists of m+3 distinct, collinear points. If we fix any three of the
points in the A sequence, the cross ratios of the other m points with respect to the
fixed three constitute m degrees of freedom — the same m degrees of freedom that
we have been dealing with algebraically by using the homogeneous coordinates
[u1, . . . ,um+1] and [v1, . . . , vm+1].

Each type of primitive degeneracy can be described either algebraically or ge-
ometrically. For Type 1a, we have ui = ∞ just when Ai = Aπ . For Type 2a, we
have ui = uj just when Ai = Aj . In a similar way, the algebraic definitions of
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the degeneracies of Types 3 through 6 in Section 7.3.5 correspond to projectively
invariant geometric properties of the A-points and B-points — in fact, to the con-
dition that some four of the m+ 3 points (A0, . . . , Am+1; Aπ ) have the same cross
ratio as some four of the points (B0, . . . , Bm+1; Bπ). To make it more convenient
to express such a cross ratio, if i1 through i4 are any four distinct indices in the set
[0 . . m + 1] ∪ {π}, let us denote by A(i1 ,i2,i3 ,i4) the cross ratio of the four points
(Ai1 , Ai2 , Ai3 , Ai4 ) along the line a, and similarly for B(i1 ,i2,i3 ,i4).

Proposition 7.4-1 For some positive m and for i in [0 . .m + 1], suppose that the
points (Pi), (Ai ), and (Bi), all lying in some projective (m + 1)-space S, come at
least this close to representing the budget matroid Bm,1,1:

• The P-points form a projective frame for a hyperplane π in S.

• The A-points lie along a line a that intersects the hyperplane π in the single
point Aπ := a ∩ π , and they are distinct from each other and from Aπ .

• Similarly, the B-points lie along a line b that intersects π in the single point
Bπ := b ∩ π , and they are distinct from each other and from Bπ .

• The (m + 1)(m + 2) perfect sets are mutually incident.

The only degeneracies that might still arise are of the following types:

Type Cross ratios Forbidden incidence
3 A(i, j,k,π) = B(i, j,π,k) {Ak , Bk} ∪ P \ {Pi , Pj }
4 A(i, j,k,π) = B(i, j,π,l) {Ak , Bl} ∪ P \ {Pi , Pj }
5a A(i, j,k,π) = B(i, j,k,l) {A∗, A∗, Bl } ∪ P \ {Pi , Pj , Pk}
5b A(i, j,k,l) = B(i, j,k,π) {Al , B∗, B∗} ∪ P \ {Pi , Pj , Pk}
6 A(i, j,k,l) = B(i, j,k,l) {A∗, A∗, B∗, B∗} ∪ P \ {Pi , Pj , Pk , Pl }

The symbol P := {P0, . . . , Pm+1} denotes the set of all P-points. The symbol A∗
means any A-point, and similarly for B∗. The indices i, j , k, and l in [0 . .m + 1]
must be distinct in Types 4 through 6, while i, j , and k must be distinct in Type 3.

Proof We pick up where the proof of the Bm,1,1 Representation Theorem left off.
The points (A0, A1, . . . , Am+1; Aπ ) have coordinates (u0 = 0,u1, . . . ,um+1;∞)
in a valid, projective coordinate system for the line a. In a similar way, the points
(B0, B1, . . . , Bm+1; Bπ) have coordinates (v0 = 0, v1, . . . , vm+1;∞) along b. It is
well known that, if the four points X1 through X4 have the coordinates x1 through
x4 along one line while Y1 through Y4 have the coordinates y1 through y4 along
some other line, the cross ratios X(1,2,3,4) and Y(1,2,3,4) are equal just when the de-
terminant ∣∣∣∣∣∣∣∣

1 x1 y1 x1y1

1 x2 y2 x2y2

1 x3 y3 x3y3

1 x4 y4 x4y4

∣∣∣∣∣∣∣∣
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vanishes. Armed with this, it is straightforward to verify that the algebraic condi-
tions that defined the degeneracies of Types 3 through 6 in Section 7.3.5 correspond
to the geometric conditions listed above. tu

By the way, in proving the Bm,1,1 Representation Theorem, we actually proved
somewhat more than we claimed. We are now in a position to state that stronger
result geometrically.

Proposition 7.4-2 For some positive m, let (S0, . . . , Sm+1; Sπ) be a sequence of
m+ 3 distinct points on a line s, let (T0, . . . , Tm+1; Tπ) be a similar sequence on a
line t , and suppose that those two sequences are free of all degeneracies of Types 3
through 6. That is, for no three distinct indices i, j , and k in [0 . . m + 1] do we
have S(i, j,k,π) = T(i, j,π,k) , and for no four distinct indices i, j , k, and l in [0. .m+1]
do we have either S(i, j,k,π) = T(i, j,π,l) or S(i, j,k,π) = T(i, j,k,l) or S(i, j,k,l) = T(i, j,k,π) or
S(i, j,k,l) = T(i, j,k,l) . Then, there exist representations of the budget matroid Bm,1,1 in
which the points (A0, . . . , Am+1; Aπ ) and (B0, . . . , Bm+1; Bπ) are projective im-
ages of these S-points and T -points. Furthermore, any two such representations
differ from each other only by a projective transformation of the entire ambient
(m + 1)-space.

Proof Choose a projective coordinate system for the line s that gives the points
S0 and Sπ the coordinates 0 and∞, and let [u1, . . . ,um+1] be the coordinates given
to the points (S1, . . . , Sm+1). Determine the parameter vector [v1, . . . , vm+1] in
a similar way from the T -points. In proving the Bm,1,1 Representation Theorem,
we saw that, as long as all primitive degeneracies are avoided, the parameter vec-
tors [u1, . . . ,um+1] and [v1, . . . , vm+1] determine a representation of Bm,1,1 that is
unique up to a projective transformation of the ambient space. tu

We shall exploit the m = 2 case of this proposition, in Chapter 9, in order to
help us analyze the degeneracies that can arise in the cubic case of the Witness
Theorem.

Exercise 7.4-3 Recall that the budget matroid B1,1,1 is the Pappus matroid. Let-
ting m := 1 in Proposition 7.4-1, which primitive degeneracies should we watch
out for in constructing a Pappus configuration?

[Answer: Only Types 1 through 3 can occur, because Types 4 through 6 require
four distinct row indices. Letting i, j , and k be the three row indices in some order,
a Type-3 degeneracy occurs when the equality of cross ratios A(i, j,k,π) = B(i, j,π,k)
causes the three points Pk , Ak , and Bk in the kth row to be collinear.]

Exercise 7.4-4 Primitive degeneracies of Types 3 through 6 can occur when con-
structing representations of the budget matroid B2,1,1. Describe the forbidden inci-
dence that arises in each type of degeneracy as concretely as possible. In particular,
name the P-points that are involved, rather than those that are not involved.

[Answer: Let i, j , k, and l be the four row indices, in some order.
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Type 3 If A(i, j,k,π) = B(i, j,π,k) , then the line Pk Pl meets the line Ak Bk .

Type 4 If A(i, j,k,π) = B(i, j,π,l) , then the line Pk Pl meets the line Ak Bl.

Type 5a If A(i, j,k,π) = B(i, j,k,l) , then the line Pl Bl meets the line a.

Type 5b If A(i, j,k,l) = B(i, j,k,π) , then the line Pl Al meets the line b.

Type 6 If A(i, j,k,l) = B(i, j,k,l) , then the line a meets the line b.]

Exercise 7.4-5 Given a configuration {(Pi , Ai , Bi )}i∈[0..3] of points in 3-space that
fails to represent the budget matroid B2,1,1 precisely because of a Type 6 degener-
acy — that is, the lines a and b fail to be skew — what geometric property do the
six points {P0, P1, P2, P3, Aπ , Bπ } in the plane π have?

[Answer: The equality A(0,1,2,3) = B(0,1,2,3) means that the four homogeneous
coordinates of the points Aπ = [0, v1, v2, v3] and Bπ = [0,u1,u2,u3] have the
same cross ratio. The locus of points X = [0, x1, x2, x3] whose four coordinates
have some fixed cross ratio is a conic in the plane π that passes through all four
of the frame points P0, P1, P2, and P3. So the six listed points lie on a common
conic.]



Chapter 8

Null systems

We have proved some general results about the representability of budget matroids,
but our original goal was to find a configuration that characterizes the dependence
of four cubic polynomials. It is going to turn out that the matroid B2,1,1 provides
that configuration. Unfortunately, we aren’t yet equipped to prove that.

We shouldn’t lose heart, since the results in Chapter 7 do give some positive
indications. If we let m = 2 in the Bm,1,1 Representation Theorem, we find that
the matroid B2,1,1 is representable over the rational numbers, with #(B2,1,1) = 19.
Representability is certainly a good sign, and nineteen degrees of freedom is also
just the number that we would have been hoping for, had we paused to give the
matter any thought.

Why is that? (The following accounting is the cubic analog of Exercise 2.1-1.)
Let M be some matroid on 12 elements for which the cubic analog of the Witness
Theorem holds. Fix some center line o in 3-space, and consider representations of
M that witness to the dependence of 3-blocks of planes through the line o. There
are eleven degrees of freedom in choosing such a 3-dependent block of planes:
twelve slopes, but subject to one constraint. There are eight degrees of freedom in
a projective transformation of 3-space that fixes the center line o and fixes every
plane through o: fifteen degrees of freedom in an arbitrary projective transforma-
tion, minus six to fix two planes through o (which suffices to fix o itself), minus
one more to fix all of the other planes through o. In order for the cubic Witness
Theorem to hold for the matroid M, we must have #(M) = 11+ 8 = 19.

The bad news is that the recipe for constructing representations of B2,1,1 given
in Chapter 7 isn’t very helpful in exploring the relationship with 3-dependency.
What we did in Chapter 7 was to choose the P-points and the A-points, after which
we could easily construct the B-points. We shall refer to that construction as the
P-first construction. But suppose that we are given a 3-dependent block of planes
and that we would like to construct a representation of B2,1,1 that witnesses to that
3-dependence. It isn’t at all obvious how to constrain the choices of the P-points
and A-points so that the B-points end up on the proper planes.

What we do instead, in Chapter 9, is to develop an alternative construction for
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representations of B2,1,1, which we call the P-last construction. We choose the
four A-points on a line a; the four B-points on a line b, skew to a; and the plane
π , on which we want the four P points to lie. From that information, using the
theory of null systems, we then construct the P-points, lying in the plane π . In
this chapter, we prepare for that by reviewing the pretty theory of null systems.

8.1 Polarities in general

The dual of a projective n-space S is the projective n-space S∗ whose k-flats are
the (n − k − 1)-flats of S. The principle of duality states that the dual space S∗ is
also a projective n-space. A polarity is a self-inverse (or involutive) isomorphism
between a space S and its dual S∗, that is, a one-to-one, projective correspondence
between the points of S and the points of S∗, which are the hyperplanes of S. Po-
larities come in two types, called polar systems and null systems [23], as we men-
tioned in Section 2.9. We now consider the linear algebra of this situation.

We shall represent a point in projective n-space as a column vector c of ho-
mogeneous coordinates, of height n + 1; and we shall represent a hyperplane in
n-space as a row vector r of homogeneous coefficients, of width n + 1. The point
c lies on the hyperplane r just when the dot product rc is zero.

Let M be an invertible (n+1)-by-(n+1)matrix. Multiplication by M gives us a
map from projective n-space to itself, taking the point c to the point Mc. Of course,
because the coordinates are homogeneous, a nonzero scalar multiple uM of the
matrix M gives us the same map. Such a map is called a regular projective trans-
formation. Note that the hyperplane r is carried, by the projective transformation
M, to the hyperplane rM−1, since we have rc = 0 just when (rM−1)(Mc) = 0.

We can also use invertible (n+ 1)-by-(n + 1)matrices to describe maps from
projective n-space to its dual: The point c goes to the hyperplane ctM, where the
superscript ‘t’ means transpose. Note that the hyperplane r is carried, by this map,
to the point M−1rt, since we have rc = 0 just when (ctM)(M−1rt) = ctrt =
(rc)t = 0. Maps of this type are particularly simple — and are called polarities
or involutive correlations — when they are equal to their own inverses; that is,
mapping a point c to the hyperplane ctM and then mapping that hyperplane to the
point M−1(ctM)t = (M−1 M t)c gets us back to the same point c that we started
with. For this to happen for all points c, we must have M−1 M t = v I for some
nonzero scalar v, which means that M t = vM. Transposing both sides of this
equation, we see that M = vM t , so M = v2M. Since M is invertible and hence
far from identically zero, we have v2 = 1, so v = ±1.

Polarities with v = 1 have symmetric matrices M = M t and are called polar
systems; those with v = −1 have skew-symmetric matrices M = −M t and are
called null systems. While there are many parallels between the two theories, there
are also important differences.

One difference arises when we consider whether or not a point lies on its own
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polar hyperplane. Fix a certain polarity, and let M be one of its associated matrices
— so M is determined up to a scalar multiple. The polar hyperplane of the point
c, in the chosen polarity, has the homogeneous coefficients ctM. So the point c
lies on its own polar just when ctMc = 0. If the polarity is a polar system, then
the matrix M is symmetric and this equation determines a certain hypersurface in
the ambient projective space, the hypersurfaces that can be determined in this way
being called quadrics. If the polarity is a null system, on the other hand, then the
matrix M is skew-symmetric. For any point c, it follows that the scalar ctMc is
equal to its own negative,

ctMc = (ctMc)t = ctM tc = ct(−M)c = −(ctMc),

and hence must be zero.1 Thus, in a null system, every point lies on its polar hy-
perplane.

Another important difference is that, while polar systems exist in spaces of any
dimension, null systems exist only in spaces of odd dimension. If we take the deter-
minant of both sides of the equation M t = −M, we find that det(M t) = det(M) =
(−1)n+1 det(M). Since M has nonzero determinant, it follows that (−1)n+1 = 1,
which means that n must be odd. In particular, there are no null systems in the
plane, so most people who study projective geometry never have the pleasure of
meeting a null system.

A third major difference involves the concept of equivalence, where two polar-
ities on the same space are called equivalent when they differ only by a projective
transformation. All null systems on a given space are equivalent, and this is true
regardless of the properties of the field of scalars. If every scalar has a square root,
then all polar systems are equivalent also; but the fewer scalars that have square
roots, the more different equivalence classes of polar systems there are. For exam-
ple, in 3-space over the real numbers — because negative scalars don’t have square
roots — there are three equivalence classes of polar systems and hence three dif-
ferent types of quadric surfaces [49]:

empty quadrics imaginary ellipsoids;

non-ruled quadrics ellipsoids, hyperboloids of two sheets, and elliptic parabo-
loids; and

ruled quadrics hyperboloids of one sheet and hyperbolic paraboloids.

To verify these claims about equivalence, note that two polarities are equivalent
just when their matrices M and M ′ satisfy M ′ = u P tM P, for some nonzero scalar

1Over a field of characteristic 2, the equation u = −u is an identity — it does not imply that u =
0. The standard cure for this, as Artin explains [4], is to define a matrix M to be skew-symmetric
(or alternating) only when both M = −M t and all of the diagonal elements of M are zero. The
latter condition follows from the former when the characteristic is not 2. This whole issue doesn’t
affect us, however, since we are assuming that our scalar field is of characteristic zero.
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u and invertible matrix P, the matrix P giving the projective transformation that
takes one polarity into the other. Over any field of scalars, it is a standard result
of matrix algebra [4, 26] that, for any invertible, skew-symmetric matrix M, there
exists an invertible matrix P with

P t M P =
(

0 I
−I 0

)
,

where the two instances of I here are identity matrices of the same size. It follows
from this that all null systems on a given space are equivalent.

In contrast, the extent to which an invertible, symmetric matrix M can be put
into some standard form depends upon the existence of square roots in the field
of scalars. Over the complex numbers, we can always find an invertible matrix P
with P t M P equal to the identity matrix. Over the real numbers, we can get the
matrix P t M P to be diagonal with each diagonal entry equal to ±1, but we can’t
change the number of diagonal entries of each sign; that result is called Sylvester’s
Law of Inertia [3, 27]. We can, however, let u = −1 in the formula M ′ = u P t M P,
thereby reversing all of the signs at once. It follows that, for a 4-by-4, invertible,
symmetric matrix M over the real numbers, there are three standard forms, corre-
sponding to the three types of quadric surfaces listed above:

empty quadrics all four diagonal elements of the same sign;

non-ruled quadrics three diagonal elements of one sign and the remaining one
of the other sign; and

ruled quadrics two diagonal elements of each sign.

Over the rational numbers, things are more complicated still; Exercise 8.1-2 shows
that, in any space of odd dimension, there are infinitely many different equivalence
classes of polar systems. Fortunately, we are interested in null systems, so we don’t
need to explore the complexities of polar systems any further.

Exercise 8.1-1 Show that, on the line, not only are any two null systems equiva-
lent, they are actually equal. In this unique null system, what is the polar P∗ of a
point P? Give the matrix of this null system.

[Answer: The polar P∗ is the same point as P, but viewed as a hyperplane;
there is no choice about this, since the point P and its polar hyperplane P∗ must be
mutually incident — which, in this case, means coincident. The matrix is

( 0
−w

w

0

)
for some nonzerow. Note that the point on the line with homogeneous coordinates[u
v

]
, when viewed as a hyperplane, has homogeneous coefficients 〈v,−u〉.]

Exercise 8.1-2 For any odd n, construct an infinite family of polar systems on
n-space over the rational numbers, no two of which are equivalent.

[Hint: When n is odd, it follows from the equation M ′ = u P tM P that the ratio
det(M ′)/det(M) is a perfect square [24].]



8.2. NULL SYSTEMS IN 3-SPACE 105

8.2 Null systems in 3-space

The matrix of a null system in projective 3-space is 4-by-4, invertible, and skew-
symmetric. Note that there are six degrees of freedom in such a matrix, one for
each entry above the diagonal. Since an overall scalar multiple doesn’t matter,
we deduce that there are five degrees of freedom in the choice of a null system
in 3-space. In this section, we study the geometry of such a null system. One good
source for this material is Maxwell [28].

Recall from the previous section that all null systems in 3-space are equivalent,
and thus have the same geometry, up to our choice of coordinate system. The five
degrees of freedom determine only how the null system sits in 3-space.

There isn’t much to say about points or planes: The polar plane of any point P
is a plane P∗ containing P; and the pole of any plane π is a point π∗ lying on π .
The relationship between a line ` and its polar line `∗ is more interesting.

Proposition 8.2-1 Given any null system in 3-space, the polar `∗ of a line ` is ei-
ther skew to ` or coincides with `.

In the former case, we shall call the pair of lines {`, `∗} a skew-polar pair. In
the latter case, where ` = `∗, the line ` is called self-polar.

Proof For any line `, whenever the point P lies on `, the plane P∗ must pass
through the line `∗. Thus, as P slides along `, the polar plane P∗ rotates around
`∗, and does so in such a way that P∗ always passes through P. In typical cases,
the two lines ` and `∗ are skew, and hence form a skew-polar pair {`, `∗}.

Could it happen that a line ` and its polar `∗ intersected without coinciding?
No. As the point P slid along ` in such a case, the polar plane P∗ would have to
remain fixed at the unique plane spanned by ` and `∗. But distinct points must have
distinct polars.

We conclude that, whenever ` and `∗ intersect, they must actually coincide. In
this case, as P slides along `, the plane P∗ rotates around that same line ` = `∗.
Thus, for any self-polar line `, the null system provides a projective correspon-
dence between the range of points along ` and the pencil of planes through `. tu

By the way, the geometry of a polar system in 3-space is quite different from
that of a null system [30]. In a polar system, just because a line ` intersects its polar
`∗ does not mean that the two must coincide. Indeed, a line intersects its polar just
when it is tangent to the quadric surface associated with the polar system, while it
coincides with its polar only when it lies entirely inside — that is, is a generating
line of — that quadric. But back to null systems.

Proposition 8.2-2 Given any null system in 3-space, let ` be any line and let P be
any point on `. The line ` is self-polar just when ` lies in the plane P∗.
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Proof The line `∗ always lies in the plane P∗. If the line ` is self-polar, then ` =
`∗, so the line ` lies in P∗ also. Conversely, suppose that ` does lie in P∗. Since
both ` and `∗ lie in P∗, they are not skew, so we know from Proposition 8.2-1 that
they coincide — that is, ` is self-polar. tu

If we fix a point P in space, we deduce that the lines through P that are self-
polar are precisely those lying in the plane P∗. Thus, while there are 4 degrees of
freedom in the choice of an arbitrary line in 3-space, there are 3 degrees of free-
dom in the choice of a self-polar line. In fact, the set of self-polar lines forms a
general linear complex,2 and knowing this linear complex is equivalent to know-
ing the null system. Indeed, Maxwell talks more about linear complexes [31] than
he does about null systems as such [32].

As a corollary of Proposition 8.2-2, we can show that there are no triangles with
all three edges self-polar.

Proposition 8.2-3 If the points A, B, and C are distinct and all three of the lines
AB, AC, and BC are self-polar with respect to some fixed null system, then A, B
and C are collinear.

Proof If A, B, and C were not collinear, the polar of each vertex of the triangle
ABC would have to be the plane ABC, since the two triangle edges that meet at
that vertex are self-polar. But distinct points must have distinct polars. tu

Our next result gives us an easy way to prove that a line is self-polar.

Proposition 8.2-4 Given any null system in 3-space, if the lines {`, `∗} are a skew-
polar pair, then any line m that meets both ` and `∗ is self-polar.

Proof Let m be a line that meets both ` and `∗, say at the points A and B re-
spectively. Since m passes through A, the line m∗ must lie in the plane A∗, which
we know is the unique plane through `∗ that passes through A. Similarly, since m
passes through B, the line m∗ must lie in the plane B∗, which is the unique plane
through ` that passes through B. It follows that m∗ must coincide with the inter-
section A∗ ∩ B∗, which is precisely the line m = AB. Thus, m is self-polar. tu

So suppose that the two opposite edges ` = AC and `∗ = BD of some tetra-
hedron ABCD form a skew-polar pair. It follows from Proposition 8.2-4 that each
of the other four edges AB, BC, CD, and DA of the tetrahedron is self-polar. We
close this section with a converse to that result.

Proposition 8.2-5 Given any null system in 3-space, let ABCD be a skew quadri-
lateral all four of whose edges are self-polar lines. Then, the two diagonal lines
{AC, BD} form a skew-polar pair.

2The word ‘general’ here means ‘nonspecial’, a special linear complex being the 3-parameter
family of lines in 3-space that meet a fixed line.
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Proof Since the vertex A lies on the two lines AB and AD, its polar plane A∗ must
pass through both (AB)∗ = AB and (AD)∗ = AD; so A∗ = AB D. In a similar
way, the polar of any vertex of the quadrilateral is the plane spanned by the two
adjacent edges. The polar of the diagonal AC is then the intersection A∗ ∩ C∗ =
ABD ∩ CBD, which is precisely the opposite diagonal BD. tu

Exercise 8.2-6 Given a null system — or a polar system, for that matter — in
3-space, show that two lines ` and m meet but do not coincide just when their po-
lars `∗ and m∗ meet but do not coincide.

[Hint: This is almost trivial. Two lines in 3-space meet just when they pass
through a common point and just when they lie in a common plane.]

8.3 Skew-polar hexagons

We pointed out in Section 2.9 that one way to specify a null system in 3-space is
to give a twisted cubic curve. Another very pretty way to specify a null system, as
discussed in Exercise 8.3-2 below, is to give a Möbius pair of tetrahedra. For our
purposes, though, it is most convenient to specify a null system by giving a certain
type of skew hexagon.

Fix some null system in 3-space. Knowing any skew-polar pair of lines {`, `∗}
already goes a long way towards specifying that null system. Indeed, it specifies
four out of the five degrees of freedom. It tells us, right away, the polars of all of
the points lying on either ` or `∗. Furthermore, given a point P on neither ` nor `∗,
there is a unique line m through P that meets both ` and `∗; it is called the common
transversal. Since the common transversal m touches both ` and `∗, it must be self-
polar, by Proposition 8.2-4. Thus, the polar plane P∗ must pass through the line
m. The one degree of freedom that remains rotates the plane P∗ about the line m.
We could tie down that one degree of freedom by specifying, for some such point
P, its polar plane P∗. But we’ll do something more symmetric.

Let us say that a hexagon A1 B2 A3 B1 A2 B3 in 3-space is skew-polar with respect
to a certain null system when its six vertices are distinct and when each side forms,
with the opposite side, a skew-polar pair of lines — that is, each of the three pairs
of lines {A1 B2, A2 B1}, {A1 B3, A3 B1}, and {A2 B3, A3 B2} is skew-polar. Those re-
quirements may not seem very strict, but it turns out that skew-polar hexagons are
quite constrained.

First, every line joining two nonadjacent vertices of a skew-polar hexagon is
self-polar. For example, because the opposite edges A1 B2 and A2 B1 form a skew-
polar pair, it follows from Proposition 8.2-4 that the other four edges A1 A2, B1 B2,
A1 B1 and A2 B2 of the tetrahedron A1 A2 B1 B2 are self-polar. Repeating this argu-
ment twice more finishes the job.

In particular, the lines A1 A2, A1 A3, and A2 A3 are all self-polar. We conclude
from Proposition 8.2-3 that the points A1, A2, and A3 lie on a common, self-polar
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line, which we shall call a. By a similar argument, the points B1, B2, and B3 lie
on a self-polar line b. Since the opposite sides A1 B2 and A2 B1 of the hexagon are
skew, it follows that the lines a and b are also skew.

We have now uncovered all of the constraints on a skew-polar hexagon, as we
can show by working backwards to construct one. Let a and b be any two skew
lines, each of which is self-polar. For each point A on a, the polar plane A∗ passes
through a, and hence meets b in a unique point B. The line AB passes through A
and lies in the plane A∗, so it is self-polar. It follows that the correspondence taking
A to B is symmetric; that is, the unique point where the polar plane B∗ meets the
line a is A once again. Let A1, A2, and A3 be any three distinct points on a, and
let B1, B2, and B3 be the corresponding points on b. We claim that the hexagon
A1 B2 A3 B1 A2 B3 is skew-polar. To see this, note that all four edges of the skew
quadrilateral A1 B1 B2 A2 are self-polar. It follows from Proposition 8.2-5 that the
diagonals A1 B2 and A2 B1, which are a pair of opposite edges of the hexagon, form
a skew-polar pair.

For future reference, note that there are nine degrees of freedom in the choice
of a hexagon that is skew-polar for a given null system: three in the self-polar line
a, three more in b, and a final three in the points A1, A2, and A3 along a.

Exercise 8.3-1 Given a null system in 3-space, consider a cyclic list `1`
∗
2`3`

∗
1`2`

∗
3

of six lines in which opposite pairs of lines are skew-polar pairs and adjacent pairs
are not skew. Show, from these assumptions alone, that the six lines are the edges
of a skew-polar hexagon.

[Hints: Prove first that no adjacent pair of lines can coincide — for example,
it cannot be the case that `1 = `∗2. We can then make the definitions

A1 := `1 ∩ `∗2 B1 := `∗1 ∩ `2

A2 := `2 ∩ `∗3 B2 := `∗2 ∩ `3

A3 := `3 ∩ `∗1 B3 := `∗3 ∩ `1

and switch to thinking about the hexagon in terms of its vertices A1 B2 A3 B1 A2 B3,
rather than its edges. Conclude by proving that the six vertices are all distinct. Both
proofs use Proposition 8.2-4.]

Exercise 8.3-2 Fix any null system in 3-space and fix any tetrahedron S. Show
that the polar planes of the vertices of S are the faces of a tetrahedron T that forms,
with S, a Möbius pair. Conversely, given any Möbius pair of tetrahedra in 3-space,
show that there is a unique null system in which the faces of each tetrahedron are
the polars of the vertices of the other tetrahedron. It follows from this that, if we
fix any tetrahedron S, null systems in 3-space are in one-to-one correspondence
with tetrahedra that form a Möbius pair with S. (Note that there are five degrees
of freedom in either case.)

[Hint: The vertices of S are not coplanar, so the faces of T won’t be concurrent.
If A, B, and C are three of the vertices of S, then the three corresponding faces A∗,
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B∗, and C∗ of T will intersect at the vertex A∗ ∩ B∗ ∩C∗ = (ABC)∗ of T . Thus,
the faces of S are the polars of the vertices of T , just as the faces of T are the polars
of the vertices of S, which means that S and T form a Möbius pair. For the second
half of the problem, see Griffiths and Harris [13].]

8.4 Skew-Pappian hexagons

If a hexagon A1 B2 A3 B1 A2 B3 is skew-polar for any null system, its six vertices
must be distinct and alternate vertices must lie on two skew lines. We shall call
any hexagon in 3-space with those two properties skew-Pappian. In other words,
a skew-Pappian hexagon is an ordered 2-block {(A1, B1), (A2, B2), (A3, B3)} of
points in 3-space, where A1, A2, and A3 are distinct points along a line a and B1,
B2, and B3 are distinct points along a line b that is skew to a. Our goal in this
section is to show that, given any skew-Pappian hexagon, there is a unique null
system for which it is skew-polar.

Note that the degrees of freedom work out correctly, at least. There are fourteen
degrees of freedom in a skew-Pappian hexagon: four in each of the two lines a and
b and one in each of the six vertices, along its proper line. On the other hand, it
takes five degrees of freedom to choose a null system in 3-space and it takes nine
more to choose a hexagon that is skew-polar for that null system, so we again get
a total of fourteen.

Lemma 8.4-1 Given two skew-Pappian hexagons, there exists a projective trans-
formation of 3-space that maps the first to the second.

More precisely, let A1 B2 A3 B1 A2 B3 be a skew-Pappian hexagon and let π be a
plane that passes through the line A1 B1, but does not pass through either the line
a := A1 A2 A3 or the line b := B1 B2 B3. Let A′1 B′2 A′3 B′1 A′2 B′3 and π ′ be a second
skew-Pappian hexagon and plane, with the analogous properties. Then, there ex-
ists a unique projective transformation of 3-space that both maps the first hexagon
to the second and maps the plane π to the plane π ′.

Proof Let C be the point where the line A3 B3 cuts the plane π , and define C′ in
an analogous way. No four of the five points (A1, A2, B1, B2,C) are coplanar, and
the same holds for the primed versions (A′1, A′2, B′1, B′2,C

′); so there is a unique
projective transformation of 3-space that takes the former five points to the latter
five. That transformation clearly takes the plane π = A1 B1C to the plane π ′ =
A′1 B′1C′ . Furthermore, under that transformation, the common transversal from C
to the lines a and b must map to the common transversal from C′ to the lines a′

and b′; so the point A3 must map to A′3 and B3 must map to B′3. tu
Proposition 8.4-2 Given any skew-Pappian hexagon A1 B2 A3 B1 A2 B3 in 3-space,
there is a unique null system N = N((A1, B1), (A2, B2), (A3, B3)) for which the
hexagon A1 B2 A3 B1 A2 B3 is skew-polar.
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Proof To show that some such null system exists, let N ′ be any fixed null system
in that 3-space and let A′1 B′2 A′3 B′1 A′2 B′3 be some hexagon that is skew-polar for the
null system N ′ . We saw in Section 8.3 that the hexagon A′1 B′2 A′3 B′1 A′2 B′3 must be
skew-Pappian. Lemma 8.4-1 then tells us that there exists a projective transforma-
tion of 3-space that removes the primes, mapping the hexagon A′1 B′2 A′3 B′1 A′2 B′3 to
the given hexagon A1 B2 A3 B1 A2 B3. If we apply that projective transformation to
the null system N ′, the result is a null system N for which the given hexagon is
skew-polar.

It remains to show that the null system N is uniquely determined by the require-
ment that the hexagon A1 B2 A3 B1 A2 B3 be skew-polar for N . To see why, let P be
a generic point in 3-space. The two opposite sides A1 B2 and A2 B1 of the hexagon
form a skew-polar pair, so, by Proposition 8.2-4, the common transversal c3 from
P to those two lines is self-polar. In a similar way, the common transversals c2

and c1 from P to the skew-polar pairs (A1 B3, A3 B1) and (A2 B3, A3 B2) are also
self-polar. Thus, given only the hexagon A1 B2 A3 B1 A2 B3 and the generic point P,
we can construct three lines through P that lie in the plane P∗. It follows that the
given hexagon uniquely determines the null system N . tu

Of course, it had better be the case that those three concurrent lines c1, c2, and
c3 are coplanar — and indeed, the argument above proves that they are. But we can
also show their coplanarity more directly, using Pappus’s Theorem. Suppose that
we put our eye at the generic point P and we look out at the skew-Pappian hexagon
A1 B2 A3 B1 A2 B3. In the projective plane of lines through our eye, the hexagon that
we see looks Pappian, that is, of the type that arises in Pappus’s Theorem (as shown
in Figure 4.1). The collinearity of the apparent intersections of the three pairs of
opposite sides, when viewed from P, exactly corresponds to the fact that their three
common transversals c1, c2, and c3 are coplanar.

Exercise 8.4-3 Given a skew-Pappian hexagon A1 B2 A3 B1 A2 B3 in 3-space and a
generic plane π , construct the pole π∗ of the plane π in the associated null system
N((A1, B1), (A2, B2), (A3, B3)).

[Answer: Let c3 be the unique line in the plane π that is a common transversal
of the lines A1 B2 and A2 B1 — that is, the line joining the point A1 B2 ∩ π to the
point A2 B1 ∩π . Determine lines c2 and c1 in a similar way. The coplanar lines c1,
c2, and c3 are concurrent by the dual of Pappus’s Theorem, and the pole π∗ is the
point of concurrence.]

8.5 The homogeneous coordinates of a pole

Given the homogeneous coordinates of the vertices of a skew-Pappian hexagon, it
will be helpful to be able to compute the associated null system explicitly — that is,
to go back and forth between the homogeneous coordinates of a pole point and the
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homogeneous coefficients of its polar plane. Finding formulas that worked in full
generality would be a bit clumsy, because of the skew-Pappian condition: The ver-
tices of a skew-Pappian hexagon must alternate between two skew lines, and that
puts constraints on the coordinates of the vertices. For our purposes, though, it will
suffice to deal with a very special case, one in which the skew-Pappian collinear-
ities are guaranteed by zero coordinates.

Lemma 8.5-1 The pole of the plane π = 〈1,0,0,−1〉 in the null system deter-
mined by the skew-Pappian hexagon A1 B2 A3 B1 A2 B3 with vertices

A1 := [1,a1,0,0] B1 := [0,0,b1,1]

A2 := [1,a2,0,0] B2 := [0,0,b2,1]

A3 := [1,a3,0,0] B3 := [0,0,b3,1]

is the point π∗ with homogeneous coordinates

π∗ =
 ∣∣∣∣∣∣

1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 a1 a1b1

1 a2 a2b2

1 a3 a3b3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 a1b1 b1

1 a2b2 b2

1 a3b3 b3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣
 .

Proof We verify that the point π∗ results from the construction in Exercise 8.4-3.
As a check of plausibility, note that the first and last homogeneous coordinates of
the point π∗ are the same, so the point π∗ does lie on the plane π .

The points on the line A1 B2 have the form [u,ua1, vb2, v] for some ratio u : v.
Thus, the line A1 B2 intersects the plane π at the point [1,a1,b2,1]. Similarly, the
line A2 B1 meets the plane π at the point [1,a2,b1,1]. The construction of Exer-
cise 8.4-3 tells us that the point π∗ lies on the line in the plane π that joins those
two intersections. This happens precisely if the matrix

1 a1 b2 1

1 a2 b1 1∣∣∣∣∣∣
1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 a1 a1b1

1 a2 a2b2

1 a3 a3b3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 a1b1 b1

1 a2b2 b2

1 a3b3 b3

∣∣∣∣∣∣
∣∣∣∣∣∣
1 a1 b1

1 a2 b2

1 a3 b3

∣∣∣∣∣∣


has rank only 2, which is indeed the case: The third row is equal to (a3−a1)(b3−b2)

times the second row minus (a3 − a2)(b3 − b1) times the first row. tu





Chapter 9

On B2,1,1 and 3-dependency

9.1 Constructing the P-points last

Using the theory of null systems, we can construct representations of the matroid
B2,1,1 in a new order: Choose the A-points, the B-points, and the plane π ; then
construct the P-points. We shall call this the P-last construction, to contrast it
with the P-first construction used in proving the Bm,1,1 Representation Theorem.
Since the four rows play completely symmetric roles in the P-last construction —
there is no need to treat one row specially, as there was in the P-first case — we
return to indexing the rows starting with 1:


2 1 1

P1 A1 B1

P2 A2 B2

P3 A3 B3

P4 A4 B4


Proposition 9.1-1 (The P-Last Construction) In any representation of the bud-
get matroid B2,1,1, the point P1 is the pole of the plane π := Span(P1, P2, P3, P4)

in the unique null system N1 := N((A2, B2), (A3, B3), (A4, B4)) for which the
skew-Pappian hexagon A2 B3 A4 B2 A3 B4 is skew-polar, and analogous results hold
for the points P2, P3, and P4. We shall denote these results by writing Pi = π∗i ,
where the superscript ‘∗i’ means ‘polar in the null system Ni ’.

Conversely, suppose that we choose any four collinear A-points in 3-space, any
four collinear B-points, and any plane π . For generic choices of those nineteen
parameters, the four A-points will be distinct, the four B-points will be distinct,
and the lines a and b on which they lie will be skew. For i in [1 . . 4], we can
then define the null system Ni , and we can construct the point Pi := π∗i . For
generic choices of the nineteen parameters, once again, the resulting twelve points
{(Pi, Ai , Bi )}i∈[1..4] will represent the matroid B2,1,1.

113
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P1

P2

P3

P4

t12

t13

t14t23

t24

t34

π

Figure 9.1: The complete quadrangle that arises in the plane π when the P-last
construction is used to build a representation of the budget matroid B2,1,1.

Proof Given any representation of B2,1,1, consider what happens in the plane π .
The four P-points lie inπ , and no three of them are collinear. Thus, they determine
a complete quadrangle, as shown in Figure 9.1. For {i, j, k, l} = {1,2,3,4}, note
that the quadruples {Pi , Pj , Ak , Bl } and {Pi , Pj , Al , Bk} are both coplanar. Thus,
the line Pi Pj is the unique common transversal in the plane π of the skew lines
Ak Bl and Al Bk — call this common transversal tkl. In particular, the point Pi lies
on all three of the common transversals tjk , tjl , and tkl . We argued in Exercise 8.4-3
that those three transversals are indeed concurrent and that the point Pi = π∗i

where they concur is the pole of the plane π in the null system Ni determined by
the skew-Pappian hexagon Aj Bk Al Bj Ak Bl .

Conversely, given the A-points, the B-points, and the plane π , suppose that we
construct Pi := π∗i for i in [1 . . 4]; will the result be a valid representation?

It is easy to see that every set that should be mutually incident will be. The four
P-points are coplanar because the pole of the plane π in any null system always
lies in π . The four points in the perfect set {Pi , Pj , Ak , Bl } are coplanar because
Pi is placed at the point of concurrence of the three common transversals tjk , tjl ,
and tkl , while Pj is placed at the point of concurrence of tik , til , and tkl — so both
Pi and Pj lie on the line tkl , which meets the line Ak Bl.

To show that no forbidden incidences arise in generic cases, it suffices to check
that none arise in some particular case, and any representation of the matroid B2,1,1

provides such a case. Readers who made it through Chapter 7 already know that
the matroid B2,1,1 is representable; the rest can verify for themselves that the twelve
points given in Exercise 9.1-2 constitute a representation. tu
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P1

P2

P3

P4

A1′ A2′
A3′ A4′

B1′

B2′

B3′

B4′

Figure 9.2: The projections onto the XY -plane of the twelve vertices of a particu-
larly symmetric representation of the budget matroid B2,1,1.

Exercise 9.1-2 Verify that the following is a representation of the budget matroid
B2,1,1, sitting in Euclidean (X,Y, Z)-space:

P A B
1 (2,4,0) (−10,0,1) (0,−5,−1)
2 (4,−2,0) (−5,0,1) (0,10,−1)
3 (−4,2,0) (5,0,1) (0,−10,−1)
4 (−2,−4,0) (10,0,1) (0,5,−1)

The planeπ is the plane Z = 0, which we take to be horizontal; the line a is parallel
to the X axis, but one unit above it; the line b is parallel to the Y axis, but one unit
below it. Figure 9.2 shows the (X,Y )-plane π , together with the points A′i and B′i ,
the vertical projections of Ai and Bi onto the plane π . Note that this representation
is carried to itself by the following symmetry of order 4: Map each point (X,Y, Z)
to the point (−Y, X,−Z), permute the row indices through the 4-cycle (1,3,4,2),
and swap the A and B columns.

[Hint: For any i and j , the line Ai Bj meets the plane π at the midpoint of the
segment A′i B′j . To show that the perfect sets are coplanar, check that, whenever i,
j , and k are distinct, the point Pk lies on the line joining the midpoint of A′i B′j to
the midpoint of A′j B′i . To show that there are no forbidden incidences, it suffices
to verify the absence of the primitive degeneracies listed in Exercise 7.4-4.]

Exercise 9.1-3 Figure 9.3 is a close-up of the rope-and-pole structure found by the



116 CHAPTER 9. ON B2,1,1 AND 3-DEPENDENCY

Figure 9.3: A representation of the budget matroid B2,1,1 in the Brazilian jungle.
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explorer in Jorge Stolfi’s cartoon on the title page. Label the twelve largest knots
to demonstrate the correspondence between this structure and the representation of
B2,1,1 in the preceding exercise. (Two of the twelve are hidden by jungle foliage.)
Convince yourself that each of the twelve ropes demonstrates one of the twelve
perfect coplanarities.

[Hint: Label the four knots of the central square P1, P2, P3, and P4, going from
top to bottom down the page. The four knots on the left-hand pole can then be
labeled in numeric order from A1 on the bottom to A4 on top, while the four knots
on the right-hand pole get the labels B2, B4, B1, and B3, from top to bottom. The
coplanarity of the perfect set {P1, P2, A3, B4} is demonstrated by the rope from A3

to B4, which is tied, at its midpoint, to the beam that joins P1 to P2.]

9.2 Degenerate cases in the P-last construction

This section is just for those readers who made it to the end of Chapter 7 — in
particular, to Proposition 7.4-2. Using that result, we can analyze exactly what to
watch out for, in carrying out the P-last construction.

Suppose that we start the P-last construction with certain points (Ai ) and (Bi),
lying on the lines a and b, and with a certain plane π . Clearly, we must require
that the four A-points be distinct and that none of them lies in the plane π . Letting
Aπ := a ∩ π denote the point where the line a cuts the plane π , we conclude
that the five points (A1, A2, A3, A4; Aπ ) must be distinct. In a similar way, the
five points (B1, B2, B3, B4; Bπ) must also be distinct. Proposition 7.4-2 (or, more
concretely, Exercise 7.4-4) then tells us precisely what else to watch out for: the
primitive degeneracies of Types 3 through 6.

Each primitive degeneracy involves some cross ratio of four of the A-points
happening to coincide with some cross ratio of four B-points. We shan’t bother to
review Types 3 through 5 here, except to note that the cross ratios that coincide in
those cases involve either Aπ or Bπ or both. So those cases can be avoided simply
by choosing the plane π carefully. A Type-6 degeneracy happens, on the other
hand, when the cross ratios A(1,2,3,4) and B(1,2,3,4) are equal — so the plane π is not
involved. That makes a Type-6 degeneracy more troublesome, since perturbing
the plane π is not enough to remove it.

If we avoid all primitive degeneracies of Types 3 through 6 in choosing our
A-points and B-points (including Aπ and Bπ ), we know from Proposition 7.4-2
that there do exist representations of B2,1,1 whose A-points and B-points are pro-
jective images of ours. Fix any such representation. To avoid name conflicts, let’s
write its points as (A′i ) and (B′i) and its lines as a′ and b′. By Lemma 8.4-1, there is
a unique projective transformation of 3-space that takes the skew-Pappian hexagon
A′π B′1 A′2 B′π A′1 B′2 and the plane π ′ to the hexagon Aπ B1 A2 Bπ A1 B2 and the plane
π . Since cross ratios along the lines a and b are preserved, that transformation
must also take A′i to Ai and B′i to Bi for i in {3,4}. We conclude that there is a rep-
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resentation of B2,1,1 that has its A-points, its B-points, and its plane π just where
we put ours, and the P-last construction will produce that representation.

On a related topic, it is interesting to contrast the behaviors of the P-first and
P-last constructions when given input parameters with a single, primitive degen-
eracy of one of the six types. Of course, if the input parameters are degenerate,
then the output configuration has forbidden incidences. But do the outputs of the
P-first and P-last constructions have the same forbidden incidences? It depends
on the type of degeneracy.

The easy cases are Types 3, 4, and 5. Those primitive degeneracies don’t cause
any problem for either construction, and the two constructions, when given the
same degenerate input, produce the same degenerate output.

Type 2 is almost as simple. Having, say, A1 = A2 is no problem for the P-first
construction. It is a problem for the P-last construction, since, for i in {3,4}, the
hexagon A1 B2 Ai B1 A2 Bi is not skew-Pappian, and hence the null systems N3 and
N4 are not well defined. But if we allow the P-last construction to determine its
output by taking the limit as A1 approaches A2, it produces the same degenerate
output that the P-first construction produces.

Type 1 is a more interesting case. Having, say, A1 = Aπ is no problem for the
P-last construction. But the way in which its output degenerates, in that case, is
to have the four points P2, P3, P4, and A1 become collinear, in the plane π . That
could never happen in the P-first construction, since the four P-points are fixed, at
the outset, to be a projective frame for π . As A1 approaches Aπ in the P-first con-
struction, what happens, instead, is that the three points B2, B3, and B4 all converge
to the point P1.

Type 6 is also an interesting case. In the P-first construction, the bad thing that
happens when A(1,2,3,4) = B(1,2,3,4) is that the lines a and b intersect. That can’t
happen in the P-last construction, since the lines a and b are fixed, at the outset,
to be skew. What happens instead, in the P-last construction, is that the projective
correspondence from the line a to the line b that takes Ai to Bi for i in [1 . .3] also
takes A4 to B4. Therefore, the four null systems N1 through N4 coincide, and the
four P-points defined by Pi := π∗i coincide at the pole of the planeπ in that single
null system.

9.3 From frames to grids

To prepare for the Projection and Witness Theorems, we need to prove some easy
facts about projective transformations of 3-space. One convenient way to do that is
to introduce a configuration with nine points and six lines that we shall call a grid.
Grids can play a role analogous to the role played by projective frames. Recall that
a projective frame for 3-space consists of five points, with no four coplanar. Any
projective frame can be mapped to any other by a unique projective transformation,
and we are going to show that the same holds for grids.
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G33
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r3

c1
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c3

Figure 9.4: An example of a grid in 3-space: three skew lines and three of their
common transversals. (Note that this figure is a relabeling of Figure 5.1.)

A grid consists of three skew lines in 3-space, along with three of their com-
mon transversals, as shown in Figure 9.4. Note that the three common transversals
will also be skew. A grid has nine pairs of lines that intersect, each such pair de-
termining a point. Focusing on those points, we can think of a grid, alternatively,
as a 3-by-3 matrix g = (Gij )i, j∈[1..3] of points in 3-space for which

• no two of the nine points coincide;

• three of the nine points are collinear just when they form a row or a column;
and

• four or five of the nine points are coplanar, as we shall show shortly, just
when they can be covered by the union of a row and a column.

Proposition 9.3-1 Given any grid g = (Gij )i, j∈[1..3] in 3-space, the five points
(G11,G12,G21,G22,G33) form a projective frame. Conversely, given any projec-
tive frame (G11,G12,G21,G22,G33) for 3-space, there is a unique quadruple of
points (G13,G23,G31,G32) that completes that frame into a grid.

Proof Given any grid, any two distinct row indices i and j , and any two distinct
column indices k and l, the quadrilateral Gik Gjk Gjl Gil is not planar, since the i th
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and j th row lines are skew, as are the kth and lth column lines. It follows immedi-
ately that the four points G11, G12, G21, and G22 are not coplanar. The four points
G11, G12, G21, and G33 are not coplanar either, because, if they were, then the four
points G11, G13, G31, and G33 would be coplanar as well. The remaining three
cases are similar, so the five points (G11,G12,G21,G22,G33) do form a projective
frame.

Conversely, suppose that (G11,G12,G21,G22,G33) is any projective frame for
3-space. Construct some grid h = (Hij), somewhere in that 3-space. We have just
shown that the five points (H11, H12, H21, H22, H33) form a projective frame, so
there is a unique projective transformation that carries that H frame to the given,
G frame. The image of the grid h under that projective transformation is also a
grid; so there is at least one way to complete the G frame into a grid g.

It remains to show that this completion g is unique. The first two row lines
r1 := G11G12 and r2 := G21G22 are clearly uniquely determined, as are the first
two column lines c1 := G11G21 and c2 := G12G22. As for the third row line r3, it
must be the unique common transversal from G33 to the two skew lines c1 and c2;
and the third column line c3 is determined in a similar way. tu
Proposition 9.3-2 Given any two grids, there is a unique projective transforma-
tion of 3-space that carries the first to the second.

Proof Use Proposition 9.3-1 to convert the grids to frames. tu
The reason that we are interested in grids is that they allow us to deduce the

existence of some projective transformations that we are going to need later.

Corollary 9.3-3 Let r1, r2, and r3 be three skew lines and let π be a plane that
does not contain any common transversal of those three lines. Let r ′1, r ′2, r ′3, and
π ′ be another three lines and plane with the same properties. There exists a unique
projective transformation of 3-space that takes each line ri to the line r ′i and takes
the plane π to the plane π ′.

Proof It cannot be the case that one of the lines, say r1, lies in the plane π . If this
did happen, the plane π would have to intersect both r2 and r3 only in points, and
the line joining those two points of intersection would be a common transversal of
the three lines (ri ), lying in π .

It follows that, for i in [1 . . 3], the line ri cuts the plane π at a unique point,
which we shall call Gii . Let ci be the common transversal from Gii to the two
skew lines rj and rk , where {i, j, k} = {1,2,3}. The three lines (ri ) and their three
transversals (ci) form a grid (Gij ).

Forming a grid (G ′i j ) in an analogous way, there is a unique projective trans-
formation of 3-space that maps the first grid to the second. That transformation
must take each line ri to the line r ′i and the plane π = G11G22G33 to the plane
π ′ = G ′11G ′22G ′33. tu
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Corollary 9.3-4 If the triple of lines (o,a,b) is skew and the triple (o,a′,b′) is
also skew, there exists a unique projective transformation of 3-space that fixes the
line o and every plane through o, while taking the lines a and b to a′ and b′.

Proof Choose three distinct planes through o, say π1, π2, and π3. In each plane
πi , there is a unique common transversal of the three lines o, a, and b. The three
lines (o,a,b) together with those three common transversals form a grid.

Repeat this construction, starting with the three lines (o,a′,b′) and using the
same three planes π1, π2, and π3 through o. The result is a second grid.

The unique projective transformation that maps the first grid to the second fixes
all three of the planes (πi), so it fixes all planes through o. tu
Exercise 9.3-5 Recall from Section 4.5 what it means to be a ‘configuration’ in the
narrow sense of that term. A grid is obviously a configuration of points and lines
in 3-space of type (92,63). Show that a grid can also be viewed as a configuration
of points and planes of type (95,95).

[Answer: Each intersecting pair of lines spans a plane that passes through five
points, and each point lies on five such planes.]

9.4 The Projection Theorem

Once we have formulas, in terms of some parameters, for all twelve of the points
in a generic representation of B2,1,1, the cubic case of the Projection Theorem re-
duces to algebra: showing that the determinant of a certain matrix is zero. Indeed,
we could probably have proved the Projection Theorem for B2,1,1 based on the
P-first construction and the formulas in terms of the parameters [u1,u2,u3] and
[v1, v2, v3] in the proof of the Bm,1,1 Representation Theorem. But we can get more
symmetric formulas from the P-last construction, in terms of some new parame-
ters (a1,a2,a3,a4; b1,b2,b3,b4); so we shall do that instead.

Theorem 9.4-1 (Projection Theorem, cubic case) Given any representation


2 1 1

P1 A1 B1

P2 A2 B2

P3 A3 B3

P4 A4 B4


of the matroid B2,1,1 in some 3-space and given a generic line o in that 3-space, the
twelve planes joining o to those four triples of points form a 3-dependent block.

Proof We restrict the line o to be generic only so that we don’t have to consider
such degenerate cases as o = a, where projecting any one of the four A-points
from the line o yields the indeterminate plane.
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We proceed by analytic geometry, choosing our coordinate system on points
[w, x, y, z] with some care. To make Lemma 8.5-1 applicable, we want the line
a to be the line y = z = 0, the line b to be the line w = x = 0, and the plane
π to be the plane w = z, which has homogeneous coefficients 〈1,0,0,−1〉. We
also want the center line o of the projection to have simple coordinates — in fact,
to be the line y − w = z − x = 0, whose points have the form [u, v,u, v]. To
verify that we have enough freedom to achieve all of those goals at once, we apply
Corollary 9.3-3.

Since the twelve given points represent the matroid B2,1,1, the lines a and b are
skew, and neither of them lies in the plane π . Hence, there is a unique common
transversal of the lines a and b that lies in the plane π . Since the line o is generic,
we can assume that o is skew to that common transversal. It follows that no com-
mon transversal of a, b, and o lies in the plane π .

Those same geometric properties hold of the lines and plane with the coordi-
nates that we want a, b, o, and π to have. The three lines y = z = 0, w = x = 0,
and y−w = z−x = 0 are indeed skew, since combining the equations for any two
of them yields only the indeterminate solution w = x = y = z = 0. The plane
w = z does not contain any common transversal of those three lines, since the three
points [0,1,0,0], [0,0,1,0], and [1,1,1,1] at which the three lines y = z = 0,
w = x = 0, and y −w = z − x = 0 cut the plane w = z are not collinear.

It follows from Corollary 9.3-3 that there is a unique coordinate system for
3-space in which the three lines (a,b,o) and the plane π have the coordinates that
we want them to have. Where are the twelve points of the given representation
in that coordinate system? The point Aπ := a ∩ π has the homogeneous coordi-
nates [0,1,0,0]. The point Ai , for i in [1 . . 4], lies on the line a but is distinct
from Aπ ; so we must have Ai = [1,a1,0,0], for some finite scalar ai . Similarly,
we have Bπ = [0,0,1,0] and Bi = [0,0,bi ,1], for some finite scalar bi . We
are going to use the scalars (a1,a2,a3,a4; b1,b2,b3,b4) as our parameters. Note
that these parameters involve eight degrees of freedom, while the homogeneous
parameter vectors [u1,u2,u3] and [v1, v2, v3] that we used in analyzing the P-first
construction involve only four. We need an additional four degrees of freedom in
this analysis because we have constrained our choice of coordinate system to put
the center line o of the projection in a fixed, simple place.

Lemma 8.5-1 now tells us the coordinates of the P-points. When {i, j, k, l} =
{1,2,3,4}, we have

Pi =
 ∣∣∣∣∣∣

1 aj bj

1 ak bk

1 al bl

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 aj aj bj

1 ak akbk

1 al albl

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 aj bj bj

1 akbk bk

1 albl bl

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 aj bj

1 ak bk

1 al bl

∣∣∣∣∣∣
 .

Let’s abbreviate those four coordinates as Pi = [wi, xi , yi , zi ] — sowi = zi . Note
that swapping any two of the three indices j , k, and l would negate all four of the
coordinates; but that doesn’t matter, because they are homogeneous.
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Given some point [w, x, y, z], what is the slope of the plane joining that point
to the center line o? It is easy to check that the homogeneous coefficients of the
joining plane are 〈z−x,w−y, x−z, y−w〉: The point [w, x, y, z] lies on that plane
because (z−x)w+(w−y)x+(x−z)y+(y−w)z = 0, while every point [u, v,u, v]
on the line o lies on that plane because (z−x)u+(w−y)v+(x−z)u+(y−w)v =
0. As for what slope to assign to that joining plane, we showed in Lemma 2.5-1
that the notion of n-dependence is projectively invariant. Hence, we can take any
three distinct planes we like, in the pencil of planes through o, and assign to those
planes the slopes 0, 1, and∞. To be definite, let’s measure the slope of the plane
〈z−x,w−y, x−z, y−w〉 by using the ratio z−x : y−w of the first homogeneous
coefficient to the last.

Measuring slopes in this way, the plane joining the line o to the point Ai =
[1,ai,0,0] has slope−ai : −1, which is the same as ai : 1. The plane joining o to
Bi = [0,0,bi ,1] has slope 1 : bi . And the plane joining o to Pi = [wi, xi , yi , zi ]
has slope zi − xi : yi − wi . To build the i th row of the 4-by-4 matrix that tests
3-dependence, we take those three ratios and combine them as in the elementary
symmetric polynomials — that is, by the process that takes the three simple ratios
t↑ : t↓, u↑ : u↓, and v↑ : v↓ into the compound ratio

t↑u↑v↑ : t↑u↑v↓ + t↑u↓v↑ + t↓u↑v↑ : t↑u↓v↓ + t↓u↑v↓ + t↓u↓v↑ : t↓u↓v↓.

Doing so for each of the four rows in turn, we conclude that the twelve slopes are
3-dependent just if this determinant is zero:∣∣∣∣∣∣∣∣

a1(z1−x1) (1+a1b1)(z1−x1)+a1(y1−w1) b1(z1−x1)+(1+a1b1)(y1−w1) b1(y1−w1)

a2(z2−x2) (1+a2b2)(z2−x2)+a2(y2−w2) b2(z2−x2)+(1+a2b2)(y2−w2) b2(y2−w2)

a3(z3−x3) (1+a3b3)(z3−x3)+a3(y3−w3) b3(z3−x3)+(1+a3b3)(y3−w3) b3(y3−w3)

a4(z4−x4) (1+a4b4)(z4−x4)+a4(y4−w4) b4(z4−x4)+(1+a4b4)(y4−w4) b4(y4−w4)

∣∣∣∣∣∣∣∣
That determinant is zero for the simple reason that the first and third rows of the

matrix have the same sum as the second and fourth. To see this, start by considering
the term a1z1 in the upper-left entry. The determinant∣∣∣∣∣∣∣∣

a1 1 a1 b1

a2 1 a2 b2

a3 1 a3 b3

a4 1 a4 b4

∣∣∣∣∣∣∣∣
is zero, since its first and third columns are equal; if we expand by cofactors down
the first column, we find that a1z1 − a2z2 + a3z3 − a4z4 = 0. A similar argument
starting with the determinant ∣∣∣∣∣∣∣∣

a1 1 a1 a1b1

a2 1 a2 a2b2

a3 1 a3 a3b3

a4 1 a4 a4b4

∣∣∣∣∣∣∣∣ = 0
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shows that a1x1− a2x2+ a3x3− a4x4 = 0 as well; so the alternating sums of each
of the two terms in the first column is zero. In the second column, of the six terms
in each entry, similar arguments handle four, leaving the two terms aibi zi + ai yi .
The alternating sums of those two terms are not separately zero, but they cancel
each other out. Using cofactors down the first column again, the alternating sum
a1b1z1 − a2b2z2 + a3b3z3 − a4b4z4 is the determinant∣∣∣∣∣∣∣∣

a1b1 1 a1 b1

a2b2 1 a2 b2

a3b3 1 a3 b3

a4b4 1 a4 b4

∣∣∣∣∣∣∣∣ ,
while the sum a1y1 − a2y2 + a3y3 − a4 y4 is the determinant∣∣∣∣∣∣∣∣

a1 1 a1b1 b1

a2 1 a2b2 b2

a3 1 a3b3 b3

a4 1 a4b4 b4

∣∣∣∣∣∣∣∣ .
Those two determinants are negatives of each other because we can convert one
matrix into the other by swapping the first and third columns. tu

Exercise 9.4-2 In the P-last construction, suppose that the cross ratios A(1,2,3,4)
and B(1,2,3,4) are distinct, which means that the determinant of the matrix

m :=


1 a1 b1 a1b1

1 a2 b2 a2b2

1 a3 b3 a3b3

1 a4 b4 a4b4


is nonzero, and suppose that the plane π is generic. In analyzing the P-last con-
struction in Section 9.2, we showed that the four P-points given by Pi := π∗i

will then form a projective frame for the plane π . Verify this directly and alge-
braically, using the formulas from Lemma 8.5-1 for the homogeneous coordinates
[wi, xi , yi , zi ] of the point Pi . In particular, whenever {i, j, k, l} = {1,2,3,4},
show that Pi , Pj , and Pk are not collinear because∣∣∣∣∣∣

xi yi zi

xj yj zj

xk yk zk

∣∣∣∣∣∣ = ± det(m)2.

[Hint: Given any n-by-n matrix s, let’s borrow a term from the theory of deter-
minants [34] and refer to the matrix of cofactors of s as the adjugate1 of s, and let’s

1Artin [2] uses the name ‘adjoint’ for the transpose of the adjugate, but that conflicts with the
Hermitian adjoint, which is the transpose of the complex conjugate.
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write it (adg s). Cramer’s Rule [2] tells us that s(adg s)t = (adg s)ts = (det s)I ,
from which it is easy to calculate that (adg(adg s)) = (det s)n−2 s. The coordinates
(xi), (yi), and (zi) appear, up to sign, as entries in the adjugate matrix (adg m),
which means that the determinant that we want to evaluate is, up to sign, an entry
in the matrix (adg(adg m)).]

9.5 The Witness Theorem

The place where the P-last construction really shines is in proving the cubic case
of the Witness Theorem.

Theorem 9.5-1 (Witness Theorem, cubic case) Let {(ρi , αi , βi )}i∈[1..4] be some
3-dependent, ordered block of planes in 3-space, all passing through a common line
o.2 In generic cases, there exists a representation {(Pi , Ai , Bi )}i∈[1..4] of the budget
matroid B2,1,1 each of whose twelve vertices lies on the corresponding plane and
none of whose vertices lies on the line o itself — and which hence witnesses to
the 3-dependence of the planes. Furthermore, this representation is unique in the
sense that any witnessing representation can be carried to any other by a projective
transformation of 3-space that fixes the line o and fixes every plane through o.

Proof To construct a witnessing representation, choose the lines a and b to be
any two lines that are skew to each other and skew to o. Let Ai denote the point
Ai := αi∩a and Bi denote Bi := βi∩b, for i in [1. .4]. In generic cases, the points
Ai and Bi will be distinct and the two cross ratios A(1,2,3,4) and B(1,2,3,4) will also
be distinct. The P-last construction tells us how to finish up building a represen-
tation of B2,1,1: We choose some plane π and, whenever {i, j, k, l} = {1,2,3,4},
we define the point Pi := π∗i to be the pole of the plane π in the null system
Ni := N((Aj , Bj ), (Ak , Bk), (Al , Bl )) determined by the skew-Pappian hexagon
Aj Bk Al Bj Ak Bl.

How should we choose the plane π? Note that the point Pi = π∗i will lie on
the plane ρi just when the plane π passes through the point Ri := ρ∗ii . So we want
π to pass through all four of the points (Ri ). The assumed 3-dependence of the
block of planes had better imply that the four points (Ri) are coplanar.

To see that it does, choose any three of them — say R1, R2, and R3 — and
choose π to be the plane π := R1 R2 R3 that those three points determine. The
resulting configuration of twelve points {(Pi, Ai , Bi )} will, in generic cases, be a
representation of B2,1,1, and it will have all of its vertices on the appropriate input
planes, except that P4 might not lie on ρ4. Let ρ ′4 be the unique plane through o and
P4. It follows from the Projection Theorem that the slopes of the twelve planes
{(ρ1, α1, β1), (ρ2, α2, β2), (ρ3, α3, β3), (ρ

′
4, α4, β4)} will be 3-dependent. But, in

2We refer to the first plane in the ith triple as ρi , rather than as πi , in order to avoid confusion
with the plane π := Span(P1, P2, P3, P4) below.
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generic cases once again, there is only one slope that the twelfth plane can have,
given the other eleven slopes, that makes the twelve slopes 3-dependent. So we
must have ρ4 = ρ ′4, and we are done with the construction.

As for uniqueness, the only free choices that we made were the choices of the
skew lines a and b. By Corollary 9.3-4, there is a unique projective transformation
of 3-space that fixes the line o, fixes every plane through o, and takes the two lines
a and b, skew to each other and to o, to any other two such lines a′ and b′. Thus,
any witnessing representation differs from any other only by a projective transfor-
mation. tu

From the proof of the Witness Theorem, we can extract a flat-side geometric
construction that solves the following problem: Given eleven planes through a line
o — say αi and βi for i in [1 . . 4] and ρi for i in [1 . . 3] — construct the unique
twelfth plane ρ4 through o that makes the block {(ρi, αi , βi )}i∈[1..4] 3-dependent.
We choose two lines a and b that are skew to each other and skew to o, and we
let Ai be the point where the line a cuts the plane αi , and similarly for Bi . For i
in [1 . . 3], we construct the point Ri := ρ∗ii , the pole of the plane ρi in the null
system determined by the skew-Pappian hexagon Aj Bk Al Bj Ak Bl . Finally, letting
π denote the plane π := R1 R2 R3, we construct the point P4 := π∗4. The plane ρ4

that achieves 3-dependence is the unique plane through o that passes also through
P4. Note that, if the plane ρ4 is our only goal, there is no need to construct the
vertices P1, P2, and P3 of the witnessing B2,1,1 representation.

Exercise 9.5-2 (Cubic harmonic conjugacy) Here is an ordered block of scalars
that is 3-dependent: 

−1 −1 −1
4 4 4
5 5 5
−5 −2 1


Choose a line o in 3-space, find the twelve planes through o with those slopes, and
carry out the construction for a witnessing representation of B2,1,1. Is what results
a valid representation, or are these slopes a degenerate case? What is special about
the resulting configuration and its relationship with the center line o?

[Answer: The result is a valid representation of B2,1,1, but it has the special
property that the first three row planes P1 A1 B1, P2 A2 B2, and P3 A3 B3 intersect,
not in a point, as is typically the case, but in an entire line. In addition, the center
line o of the projection coincides with that line of intersection.

Commentary: This situation is the cubic analog of harmonic conjugacy. Recall
that two scalars u and v are quadratic harmonic conjugates of two distinct scalars
p and q just when the block p p

q q
u v


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is 2-dependent. In a similar way, we say that three scalars u, v, and w are cubic
harmonic conjugates of three distinct scalars p, q, and r just when the block

p p p
q q q
r r r
u v w


is 3-dependent. In the example above, the scalars (−5,−2,1) are cubic harmonic
conjugates of the distinct scalars (−1,4,5).

The new wrinkle that arises in the cubic case is that only those representations
of B2,1,1 that have a special property can serve as witnesses to the harmonic conju-
gacy of two triples. In the quadratic case, given any representation of B2,1 — that
is, given any complete quadrilateral — there are three places where we can put the
center point O so as to end up, as in Figure 2.4, with two pairs of lines through O
that are harmonic conjugates. In the cubic case, on the other hand, in order to end
up with two triples of planes that are harmonic conjugates, we must start with a
representation of B2,1,1 in which three of the four row planes lie in a common pen-
cil; and then we must choose the center line o of the projection to coincide with
the axis of that pencil.

For any degree n, harmonic conjugacy gives a binary relation on unordered
n-tuples of distinct scalars, and that relation is always symmetric. For example,
in the cubic case, suppose that both of the triples {p,q, r} and {u, v,w} consist of
distinct scalars. Then, when either of the blocks

p p p
q q q
r r r
u v w

 or


u u u
v v v

w w w

p q r


is 3-dependent, they both are.

But the relation of n-ic harmonic conjugacy is reflexive only when the degree

n is odd. For example, the 1-block
 p

p

 is always 1-dependent and the 3-block
p p p
q q q
r r r
p q r


is always 3-dependent. Indeed, if we interpret the 3-dependence of that latter block
geometrically, we can demonstrate a property of twisted cubic curves that we men-
tioned back in Section 2.9. The cubic polynomial (X − p)(X − q)(X − r) is the
intersection of the osculating planes to the twisted cubic curve Ft := (X − t)3 at
the three points Fp, Fq , and Fr . We mentioned in Section 2.9 that the intersection
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point (X − p)(X − q)(X − r) always lies in the plane Fp Fq Fr determined by the
three points of osculation.

When the degree n is even, on the other hand, the relation of n-ic harmonic
conjugacy is not reflexive. For example, the 2-blockp p

q q
p q


is 2-dependent only when p and q are equal. We can interpret that fact geomet-
rically also. The quadratic polynomial (X − p)(X − q) is the intersection of the
tangent lines to the conic curve Gt := (X − t)2 at the points Gp and Gq . But, for
p and q distinct, that intersection point never lies on the chord Gp Gq .]

9.6 Degenerate cases in projection and witnessing

One unpleasant aspect of our cubic Projection and Witness Theorems is that we did
not deal with the degenerate cases. It is an obvious open question to do better —
to either outlaw or handle each possible degenerate case. What challenges would
we face, were we to tackle this question, and what tools could we use to try to meet
those challenges?

Let’s fix a center line o, for the remainder of this section. We would have three
primary tools.

First, we could outlaw some of the 3-dependent ordered blocks of planes
ρ1 α1 β1

ρ2 α2 β2

ρ3 α3 β3

ρ4 α4 β4


through the center line o, declaring that those blocks were too degenerate to be
worthy of consideration. For example, we would almost surely want to outlaw
those blocks in which all twelve planes coincided, since that would force all twelve
points of any witnessing configuration to lie in a common plane. Let’s call the
blocks that we don’t choose to outlaw the legal blocks.

Second, we could liberalize somewhat our notion of the relevant configurations
of twelve points. We probably want to demand, of our twelve points, all of the in-
cidences that are demanded for a representation of the budget matroid B2,1,1. But
we might want to allow some incidences that the matroid B2,1,1 forbids. Let’s re-
fer to a configuration of twelve points that satisfies the resulting weaker rules as a
3-tester.

Third, we must set up some rules about the relationship between a 3-tester and
the center line o from which we intend to project its twelve points. Is any point of
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the 3-tester allowed to lie on the line o? If so, what constraints are placed on the
slope of the indeterminate plane that results? Is the line that joins two points of
the 3-tester allowed to meet the line o? And so forth. If a 3-tester is located, with
respect to the line o, so as to satisfy our requirements, we’ll call it well-located.

By exploiting those three tools, we would try to arrange that:

• Projecting, from the line o, the twelve vertices of any 3-tester that is well-
located with respect to o results in a 3-block of planes through o that is both
3-dependent and legal.

• Conversely, given any 3-block of planes through the line o that is both legal
and 3-dependent, there exists a 3-tester that is well-located with respect to o
and whose vertices lie on the appropriate planes, and which hence witnesses
to the 3-dependence. Furthermore, this witnessing 3-tester is unique up to a
projective transformation that fixes the line o and all planes through o.

Here are four of the challenges that we would face in doing so.
Challenge 1: There is a 10-dimensional family of 3-dependent blocks of planes

through the line o in which the cross ratios α(1,2,3,4) and β(1,2,3,4) of the planes in the
A and B columns are equal. These blocks cause trouble in the Witness Theorem,
since there are no representations of the matroid B2,1,1 in which the cross ratios of
the A-points and B-points are equal. One way to meet this challenge would be to
declare such 3-blocks of planes illegal. But the authors suspect that it would be
better to allow 3-testers in which the lines a and b intersect — that is, 3-testers
with Type-6 degeneracies. It is not difficult to check that the Projection Theorem
continues to hold for such 3-testers.

Ignoring Challenge 1 for a moment, let’s fix the planes (αi) and (βi) in such a
way that the cross ratios α(1,2,3,4) and β(1,2,3,4) are distinct. There is a 3-parameter
family of columns (ρ1, ρ2, ρ3, ρ4) that make the block of planes 3-dependent. As
the column (ρ1, ρ2, ρ3, ρ4) varies over this family, the plane π := R1 R2 R3 R4 that
appears in the P-last construction varies over all possible planes. Thus, lots of
degenerate cases arise. Some are pretty mild, such as degeneracies of Types 1, 3,
4, or 5. But others are worse.

Challenge 2: Suppose that we choose the planes (αi) and (βi) arbitrarily and
that we choose an additional plane µ, also in the pencil through o. We then choose
each plane ρi so that the cross ratios (ρi , αj , αk , αl ) and (µ,βj , βk , βl ) are equal,
where {i, j, k, l} = {1,2,3,4}. The resulting block is always 3-dependent — so
such blocks form a 9-parameter family. But, if we try to carry out the P-last con-
struction to get a witnessing configuration, the four points (Ri ) will lie, no three
collinear, on a plane π that passes through the line a, and the four points (Pi ) will
all lie along a.

Challenge 2 looks harder to meet than Challenge 1. If we liberalize our no-
tion of a 3-tester enough to allow such configurations, we run into trouble in the
Projection Theorem: Since the P-points and the A-points all lie along one line, the
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perfect coplanarities hold trivially, so each of the twelve points can slide arbitrarily
along its line. It may be possible to deal with this problem by making the plane π a
separate component of a 3-tester and by requiring, in addition to the dependencies
of the matroid B2,1,1, that the P-points satisfy the relations Pi = π∗i , for the spec-
ified plane π . But it is far from clear what we should do if the lines a and b also
happen to intersect, as in Challenge 1 above, which means that the null systems Ni

are not well-defined.
Challenge 3: There is a 9-dimensional family of 3-dependent blocks in which

the plane ρ4 is not uniquely determined by the other eleven planes. What typically
happens, if we apply the P-last construction to such a case, is that the point P4 ends
up lying on the center line o. That isn’t too bad. The geometry is trying, as best it
can, to tell us that we can take ρ4 to be any plane in the pencil through o without
destroying 3-dependence. Note that the two degrees of freedom that are lost by
requiring this special property of the block of planes, taking us from 11 down to
9, match the two degrees of freedom that are lost by requiring that the point P4 lie
on the center line o.

Challenge 4: There is an 8-dimensional family of 3-dependent blocks in which
all three of the planes in any single row can be varied arbitrarily without destroy-
ing 3-dependence; we studied one such block in Exercise 2.4-4. What typically
happens, if we apply the P-last construction to such a block, is that the four points
(Ri) end up collinear along a line r, leaving the plane π with an extra degree of
freedom. Choosing a generic plane π through the line r results in a representation
of B2,1,1 that does witness to the 3-dependence of the twelve planes; but different
choices of π give different representations. Thus, the uniqueness claim in the Wit-
ness Theorem fails; rather than too few witnesses, we have too many.

But enough, already, about degenerate cases. Let’s return to happier topics.

Exercise 9.6-1 In the situation of Challenge 4, it turns out that the line r, on which
all four of the points (Ri ) given by Ri := ρ∗ii lie, is a common transversal of the
four lines (o∗i). This means that, as we vary the plane π in the pencil with axis
r, there are four special cases: the planes given by πi := Span(r,o∗i ), for i in
[1 . . 4]. What is special about the witnessing representation of B2,1,1 that results
from choosing π to be πi?

[Answer: When the plane π passes through the line o∗i , the point Pi = π∗i

lies on the line o. Thus, the resulting representation witnesses — in the sense of
Challenge 3 — to the 3-dependence, not only of the given block, but also of any
block obtained from it by varying the single plane ρi .]



Chapter 10

The budget matroid B1,1,1,1

The final budget matroid of rank 4 is B1,1,1,1. Recall that a representation of B1,1,1,1

consists of sixteen points


1 1 1 1

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4


in 3-space, where the four points in each column are collinear, lying along the four
skew lines a, b, c, and d , and where the four points in any of the 4! = 24 perfect
sets are coplanar. The resulting structure has lots of combinatorial symmetries;
note that the symmetric group on four letters acts independently on the rows and
on the columns.

As it happens, the null-system machinery that we have developed to study rep-
resentation of the matroid B2,1,1 can also be used to construct representations of
B1,1,1,1. That result seems worth exploring here, even though the matroid B1,1,1,1

isn’t relevant to the concept of n-dependence for any n.
Be warned that one step in our construction for a representation of B1,1,1,1 is to

solve a quadratic equation. That makes the success of the construction contingent
upon the existence of square roots in the field of scalars.

10.1 Generic representations

Lemma 10.1-1 In any representation of the budget matroid B1,1,1,1, the point D4

lies on the line c∗4, the polar of the column line c = C1C2C3C4 in the null system
N4 := N((A1, B1), (A2, B2), (A3, B3)). Analogously, for any i in [1. .4], the point
Di lies on the line c∗i and the point Ci lies on the line d∗i .

Proof Whenever {i, j, k} = {1,2,3}, the set {Ai , Bj ,Ck , D4} is perfect and hence
coplanar, as is the set {Aj , Bi ,Ck , D4}. So the line Ck D4 meets both of the lines

131
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Ai Bj and Aj Bi . Since those two lines form a skew-polar pair in the null system N4,
we conclude from Proposition 8.2-4 that the line Ck D4 is self-polar in N4, from
which it follows that the point Ck lies in the plane D∗44 . This holds for any k in
[1 . . 3], so the entire line c must lie in the plane D∗44 . Hence, the point D4 lies on
the line c∗4. tu

Lemma 10.1-1 states only one-sixth of the full truth, because we could use
any pair of columns in building the null systems — there is nothing special about
columns A and B. But it simplifies the notation a bit to assume that columns A and
B are always the two that are used to build the null systems (Ni ), and that restricted
result is enough for our needs.

Proposition 10.1-2 In generic cases and when the requisite square root exists in
the field of scalars, the following process produces a representation in 3-space of
the budget matroid B1,1,1,1: Choose three skew lines a, b, and c, choose four dis-
tinct points (Ai )i∈[1..4] on the line a, and choose four distinct points (Bi)i∈[1..4] on
b. For {i, j, k, l} = {1,2,3,4}, let c∗i be the line that is polar to the line c in the
null system Ni := N((Aj , Bj ), (Ak , Bk), (Al , Bl)). In generic cases, the four lines
(c∗i) will be skew and, when the requisite square root exists, they will have two
distinct common transversals; let d be one of them. For i in [1 . . 4], let Ci be the
point where c meets d∗i and let Di be the point where d meets c∗i .

Furthermore, there exist nondegenerate, rational choices for the input param-
eters a, b, c, (Ai ), and (Bi) for which the requisite square root is also rational. So
the matroid B1,1,1,1 is representable over the rational numbers, and hence over any
field of characteristic zero.

Proof We first verify that, in generic cases, the four lines (c∗i) are skew. It suffices
to check that they are skew in some particular case — for example, writing points
in the form [w, x, y, z], in the case in which

A1 = [1,8,0,0] B1 = [0,0,−5,1]

A2 = [1,−2,0,0] B2 = [0,0,0,1]

A3 = [1,7,0,0] B3 = [0,0,2,1]

A4 = [1,4,0,0] B4 = [0,0,−1,1]

and in which c is the line y −w = z − x = 0. The polar lines (c∗i) then turn out
to be:

c∗1 : 64w − 22x − 108y = 31y + 22z − 108w = 0

c∗2 : 58w − 9x − y = 7y + 9z −w = 0

c∗3 : 2w − x − 4y = 3y + z − 4w = 0

c∗4 : 24w − 2x − 28y = 41y + 2z − 28w = 0.
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And those four lines1 are indeed skew.
Finding a common transversal of four skew lines involves solving a quadratic

equation. If every scalar has a square root, then we can solve any quadratic, so any
four skew lines have two common transversals. (In degenerate cases, the quadratic
equation might be a perfect square, in which case the two transversals will coin-
cide. What distinguishes these cases geometrically is that each of the four skew
lines is tangent to the unique ruled quadric that contains the other three. In cases
that are even more degenerate — in particular, when all four skew lines lie in a
single ruled quadric — there is a one-parameter family of common transversals —
to wit, the other family of generating lines of that same quadric. What happens to
the quadratic equation, in such cases, is that all three of its coefficients are zero.)
But if there exist scalars that don’t have square roots, then four skew lines may not
have any common transversals.

Fortunately, there are rational input parameters for which the requisite square
root is rational. For example, the four polar lines (c∗i) above have the two rational
lines 68w − 14x + 4y = 27y + 14z − 66w = 0 and 68w − 14x − 66y =
27y + 14z + 4w = 0 as their common transversals.

Next, we suppose that the input parameters have been chosen so that the four
lines (c∗i) are skew and have two common transversals. By Lemma 10.1-1, we
must choose the fourth column line d to be one of those two common transversals,
in order to have any hope of arriving at a representation of B1,1,1,1. Furthermore,
we must place the point Di , for i in [1 . . 4], where the line d meets the line c∗i .
Since the line d is a common transversal of the four lines (c∗i ), it follows from
Exercise 8.2-6 that the line c will be a common transversal of the four lines (d∗i).
So we can place the point Ci , symmetrically, where the line c meets the line d∗i . We
claim that, in the resulting configuration, all sets of points that should be mutually
incident are so. The column collinearities are obvious, so we consider a perfect
set, such as {A1, B2,C3, D4}; are those four points coplanar?

We have placed the point C3 where the line c meets the line d∗3. It follows that
the plane C∗33 passes through both of the lines c∗3 and d . In particular, the plane
C∗33 passes through the point D4; so the line C3 D4 is self-polar in the null system
N3. From a similar argument focused on the point D4, we conclude that the line
C3 D4 is also self-polar in the null system N4. Thus, the line C3 D4 lies in both of
the planes C∗33 and C∗43 .

Could it be that the two planes C∗33 and C∗43 coincide? No. The line c∗3 lies in

1People doing serious geometry in 3-space usually choose to represent lines using Plücker line
coordinates [28, 50]. We represent a line here as the intersection of two planes only to avoid setting
up the Plücker machinery. Note that, in the four lines (c∗i ) and in their two common transversals
below, the coefficient of x in the first equation is the negative of the coefficient of z in the second
equation; those two coefficients come from the same Plücker coordinate. In the four lines (c∗i ),
the coefficient of y in the first equation is equal to the coefficient of w in the second; but those
equalities result from our special choices of the lines a and b — that equality doesn’t hold for most
lines. Indeed, the two common transversals differ in that those two coefficients are interchanged.
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the plane C∗33 and the line c∗4 lies in the plane C∗43 , and we are assuming that the
four lines (c∗i) are skew. Therefore, the two planes C∗33 and C∗43 are distinct, and
the line C3 D4 is their unique line of intersection.

Meanwhile, the lines A1 B2 and A2 B1 form a skew-polar pair in the null sys-
tem N3, since they are an opposite pair of edges of the skew-Pappian hexagon
A1 B2 A4 B1 A2 B4 that defines N3. In a similar way, the same two lines form a skew-
polar pair in the null system N4. It follows from Proposition 8.2-4 that the common
transversal from C3 to the skew lines A1 B2 and A2 B1 is self-polar in both N3 and
N4. Thus, that common transversal must lie in both of the planes C∗33 and C∗43 , so
it must coincide with C3 D4, their line of intersection. We conclude that the line
C3 D4 is a common transversal of the lines A1 B2 and A2 B1, so both of the perfect
sets {A1, B2,C3, D4} and {A2, B1,C3, D4} are coplanar. The rest of the perfect sets
are coplanar by similar arguments.

It remains to show that, in generic cases, the resulting configuration is free of
forbidden incidences. It suffices to verify that there are no forbidden incidences in
some particular case. Continuing the example above, suppose that we choose, as
our line d , the first of the two common transversals, the line 68w − 14x + 4y =
27y + 14z − 66w = 0. We then end up with the following sixteen points:

A B C D
1 [1,8,0,0] [0,0,−5,1] [1,3,1,3] [16,76,−6,87]
2 [1,−2,0,0] [0,0,0,1] [13,59,13,59] [1,6,4,−3]
3 [1,7,0,0] [0,0,2,1] [1,2,1,2] [3,14,−2,18]
4 [1,4,0,0] [0,0,−1,1] [1,13,1,13] [4,20,2,15]

There are
(16

4

) = 1820 sets of 4 of these points. Of those sets, 49 are coplanar
because they contain at least 3 points from the first column, another 49 similarly
from each of the other three columns, 24 are coplanar because they are perfect, and
the remaining 1600 — the bases of the matroid B1,1,1,1 — are all non-coplanar. tu

Corollary 10.1-3 Over a field, such as the complex numbers, in which all scalars
have square roots, choosing a representation of the budget matroid B1,1,1,1, sitting
in a fixed 3-space, involves #(B1,1,1,1) = 20 degrees of freedom.

Exercise 10.1-4 In a representation of the budget matroid B1,1,1,1, show that the
two lines A1 B2 and A2 B1 are the two common transversals of the four skew lines
a, b, C3 D4, and C4 D3.

10.2 A projective compass

Our next goal is to convert the process that Proposition 10.1-2 uses to produce rep-
resentations of the matroid B1,1,1,1 into a geometric construction. In order to do
that, we need some geometric tool more powerful than a flat-side; essentially, we
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need a tool that solves quadratic equations — at least, solves those quadratics that
do have solutions. In Euclidean geometry over the real numbers, the standard tool
for this job is the compass; so, it seems reasonable to call the tool that we need here
a projective compass. There are lots of alternatives for precisely what a projective
compass might do, but the different models all have equivalent power:

Model 1 Given three distinct points A, B, and C along a line ` and three more
distinct points A′ , B′, and C′ along that same line `, the projective compass
constructs for us the two fixed points of the unique projectivity from ` to `
that maps (A, B,C) to (A′, B′,C′).

Model 2 Given two pairs of points (A, B) and (C, D) along a line `, the projective
compass constructs for us the two fixed points of the unique involution of `
that swaps A with B and swaps C with D.

Model 3 Given five points and one line in the plane, the projective compass con-
structs for us the two intersections of the line with the unique conic through
the five points.

Model 4 Given four skew lines in 3-space, the projective compass constructs for
us their two common transversals.

Of course, if we are working over a field in which some scalars don’t have square
roots, then the projective compass may fail on some problem instances; that is true
for any of the four models of a projective compass.

Exercise 10.2-1 Show that the four models of a projective compass have equiva-
lent power.

[Hint: Implementing Model 2 with Model 1 is trivial.
To implement Model 3 with Model 2, suppose that we are given five points and

a line `. Construct some point P on the conic through the five given points and
construct the tangent line m to the conic at P, both of which we can do with just
a straightedge. Also with a straightedge, we can construct the second tangent m ′

to the conic that passes through the point `∩m and the point P ′ where m ′ touches
the conic. The mapping that takes P to P ′ is an involution on the conic, and the
fixed points of that involution give us the points where the line ` cuts the conic.

To implement Model 1 with Model 3, note first that we can think of a projec-
tivity as acting either on the points in a range or on the lines in a pencil. Using the
second form, suppose that we are given two triples (a,b, c) and (a′,b′, c′) of lines
through a point P and that we want to construct the two fixed lines of the projec-
tivity of the P pencil that takes (a,b, c) to (a′,b′, c′). Let Q be some point and let
` be some line. Given any line e through P, let e? be the line that joins Q to e∩ `.
There is a unique projective correspondence from the P pencil to the Q pencil that
takes (a,b, c) to (a′?,b′?, c′?), and the intersections of corresponding pairs of lines
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(e, e′?) trace out a conic. The two points where the line ` cuts that conic give us
the two fixed lines of the original projectivity.

To implement Model 4 with Model 1, let a, b, c, and d be the four skew lines.
The one-parameter family of all common transversals of a, c, and d determines one
projective correspondence between c and d , while the similar family of all com-
mon transversals of b, c, and d determines another. If we map from c to d via one
of those correspondences and then back from d to c via the other, we get a projec-
tivity of the line c whose two fixed points give us the two common transversals.

Finally, to implement Model 1 with Model 4, let P 7→ P ′ be the given pro-
jectivity of the line `, and choose two lines m and n that are skew to each other
and to `. For each point P on `, let P? denote the point on m that lies in the plane
Span(P,n). As the point P varies along `, the lines of the form P ′P? sweep out
a ruled quadric. The lines ` and m are generators of that same quadric, from the
other family. Let k be a third generator from that other family, skew to ` and m.
The common transversals of k, `, m, and n give us the two fixed points of the orig-
inal projectivity.]

Which model of the projective compass is most convenient depends upon the
application. When constructing a representation of B1,1,1,1 in Proposition 10.1-2,
we needed to find a common transversal of four skew lines. But there is an impor-
tant special case of the same construction where what we need to do, instead, is to
find the fixed points of a projectivity.

Suppose that the A-points and B-points in Proposition 10.1-2 are chosen so
that the cross ratios A(1,2,3,4) and B(1,2,3,4) are equal. This equality does not hold in
general, but it might be desirable to have it hold in certain cases — for example,
when trying to construct a representation of B1,1,1,1 with lots of geometric symme-
tries. When those two cross ratios are equal, the four null systems (Ni ) coincide,
so the four lines (c∗i) all coincide with the polar c∗ of the line c in that single null
system. It follows from Lemma 10.1-1 that we must take d to be the line c∗. But
where on the lines c and d = c∗ should we put the C-points and the D-points?

One way to figure out where is as follows: Choose any point along the line c,
and tentatively call it C1. Using one of the perfect coplanarities {A3, B4,C1, D2}
or {A4, B3,C1, D2}, figure out where D2 should go along the line d , given that C1

is as we have guessed. In a similar way, compute the points C3, D4, and C1 again,
each from the previous one. If the final point C1 coincides with our initial guess
for C1, we were very lucky, and we have found a representation of B1,1,1,1. Typ-
ically, the initial and final values of C1 will not coincide. But the mapping that
takes our initial guess for C1 to the resulting final value is some projectivity of the
line c. We can characterize that projectivity uniquely by carrying out this four-step
tracing process three times, starting with three distinct, initial guesses for C1. We
then employ a Model-1 projective compass to construct the two fixed points of that
projectivity — those two points being the two places where C1 can go in a valid
representation.
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10.3 Representations with Euclidean symmetries

If all of the column budgets of a budget matroid are equal, the columns play sym-
metric roles. It is tempting to try to find representations of such matroids in which
as many as possible of the combinatorial symmetries that permute the columns are
modeled by geometric symmetries — that is, by projective transformations of the
ambient space that map the representation to itself.

Exercise 4.1-1 considered this issue for the Pappus matroid B1,1,1, in which the
three columns play symmetric roles. For the representations of B1,1,1 discussed in
that exercise, all six permutations of the three columns can be achieved by pro-
jective transformations — even by Euclidean transformations — of the ambient
plane. Furthermore, all six of those transformations leave the rows fixed. In this
section and the next, we see how close we can come to that same behavior for the
matroid B1,1,1,1 in 3-space.

As a warm-up for the projective case, let’s first consider representing the ma-
troid B1,1,1,1 in Euclidean 3-space so that as many as possible of the 24 column
permutations are achieved by Euclidean transformations. We shan’t do very well
with Euclidean transformations — in particular, we shall handle only those 6 of
the 24 permutations that leave one of the four columns fixed. But at least the re-
sulting representations are easy to visualize, as demonstrated in the accompanying
videotape [44].

The basic idea is as follows: Given a hyperboloid of one sheet with circular
cross sections, we choose three of the four column lines of the representation — say
b, c, and d — to be generating lines of that hyperboloid, so arranged that they are
cyclically permuted by a 120◦ rotation around the axis of the hyperboloid — which
we choose to be the remaining column line, a. One convenient way to set this up in
coordinates is to choose, as the hyperboloid, the surface XY+X Z+Y Z+1 = 0 in
Euclidean (X,Y, Z)-space. That surface is rotationally symmetric about the main
diagonal a and it includes, as one generating line, the line b parameterized by t 7→
(t,−1,1). Cyclically permuting the three coordinates X , Y , and Z corresponds to
rotating this hyperboloid by 120◦ about its axis, which also cyclically permutes the
generating line b : t 7→ (t,−1,1) and its two cyclic shifts c : t 7→ (1, t,−1) and
d : t 7→ (−1,1, t).

Given any point (X,Y, Z), let us refer to the sum of its coordinates X +Y + Z
as its height. Note that the planes of constant height are orthogonal to the main
diagonal a, and that the hyperboloid XY + X Z +Y Z + 1 = 0 is symmetric under
reflection through the plane of height 0. We envision a representation of B1,1,1,1 of
the form:

A B C D
1 (q1,q1,q1) (p1,−1,1) (1, p1,−1) (−1,1, p1)

2 (q2,q2,q2) (p2,−1,1) (1, p2,−1) (−1,1, p2)

3 (q3,q3,q3) (p3,−1,1) (1, p3,−1) (−1,1, p3)

4 (q4,q4,q4) (p4,−1,1) (1, p4,−1) (−1,1, p4)
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The parameter pi , for i in [1 . . 4], is the common height of the points Bi , Ci , and
Di , while the point Ai lies at height 3qi along the main diagonal.

For arbitrary values of the parameters (pi), there are unique values for the pa-
rameters (qi) that make the 24 perfect coplanarities of the matroid B1,1,1,1 hold. To
determine the requisite value of qi , we intersect the plane Bj Ck Dl with the main
diagonal a, where {i, j, k, l} = {1,2,3,4}.
Exercise 10.3-1 Verify that the plane Bj Ck Dl intersects the main diagonal at the
point (qi,qi ,qi ), where

qi := (pj + pk + pl)+ pj pk pl

9+ (pj pk + pj pl + pk pl)
.

Because of the three-fold rotational symmetry, the formula for qi clearly had
to be symmetric under cyclic shifts of the indices ( j, k, l). It turns out to be sym-
metric under arbitrary permutations of ( j, k, l). Thus, if we set Ai := (qi,qi ,qi )

for each i, where qi is as given in Exercise 10.3-1, the resulting configuration has
all of the incidences that are required for a representation of the matroid B1,1,1,1.
It may also have forbidden incidences, of course, depending upon our choices for
the parameters (pi).

We can double the number of Euclidean symmetries, from three to six, by stip-
ulating that p1+ p4 and p2+ p3 are both zero, from which it follows that q1+ q4

and q2+ q3 will also be zero. Under this stipulation, a 180◦ rotation about the line
X = Y+Z = 0 — which maps the point (X,Y, Z) to the point (−X,−Z ,−Y )—
then maps Ai to A5−i , Bi to B5−i , Ci to D5−i , and Di to C5−i , for all i in [1. .4]. That
is, the A and B columns are held fixed while the C and D columns are swapped,
but at the cost of uniformly swapping row 1 with row 4 and row 2 with row 3.

There is no way that a Euclidean symmetry of the configuration could avoid fix-
ing the axis a of the hyperboloid; so we aren’t going to be able to achieve more than
6 of the 24 column permutations with Euclidean symmetries. Hence, we might as
well set the two remaining free parameters p1 and p2 to achieve some lesser goal,
such as beauty. For example, we can set p1 := 3p2, so that the B-points, C-points,
and D-points are equally spaced, along their lines. We can then choose the remain-
ing parameter p2 so that the A-points also end up equally spaced, along the main
diagonal.

Exercise 10.3-2 Assuming that we set p1 := 3p2, p3 := −p2, and p4 := −3p2,
find the positive, real values of p2 that result in the four A-points being equally
spaced, in some order, along the main diagonal a.

[Answer: The values p2 = (
√

17 ± 2
√

2)/3 make the four A-points equally
spaced in the order (A1, A3, A2, A4). But the resulting configurations are not rep-
resentations of B1,1,1,1, because they have twelve forbidden coplanarities, of which
{A1, B1,C4, D1} is an example. Luckily, the values p2 = (

√
53±2

√
2)/3
√

5 also
make the A-points equally spaced, this time in the order (A3, A1, A4, A2). The
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configurations that result from these two values have no forbidden incidences, and
hence do represent B1,1,1,1. The representation shown in the videotape [44] has
p2 = (

√
53− 2

√
2)/3
√

5 = 0.6636+.]

This is a convenient time to interject a comment about cross ratios. Recall that
there is no representation of the budget matroid B2,1,1 in which the two cross ratios
A(1,2,3,4) and B(1,2,3,4) along the two column lines are equal. Given that, one might
wonder whether there is any constraint on the four cross ratios A(1,2,3,4), B(1,2,3,4),
C(1,2,3,4), and D(1,2,3,4) in a representation of the matroid B1,1,1,1. The answer seems
to be no. By varying p2 continuously in the construction of the previous exer-
cise, we can keep the last three of those four fixed while varying the first contin-
uously; so there can’t be any algebraic constraint relating the four cross ratios. In
that example, of course, the last three are not only fixed, but also equal. Generi-
cally, however, we know that no two of the four cross ratios are equal, since that
is what happened in the example in Proposition 10.1-2. Indeed, in that example,
the six possible cross ratios that we can get by taking the four A-points in some
order together with the six similar cross ratios from the other three lines constitute
24 distinct scalars. Thus, generically, even if we allow ourselves to reorder the
points, no cross ratio along any column line coincides with any cross ratio along
any other column line. On the other hand, it can also happen that all four cross
ratios are equal, with no reordering allowed, as we see in the next section.

Exercise 10.3-3 Are there representations of the budget matroid B1,1,1,1 in which
all sixteen points lie on a common quadric? In such a representation, the four col-
umn lines must be generating lines of that quadric, all drawn from the same family.

[Answer: Yes — at least, the authors’ Newton-Raphson search converged on
a convincing approximation to such a representation.]

Exercise 10.3-4 Continuing the theme of the preceding exercise, suppose that the
sixteen points {(Ai , Bi ,Ci , Di)}i∈[1..4] form a representation of the matroid B1,1,1,1

in which all sixteen points lie on a common quadric. Show that the four cross ra-
tios A(1,2,3,4), B(1,2,3,4), C(1,2,3,4), and D(1,2,3,4) along the four column lines must be
distinct, and hence this representation is not very symmetric.

[Hint: Given three skew lines, all of their common transversals form a one-
parameter family that is called — at least, was once called [29] — a regulus. The
lines of a regulus sweep out a ruled quadric surface, forming one of that surface’s
two families of generating lines. The other family of generating lines of the same
ruled quadric is called the complementary regulus.

Getting back to the exercise, suppose, by way of contradiction, that the cross
ratios A(1,2,3,4) and B(1,2,3,4) are equal. The four lines {Ai Bi }i∈[1..4] then belong to
a common regulus whose complement — call it R — contains both a and b. The
lines c and d are constrained in two ways: They are polars of each other in the sin-
gle null system N = N((Ai , Bi ), (Aj , Bj ), (Ak , Bk)) that results from any subset
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{i, j, k} ⊂ {1,2,3,4}, and they also belong to some regulus R′ that contains both
a and b. Show that those two constraints imply that the lines (c,d) are harmonic
conjugates of the lines (a,b) in the single regulus R′ = R. But, if R′ = R, the
lines (Ai Bi) meet the lines c and d , which cannot happen because, for example,
the set {A1, B1,C1,C2} is forbidden to be coplanar.]

10.4 Representations with projective symmetries

We now turn from Euclidean 3-space to projective 3-space, which gives us a much
richer class of transformations to exploit. We withdraw our decision to set p1 :=
3p2 — that decision was motivated only by a quest for beauty, after all — but we
keep everything else the same as before, including the constraints p1+ p4 = 0 and
p2 + p3 = 0. The key idea in the projective case is to restrict our choices of the
parameters (pi) so that the identity

p1 p2 p3 p4 + (p1 p2 + p1 p3 + p1 p4 + p2 p3 + p2 p4 + p3 p4)+ 9 = 0

holds. Note that this identity is symmetric in the four variables (pi). If this iden-
tity holds, it follows from Exercise 10.3-1 that we have qi = −1/pi for all i.
Thus, converting from Euclidean coordinates (X,Y, Z) to homogeneous coordi-
nates [w, x, y, z], we can write our configuration in the form:

A B C D
1 [−p1,1,1,1] [1, p1,−1,1] [1,1, p1,−1] [1,−1,1, p1]
2 [−p2,1,1,1] [1, p2,−1,1] [1,1, p2,−1] [1,−1,1, p2]
3 [−p3,1,1,1] [1, p3,−1,1] [1,1, p3,−1] [1,−1,1, p3]
4 [−p4,1,1,1] [1, p4,−1,1] [1,1, p4,−1] [1,−1,1, p4]

Given a configuration of this form, what column permutations can we achieve
via projective symmetries? The six column permutations that fix the A column can
all be achieved by the same Euclidean transformations as before. In addition, the
projective transformation [w, x, y, z] 7→ [x,−w,−z, y] swaps the point Ai with
Bi and Ci with Di , for all i in [1 . .4]. Thus, we can achieve all 24 column permu-
tations via projective symmetries. The symmetries that achieve the even column
permutations leave the rows fixed; those that achieve the odd permutations swap
row 1 with row 4 and swap row 2 with row 3.

It remains to choose the parameters (pi), being careful to avoid any forbidden
incidences. So far, we have three constraints on those four parameters. Perhaps the
prettiest way to tie down the final degree of freedom is to require that p1 = 1/p2,
so that the set {p1, p2, p3, p4} is closed under both negation and inversion. A little



10.4. REPRESENTATIONS WITH PROJECTIVE SYMMETRIES 141

algebra reveals that we then have

p1 = +
√

3+
√

2

p2 = +
√

3−
√

2

p3 = −
√

3+
√

2

p4 = −
√

3−
√

2;

and some further algebra verifies that these choices do not lead to any forbidden
incidences. The resulting representation of B1,1,1,1 seems like a good candidate to
win the projective beauty contest.





Chapter 11

Open questions

We wrap up by discussing some open questions about the budget matroids and their
relationship to n-dependency.

11.1 Representability in general

Since what makes the budget matroids interesting is that so many of them are rep-
resentable, the most tempting challenge about the budget matroids is to determine
precisely which of them are representable.

Challenge 11.1-1 Determine which of the budget matroids are representable over
the complex numbers. For those that are representable, count the degrees of free-
dom involved in choosing a representation — that is, compute the dimension of
the set of representations. Also, if possible, show how to construct a generic rep-
resentation using a flat-side as the only geometric tool — that is, find a rational
parameterization of the set of representations.

One could ask the same questions for the budgetary matroids as well. But the
evidence in Chapter 5 suggests that most of them are unrepresentable, so the an-
swers are less likely to be interesting.

Of course, the set of representations of a budget matroid has to be more than
just a set, in order for its dimension to be well defined. The books by Harris [14],
by Reid [46], and by Cox, Little, and O’Shea[7] are fine places to learn algebraic
geometry at the level that you need to follow the next few paragraphs. It is simplest
to assume, at this point, that our field of scalars is algebraically closed.

Let Bb1,...,bk be a budget matroid and let S denote projective space of dimension
b−1, where b := b1+· · ·+bk is the total budget. Each incidence that the matroid
Bb1,...,bk requires is a polynomial constraint on the homogeneous coordinates of our
bk points in S. Those constraints determine a certain variety W in the Cartesian
product Sbk of bk copies of S. (If we like, we can use the Segre embedding [16]
to view the Cartesian product Sbk as a subvariety of projective space of dimension
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bbk−1, thus realizing W also as a subvariety of that single, high-dimensional pro-
jective space — so W is a projective variety.) Each point in the variety W gives a
way of mapping the elements of the matroid Bb1,...,bk to points in S so that all de-
pendent sets of elements map to sets of points that are mutually incident — but
various independent sets of elements may also map to sets of points that are mu-
tually incident. Such a map is called a weak representation.

The variety W of weak representations is typically reducible, but we can de-
compose it into its irreducible components. Each of the irreducible components V
of W is either good or bad:

good The bulk of the points in V give true representations; only those in a proper
subvariety of V have forbidden incidences.

bad All of the points in V give weak representations that share some forbidden
incidence.

We define the freedom #(Bb1,...,bk) to be the maximum of the dimensions of the
good components — unless all of the components are bad, in which case we set
#(Bb1,...,bk ) := ⊥.

Note that there typically exist bad components whose dimension is larger than
that of any good component. For example, consider the matroid B1,1,1,1. On the
good side, we have #(B1,1,1,1) = 20. On the other hand, one way to build a weak
representation is to let the three column lines a, b, and c coincide, which is enough
to ensure that all of the perfect coplanarities hold. There are four degrees of free-
dom in the choice of the line a = b = c, four more in the skew line d , and one in
each of the sixteen points along its column line, for a total of 24. Thus, speaking
loosely, there are many more weak representations than there are true representa-
tions — many more degenerate cases than nondegenerate ones.

Exercise 11.1-2 A simpler flavor of weak representation of the budget matroid
B1,1,1,1 has all sixteen of its points lying in a common plane. How many degrees
of freedom are involved in choosing one of those?

[Answer: 27, assuming that we still take the ambient projective space to be a
3-space, as opposed to a plane.]

Let Bb1,...,bk be a budget matroid that is representable, let W be its variety of
weak representations, and consider those irreducible components V of W that are
good. It seems reasonable to hope, even if several good components V exist, that
only one of them will have the maximal dimension #(Bb1,...,bk). Whenever that
is true, we have a particular, irreducible variety V that we can think of, loosely,
as being ‘the variety of representations’ of the matroid. We can then go on to ask
whether that variety V is either rational, meaning that V is birationally isomorphic
to projective space of dimension #(Bb1,...,bk), or — failing that — perhaps unira-
tional, meaning that there exists a dominant rational map from projective space
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of dimension #(Bb1,...,bk) to V . Roughly speaking, either of those two conditions
means that we can express the coordinates of the points in a generic representation
as rational functions of #(Bb1,...,bk ) free parameters. For the variety V to be ratio-
nal, the correspondence between vectors of parameter values and representations
must be generically one-to-one, whereas even a many-to-one correspondence is
enough to qualify V as unirational [17].

In the Bm,n and Bm,1,1 Representation Theorems, we constructed generic rep-
resentations of the budget matroids Bm,n and Bm,1,1 using a flat-side as our only
geometric tool. In such a construction, the points of the representation are chosen
in some order. When each point is chosen, the required incidences of the matroid
force that point to lie in a certain k-flat, which can be constructed from the previ-
ously chosen points using only a flat-side. (If the dimension k of that flat is zero,
there isn’t actually any choice about where the new point will go.) When all points
have been chosen in their appropriate flats, all of the required incidences of the ma-
troid are guaranteed to hold and, in generic cases, no forbidden incidences hold. A
construction of this type gives a birational isomorphism between projective space
of the appropriate dimension and the variety of representations of the matroid. That
is, when such a flat-side construction exists, precisely one irreducible component
of the variety of weak representations is good and that unique good component is
a rational variety.

It would be delightful if all of the budget matroids were representable and if
a generic representation of any budget matroid could be constructed using only a
flat-side. But that is a lot to hope for.

11.2 The budget matroids with few columns

What are the smallest budget matroids whose representability is still open? There
are several answers to that question, depending upon what ordering we impose on
the budget matroids. Two reasonable choices are to order them by the number of
columns or by the number of rows.

The Bm,n Representation Theorem resolves the representability issues for all
budget matroids with two columns: They are all representable, flat-side construc-
tions always exist, and the freedom involved is #(Bm,n) = m2+3mn+n2−3. The
Bm,1,1 Representation Theorem gives similar good news about those budget ma-
troids with three columns, two of whose column budgets are ones: Representable,
flat-side constructions exist, and the freedom is #(Bm,1,1) = m2 + 6m + 3. The
authors suspect that the latter result can probably be extended to the case where
only one of the column budgets is fixed at 1.

Conjecture 11.2-1 For every positive m and n, the budget matroid Bm,n,1 is repre-
sentable over the rationals, a generic representation can be constructed using only
a flat-side, and the number of degrees of freedom involved in choosing a represen-
tation is #(Bm,n,1) = (m + n + 2)2 − 6.
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The authors have checked this conjecture numerically for various cases, up
through B3,3,1. As for that particular case, we said in Section 5.5.6 that #(B3,3,1)

.=
58, which is consistent with the conjecture.

One might be tempted to broaden Conjecture 11.2-1 to say that #(Bm,n,p) =
(m + n + p + 1)2 − 6 for any three positive column budgets m, n, and p. But
that broadened conjecture doesn’t square with the authors’ numeric experiments,
which suggest that #(B2,2,2)

.= 42, rather than 43.

Exercise 11.2-2 Calculate the freedom #(Bm,n,0) and compare your result with
that predicted by the broadened form of Conjecture 11.2-1. When does the broad-
ened conjecture get the right answer?

[Answer: The Bm,n Representation Theorem tells us that #(Bm,n) = m2 +
3mn + n2 − 3; so we have #(Bm,n,0) = m2 + 3mn + n2 + m + n − 4. The
broadened conjecture predicts that #(Bm,n,0) = (m+n+1)2−6, which is correct
only when (m − 1)(n − 1) = 0 — that is, only in those cases that are covered
by the original, unbroadened form of Conjecture 11.2-1. Of course, zero column
budgets might have to be treated as a special case.]

For budget matroids with four columns, very little is known. Indeed, that little
can be summed up in the two equations #(B1,1,1,1) = 20 and #(B2,1,1,1)

.= 30.
And nothing at all is known about the representability of particular budget matroids
with more than four columns.

11.3 The budget matroids of low rank

Instead of ordering the budget matroids by the number of columns, we can order
them by the number of rows — that is, by rank.

The budget matroids of rank at most 4 are all representable over the complex
numbers, and we know the freedom involved in each case:

#(B1,1) = 2 #(B3,1) = 16

#(B2,2) = 17

#(B2,1) = 8 #(B2,1,1) = 19

#(B1,1,1) = 10 #(B1,1,1,1) = 20.

Furthermore, there is a flat-side construction for a generic representation in every
case except possibly for B1,1,1,1.

Challenge 11.3-1 Proposition 10.1-2 uses a flat-side and a projective compass to
construct a generic representation of the budget matroid B1,1,1,1. By making the
choices in some different order, is it possible to achieve the same result with only
a flat-side?
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For the budget matroids of rank 5, we have the following freedoms:

#(B4,1) = 26

#(B3,2) = 28

#(B3,1,1) = 30

#(B2,2,1)
.= 30

#(B2,1,1,1)
.= 30

#(B1,1,1,1,1) = ?.

The first three are covered by the Bm,n and Bm,1,1 Representation Theorems, so
those three cases also have flat-side constructions. The authors have found rational
representations of B2,2,1 and of B2,1,1,1. Given such a representation, it is straight-
forward to use linear algebra to calculate the local dimension of the space of repre-
sentations at that point, which is a good guess for the true freedom involved. But
the authors have been unable to find a rational — or even an approximate, complex
— representation of the matroid B1,1,1,1,1.

Challenge 11.3-2 Is the budget matroid B1,1,1,1,1 representable over the complex
numbers? Over the rationals?

There is a subtlety about the way that a budget matroid relates to its minors
that should be discussed here, since it can impact the search for a representation
of B1,1,1,1,1. In particular, a minor of a generic representation is not necessarily a
generic representation of the minor.

One way to search for a representation of some matroid, such as B1,1,1,1,1, is
to use a numeric method on the system of nonlinear equations that encodes the re-
quired incidences. If we are lucky enough to find an approximate solution of the
incidence equations, we can check that solution to determine whether any forbid-
den incidences also hold. The authors performed various experiments of this type,
using a Newton-Raphson iteration as their numeric method.

The bane of this search strategy is degeneracy. Unless we do something clever
to constrain the numeric search, it is overwhelmingly likely that whatever solution
we converge to will have some forbidden incidences. Recall that there are typically
many more weak representations than there are true representations.

How can we constrain the numeric search so as to improve the odds that it will
converge to a solution that is free of forbidden incidences? Recall that a budget
matroid of rank r has lots of budget matroids of rank r − 1 as minors. One way to
constrain the search is to fix the representation of one of those minors to be some
particular, true representation of the smaller budget matroid. In some of the au-
thors’ experiments, this strategy worked splendidly.

But now we come to the subtle point: Just because any representation of the
larger matroid includes, within it, a representation of the minor, it does not follow
that any representation of the minor can be extended into a representation of the
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larger matroid. Instead, it may be the case that the bulk of the representations of the
minor cannot be extended — the ones that can be extended being only those that
satisfy certain algebraic constraints. In particular, the authors’ search for a repre-
sentation of B1,1,1,1,1 may have been torpedoed at the start, because the particular
representation of the minor B1,1,1,1 that they chose to try to extend was not, in fact,
extensible.

For concreteness, here is a blatant case of this phenomenon. We know from
the Bm,n Representation Theorem that the matroid B9,9 is representable and that
#(B9,9) = 402. Assuming that Conjecture 11.2-1 is true, the matroid B9,9,1 is also
representable, and #(B9,9,1) = 394. Given any representation of B9,9,1, sitting in
18-space, if we place our eye at one of the points in the third column and look out
at the points that are neither in our row nor in our column, we see a representation
of B9,9, sitting in the 17-space of lines through our eye. Since 394 < 402, the
representation of B9,9 that we see must have some special properties. But what
those special properties are is not clear.

Challenge 11.3-3 Which representations of the budget matroid B1,1,1,1 are most
likely to be extensible into representations of B1,1,1,1,1?

11.4 Pushing points together

Before we turn to consider the relationship between the budget matroids and the
notion of n-dependence, Jorge Stolfi contributes one more open problem about the
budget matroids themselves.

The budget matroids whose column budgets are all ones are the most delicate to
construct representations of, but they are also the most symmetric. In many cases,
if we take two points in a representation of such a matroid and we push them to-
gether until they coincide, the resulting configuration consists of a representation
of a simpler budget matroid of the same rank, along with some irrelevant trash. For
example, consider the Pappus matroid B1,1,1. If we push A2 and A3 together in the
Pappus configuration of Figure 4.1, the point C1 comes in to join them and we are
left with a complete quadrilateral — that is, a representation of B2,1 — formed by
the six points 

2 1

A1 B1

C2 B2

C3 B3

,
along with the trash point A2 = A3 = C1.

Challenge 11.4-1 Is it always the case that, when two points in a representation of
a budget matroid are pushed together in this way, what remains is a representation
of another budget matroid of the same rank, but with fewer columns? Explore the
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extent to which the representations of different budget matroids of the same rank
are degenerate cases of one another.

Someone tackling this challenge would probably benefit from studying the re-
sults of Bokowski and Sturmfels [6].

11.5 The matroids B2,1,...,1

We were led to study the budget matroids because the matroid B2,1,1 character-
izes the dependence of four cubic polynomials, just as B2,1 characterizes the de-
pendence of three quadratic polynomials. Sad to say, the obvious pattern does not
continue: The matroid B2,1,1,1 cannot characterize the dependence of five quartic
polynomials in an analogous way, because the degrees of freedom don’t work out
properly.

Let’s fix a plane σ in 4-space and then count. There are nineteen degrees of
freedom in a 4-dependent block of 3-flats through σ — twenty scalar slopes, sub-
ject to one constraint. There are fifteen degrees of freedom in a projective trans-
formation of 4-space that fixes the plane σ and fixes also every 3-flat through σ .
To see why, note that there are twenty-four degrees of freedom in an arbitrary pro-
jective transformation of 4-space; but it costs four to fix one 3-flat through σ , four
more to fix a second, and one more to fix all of the rest. Therefore, if a quartic
analog of the Witness Theorem were to hold, the configuration involved must have
19+15 = 34 degrees of freedom. But the authors’ experiments, as reported above,
indicate that there are only 30 degrees of freedom in a representation of B2,1,1,1 —
four less than the 34 required.

While the obvious quartic generalization of the Witness Theorem thus cannot
hold, the quartic generalization of the Projection Theorem does seem to hold. For
each of the rational representations of the matroid B2,1,1,1 that the authors have in-
vestigated, projecting the twenty points of that representation from any plane σ
always results in a block of twenty 3-flats whose slopes are 4-dependent.

By the way, here is an example rational representation of the matroid B2,1,1,1,
in case some readers would like to do their own experiments:

P A B C

1 [12,16,76,−6,87] [1, 1,8,0,0] [−7,0, 0,−5,1] [71,1, 3,1,3]

2 [11,1,6,4,−3] [−9,1,−2,0,0] [−2,0,0, 0,1] [623,13,59,13,59]

3 [125,93,434,−62,558] [0, 1,7,0,0] [0,0, 0,2,1] [86,1, 2,1,2]

4 [97,4,20,2,15] [−3, 1,4,0,0] [−3,0, 0,−1,1] [−79,1,13,1,13]

5 [1,0,0,0,0] [−93,127,796,0,0] [31,0, 0,5,−13] [991,71,483,71,483]

Note that, if you put your eye at the point P5 and look out at the sixteen points in
the first four rows, what you see is the rational representation of B1,1,1,1 that we
used in proving Proposition 10.1-2.
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Challenge 11.5-1 Prove the quartic case of the Projection Theorem. That is, given
any representation of the budget matroid B2,1,1,1 in projective 4-space and given a
generic plane σ , prove that the slopes of the twenty 3-flats that join σ to the twenty
points of the representation form a block of scalars that is 4-dependent.

Let’s temporarily call an ordered 4-block of 3-flats through a plane σ in 4-space
nice when a representation of B2,1,1,1 does exist, each of whose twenty points lies
on the appropriate 3-flat. Assuming that the quartic case of the Projection Theo-
rem does hold, any nice block must be 4-dependent — the representation of B2,1,1,1

serving as a witness to the 4-dependence of the block. But a nice block must have
additional properties as well. Since any projective transformation of 4-space that
fixes σ and fixes every 3-flat through σ clearly takes a witnessing representation to
another such, each nice block has 15 dimensions’ worth of witnesses. So there can
be only #(B2,1,1,1) − 15

.= 15 degrees of freedom in a nice block. In addition to
4-dependence, there must be four more dimensions’ worth of algebraic constraints
on the twenty 3-flats in a nice 4-block.

Challenge 11.5-2 Determine all of the algebraic constraints that relate the slopes
of the twenty 3-flats in a nice 4-block.

Challenge 11.5-3 Extend this theory to n = 5 and beyond, thereby revealing the
connection between representations of the budget matroid B2,1,...,1 — where there
are n columns, all but the first of whose budgets are ones — and ordered n-blocks
of slopes that are ‘nice’.

11.6 Characterizing 4-dependence

But wait a minute. Perhaps we are giving up too soon on our original problem.
While the budget matroid B2,1,1,1 characterizes some property — the property of
being ‘nice’ — that is stronger than 4-dependence, perhaps there is some other con-
figuration that characterizes 4-dependence itself. Since representations of B2,1,1,1

do seem to yield 4-dependent blocks when projected, a natural way to try to design
such a new configuration is to relax the constraints of the matroid B2,1,1,1. Perhaps,
if we relax constraints correctly, we can find a new matroid M, with #(M) = 34,
for which the Projection Theorem still holds.

One way to relax our constraints on the configuration would be to replace the
budget matroid B2,1,1,1 with one of its budgetary relaxations. Unfortunately, as we
mentioned in Section 5.5.5, it seems that all of those budgetary relaxations are un-
representable. All of them still insist on the sixty perfect incidences; and the rank
of the Jacobian matrix of those sixty constraints, when evaluated at a rational repre-
sentation of B2,1,1,1, turns out to be 50. Thus, of the eighty degrees of freedom that
are present in twenty arbitrary points in 4-space, fifty are taken away by the sixty
perfect constraints themselves, leaving only thirty. But those same fifty are taken
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away by the combination of the sixty perfect constraints and all of the column con-
straints of the budget matroid B2,1,1,1. Thus, it seems that the perfect constraints
— in the presence of appropriate nondegeneracy conditions — imply the column
constraints. It is this which makes all of the budgetary relaxations unrepresentable.

We might consider going further and relaxing away some of the perfect con-
straints also — perhaps fourteen of them: ten to remove the redundancy and four
more to increase the freedom of the constrained configurations from 30 to 34. But
there is good evidence of a different sort that no such approach could succeed.

Whatever we do, we want the Projection Theorem to continue to hold for our
relaxed configurations. Given five quadruples of points in 4-space whose coordi-
nates are independent variables, suppose that we constrain those twenty points by
requiring that, when projected from each of m different random planes, the block
of twenty slopes that results is 4-dependent. That gives us m nonlinear constraints
on the twenty varying points — that is, m constraints on 80 variables. (In the au-
thors’ experiment, m was 70; but any m comfortably larger than 50 would do just
as well, as we shall see shortly.)

If the twenty varying points happen to be located at the twenty vertices of a
rational representation of B2,1,1,1, then all m constraints are satisfied, because we
are currently assuming the quartic case of the Projection Theorem. So we then
compute the rank of the Jacobian matrix of the m constraints, at the point corre-
sponding to some rational representation of B2,1,1,1. We know that there must be
at least 30 degrees of freedom in the variety that those m constraints define, since
#(B2,1,1,1)

.= 30. And lo, the rank of the Jacobian turns out to be 50; that is, there
are precisely 80− 50 = 30 degrees of freedom, and no more.

This experiment gives good evidence that there is no way to get a configura-
tion that characterizes precisely the notion of 4-dependence simply by relaxing the
constraints of the matroid B2,1,1,1. It doesn’t matter which constraints we decide to
relax. As soon as we relax enough constraints to increase the freedom in the con-
strained configurations, the Projection Theorem starts to fail.

It is still possible that there is some completely different configuration — still
with no auxiliary points and whose twenty key points span all of 4-space — that
does characterize precisely the notion of 4-dependence. The instances of that con-
figuration would have to form a 34-dimensional variety, presumably completely
different from the 30-dimensional variety of representations of B2,1,1,1. One way
to search for such a thing would be to take the system of m nonlinear equations
above and to look for some solution of it where the rank of the Jacobian falls, not
just from m down to 50, but all the way down to 46. Unfortunately, it isn’t clear
how to look for such a solution. And even if we found one, any theory that we then
managed to build probably wouldn’t have much to do with the budget matroids —
so it is perhaps best if we leave that investigation for another time.
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