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Preface

0.1 Thecentral question

For work in computer-aided geometric design, asfor countless other purposes, we
must understand the structure of the univariate polynomials. In particular, we must
be able to test for linear dependence. If we know the n + 1 coefficients of each of
n + 1 polynomials of degree n, we can test for dependence smply by computing
an (n + 1)-by-(n + 1) determinant. But there are times — such as when using
polar forms[43] to study splines — when what we know about each polynomial
isits n roots, rather than itsn + 1 coefficients. At such times, we can compute
the coefficientsfrom the roots, up to an irrelevant scale factor, and then proceed as
before. For example, in the quadratic case, the three nonzero polynomials

f1(X) = ri(X —a) (X — by) =r1(X? — (a1 + b)) X + asby)

f2(X) = ra(X — @) (X — by) = r2(X? — (82 + b2) X + azh,)

fa(X) = ra(X — ag) (X — bg) = ra(X* — (as + bs) X + aghs)
are linearly dependent just when the 3-by-3 determinant

1 ag+by aby
1 a+hby aby
1 az+ bz agbs

is zero, the numbers (r;) being the irrelevant scale factors. In the cubic case, the
four nonzero polynomials
gu(X) =ri(X —a)(X —b)(X —¢cy)
R(X) =r(X—a)(X —b) (X —¢cp)
g3(X) =ra3(X —ag)(X — b3)(X —¢3)
04(X) =r4(X — ag)(X — ba)(X — Cy)
are linearly dependent just when
1 aj+bi+c¢ aby +a1¢ +bicy atbicy
1 ax+bo+0C aby+ ax, + b abhc

1 ag+bsg+c3 aghs+ ascs + bscs asbscs
1 as+bs+Cs asbs+ auCs +bsCs ashscs

Xi
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Figure0.1: A complete quadranglewith vertices (P, Q, R, S) and the quadrangu-
lar set {{Ai, Bi}};1.5 formed by stabbing that quadrangle with the line m.

In the quadratic case, projective geometry provides an elegant alternative test.
Given four points (P, Q, R, S) in the plane with no three collinear, as shown in
Figure 0.1, the six lines that join those four points in pairs form an instance of
the configuration called the complete quadrangle. The line PQ is called oppo-
dgte to the line RS, and similarly for the pairs {PR, QS} and {PS, QR}. Three
pairs of points along aline m are said to form a quadrangular set when they are
the intersections of m with the three pairs of opposite lines of some instance of
the complete quadrangle. For example, in Figure 0.1, the three pairs {A;, B1},
{Az, By}, and {Ag, Bz} form a quadrangular set. Once we fix a coordinate sys-
tem for the line m, any pair of points { A, B} on m givesriseto a pair of coordi-
nates {a, b}, and those coordinates, in turn, are the roots of a quadratic polynomial
f(X) =r(X —a)(X — b) that is uniquely determined, up to the irrelevant scale
factorr. Itisaclassical result that, given three pairs of pointson m, thethree poly-
nomials so determined are linearly dependent just when the three pairs of points
form a quadrangular set.

Hereisthe central question that sparked thisresearch: Isthereaprojectivecon-
figuration that provides an analogous geometric test for the linear dependence of
four cubic polynomials? Since that configuration would be a cubic analog of the
complete quadrilateral, we shall call it the complete cubangle. (Don’'t worry: We
use that horrid name only in this preface.) Does the complete cubangle exist?

Let’s flesh out the analogy between the quadratic and cubic cases, so that we
can see what properties the complete cubangle should have. An instance of the
complete quadrangle consists of three pairs of linesin the plane, certain triples of
which are constrained to be concurrent (that is, to pass through a common point).
By analogy, an instance of the complete cubangle should consist of four triples of
linesinthe plane— or, morelikely, four triplesof planesin 3-space — constrained
by certain required incidences. Let us say that four triples of pointsalong aline m
in 3-space form a cubangular set when they are the intersections of m with the
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four triples of planes of some instance of the complete cubangle. Once we fix a
coordinate system for the line m, any triple of points { A, B, C} on m determines
atriple of coordinates {a, b, ¢} and hence determines a cubic polynomial g(X) =
r(X —a)(X —b)(X — c) uniquely, up to the scale factor r. The analogy requires
that, given four triples of points on m, the four cubic polynomials so determined
are linearly dependent just when the four triples of pointsform a cubangular set.

Ta-dal The complete cubangle does exist — that is, there is a configuration
that fulfillsthis analogy. An instance of the complete cubangle consists of twelve
planes, twolines, and thirteen pointsin 3-space, constrained by variousincidences.

And that’s not all! The complete cubangleis just one member of alarge fam-
ily of configurations, some familiar and some novel, which we can define using the
notion of a budget partition. The complete cubangle is associated with the budget
partition (2, 1, 1), while other budget partitions give rise to other configurations.
Defining these configurations and studying their propertiesinvolves an intriguing
combination of old-fashioned geometry and modern combinatorics. From geom-
etry, we use projective frames, projective transformations, and null systems; from
combinatorics, we use matroids, minors, and representations.

0.2 A duality warning

One beautiful aspect of projective geometry isthe principle of duality, which lets
us interchange the concepts ‘ point’ and ‘ hyperplane’, provided that we also inter-
change the concepts ‘lies on’ and * passes through’. The complete cubangle con-
sists of four triples of planesin 3-space, constrained by their incidences with two
lines and thirteen points. The dual configuration consists of four triples of points
in 3-space, constrained by their incidences with two lines and thirteen planes. As
we discuss in Section 2.6, it turns out to be more convenient to focus on the dual
configuration. That iswhy Chapter 1 begins by discussing, not the compl ete quad-
rangle, but its dual, which is called the complete quadrilateral.

0.3 Theaccompanying videotape

Thismonographisbeing published as Research Report 134a fromthe Systems Re-
search Center of the Digital Equipment Corporation. Report 134b is a 46-minute
videotape, titled Introducing the Budget Configurations. The videotape animates
the configurationsin 3-space that are associated with the budget partitions (2, 1, 1)
and (1,1, 1, 1), the former being the dual of the complete cubangle. One goal of
the videotape is to give non-mathematicians some idea of what this work is all
about. The other goal is to convince you that you want to read this monograph.
If you are aready convinced, there is no need to watch the tape — though you
might enjoy doing so.
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Chapter 1

Preview

The preface describesthe central question out of which thismonographgrew. This
preview summarizes the results of the monograph, to give you some sense, in ad-
vance, of where we are heading. It’s not going to be until Chapter 2 that wefinally
get around to introducing the material in depth.

1.1 Prerequisites

In order to understand this monograph, you have to know something about projec-
tive geometry and something about matroids.

Projective geometry is a standard topic. Good places to start are the books
by Coxeter [8] and by Samuel [48]. A vauable supplement, particularly as re-
gards computations using homogeneous coordinates and Plicker coordinates, is
Stolfi’sbook [50] — athough Stolfi discusses oriented projective geometry, which
we don'’t need, because our matroids are not oriented [5].

Asfor matroids, the books by Oxley [37] and by Welsh [52] are fine sources.
Because matroid theory isn’t yet as standard a topic as projective geometry, we
take the time, in Chapter 3, to review the definition of a matroid and some of the
elementary properties of matroids.

1.2 Configurationsand dependent polynomials

The complete quadrilateral, an instance of whichisshownin Figure2.2 on page 7,
IS a projective configuration with six points and four lines. It is a standard re-
sult that the compl ete quadril ateral characterizesthe dependence of three quadratic
polynomials. Asfor what it meansto ‘ characterize dependence’, two theoremsare
involved, which we shall call the Projection Theorem and the Witness Theorem.
(Warning: Those names are not standard, as discussed in Section 2.5.)

Given any instance of the complete quadrilateral and given any point in the
plane O, we can project the six vertices of the quadrilateral from O to get six lines

1
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through O. The Projection Theorem says that the three univariate, quadratic poly-
nomials that have the slopes of those six lines as their roots are always linearly
dependent.

Conversely, suppose that we take any six numbers that are the roots of three
linearly dependent quadratics, we take any point O in the plane, and we draw the
six linesthrough O with those slopes. The Withess Theorem says that there exists
an instance of the complete quadrilateral whose six verticeslie on those six lines,
and which hence witnesses to the linear dependence of those three quadratics. Fur-
thermore, there is a natural sense in which the witnessing quadrilateral is unique:
Any two witnessing quadrilateralsarerelated by a projective transformation of the
plane that fixes the point O and fixes every line through O.

Hereisthefirst half of the good newsin a nutshell:

There is a projective configuration B, ; ;1 in 3-space — consisting
of twelve points, two lines, and thirteen planes — that characterizes
the dependence of four cubic polynomialsin the same way that the
complete quadrilateral in the plane characterizes the dependence of
three quadratic polynomials.

In particular, there are cubic analogs of the Projection Theorem and the Witness
Theorem that hold for the configuration By ; 1. Note that we project an instance of
the configuration B, ; ; fromaline o in 3-space, rather than from a point O in the
plane. The twelve vertices of the configuration determine twelve planes through
theline o, the dopes of which are the roots of four cubic polynomialsthat are al-
ways linearly dependent.

1.3 Thebudget matroids

A matroid is an algebraic structure that describes the pattern of incidences — the
collinearities, coplanarities, and the like — that are required of the pointsin a pro-
jective configuration (it being understood that every incidence that is not required
isforbidden). So, roughly speaking, ‘matroid’ is the modern term for ‘ projective
configuration’. If the matroid M describes the incidences of some configuration
C, then arepresentation of M isthe samething as an instance of C; and amatroid
isrepresentable when it has representations.

The incidences of the complete quadrilateral are described by a matroid that
weshall call B, ;. Thejustification for that name comes from the other half of the
good news.

For each partitionb = b; +- - - +by of aninteger b into at |east two
positive parts, we can define an associated matroid, which we shall
call the budget matroid By, .. . A surprising number of these budget
matroids are representable. In particular, the complete quadrilateral
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is described by the matroid B, ;, while the configuration in 3-space
proclaimed above is described by the matroid B, ; ;.

In more detail, let b = by + - - - + bx be some partition of an integer b into
at least two positive parts. The budget matroid By, . hasrank b and has, asits
ground set, a matrix

.....

En Ei ... Ex
Exn Ex ... Ex
Epi En2 ... En

consisting of bk points. The rules for independence in the matroid B, ., force
the b pointsin the j™ columnto liein acommon flat subspace of dimension by, for
each j in[1. .Kk]. Also, for each possible way of choosing b pointsso that precisely
one is chosen from each row and so that, for each j, precisely b; are chosen from
the j ™ column, the b points so chosen must liein acommon hyperplane. Here are
geometric descriptionsof the representations of the budget matroidsof rank b = 3:

e B, ;: thesix vertices of a complete quadrilateral in the plane.

e B; 11 the nine points of a Pappus configuration in the plane, as shown in
Figure 4.1 on page 39.

Here are similar descriptionsfor rank b = 4:

e B3 the four vertices of a tetrahedron in 3-space, together with the four
points where aline cutsits four faces.

e B, ,: theeight vertices of aMobius pair of tetrahedra— that is, two tetrahe-
drawith the vertices of each lying on the faces of the other.

e B, 11 twelve pointsin 3-space, four on a plane, four each on each of two
lines, and with 12 other coplanaritiesin a certain pattern. Thisisthe config-
uration that characterizes the dependence of four cubic polynomials.

e B;111: Sixteen pointsin 3-space, four each on each of four lines and with
24 coplanaritiesin a certain pattern.

We provetwo general results about the representability of the budget matroids:
Every budget matroid B, , with two partsisrepresentable over therationas, asis
every matroid By, 1.1 with three parts, two of which are ones. The latter result can
be interpreted as generalizing Pappus's Theorem from the plane to (m + 1)-space.
In the particular case m = 2, the latter result gives us one construction for repre-
sentations of the budget matroid B, 1 1.

To show that the matroid B, ; ; characterizes the dependence of cubic polyno-
mials, we devel op adifferent construction for its representations— onethat makes



4 CHAPTER 1. PREVIEW

the choicesin adifferent order. This second construction exploitsthe properties of
null systems, the little-known cousins of the well-known polar systemsthat are as-
sociated with quadric hypersurfaces. We use the same null-system machinery also
to construct representationsof By 1 1.1, themost complicated of thebudget matroids
of rank 4.

1.4 Thebad newsabout the quartic case

It would be satisfying to find, for each n, a projective configuration in n-space that
geometrically characterized the dependence of n+1 polynomials, each of degreen.
Sincethe budget matroid B, ; in the plane— better known as the compl ete quadri-
lateral — characterizesthe dependence of three quadraticsand the matroid B, 1 1 1n
3-space characterizesthe dependence of four cubics, it isnatural to ask whether the
matroid B, ;1 11 in 4-space perhaps characterizes the dependence of five quartics.
Unfortunately, the answer seems to be no. The matroid B, 1 1 IS representable,
but it has so few representations that they characterize a property of five quartics
that is stronger than linear dependence.



Chapter 2

| ntroduction

2.1 Thequadratic case

The quadratic polynomial X? — (u + v) X + uv has the pair of scaars {u, v} as
itsroots.! Let ussay that three pairs of scalars {{uy, v1}, {Uz, vz}, {Us, vs}} forma
2-dependent block when the three quadratic polynomials with those pairs as their
roots are linearly dependent, that is, when the determinant

1 up4+vy uy
1 uy4+wv W
1 usz+ vz Uszvs

is zero. Note that the order of the two scalars {u;, v;} in apair doesn’'t affect the
2-dependency of the block, nor does the order of the three pairs.

By the way, you can think of the scalars that we deal with, such asu; and v;,
aseither rational numbers, real numbers, or complex numbers, as suits your fancy.
Moreformally, wefix somefield of scalarsin whichto carry out our numeric com-
putations and over which to build our projective spaces. Unless otherwise stated,
werequireonly that the scalar field have characteristic zero — that property being
all that we need for the bulk of our arguments. Of course, when we want to illus-
trate a geometric construction with apicture, it isssmplest to assume that the field
of scalarsistherea numbers.

The algebraic condition of 2-dependence corresponds to a S mple geometric
condition involving a conic curvein the plane. Let O be a point in the plane, and
let {{as, b1}, {2z, b2}, {as, bs}} bethree pairs of lines through O, as shown (over
the real numbers) in Figure 2.1. Each of the lines has a scalar slope, and when
those dopes form a 2-dependent block of scalars, we shall refer to the block of
linesitself as 2-dependent. To test a block of lines for 2-dependence, let k be any

The expression {u, v} denotes a pair of roots, even when u = v; that is, the curly braces here
indicate a suite[45] or multiset or bag, rather than a set. But pleaseignore all degenerate cases, as
much as you can, until Section 2.4.
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rH
hs
As
3
\\@
N

Figure 2.1: A 2-block of lines, all passing through a common point O, whose
2-dependence is demonstrated by the concurrence of three chords of aconic curve
k that also passes through the point O.

conic passing through the point O. Any linethrough O intersectsthe conick at O
itself and at one other point. Let h; := A B; be the chord of the conic k joining the
residual intersections of the linesg; and by, fori in[1.. 3]. Itisstraightforward
to check (see Exercise 2.1-4) that the block of lines {{ay, b1}, {az, b2}, {as, bs}} is
2-dependent just when thethree chordshy, h,, and hs of the conic k are concurrent
— that is, pass through a common point H.

Itisafascinating result of classical projective geometry that 2-dependence can
be characterized in an even simpler way, at the cost of someloss of symmetry. The
four auxiliary linesa, g, r, and s in Figure 2.2 intersect at the six points

A =angq Bi:=rns
A =anr B,:=qNs
As;:=ans Bs:=qgnr.

Thesesix pointsandfour linesarecalled a completequadrilateral. Moreprecisely,
they are an instance of the classical configuration called the complete quadrilat-
eral; that is, the name of the patternis used also for instances of that pattern. For i

in[1.. 3], thetwo points A; and B; are called opposite, since they lie on no com-
mon line. Because of the loss of symmetry, aswe discuss shortly, we shall specify
acomplete quadrilateral by giving itssix points {(A;, B1), (Az, By), (As, B3)} as



2.1. THE QUADRATIC CASE 7

Figure 2.2: The same 2-block of lines as in the previous figure, but with their
2-dependence demonstrated, thistime, by a witnessing complete quadrilateral.

an ordered block, that is, as an unordered triple of ordered pairs. So, for each pair
of opposite vertices (A, B;), we know which of them isthe A-point and which is
the B-point. The A-points of the three pairs are collinear, along the auxiliary line
a; and the A-point of any pair is collinear with the B-points of the other two pairs,
along some other of the auxiliary lines.

Given an ordered block of points that form acomplete quadrilateral and given
any point O in the plane, we can project the three pairs of pointsfrom the point O
— whichiscalled, in this context, the center of the projection— to get an ordered
block of lines{(ay, by), (a2, b2), (as, bz)} through O. It turnsout that thisblock of
lines is always 2-dependent. We call this result the Projection Theorem, and we
discussits proof in Section 2.5.

Conversely, given any ordered block of lines through a common point O that
is2-dependent, there exists acompl ete quadrilateral each of whose six verticeslies
on the appropriateline and which hence witnesses to the 2-dependence. Of course,
thiswitnessing quadrilateral is not unique. It is clear that any projective transfor-
mation of the plane that fixes the point O and fixes every line through O carries
any witnessing quadrilateral to another quadrilateral that isalso awitness. But the
witnessing quadrilateral is unique up to such transformations; that is, any witness-
ing quadrilateral can be mapped to any other by a projective transformation of the
plane that fixes both the point O and every line through O. We call this converse
result the Witness Theorem, and we discuss its proof also in Section 2.5.

Figure 2.2 isssmpler than Figure 2.1 in many respects; for instance, Figure 2.2
has one less point and has no curves. But it isimportant to realize that some of the
inherent symmetries of the problem, which are preserved in Figure 2.1, are broken
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Figure 2.3: An unordered block of lines and two complete quadrilateral s that wit-
ness to the 2-dependence of that block, but under different orderings thereof.

in Figure 2.2. (Coxeter [9] relates this broken symmetry to the axioms for projec-
tive geometry.) Suppose that we arbitrarily select theline a; from the pair {a;, b}
and the line a, from the pair {a,, b,}. Even after we have made those selections,
the two lines ag and bs in Figure 2.1 play completely symmetric roles. But not so
in Figure 2.2: The point Az on the line az is collinear with A; and A, while the
point B3 is not. Thus, once we have ordered two of the three pairsin Figure 2.2,
the third pair acquires an order as well. We can swap any even number of pairs
without changing anything. If we swap an odd number of pairs, we still don’t af-
fect the 2-dependency of the block of slopes; but we do change the structure of the
witnessing quadrilaterals.

Something must be done about this broken symmetry, lest the uniquenessclaim
in the Witness Theorem fail. Figure 2.3 shows a 2-dependent, unordered block of
lines {{as, b1}, {az, b2}, {as, bs}} through apoint O. It also shows two complete
quadrilaterals, one on the left and one on theright. The one on theleft witnessesto
the 2-dependence of the obvious ordered block {(a;, by), (a2, by), (as, bs)}, while
the one on the right witnesses, instead, to the 2-dependence of the ordered block
{(ag, by), (a2, b), (b3, a3)}, in which the single pair (ag, bs) has been swapped.
Note that no projective transformation that fixes O and every line through O can
possibly map theleft quadrilateral to theright one. Any such transformationwould
haveto map Ay — A}, A2 > A,, and Ag — Bj; but the points A, Az, and Ag
are collinear, while the points A;, A,, and B; are not.

Thus, when talking about witnessing quadrilaterals, we cannot allow the three
pairsof ablock to be swapped arbitrarily. We shall respond to this situation by the
simple expedient of forbidding swapping atogether. That explains why we de-
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fined a complete quadrilateral to be an ordered block of points. When a complete
quadrilateral witnesses to the 2-dependence of a block of lines or dopes, we treat
that block also as ordered.

Exercise 2.1-1 Count the degrees of freedom in the Witness Theorem, so as to
verify that its claims of existence and uniqueness are a least plausible.

[Answer: Fix acenter point O inthe plane, and consider 2-dependent blocks of
linesthrough O and the compl ete quadrilateral sthat witnessto their 2-dependence.
Therearefive degrees of freedom in choosing such a 2-dependent block: six scalar
dopes, related by one equation. There are eight degrees of freedom in choosing a
complete quadrilateral: two in each of itsfour lines. Thus, for each 2-dependent
block of linesthrough O, there must be a 3-parameter family of quadrilateralsthat
witness to the 2-dependence of that block. The Witness Theorem says that any
such witness can be mapped to any other by aprojectivetransformation of the plane
that fixes both the point O and every line through O. There are eight degrees of
freedom in an arbitrary projective transformation of the plane — any four points,
no three collinear, to any other four such points. Of those eight, it takes four to fix
two chosen linesthrough O, which fixes the point O aswell. It takes one more to
fix all of the remaining linesthrough O. The three degrees of freedom that are | eft
are just enough to map any witness to any other.]

Exercise 2.1-2 Given five lines a;, a;, by, by, and bs through a point O in the
plane, use a complete quadrilateral to construct the unique sixth line az through
O that makes the ordered block {(a;, ;) }ic[1..5 Of lines 2-dependent.

[Answer: Choose B; arbitrarily on by, fori in[1.. 3], thus using up the three
degrees of freedom that areinvolved in choosing awitness. Then construct A; =
asN ByBs, Ay :=a, N B1Bs, Az .= Aj A, N BBy, and ag ‘= OA3]

Exercise 2.1-3 Inthisexercise, thefield of scalars must be ordered; for simplicity,
let’susethereal numbers. A pair {u;, v; } of real numbersissaid to separate another
pair {u;, v; } when the product (u; — u;) (uj — vi) (v; — U;) (v; — v;) isnegative. Let
{{ug, v1}, {uz, v2}, {us, vs}} besix distinct, real numbers that form a 2-dependent
block. Show that either each pair separates both of the other pairs or else no two
pairs separate each other.

[Hint: In Figure 2.1, doesthe point H lieinside or outside of the conic k? Al-
ternatively, in Figure2.2, theauxiliary linesa, q, r, and s divide thereal projective
planeinto seven regions:. four triangles (two of which arefinite) and three quadri-
laterals (one of which isfinite). Does the center point O liein atriangleor in a
quadrilateral ?]

Exercise 2.1-4 Verify that thethreechordshs, h,, and h; of theconicin Figure2.1
are concurrent just when the six Iines{{al, b.}, {az, by}, {as, b3}} through O form
a 2-dependent block.



10 CHAPTER 2. INTRODUCTION

[Hint: We can choose our coordinate system on the projective plane so that the
point O isthe origin and the conic k is the standard parabolaY = X2. Theline
through O with dopet then cutsthe conic k at the point (X, Y) = (t, t?). Letting
the scalars u; and v;, fori in[1.. 3], denote the dopes of the lines g and by, it
followsthat the chord h; isthelinewith theequation Y — (uj + vj) X 4+ ujv; = 0.
Deduce from this that the three chords are concurrent just when the six slopes are
2-dependent.]

2.2 Generalizington > 2

To what extent does this theory generalize to degrees n greater than 2?

Let’s define an unordered n-block — of scalars, points, lines, planes, or what-
ever —to bean unordered (n+1)-tupleof unordered n-tuples. Anordered n-block,
on the other hand, isan unordered (n 4+ 1)-tuple of ordered n-tuples.

It is easy to define n-dependence algebraically, for any n. We say that an un-
ordered n-block of scalars { {Uij }j (1. }icgo.n 1S N-dependent when the n+ 1 poly-

nomials
(X — Uo1) (X — Ugp) - - - (X — Ugn)

(X —U11) (X = Ug) - -+ (X = Uzn)

(X - Unl)(x - un2) e (X - unn)

of degree n that have those n-tuples as their roots are linearly dependent. We can
test this by forming an (n + 1)-by-(n 4+ 1) matrix whose i*" row consists of the
elementary symmetric polynomialsintheentriesu;; through u;, of thei* tuple and
checking whether the determinant vanishes. For example, the unordered 3-block
of scalars { {ui, vi, wi}}; (0.5 IS 3-dependent just when

Uo + vo + wo Ugug + Ugwg + vowo UgUoWo
U +v1+wr Uvg + Uiwr + vawr Ugviws
Uz + v2 + wz Uvz + Uwz + vawy  Upvows
U3z + v3 + w3 Uzvz + Uawz + vawz Uzvzws

[N

Beforewe can test for n-dependence geometrically, wefirst have to decide how
to encode scal ars geometrically; we' re going to usethe slopes of the hyperplanesin
apencil of hyperplanesin n-space. Recall that apencil consists of all of the hyper-
planesthat passthrough afixed flat subspace of dimensonn—2, whichiscalled the
center of the pencil. So the hyperplanesin a pencil form a one-parameter family,
with slopeasthe parameter. For example, whenn = 2, wetest the 2-dependence of
a2-block of linesin the plane, all passing through a common center point. When
n = 3, we test the 3-dependence of a 3-block of planes in 3-space, all passing
through acommon center line. (Inthiscase, wherethe center of the pencil isaline,
that lineisaso called the axis.) Let’'s say that an n-block of hyperplanes, all ina
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common pencil, is n-dependent just when the dopes of those hyperplanesforman
n-dependent block of scalars. Aswe discussin Section 2.5, it doesn’t matter what
scale we use to measure slopes.

It iseasy to test for n-dependence geometrically using acurve. Therolethat is
played by a conic when n = 2 is played, in the general case, by arationa normal
curve of degree n in projective n-space [15, 47]. For example, when n = 3, the
relevant curveis atwisted cubic in 3-space — one example of whichisthe curve
given parametrically by t > (t,t%t%). Let {{ai, Bi. %i}}ic0.5 b€ an unordered
3-block of planes, al through acommon line 0. Choose a twisted cubic k that in-
tersects the center line o at two points — that is, so that o is a chord of k. Any
plane through o intersects k at three points: the two points where o intersects k
and one residual intersection. Given atriple of planes {«, 8, vy} through o, let A,
B, and C denote the residual intersections of those three planes with the twisted
cubick, and let  bethe plane n := ABC. Theblock of planes {{«i, Bi, ¥ }}ie[o_s]
is 3-dependent just when the four planes n; := A B;C; determined by the residual
intersections are concurrent.

Butitisn't at all clear how to take the test for 2-dependence that is based on
complete quadrilateralsand to generalize that into atest for n-dependence. Isthere
aprojective configuration in n-space that characterizes n-dependence in the same
way that the complete quadrilateral in the plane characterizes 2-dependence? For
example, when n = 3, isthere some pattern of collinearities and coplanarities that
we can impose on twelve pointsin 3-space so that, for any twelve pointswith those
incidencesand for any additional line o, projecting thetwelve pointsfromowill re-
sult in twelve planes whose s opes are 3-dependent? Conversaly, given any twelve
planes whose slopes are 3-dependent, does there always exist an instance of this
hypothetical configuration that witnesses to that 3-dependence? The main goal of
this monograph isto study such a configuration — one for which cubic analogs of
both the Projection and Witness Theorems hold.

Recall that using acompl ete quadrilateral totest for 2-dependence breaks some
of theinherent symmetry, whichiswhy we introduced ordered 2-blocks. Sincethe
symmetry gets broken already when n = 2, it seems likely that it will be broken
asowhenn > 2. Hence, just as we defined an instance of the complete quadri-
lateral to be an ordered 2-block of pointsin the plane, we expect an instance of
its cubic analog to be an ordered 3-block of pointsin 3-space. And we expect the
Witness Theorem in the cubic case to talk about such an instance as witnessing to
the 3-dependence of an ordered 3-block of planes, al in a common pencil.

Exercise 2.2-1 When does the 1-block {{uo}, {u1}} formed by two singletons of
scalars have the property of 1-dependence?
[Answer: When ug = uy.]

Exercise 2.2-2 Suppose that we fix all but one of the scalarsin the (n + 1)-by-n
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matrix
Upr Ug2 ... Upn
Uyp U2 ... Ujgp
Upp U ... U2
Ut Unp2 ... Upmp

Show that thereistypically aunique value for the final scalar that makes the rows
of the resulting matrix form an n-dependent block. What can happen in atypical
cases?

[Hint: Consider the cases

-1 -1 00
[1 1] and 0 1}.
0O u O u

Keep in mind, in the former case, that not all lines have finite dope.]

Exercise 2.2-3 Justify the geometric test for 3-dependence based on atwisted cu-
bic curve, hence generalizing Exercise 2.1-4 to the cubic case.

[Hint: We can choose our coordinate system on projective 3-space so that the
center line o is the Z-axis and the twisted cubic k is given parametrically by the
functiont — (t,t%, t3). Note that the line o intersects the cubic k at the origin,
wheret = 0, and also at the point at infinity on the Z-axis, wheret = oo. The
eguation of a plane through o hastheformY = t X, and we can treat the t in this
eguation as the dope of the plane. The planeY = tX with dopet then has the
point (t, t2, t3) asitsresidual intersection with the cubic k. Letting u;, vi, and wj,
fori in[0.. 3], denote the dopes of the planes «;, Bi, and y;, show that the plane
n; determined by the three residual intersections has the equation

Z — (Ui +vi +wi)Y + (Uivi + Ujwi + vjwi) X — Uiviw; = 0.

Deduce fromthisthat the four planes (»;) are concurrent just when the four triples
of slopes are 3-dependent. ]

2.3 Configurationsversusconstructions

Our goal isto find aconfigurationin 3-space that characterizes 3-dependenceinthe
same way that the compl ete quadrilateral in the plane characterizes 2-dependence.
Toclarify what that means, we should discuss several thingsthat could be our goal,
but aren’t. For onething, it isnot our goal smply to devise a geometric construc-
tion that tests for n-dependence.

When n = 2, given three pairs of lines through a common point, we can test
them for 2-dependence geometrically asfollows: We usefive of them to construct
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acomplete quadrilateral, asin Exercise 2.1-2, and we then check to seeif the sixth
comes out properly. The resulting complete quadrilateral witnesses either to the
2-dependence of the six dopesor to their lack of 2-dependence. Thecasen = 3is
similar. Givenfour triplesof planesthrough acommon line, we can use any eleven
of them to construct an instance of the configuration B, 1 1 that witnesses either to
the 3-dependence of the twelve slopes or to their lack of 3-dependence.

But there are lots of constructions that test for n-dependence; devising such a
construction is too easy to be a worthwhile goal. When n = 2, the construction
based on complete quadrilaterasis probably the ssmplest, and it is hence featured
in textbooks.2 But we make no claim that, when n = 3, the construction based on
the configuration B, ; ; isthe simplest or the best. 1t may bein the running for the
shortest, but it involves lots of degenerate cases that would require special treat-
ment, as discussed in Section 9.6. Our central interest is the configuration itself,
not the associated construction.

Just how easy isit to test for n-dependence with a construction? The simplest
constructions in the plane are those that can be carried out using only a straight-
edge. Thereisno standard namefor the geometric tool in n-space that isanal ogous
to a straightedge, but it is clear what it should do; we shall call it aflat-side. (To
carry out ageometric construction in the plane, you look throughyour pile of scrap
lumber for a strip with a straight edge; to carry out a construction in 3-space, you
look instead for a board with aflat side.) In the plane, a straightedge lets us mark
aline ¢ in such away that the unique point common to ¢ and to a second, marked
lineisdistinguished as doubly marked. In 3-space, aflat-side lets us mark a plane
7 insuch away that the line common to = and to a second marked planeisdistin-
guished as doubly marked, while the point common to = and to two other marked
planesisdistinguished as triply marked. A flat-sidein n-space lets us mark hyper-
planesin an analogous way.

It iswell known that addition and multiplication can be carried out geometri-
cally, using astraightedge in the plane. Hence, we can test n-dependence geomet-
rically for any n with just a straightedge, by mimicking the algebraic definition:
Construct the determinant of the (n + 1)-by-(n 4+ 1) matrix — that is, construct a
segment whose length represents that determinant — and test it for zero. We can
shorten the construction quite a bit by moving from the plane to n-space. Instead
of constructing the determinant itself, we set up acoordinate system in n-space, we
construct the n + 1 points whose homogeneous coordinates are given by the rows
of the matrix, and we then use aflat-sideto test whether those n + 1 row-pointslie
on acommon hyperplane.

We can devise another construction that tests for n-dependence by exploiting a
rational normal curve of degree n. Of course, with aflat-side as our only tool, we
can’'t draw the rational normal curve itself. But thereis no need to do so. Using

2Actually, itisthedual construction, based on complete quadrangles, that is generally featured
in textbooks, such as Coxeter [8]. See Section 2.6.
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only aflat-side, we can choose such a curve and we can construct the residual in-
tersections of then(n 4 1) given hyperplanes with that chosen curve, as discussed
in the following exercises; and that is enough.

Exercise 2.3-1 Implement thetest for 2-dependence based on aconic curve— the
one shown in Figure 2.1 — using only a straightedge.

[Hint: Choose four points O’, Py, P, and P; so that no three of the five points
(O, O, Py, Py, P3) arecollinear. There isa unique projective correspondence be-
tween the pencil of lines through O and the pencil through O’ in which the line
pi := OB correspondstotheline p/ := O'R, fori in[1..3]. Theintersections of
corresponding linesin those two pencils trace out aconic k. Let &; bethelinein
the O’ pencil whose crossratio with respect to (p;, p5, p3) isthe same asthe cross
ratio of a; with respect to (p1, p2, p3). Theresdua intersection A, of theline a;
with the conick isthe point A; ;= a; N a;.]

Exercise 2.3-2 Using only aflat-side, implement the test for 3-dependence based
on atwisted cubic curve.

[Hint: Given twelve planes through the line o, choose two lines 0’ and 0” that
are skew to each other and to o, and choose three points Py, P,, and P; in generd
position. There are unique projective correspondences between the three pencils
of planes with axes o, o/, and 0” in which the planes 7; := Span(o, P), { =
Span(0’, P), and (" := Span(0”, P,) correspond, fori in[1..3]. Theintersections
7 N’ Na” of corresponding planesin the three pencilstrace out atwisted cubic
through Py, P, and P; of which thelineso, 0/, and 0” are chords,]

2.4 Dealing with degeneracies

The claims made in the previous sections are true generically, but some of them
may fail in degenerate cases, where a case is degenerate when some polynomial
relation among the input parametersthat usually doesn’t hold happensto hold. For
example, we treated dopes above as finite scalars, and they usually are; but there
do exist lines with infinite ope. There are fundamentally two ways to deal with
adegenerate case: Either we handleit or we outlaw it.

We handle a degenerate case by extending our definitionsin some clever way,
after which that caseisno longer degenerate. For example, thereisastandard way
to handle the degenerate case of lineswithinfinite ope. We represent aslope, not
asasinglescalar u, but astheratiou’ : u* of twoscalars’ u' := Ay andu' := AX,
which are called homogeneous coefficients— * homogeneous' because multiplying
them both by the same nonzero scalar doesn’t change their ratio. Either of the ho-
mogeneous coefficients can be zero, but not both, and the slope of avertical lineis
represented by theratiou® : u* = 1: 0. In thisway, we can extend the algebraic

3Which can be euphoniously read ‘u high’ and ‘u low’.
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definition of n-dependenceto handleinfinities— that is, we can extend it from the
affinelineto the projectiveline. Inthe quadratic case, the polynomial with thetwo
ratiosu’ : u* and v' : v* asitstworootsis (u*X — u")(v* X — v'), and the three
polynomias

2 !

(U X —u)) (v; X — v]) = Ujvy X2 — (ujv] + ujv) X + ujv]
2 !

(U X — Uuh) (VX — v)) = Usvy X2 — (Usvy + USs) X + Uy,

(UEX — Ud) (V4 X — v}) = UjVEX? — (ujv] + ufvy) X + ubv}

are linearly dependent just when

Ujv; Ujv; + Ugv) Ujvg
Tyt Ty 4oyt 4o

10 gt T

In forming this determinant, we dropped the minus signs in the middle column,
as we have been doing all along; we also swapped the first and third columns, to
make the highs come before thelowsin each row, asisthe caseintheratiou' : u'.

Projective geometry adroitly handles the many degenerate cases that are asso-
ciated with parallelisminasimilar way. It extendsn-dimensional affine space into
n-dimensional projective space by moving fromn affinecoordinates (Xy, ..., X;)
to n+ 1 homogeneous coordinates[Xo, X1, . . . , Xn], Where Xj = X; : Xo. Following
Stolfi [50], we shall use square brackets to delimit the homogeneous coordinates
of apoint and angle brackets to delimit the homogeneous coefficients of a hyper-
plane. So the hyperplane (co, €, . . . , C,) passes through the point [Xo, X1, . . ., Xn]
just when coXp+ C1X1 + - - -+ CXn = 0. Dividing through by the weight coordinate
Xo Of the point convertsthis equation into ¢ + ¢; X1 + - - - + ¢, X, = 0, whichis
the inhomogeneous equation of that same hyperplane.

If we don’t know how to handle a degenerate case, we can outlaw it. For exam-
ple, consider defining 2-dependence using a conic curve, asin Figure 2.1. Some
of the degenerate cases that arise are straightforward to handle:

e One of the lines through O, say a;, might be tangent to the conic k — in
which caseweset A; := O.

e Thetwolinesin apair, say a; and b;, might coincide — in which case the
chord h; becomes a tangent.

e Two of the pairs of lines might coincide, say {a;, b;} = {ay, by} because
a; = by, and a, = by, causing the two chords h; and h, to coincide — in
which case the three chords are bound to concur.

But there is one degenerate case that must ssimply be outlawed: the case in which
the conic k through the point O factors as the union of two lines.
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Sometimes, it is smpler to outlaw a degenerate case, even though it could be
handled. For example, we want the Projection Theorem to hold; so we must de-
fine the notion ‘ complete quadrilateral’ in such a way that projecting the six ver-
tices of any complete quadrilateral, asin Figure 2.2, gives six lines whose slopes
are 2-dependent. We clearly can’t allow all four of the auxiliary linesa, q, r, and
s to coincide and the six points of intersection {(Aq, B1), (Az, By), (Ag, Bz)} to
vary arbitrarily and independently along that common line. But lesser degenera-
cies wouldn’t hurt: three of the lines being concurrent, two of them coinciding,
even three of them coinciding. Despite this, we shall opt for smplicity — and fol-
low the textbooks— by insisting, as part of our definition of acomplete quadrilat-
eral, that no three of itsfour lines are concurrent. In asimilar way, when defining
our cubic analog of the complete quadrilateral, we shall stipulate that every inci-
dencethat is not required is forbidden.

In the quadratic Projection and Witness Theorems, there are al so issues of de-
generacy about the location of the complete quadrilateral with respect to the cen-
ter point O of the projection. The approach taken in the textbooks is to outlaw
any 2-block of linesin which two linesin different pairs coincide. Exercise 2.4-3
below explains why that prohibition suffices to eliminate all of the troublesome
degeneracies. Adopting that approach and fixing a center point O leadsto the fol-
lowing tidy results:

Projection Theorem If none of the four lines of a complete quadrilateral passes
through the center point O, then projecting the three pairs of vertices of that
guadrilateral from O gives an ordered, 2-dependent block of linesin which
no linein any pair coincides with any line in any other pair.

Witness Theorem Conversely, suppose that we are given any ordered, 2-depen-
dent block of lines through O in which no line in any pair coincides with
any linein any other pair. Then, there exists a complete quadrilateral whose
six verticeslie on the appropriate lines and none of whose four lines passes
through O. Furthermore, any two such witnessing quadrilaterals are related
by a unique projective transformation of the plane that fixesthe point O and
every linethrough O.

Note that the two linesin a single pair are allowed to coincide. They do so
precisely when the center point O lies on adiagonal of the complete quadrilateral,
thediagonal s of acomplete quadrilateral beingthethreelinesthat join the opposite
pairsof vertices. Indeed, the center point O may lieat theintersection of two of the
three diagonals, as shown in Figure 2.4, and thisis an important special case. In
the pencil of linesthrough apoint O, aline f iscalled the harmonic conjugate[10]
of aline g with respect to two distinct lines a and b just when the block of lines
{{a. a}, {b, b}, { f, g}} is 2-dependent.

I n the cubic Projection and Witness Theorems, degeneracy isaharder problem:
There are more degenerate cases, they are harder to recognize, and they cause a
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Figure 2.4: Two pairs of lines {a, b} and { f, g} through a common point O that
formaharmonic set; that is, each line of each pair is the harmonic conjugate of its
mate with respect to the two lines of the other pair.

wider variety of troubles. Note that it is easy to recognize the 2-dependent blocks
that might cause trouble, because, asshown in Exercise 2.4-3, they all haveat |east
two entriesthat are equal. In contrast, a 3-dependent block can cause trouble even
when all twelve of its entries are distinct — see Exercise 2.4-4 for an example.
We discuss some of the degenerate cases of the cubic Projection and Witness The-
orems in Section 9.6, and we speculate on how they might be handled. But, in
proving those theorems, we take the coward’s way out by restricting ourselvesto
the generic case — those instances in which no troublesome degeneracies arise.

Exercise 2.4-2 Convince yourself that an ordered block {(A;, B;)}ic[1.3 of points
in some projective space forms a complete quadrilateral in the strict sense — that
is, where we forbid every incidence that is not required — just when

e none of the (5) = 15 pairs of points coincides;
e every oneof the (ﬁ) = 15 quadruples of pointsis coplanar; and
e among the (5) = 20 triples of points, just the following four are collinear:

{A1, Ao, As}, {A1, Bz, Bs}, {Bu1, Az, Bs}, and {By, B, As} —thosefour cor-
responding to the four auxiliary linesa, q, r, and s in Figure 2.2.

u v
w X
y 2

isa 2-dependent block of scalars; so the determinant

Exercise 2.4-3 Suppose that

1 u+v w
1 w+x wx
1 y+z yz

A =
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iszero. If either entry in some pair equals either entry in some other pair, show that
asecond equality also holds, and show that any entry not involved in either equal-
ity can be varied freely, while holding all other entries fixed, without destroying
the 2-dependence. Conversaly, if there exists any entry that can be varied freely
without destroying the 2-dependence, show that some entry in some pair equals
some entry in some other pair.

[Hint: For thefirst part, we can assume without loss of generality that u = w,
inwhich casethedeterminant A factorsas A = (Xx—v)(y—u)(z—u). Since A = 0,
some other equality must hold, and any entry not involved in either equality can
be varied freely.

For the second part, solving the equation A = O for z yields

S, Uvw + UvX — Uvy + wXy — UwX — vwX
N XYy + wy — wX + Uy — vy — uy

Suppose that z can be varied freely, which means that both the numerator N and
denominator D of that fraction are zero. It then follows that

(w+X—u—v)N —(wx —uv)D=(w—-—u)(w—v)X—uwX—v) =0,
S0 some entry in thefirst pair equals some entry in the second pair.]
Exercise 2.4-4 Notethat, in the 2-dependent block

01
[o 1

01

bl

we can vary both of the elementsin any single row freely and independently, with-
out destroying the 2-dependence. Show that the analogous property holds of the
following 3-dependent block, even though all of its entries are distinct:

1 9 -10
-1 -9 10

5 6 -1
-5 —6 11

That is, show that the 4-by-4 matrix formed from the coefficients of the cubic poly-
nomials with those triples of roots not only has determinant zero, but actually has
rank only 2.

2.5 Proving thequadratic case

Now that we know precisely what the quadratic cases of the Projection and Witness
Theorems say, we should discuss how to prove them.
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The Projection and Witness Theorems do not appear, as such, in standard texts
on projective geometry, for the excellent reason that 2-dependenceis an algebraic
notion, not a geometric one. But those books do provide pieces which we can as-
sembleinto aproof. Coxeter [12] showsthat thesix lines {{a;, bi}}; ;. 5 througha
point O arethe projectionsof the six vertices of acomplete quadrilateral just when
there exists an involution — that is, a self-inverse projectivity — of the pencil of
linesthrough O that swapsa; with by, for eachi. Maxwell [33] showsthat such an
involution exists precisely when the three chords of the conicin Figure2.1, that is,
thelinesh; := A B; fori in[1..3], areconcurrent. And we already showed, in Ex-
ercise 2.1-4, that thethree chords (h;) are concurrent precisely when the six slopes
have the algebraic property of 2-dependence. That chain of reasoning suffices to
prove the Projection Theorem and the existence half of the Witness Theorem.

That assembled proof has a couple of unfortunate aspects: It doesn’t establish
the unigueness half of the Witness Theorem, and it relies on the concept of an in-
volution — a concept that would be somewhat clumsy to generalize to the cubic
case. Fortunately, it isn't hard to prove the Projection Theorem and both halves
of the Witness Theorem directly. Let’s do that, since proving the quadratic case
directly will help to prepare us for proving the cubic case, in Chapter 9.

We begin with an overdue lemma about n-dependence. When we are testing
an n-block of hyperplanes for n-dependence, it doesn’t matter what scale we use
to measure the slopes of the hyperplanes in that pencil; that is, we can take any
three distinct hyperplanesin that pencil — whichever ones we like — and assign,
to them, the dopes 0, 1, and cc.

Lemma 2.5-1 Therdation of n-dependenceisprojectively invariant, meaning the
following. Let {{Uij}jci1.n }iego.y b€ @y unordered n-block, and form a derived

n-block {{Uij }je[l..n] }ie[O..n] by setting
_auj + b
Vij .= ————»
CUjj + d

where a, b, ¢, and d are fixed scalars with ad — bc nonzero. Then, the derived
block is n-dependent just when the original block is.

Proof If we rewrite each entry u;; of the original block as aratio uj; : uj; of ho-
mogeneous coefficients, we can express the corresponding entry v;; of the derived
block astheratio v]; : v;;, where v/, :=au]; + buj; and v}, := cuf, +duj;.

The original block is n-dependent just when the polynomials

Ui (X) == (Uip X = up) -+ (Ui X = Ujp),

fori in[0 .. n], are linearly dependent. In a smilar way, the derived block is
n-dependent just when the polynomials

Vi(Y) = (WY = vl (Y — vj)
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are linearly dependent. But we have

ai (dY =D
Vi(Y) = (@a—cY) U'(a—cY)’

and neither substituting the expression (dY — b)/(a — cY) for the variable X nor
multiplying through by the fixed polynomial (a— cY)" hasany effect on thelinear
dependence. O

Theorem 2.5-2 (Projection Theorem, quadratic case) Let O beany pointinthe
plane, and let the six points{(Ai, Bi)}ic[1. 3] bethe verticesof any complete quadri-
lateral, none of whose four lines passes through O. The six lines {(a, bi)}ie(1.3
Jjoining O to the vertices of the quadrilateral then form a block that is 2-dependent
and in which no linein any pair coincides with any line in any other pair.

Proof In order for aline in one pair to coincide with either of the two lines in
either of the other two pairs, the center O of the projection would have to lie on
one of the four lines of the quadrilateral, which isforbidden. So it sufficesto show
2-dependence, which we shall do using analytic geometry, after choosing our co-
ordinate system with some care.

The four points By, By, B3, and O are four pointsin the plane, with no three
collinear. So we can choose our coordinate system so that those four points have
the homogeneous coordinates

B, =[1,0,0]
B, = [0, 1, 0]
B; = [0,0, 1]
O0=1[111].

That makesthree of thefour lines of the quadrilateral have ssimple coefficients. Re-
call that, by our convention, the point with homogeneous coordinates[w, X, y] lies
on the line with homogeneous coefficients (c, d, €) just when cw + dx + ey = 0.
Sothelineq = A;B,B; of the quadrilateral has the homogeneous coefficients
g = (1,0, 0), whilewesimilarly haver = B;A;B; = (0,1,0) ands = B;B, A3 =
(0,0, 1). Thefourthlinea = A; A; Az of the quadrilateral, however, has homoge-
neous coefficients about which we know very little; let’s say that a = (f, g, h).

It iseasy to calcul ate the homogeneous coordinates of the points (A;) interms
of the homogeneous coefficients f, g, and h of theline a; we have

A; = [0, h, —g]
Ao =[—h, 0, f]
A3 = [g, — f, O]
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We can then calcul ate the homogeneous coefficients of the six lines that connect
the center point O to the six vertices of the quadrilateral:

al = <_g - ha ga h) bl = (Oa 1a _1>
a2:<f’_f _h’h> b2:<_1’0a1>
a3: (f’ ga_f _g> b3: <1a_1’ O)‘

Our next task is to choose a definition of dope, in the pencil of lines through
the center point O; by Lemma 2.5-1, it doesn’t matter which definition we choose.
Let’s adopt, as our measure of dope, the first homogeneous coefficient divided by
the last — so the three distinct lines by, b,, and bs have the dopes 0, —1, and oco.
(The middle coefficient doesn’'t appear explicitly in thisrecipe, but it is not being
ignored; we apply this recipe only to lines through the point O, whose three ho-
mogeneous coefficients sum to zero.)

We then test for 2-dependence by plugging those dlopes into the 3-by-3 deter-
minant in Equation 2.4-1, getting

0 g+h =—h
—f f-h h],
f —f-g 0

and ssimple algebra shows that this determinant isidentically zero. O

Theorem 2.5-3 (Witness Theorem, quadraticcase) Let O be any point in the
plane and let {(a;, bi)}ic[1.5 be any ordered, 2-dependent block of lines through
O in which no line in any pair coincides with any line in any other pair. Then,
there exist complete quadrilaterals{(Ai, Bi)}i[1..3, €ach of whose six verticeslies
on the corresponding line and none of whose four lines passes through O. Further-
more, any two such quadrilaterals are related by a projective transformation of the
planethat fixes O and every line through O.

Proof Sinceno linein any pair coincides with any line in any other pair, we de-
duce from Exercise 2.4-3 that the condition of 2-dependence determines each line
uniquely, given the other fivelines. In particular, the line az is so determined.

To construct a witnessing quadrilateral, we proceed as in Exercise 2.1-2. We
chooseapoint B; onthelineby;, for eachi in[1..3], being careful only that thethree
points By, B,, and B; are not collinear and that none of them coincideswith O. We
then construct the points A, := a; N B,Bz and A, := a, N B, Bg, neither of which
can possibly coincide with O. Since the lines a; and a, are distinct, we deduce
that thelinea := A; A, does not pass through O. We construct the point Az :=
an BiB;and thelinea; := OAz. The six points {(Aq, By), (A2, By), (As, B3)}
form acomplete quadrilateral, none of whose four lines passes through O. Hence,
from the Projection Theorem, it follows that the ordered block of lines {(az, b1),
(a, bp), (a3, bs)} is 2-dependent. Since the relation of 2-dependence determines
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Figure2.5: A 2-block of pointsaong aline o whose 2-dependenceisdemonstrated
by the collinearity of the three points (H;), each of which is the intersection of a
pair of tangents of aconic curvek, of which theline 0 is also atangent.

the line as uniquely, given the other five lines, the lines a; and a; must coincide,
so the quadrilateral that we have constructed is awitness.

The only freedom of choice that we had, in carrying out this construction, was
to select the point B; onthelineb;, fori in[1..3]. It followsthat every witnessing
quadrilateral can be produced by that construction, provided that the points (B;) are
chosen correctly. If {(A, B))}iep1.31 and {(A/, B/")}ig[1..3) are any two witnessing
guadrilaterals, the unique projectivetransformation of the plane that mapsthe four
points (O, B;, B, B;) to (O, B, BY, B) fixes O and every line through O and
also carriesthe first witnessing quadrilateral to the second. O

2.6 Thedual point of view

Figures 2.1 and 2.2 show two geometric tests of 2-dependence, one based on a
conic curve and the other based on a complete quadrilateral. 1n both cases, the six
scalars being tested are encoded asthe slopes of six lines through acommon point.
Recall that duality in the projective plane interchanges the concepts of ‘point’ and
‘line’. The duals of the situations in Figures 2.1 and 2.2 — shown in Figures 2.5
and 2.6 — are also geometric tests of 2-dependence. But the six scalars being
tested in Figures 2.5 and 2.6 are the coordinates of six pointsalongacommon line.

In Figure 2.5, we have an unordered 2-block {{As, B1}, {Az, B2}, {As, Bs}}
of points, al lying on acommon line 0. Thereis aconic k of which o is atan-
gent line and there are three collinear points Hi, H,, and Hs with the property
that the tangents g and b; from H; to the conic k intersect o at A; and B;. In Fig-
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Figure2.6: The same 2-block of pointsaong the samelineo asinthe previousfig-
ure, but heredemonstrated to beaquadrangular set by the existence of thecompl ete
guadrangle with vertices (A, Q, R, S).

ure2.6, weinterpret the same six pointsalong the samelineo asan ordered 2-block
{(A1, By), (A2, By), (As, B3)}. Therearefour auxiliary points A, Q, R, and Swith
the property that the points {(Ai, Bi)}ic1.3 are located where the line o stabs the
lines

a = AQ b]_ = RS
a = AR b, := QS
az .= AS bs = QR

The four auxiliary points and the three pairs of opposite lines joining them are
called a complete quadrangle.* Three pairs of points on a common line have the
conic-based property of Figure 2.5 if and only, asin Figure 2.6, they are a cross
section of a complete quadrangle, and they are then called aquadrangular set.

Figures 2.5 and 2.6 geometrically characterize the same algebraic notion of
2-dependencethat ischaracterized in Figures2.1 and 2.2: 1f we choose any projec-
tive coordinate system on the line o, the six points {{A¢, B1}, {Az, Bz}, { As, Bs}}
form a quadrangular set just when their coordinates along o form a 2-dependent
block of scalars. Thus, it makesno essentia difference which of the dual geomet-
ric situations we discuss. The situation in Figures 2.5 and 2.6 is the one generally
presented in textbooks. For our purposes, however, it is more convenient to talk
about the situation in Figures 2.1 and 2.2.

Why isthat? Our goal isto study projective configurations that characterize
n-dependence, which means that we have to make achoice. Asin Figure 2.2, we
can test the n-dependence of the dopes of an n-block of hyperplanes by requir-
ing that those hyperplanes result from projecting the points of some instance of
a configuration C. Of course, the configuration C will involve various flat sub-
spaces of various dimensions; but it must involve an n-block of points, and we

4Indeed, Figure 2.6 is quitesimilar to Figure 0.1, except that the point P has been relabeled A,
the line m has been relabeled o, and the separation properties— as discussed in Exercise 2.1-3 —
of thepairs { A, B} are different. In Figure 2.6, each pair separates both of the other pairs, while,
in Figure 0.1, no two pairs separate each other.
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are likely to think of its other flats as built up by joining certain subsets of those
points. Alternatively, asin Figure 2.6, we can test the n-dependence of the coordi-
nates of an n-block of points by requiring that those pointsresult from stabbing the
hyperplanes of some instance of the dual configuration C*. The configuration C*
also involves various flats of various dimensions; but it must involve an n-block
of hyperplanes, and we are likely to think of its other flats as formed by intersect-
ing certain subsets of those hyperplanes. The two situations are dual, and hence
completely equivalent. But it is somewhat simpler to talk about building a config-
uration by working up, starting from an n-block of points, rather than by working
down, starting from an n-block of hyperplanes. Thisis especialy true when ma-
troids are involved, since the tradition is to represent a matroid by mapping the
elements of its ground set to points, rather than to hyperplanes.

Don't get confused between the duality of projective geometry and the duality
of matroid theory. The duality of projective geometry interchanges pointsand hy-
perplanes, as we have been discussing. The duality of matroid theory associates,
with each matroid of rank r on s points, adual matroid of rank s—r on those same
s points. We are going to define afamily of matroids, and each of those matroids
does haveadual. But we shall have no further occasion to mention those dual ma-
troids in this monograph. As that fact suggests, we aren’t going to be appealing
to any deep results of matroid theory; instead, we use matroids merely asaformal
framework in which to talk about projective configurations.

Exercise 2.6-1 Givena3-block {{ai. i, 11 }}i1.4 Of Planesin 3-space, all pass-
ing through a common line o, we discussed in Section 2.2 how to test the resulting
block of dopes for 3-dependence geometrically, using atwisted cubic curve. Du-
aly, givena3-block {{A, Bi, Ci}}; 1.4 Of pointsin 3-space, all lying on a com-
mon line o, describe how to test the resulting block of coordinates for 3-depen-
dence geometrically, using a twisted cubic.

[Hint: Choose your twisted cubic so that o is the line where two osculating
planesintersect.]

2.7 Auxiliary pointsin configurations

We can now clarify our goal abit further. Wewant to find aconfigurationin 3-space
that characterizes the notion of 3-dependence in the same way that the complete
quadrilateral characterizes 2-dependence. It's going to turn out that we don’t want
our goal configurationto include any auxiliary points, and we don’t want itstwelve
key points to be coplanar.

Figure2.7 showstheten pointsand seven linesof Figure 2.6, with the six points
along theline o further projected from anew point O. Sincethe coordinates of the
six points {(Ai, Bi)}ici1.3 along o form a 2-dependent block, the slopes of the six
lines {(a;, by)}i[1..3) through O also form a 2-dependent block.
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Figure2.7: A configuration with six, collinear key points and four auxiliary points
that tests 2-blocks of lines for 2-dependence.

Compare Figure2.7 with Figure2.2. In both cases, we have projected some six
points of a configuration from a new point O, getting six lines through O whose
dopes are 2-dependent. Thus, we can think of the ten solid points and the seven
solid linesin Figure 2.7 as forming a configuration that, like the complete quadri-
lateral, characterizes 2-dependence.

Are the Projection and Witness Theorems true for the solid configuration in
Figure 2.7? The Projection Theorem holds, as does the existence half of the Wit-
ness Theorem. But the uniqueness half of the Witness Theorem fails. It fails be-
cause Figure 2.7 involves the four auxiliary points (A, Q, R, S), in addition to
the six key points whose projections have 2-dependent slopes. We take this as
evidence that auxiliary points are bad, and we hereby restrict our search to con-
figurationsin 3-space that have no auxiliary points. That is, we demand that the
twelve key points of our goa configuration be constrained only by collinearities
and coplanarities among themselves, without any help from auxiliary points.

The configuration in Figure 2.7 cheats in a second way: Its six key points are
collinear. This is cheating because it trivializes the projection operation. Aswe
move the projection point O in Figure 2.7 around, the resulting block of slopes
doesvary. But it follows trivially, from the 2-dependence of the block of coordi-
nates of the key points along their common line, that the resulting block of dopes
is aways 2-dependent. For the complete quadrilateral in Figure 2.2, where the
key points are not collinear, moving the projection point O makes the block of
dopesvary in aricher way. To avoid this second flavor of cheating, werestrict our
search to configurations in 3-space whose twelve key points are not collinear or
even coplanar, but instead span all of 3-space.
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Qs

Figure2.8: A configurationwith six, collinear key pointsand eight auxiliary points
that could test 2-blocks of lines for 2-dependence.

Exercise 2.7-1 Therearelotsof configurationsthat characterize 2-dependence, if
we alow the six key points to be collinear and we alow auxiliary pointsto exist.
Figure 2.8 shows an interesting example. The auxiliary points P; through P, are
collinear, as are the auxiliary points Q; through Q4. The six key points are the
crossjoins Aj '= R QNP Qi forl <i < j <4, whichwe also requireto be
collinear. (This requirement impliesthat the two quadruples (Py, P,, P, P;) and
(Q1, Q2, Qs, Q4) have the same crossratio.) Prove that the 2-block {{ A1z, Ags},
{Auz, Aca}, {Awa, Azs}} formed by the six key pointsis 2-dependent.

By the way, the common line a on which all six of the key pointslieis called
the axis [11] of the projectivity from the line p to the line q that maps the four
points (P, P>, Ps, Py) to the four points (Q1, Q2, Qs, Qa).

[Hint: Onestrategy applies Pappus's Theorem to the hexagon P; Q3 P, Q2P; Q4
to deduce that the three pOI nsG := P1Q3 N P3Q2, H = P1Q4 N P4Q2, and Azs
are collinear. Then consider the complete quadrangle whose four vertices are Py,
Q2, G,and H. ]

2.8 Matroids

Whenisit that six pointsform an instance of the complete quadrilateral? Any four
of the six points must be coplanar and certain triples of them must be collinear. In
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addition, because we have agreed to forbid every incidence that isnot required, the
remaining triples must not be collinear and no two of the six points may coincide.
Thus, we can think of the complete quadrilateral as a set of abstract pointsand a
rule that says, for each subset of those points, whether the k points in that subset
must or must not liein acommon (k — 2)-flat.> In this monograph, we shall refer
to any such rule as a projective configuration. Warning: In classical projective ge-
ometry, such arule hasto have lots of other properties, including a high degree of
numeric symmetry, beforeit can be called a configuration. We discuss that narrow
sense of the word ‘ configuration’ in Section 4.5.

In describing the incidences that are required by a configuration, there is no
need to use separate terms, such as ‘ collinear’ and ‘ coplanar’, for sets of different
sizes; the single term ‘incident’ will do for all. Call k points in some projective
space mutually incident when they lie in a common (k — 2)-flat. Algebraically,
this means that the k vectors of homogeneous coordinates are linearly dependent.
So four points are mutually incident when they are coplanar; three points, when
they are collinear; two points, when they coincide; and one point, when it isinde-
terminate — that is, all of its homogeneous coordinates are equal to zero.® When
k points are not mutually incident, we shall call them mutually skew.

Notethat every superset of amutually incident set isalso mutually incident; for
example, if thethree points A, B, and C are collinear, then thefour points A, B, C,
and D must be coplanar. To make this property hold also when the smaller set is
empty, we makethe convention that the zero pointsin the empty set ¥ are mutually
skew, rather than mutually incident; this agrees with the standard convention that
the empty set of vectorsis linearly independent.

An instance of a configuration in some projective space maps each abstract
point of the configuration to a concrete point in that projective space so that pre-
cisely therequired incidences hold. Note that, since we have defined the notion of
a configuration quite broadly, it is easy to come up with configurations that have
no instances. For example, one way to guarantee that no instances exist isto fool-
ishly require that the set of points S be mutually incident while forbidding the set
T from being mutualy incident, for some T O S. Another way is to foolishly
require that the empty set ¢ be mutually incident.

We aremostly interested in configurationsthat do haveinstances. Hence, when

SWe use the term ‘ m-flat’ to mean a flat subspace of dimension m; thus, alineisa 1-flat and a
planeisa?2-flat. Bewarned that many authorswriting about matroids use ‘ m-flat’ to mean aflat of
rank m, which has dimension m — 1.

81t is often desirable, as Stolfi [51] points out, to augment projective space with a unique null
object of each dimension. Thetraditional names ‘indeterminate point’, ‘ indeterminateline’ , and so
forthfor these null objectshave theadvantage that they encode the dimensionin avery natural way.
Using the term ‘indeterminate point’ has the severe disadvantage of making it forever afterwards
unclear, when we assume that P isapoint in a projective space, whether we are alowing P to be
indeterminate or not. In this monograph, fortunately, the indeterminate point arises only whilewe
are reviewing matroids and their representations. It never arises thereafter because the particular
matroidsthat we define have no single-element dependent sets — that is, no loops.
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designing our configurations, it behooves us to avoid the two sorts of foolishness
just mentioned. There is a third, less obvious sort of foolishness that we should
also avoid, and any configuration that avoids al threeis called a matroid. More
formally, as we review in Chapter 3, a matroid is a configuration that satisfies a
certain three axioms. Those axioms are not strong enough to guarantee that every
matroid hasinstances; but they do eliminate three sorts of foolishness, at least, and
they thereby ensure that the combinatoria structure of the configuration has some
nice properties. What we are calling an instance of aconfigurationiscalled, in ma-
troid theory, arepresentation of the matroid. Not every matroid is representable;
but every configuration that has any instances is a representable matroid.

The cubic analog of the complete quadrilateral, which is the configuration for
which we are searching, turns out to correspond to a particular representable ma-
troid, which we shall call B, 1 ;. Asthat fancy name suggests, the matroid B, 1 1
belongs to afamily of matroids: the budget matroids, which we define in Chap-
ter 4. There is a budget matroid By, associated with each partitionb = b; +
.-+ + by of an integer b into nonnegative parts, at least two of which are positive.
The complete quadrilateral is the budget matroid B, ; — and hence that matroid
characterizes 2-dependence. In an analogous way, the matroid By ; ; characterizes
3-dependence. Unfortunately, this pattern doesn’'t continue: The matroid By 111
characterizes some property that is stronger than 4-dependence.

Each of the parts by in the partitionb = by + - -- + by that determines the
budget matroid By, p, actualy plays a double role. From the point of view of
matroid theory, thereis no reason not to separate those two roles, assigning them
to independent parametersb; and d;. Chapter 5 doesthis, thereby defining alarger
family of matroids, which we call the budgetary matroids. From ageometric point
of view, however, this generalization seems to be of little value. Indeed, many of
the budgetary matroids turn out not to be representable at all.

The representability of the budget matroids makes for a happier story. If the
budget matroid By, 1, iSrepresentable, it isfairly easy to see that the budget ma-
troids that result from reducing or eliminating one or more parts in the partition
b=b;+---+ b areadso representable. So, in proving representability, the easy
cases are those with few partsand with small parts. In Chapter 6, we show that ev-
ery budget matroid of theform By, ,, with precisely two parts, isrepresentable over
therational numbersand hence over every field of characteristic zero. In Chapter 7,
we show the same result for the budget matroids of theform By, 1.1. Neither proof
isvery difficult, but both are fairly long. The latter proof involves atheorem that
can be interpreted as generalizing Pappus's Theorem to higher dimensions.

Since the budget matroid By, 1 ; IS representable for every positive m, the par-
ticular matroid B, ; ; isrepresentable. Unfortunately, the scheme that we develop
for constructing representations of the matroids By, 1 1 in Chapter 7 doesn’t seem to
be helpful in studying the relationship between the matroid B, ; ; and the concept
of 3-dependency. To get a handle on that relationship, we need a different con-
struction, one that makesits choicesin adifferent order. That second construction
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isbased on null systems.

Exercise 2.8-1 Let P be afinite set of pointsin aprojective space. Show that the
pointsin P are mutually skew just when, for all ways of partitioning P into two
subsets P = QU R, theflats Span( Q) and Span(R) are skew in the standard sense
of theword ‘skew’ — that is, they do not meet.

2.9 Null systems

The Principle of Duality in projective geometry tells us that the entire structure
of projective n-space is preserved if we interchange, for each k, the notion of a
k-flat with the notion of an (n — k — 1)-flat, provided that we also interchange the
notion ‘liesin’ with the notion * passes through’. If Sis a projective n-space, its
dual space, written S, is the n-space whose points are the hyperplanes of S, and
viceversa. The double dual S* isthus S, once again.

A polarityisaself-inverse(or involutive) projectivetransformationfromapro-
jective space Stoitsdua S*. For example, if Sisa plane, apolarity maps each
point P of Stoaline P* of Sand mapseach line ¢ to apoint ¢* in such away that:

e For al points P, we have P** = P.
e Forallines¢, we have ¢** = ¢.

e For al points P and lines ¢, the point P lieson theline ¢ if and only if the
line P* passes through the point ¢*.

The line P* is called the polar line of the point P in the chosen polarity, and the
point ¢* iscalled the ‘polar point’ or pole of theline¢. In 3-space, apolarity maps
apoint P toits polar plane P*, aline ¢ to its polar line £*, and a plane r to its
‘polar point’ or pole 7 *.

Polaritiescomein two distinct types, called — somewhat confusingly — polar
systems and null systems [23].

Polar systems are the ones most often discussed in textbooks|[8, 48];. They are
intimately related to quadric hypersurfaces, and we are going to review thisrela-
tionship algebraically in Section 8.1. For now, let’srecall the geometric intuition
by considering a nondegenerate conic k in the real projective plane. Given any
point P outside of the conic k, there aretwo tangentsto k that pass through P, and
thereis aunique line P* that joins the two points of tangency. Conversely, given
any line ¢ that intersects the conic at two points, we can intersect the tangents at
those two points to get back to the point £*. This mapping from P to P* can be
extended into a polarity on the entire plane, and such polarities are called polar
systems. Note that, in the polar system associated with a conic, apoint P lies on
itsown polar line P* just when P lies on the conic.
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In 3-space, it is nondegenerate quadric surfaces that have associated polar sys-
tems. The polar plane of a point P isthe plane P* containing al of the points of
the quadric at which the tangent cone from P to the quadric touchesthe quadric —
apoint P on the outside of a non-ruled quadric, such as an ellipsoid, isthe easiest
casetovisualize. Just asinthe planar case, apoint P liesonitspolar plane P* just
when P lies on the quadric.

Null systems are a different type of polarity, perhaps even prettier than polar
systems. But they don’t get talked about very often, largely because they exist only
in spaces of odd dimension— so thereare no null systemsinthe plane. Thedistin-
guishing feature of a null system isthat every point P lieson its polar hyperplane
P*, not just the points on some quadric hypersurface.

One geometric situation in 3-space in which null systems arise is the study of
twisted cubic curves. Given atwisted cubic and given some point P, there are at
most three points on the cubic at which the osculating plane to the cubic passes
through P. When there are three such points, the plane P* that they determine
always passes through P; for further discussion of this fascinating fact and itsre-
lationship to the notion of harmonic conjugacy, see Exercise 9.5-2. This mapping
from the point P to the plane P* can be extended to a null system on the entire
3-space, and thus twisted cubics are one source of null systems.

In Chapter 8, wereview polaritiesingeneral, using linear algebra, and we show
that every polarity iseither apolar system or anull system. We show how to define
anull system in 3-space by using a skew-Pappian hexagon: a hexagon whose ver-
ticeslie, alternately, ontwo skew lines. Inthespecial caseinwhichthosetwolines
are both coordinate axes, we give explicit formulasfor computing in the associated
null system.

Exercise 2.9-1 Suppose that the point P liesinside the nondegenerate conick in
thereal projective plane. Give several recipes for finding the line P* that is polar
to P in the polar system associated with k.

[Answer: Onerecipeisto find the two conjugate, complex linesthrough P that
are tangent to the complexification of k. The line P* istheredl line that joins the
two conjugate, complex points of tangency. Alternatively, we can stick to the real
numbersby drawing any two lines ¢ and mthrough P, each of which must intersect
the conic k at two points. The polar P* isthe linejoining £* to m* ]

2.10 Thecubic case and beyond

By exploiting null systems, we can construct representations of the budget matroid
B..1.1 in adifferent way, away that helps to clarify the relationship with the con-
cept of 3-dependency. Chapter 9 uses this approach to prove the cubic analogs of
the Projection Theorem and the Witness Theorem, thus verifying that the budget
matroid B, 1 1 does indeed characterize 3-dependence.
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Figure 2.9: The dependencies between the chapters in this monograph.

As it happens, our machinery based on null systems also yields away to con-
struct representations of the budget matroid By 1 1.1, as we discuss in Chapter 10.

We close in Chapter 11 by discussing some open questions.

Figure 2.9 gives a rough indication of the dependencies between the chapters
in this monograph. The most significant choice comes after Chapter 4, at which
point a reader might reasonably jump to any one of following four chapters.






Chapter 3

A review of matroids

3.1 Theaxioms

We shall define matroidsby talking about their independent sets— in particular, by
giving the axioms that the family of independent sets must satisfy. When matroid
theory is applied to the study of projective configurations, the word * independent’
means ‘required to be mutually skew’, while ‘dependent’ means ‘required to be
mutually incident’.

A matroid isafinite set G, called the ground set, together with afamily Z of
subsets of G, called the family of independent sets, subject to the following three
axioms,

Empty-Set Axiom The empty set isindependent: ¢ € 7.

Subset Axiom Every subset of an independent set isindependent: If Y € Z and
XCY,thenX € .

Augmentation Axiom Given two independent sets of different sizes, thereis al-
ways an element of the larger, not already in the smaller, that can be added
to the smaller without destroying itsindependence: If X € ZandY € T
with |Y| > | X], thenthereexistse € Y \ X suchthat X U {e} € Z. (Note
that we use a backdlash to denote the operation ‘ set minus'.)

We claimed, in Section 2.8, that any configuration that has any instancesis a
matroid. In support of this claim, we pointed out that the Empty-Set Axiom and
the Subset Axiom must hold of any such configuration. To finish the job, note
that the Augmentation Axiom holds as well. For example, suppose that the sets
X={P,Q,R}andY = {A, B, C, D} areboth independent in some instance of a
configuration. Then, thefour points A, B, C, and D do not liein any single plane,
so at least one of them must lie outside of the plane PQR; that one can be added
to the set X without destroying its independence.

33
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3.2 Elementary notions

One of the pretty things about matroidsis that there are smple systems of axioms
that describe them from lots of different points of view. So far, we have been talk-
ing about a matroid in terms of its independent sets. Alternatively, we could talk
about its bases, its circuits, its rank function, its flats, its spanning sets, or what
have you. We shan’t be needing those other axiom systems, but we shall be using
some of the concepts on which they are based. For more about these topics, see
Chapter 1 of Oxley [37].

Let Sbe any subset of the ground set of amatroid M — so Sis not necessarily
independent. An independent subset T C Sis called maximal when adding any
element of S\ T to T would destroy its independence. Given two independent
subsets X € Sand Y C Sof different sizes, the Augmentation Axiom tells us
that the smaller cannot be maximal; so all of the maximal, independent subsets of
aset S have the same cardinality. That common cardinality is called the rank of
theset S. For example, in the complete quadrilateral shownin Figure 2.2, both the
independent set { A1, Az} and the dependent set { A1, Az, Az} have rank 2.

Inthe specia case wherethe set Sisthe entire ground set of the matroid, there
issome special terminology. A maximal independent subset of the entire matroid
iscalled abase, and the common cardinality of all of the basesis called the rank of
the matroid. For example, the complete quadrilateral is a matroid of rank 3, with
{By, By, B3} and {A1, Ao, B1} astwo of its bases.

Next, we turn from maximal independent sets to minimal dependent sets. A
dependent set in a matroid is called a circuit when removing any element from
it would destroy its dependence.! In atypical matroid, there are circuits of vari-
ous cardinalities; for example, in the complete quadrilateral once again, the sets
{A1, Ao, Ag} and {A1, Ao, By, By} are both circuits.

A subset of amatroid is called aflat when adding any element to it would in-
crease its rank. The entire matroid is trivialy aflat, whose rank equals the rank
of the matroid. A hyperplane isaflat whose rank is one less than the rank of the
matroid, while the words line and plane are used for flats of ranks 2 and 3. For
example, in the complete quadrilateral, the set {A;, Az, Az} isboth alineand a
hyperplane.

It followsfrom the axiomsthat the intersection of any two flatsisalways aflat,
so thereisaunique smallest flat containing an arbitrary set S. That flat iscalled the
gpan of S. For example, in the complete quadrilateral, the span of the set { Aq, Az}
istheline { A, Az, As}. Another way to define abase is as aminimal set whose
gpan isthe entire matroid. Another way to define ahyperplaneisasamaximal set
whose span is less than the entire matroid.

IWhile we are using matroids to encode the incidence patterns of pointsin projective configu-
rations, they are used a so to encode the cycle structure of graphs, and that |atter context is where
theterm ‘circuit’ comes from.
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Figure 3.1: A complete quadrangle, together with its three diagonal points.

3.3 Representations

A representation of amatroid M isafunction that maps the elements of theground
set of M to pointsin some projective space in such away that aset of k elementsis
independent precisely when thek pointsthat represent those elementsare mutually
skew — that is, when the k vectors of homogeneous coordinates of those pointsare
linearly independent.

A representation of a matroid is alowed to map certain of its elements to the
indeterminate point — the null object of dimension 0, all of whose homogeneous
coordinates are zero. Indeed, if asingleton set {e} is dependent in the matroid, the
element e must be mapped to the indeterminate point by any representation. Such
an element e is called aloop.? On the other hand, elements of a matroid that are
not loops must be mapped to determinate points by any representation.

A representation of a matroid is also alowed to map distinct elements to the
same point. Suppose that thetwo-element set {e, f} in amatroid is dependent, but
that neither e nor f isaloop — which means that the set {e, f} isalso acircuit.
The element e must then be mapped to the same determinate point as f by any
representation. In this situation, thetwo elementse and f are called parallel .2

Whether amatroidisrepresentableor not can depend on the choice of the scalar
field, the field over which our projective spaces are built. There are matroids that
are representable over any field, matroids that are representable over some fields
but not over others, and matroids that are not representable over any field. In this
monograph, we are primarily interested in representability over the standard fields
of characteristic zero: the rationas, the reals, and the complexes; but Exercises
3.3-1, 4.2-2, and 6.2-3 are exceptions to that rule.

Exercise 3.3-1 Figure 3.1 shows a complete quadrangle, lying in the real projec-
tive plane, along with itsthree diagonal pointsU := AQ N RS,V := ARN QS,
and W := ASN QR, the points where the three pairs of opposite sides intersect.
Note that the diagonal points are not collinear. Verify that they would be collinear
just if the characteristic of the scalar field were 2. Using this, find two matroids
of rank 3 on seven points, the first of which is representable just over those fields

2Loop’ isanother term that is motivated by the application of matroids to graph theory.
3Another term motivated by graph theory.
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of characteristic 2, while the second is representable just over those fields whose
characteristicisnot 2. These two matroids are known as Fano and non-Fano.

[Hint: We can choose a coordinate system for the plane in which the vertices
of the quadrangle have the homogeneous coordinates A = [1, 1, 1], Q = [1, 0, O],
R =10,1,0],and S = [0, 0, 1]. The diagonal points then have the coordinates
U=1[011],V =[101],and W = [1, 1, 0], so they are collinear just when
2 = 0. The non-Fano matroid has, as its dependent sets, al sets of size at least
four, dlong with the six triplesof pointsthat are collinear in Figure3.1. Inthe Fano
matroid, the triple {U, V, W} is also dependent.]

3.4 Minors

There are two ways to make a matroid smaller, one obvious and the other less so.
Let M be amatroid, let H be a subset of its ground set G, and suppose that we
want to build amatroid M’ on the smaller ground set G’ := G \ H. The obvious
approach is to take, as the independent sets of M’, precisaly those subsets of G’
that, viewed as subsets of G, areindependentin M. Thisprocessis called deleting
the elements of H, and the resulting matroid is written M\ H. In the less obvious
approach, we choose some maximal independent subset | of H — it followsfrom
the axiomsthat it doesn’t matter which we choose — and we let asubset X' of G’
beindependentin M’ precisely whenthesubset X := X'UI of G isindependentin
M. Thisprocessiscalled contracting® the elementsof H, and the resulting matroid
iswritten M/H. A matroid M’ iscalled aminor of amatroid M if we can get from
M to M’ by some sequence of deletions and contractions.

It is easy to see that deletions preserve representability. If H is any subset of
the ground set of a matroid M, any representation of M can be converted into a
representation of the deleted matroid M\ H by simply forgetting about the points
to which the elements of H were mapped.

Itisonly dlightly trickier to show that contractions also preserve representabil -
ity. Let M be a representable matroid, let H be a subset of its ground set G, and
fix some representation ¢ of M, say in a projective space S of dimension n. The
points ¢(H) to which the elements of H are mapped span acertainflat F in S,
say of dimension k. Consider all flats of dimension k + 1 in Sthat contain all of
the pointsin ¢(H) and hence include F. Those (k 4+ 1)-flats themselves are the
‘points’ of aprojectivespace S of dimensionn — k — 1. For example, thelinesin
3-gpace through a fixed point form a projective plane, while the planesin 3-space
through afixed lineform aprojectiveline.®> We can construct arepresentation ¢’ of
the contracted matroid M /H inthe space S by mapping each element e of G \ H
tothe (k + 1)-flat ¢’ (e) := Span(p(H U {e})). Typicaly, the span of the pointsin
p(HU{e}) isa(k+ 1)-flatin Sthat includes F, soitisapoint of S. Wheneis

4Yet another term motivated by graph theory.
5In these examples, it doesn’t matter whether the ambient 3-space is projective or affine.
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aloop in the contracted matroid M/ H, the point ¢(e) liesintheflat F, and we set
¢'(e) to be the indeterminate point of S.

Exercise 3.4-1 Let M beamatroid of rank r. Theelement e of M doesnot belong
to any basejust when eisaloop. Inthiscase, show that deleting e and contracting
e produce the same matroid M\ {e} = M/{e}, whoserank isr. On the other hand,
suppose that the element e of M belongsto every base; such an element eis called
acoloop. Inthiscasealso, show that deleting e and contracting e produce the same
matroid M\ {e} = M/{e}, butitsrankisr — 1. If the element eisneither aloop nor
acoloop, show that deleting e givesamatroid M\ {e} of rank r, while contracting
egivesamatroid M/{e} of rankr — 1.






Chapter 4

The budget matroids

4.1 Initial examples

Each budget matroid By, . 1, isassociated with a partitionb = by 4 - - - 4 by of
atotal budget b into k column budgets b; through by. To motivate the definition
of the budget matroids, let’s consider a couple of examples of partitions and their
associated matroids.

We begin with the partition 3 = 1 + 1 + 1. The budget matroid By 1 1 turns
out to be the Pappus matroid — the matroid whose representations are instances
of the configuration that arises in Pappus’'s Theorem.

AsshowninFigure4.1, let Ay, Ay, and Az be collinear pointsin the plane, let
B1, By, and Bs aso be collinear, and, whenever {i, j,k} = {1,2,3}, let G :=
A By N A¢B;. Pappus's Theorem tells us that the three intersection points Cy, Cs,
and C; of the opposite sides of the hexagon A; B, A3B; A, Bs are also collinear. |If

1| apologize for overusing the letter * B': When a B has a single subscript, it denotes a point;
when it has multiple subscripts, it denotes a budget matroid.

Figure4.1: An instance of the Pappus configuration.

39
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Au

Figure4.2: An instance of the complete quadrilateral — asin Figure 2.2, but with
the vertices (B;) relabeled (P)).

we arrange the nine points of the Pappus configuration in amatrix, likethis,

101 1
AL B C
A B G|,
A Bz G

we can describe the nine lines of the configuration as follows:

e Thethree pointsin acolumn are collinear. (But the three pointsin arow are
not so constrained.)

e For each of the six possible ways of choosing one point from each row so that
oneistaken, also, from each column, the three points so chosen are collinear.

By the way, we often write the j™ column budget b; at the head of the j™ column,
asareminder. In this example, al three column budgets are 1.

Asasecond example, consider the partition 3 = 2+ 1. A representation of the
budget matroid B, ; is, it turnsout, precisely acomplete quadrilateral, asshownin
Figure4.2. If we arrange the six points of such a quadrilateral in the matrix

itsfour lines can be described as follows:

e Thethree pointsin the A column are collinear, while the three pointsin the
P column are constrained only to be coplanar.

e For each of the three possible ways of choosing one point from each row so
that two are taken fromthe P column and one from the A column, the three
points so chosen are collinear.
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Asfor naming the pointsin arepresentation of a budget matroid, our standard
convention will be to number the rows and to associate the letters A, B, C, and
so forth with the columns, from left to right. But for matroids of the specia form
Bm.1.1....1, Whereall of the column budgets except thefirst are ones, it is often con-
venient to use aspecial letter for the first column and to start with A for the second
column. Here, for the matroid B, ;, we have used the letter P for the first column,
onthe groundsthat ‘ P’ standsfor ‘(co)planar’.

Note that we are failing to exploit al of the available symmetry in the two ex-
amples above. The four lines of a complete quadrilateral play entirely symmetric
roles. But to describe that quadrilateral as arepresentation of the matroid B, 1, we
must choose one of its four lines to become the A column. In a similar way, to
describe a Pappus configuration as a representation of the matroid B, ; 1, we must
choose one of itsthree familiesof threedigoint linesto become the three columns.

Failing to exploit a symmetry is often a mistake, but the unexploited symme-
triesin those two cases are sporadic accidents. Consider alarger budget matroid,
say the matroid By 1 11 associated with the partition4 =1+ 1+ 1+ 1:

101 1 1
AL B C D
A B C Do
As B3 C3 D3
Ar By C4 Dg

A representation of B, ; ;1 consists of sixteen pointsin 3-space with the following
two properties:

e Thefour pointsin each column are collinear.

e For each of the 24 possible ways of choosing one point from each row so that
one is taken aso from each column, the four points so chosen are coplanar.

Sincelinesand planesareflats of different dimensions, thereisno chancethat some
additional symmetry of the configuration might intermix the four lines required
by the first property with the 24 planes required by the second. (For more about
when such intermixing is possible and when it isn’t, see the analysis of the auto-
morphisms of the budget matroidsin Exercises 4.3-2 and 4.3-3.)

Exercise 4.1-1 (from Jorge Stolfi, and in preparation for Sections 10.3 and 10.4)
If we write a point in the projective plane as a triple [w, X, y] of homogeneous
coordinates, verify that the nine points

A B C
1/[1,0,0 [0,1,0 [0,01]
2|[p.a.q] [a,p.d]l [q.q,p]
3|0, p.pl [p.a.p] [P, p.d]
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Figure 4.3: A representation of the Pappus matroid By 1 1 in which al six permu-
tations of the A, B, and C columns can be achieved via Euclidean symmetries.

form a Pappus configuration — that is, they represent the budget matroid By ;1 —
whenever theratio p/q doesnot liein {—2, —1, —%, 0, 1, oo}. What goeswrong
for each of the six forbidden ratios?

Figure 4.3 shows an embedding in the Euclidean plane of the case p/q = 3.
Note that the three lines Ay A, Az, B1B,Bs, and C,C,C; are concurrent. Indeed,
thoselineswill concur for any ratio p/q, a thepoint [1, 1, 1]. That concurrenceis
not required in arepresentation of the matroid B, 11 — indeed, it did not happen
inFigure4.1 — but it isallowed. It isalowed despite thefact that, for any subset
Sof the nine points of the matroid, whenever the pointsin Sare not required to be
mutually incident, they are required to be mutually skew.

These Pappus configurations are particularly symmetric: Any permutation of
the three homogeneous coordinates w, X, and y gives us a projective transforma-
tion of the plane that is a symmetry of the configuration in which the rows are
preserved and the columns are correspondingly permuted. Furthermore, when the
configurationis embedded inthe Euclidean planeasin Figure4.3, those six projec-
tive transformations become Euclidean transformations— in fact, the symmetries
of the equilatera triangle AA B C;.

[Hint: When p/q = —2, the points Ay, B, and C, al lie on the line with
homogeneous coefficients (1, 1, 1) — which, in Figure 4.3, isthe line at infinity.]

4.2 Thedefinition

With those three examples to guide us, we can now define the budget matroids.
WEe're going to call them ‘matroids’ right from the start, even though we shan’'t
get around to proving that the matroid axioms are satisfied until Section 5.3.
Letb =b; + - -- 4+ by be some partition of a nonnegative integer b, called the
total budget, into k nonnegative parts, called the column budgets. For reasons that
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we discuss in Exercise 4.4-3 and Section 5.1, we require that at least two of the
column budgets be positive, which impliesthat k > 2. We are going to define a
budget matroid associated with this partition, which we shall denoteby By, p,.. A
representation of thematroid By, ., involvesbk pointsin projective (b—1)-space,
which we think of as organized into a b-by-k matrix:

by by by
Ell E12 oo Elk
Ex Ex ... Ex
Evi Eno ... Ep

Note that we have written the j™ column budget at the head of the j™ column, as
we did in the three examples above. The column budgets constrain the locations
of the pointsin two ways:

e The b pointsin the j™ column are constrained to lie in a common flat of
dimension by.

e For each of the (,, b ».) Possible ways of choosing one point from each row
sothat, foral j in[1..K], precisely b pointsaretaken fromthe j™ column,
the b points so chosen are mutually incident — that is, rather than spanning
the entire ambient (b — 1)-space, they liein a common hyperplane.

Let X beasubset of thematrix (E;j) of pointsthat contains precisely one point
from each row and contains, for each j in[1 .. K], precisely b; points from the
i column. We shall call such aset X perfect, on the grounds that it meets each
column budget perfectly. Note that the multinomial coefficient ( ) countsthe
perfect sets. The second rule above requiresthat, in any representatlon of the bud-
get matroid By, . 1, , every perfect set of points must be mutually incident. Hence,
in the budget matroid By, . 1, itself, every perfect sets of elementsis going to be
dependent.

To define the matroid By, . p,, We need a set of elements and a rule for inde-
pendence. The ground set of the matroid By, _p, iSthe set of entries of a b-by-k

.....

.....

matrix
by b by
€1 €1 ... €
€1 €x»n ... €ex
e = . . . . ’
&1 G2 ... Gk

which we shall refer to as the ground matrix. We define a subset X of the ground
matrix e to be perfect when X contains precisely one element from each row and,
for each j, contains precisely b; elementsfrom the j™ column. We define a subset
X of eto be independent when it satisfies the following three rules:
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Ambient Rule X contains at most b elements overall;

Column Rule X containsat most bj + 1 of the b elementsin the j™ column, for
each j in[1..Kk]; and

Perfect Rule X has no perfect subsets.

What is the effect of these three rules?

When talking about the Pappus configuration B, ; ; and the complete quadri-
lateral By 1, weimplicitly assumed that al of the pointsinvolved lay in acommon
plane. In the general case, we want all of the pointsin any representation of the
budget matroid B, . 1, to liein an ambient projective space of dimensionb — 1
and hence of rank b. The Ambient Rule guarantees this by making any set with
more than b elements dependent.

Furthermore, we want the b pointsin the j™ column to liein acommon flat of
dimension b; and hence of rank bb; 4+ 1. The Column Rule guarantees thisin an
analogous way.

Asfor the Perfect Rule, if a set X has a proper subset that is perfect, then X
must contain more than b elements, so X aso violates the Ambient Rule. Thus,
in the presence of Ambient Rule, the effect of the Perfect Rule isjust to make the
perfect sets themselves dependent, as we intended to do.

The special case of azero column budget deserves comment. For one thing, if
b, = 0, thenthe Column Ruleforcesall of the elementsof the j " columntolieina
common O-flat — that is, to coincide, say at some point Z;. But more importantly,
none of the elements of the j™ column belong to any perfect set. Hence, the point
Z; does not participate in any incidences that involve any other points; instead, it
liesin the ambient space in general position with respect to the other points of the
representation. Exercise 4.2-2 shows that zero column budgets are not of much
geometric interest.

Exercise 4.2-1 Construct a representation of the budget matroid By ;.
[Answer: Map the four elements of the ground matrix to the points

1 1

(a §)

where P and Q are any two distinct pointsalong aline]

Exercise 4.2-2 Construct arepresentation of the budget matroid B, 1 0.0....0 inthe
projective plane, wherethereare, say, athousand columnswhose budgets are zero.
Notethat you wouldn’t succeed if the projective planewere built over asmall finite
field.
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[Answer: Map the six elements

€11 €1
€1 €x
€31 €3

of the first two columns of the ground matrix to the six vertices

2 1

P A
P, A
P As

of some complete quadrilateral. For j > 2, map all threeelementse,j, &, and e3;
of the j™ column to a common point Z; in the plane, where the points Z; through
Z 1002 @re chosen so that

¢ none of themlieson thelinedetermined by any two vertices of the quadrilat-
eral (neither on aline of the quadrilateral itself nor on one of its diagonals),

e none of the lines determined by any two of them passes through any vertex
of the quadrilateral, and

e no three of them are collinear.]

Exercise 4.2-3 Recall that the rank of amatroid isthe common cardinality of all
of itsmaximal independent sets. Show that the rank of the budget matroid By, . 1,
isthetotal budget b := by + - - - + .

[Hint: The Ambient Rule guarantees that the rank is at most b. To show that
itisat least b, it suffices to construct some independent set with b elements. One
choiceisto takethetop b elementsfromthe j™ column, foral j in[1..k]. Note
that the resulting set is not perfect, because we have required that at least two of
the column budgets be positive.]

Exercise 4.2-4 Recall that acircuitinamatroidisaminimal dependent set. Show
that the circuits of the budget matroid By, . p, areprecisely

.....

perfect circuits the perfect sets,
column circuits the subsets — if any — of the j™ column of size b; + 2, and

ambient circuits those sets of size b+ 1 that do not include any perfect circuit or
any column circuit as a subset.

Exercise 4.2-5 A matroidiscalled ssimplewhen all of its dependent sets have size
at least 3; that is, thereareno circuitsof size 1 or size 2 — no loops and no parallel
pairs. Which budget matroids are simple?

[Answer: No budget matroid has any loops. A budget matroid has parallel
pairs either when its total budget is 2 or when some column budget isO.]
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4.3 Further examples

Let’s explore the world of budget matroids a bit, by taking various partitionsb =
b; + - - - + bk and seeing what matroids By, We get. Since we have agreed that
zero column budgets are not of much geometric interest, let’s consider partitions
into at least two parts, all of which are positive.

For each partitionb = b; +- - - + by that we consider, we want to get some geo-
metricintuition for what arepresentation of the budget matroid By, ., |00kslike.
Among other things, we want to count the degrees of freedom that are involved.
If M isany representable matroid, let us denote by #(M) the number of degrees
of freedom that are involved in choosing arepresentation of the matroid M, sitting
in afixed projective space of the appropriate dimension — which is one less than
the rank of M. We know from Exercise 4.2-3 that the rank of the budget matroid
Bp,...n ISSMply itstotal budget b := by + - - - + by, so the appropriate dimen-
sion for the ambient space when computing the freedom #(By, 1, ) iSb — 1. For
example, arepresentation of the budget matroid B, ; is a complete quadrilateral,
lying in some plane, so we have #(B, 1) = 8 — two degrees of freedom in each of
the quadrilateral’sfour lines. If the matroid M is not representable, we shall write
#M) = 1.

Warning: This counting of degrees of freedom is one situation where the prop-
erties of the scalar field might make a difference. For example, in Chapter 10, we
study a construction for ageneric representation of the budget matroid B; ; 5 ; that
hastwenty free, scalar parameters. But one step of that construction involves solv-
ing a quadratic equation; so the construction may fail, if we attempt to carry it out
over ascalar field in which some scalars don’'t have square roots. Thus, we have
#(By1.1.1.1) = 20 over the complex numbers, but it is not clear whether that same
result holds over the rationals or over the reals. In those cases where it makes a
difference, let’s agree to count degrees of freedom over the complex numbers. In-
deed, as we discussin Section 11.1, what we really mean by the informal phrase
‘degreesof freedom’ isthedimension of somevariety, anditiseasiest to talk about
varieties and their dimensions over afield of scalars, like the complex numbers,
that isalgebraically closed.

The only budget matroid of rank 2 whose column budgets are all positive is
B11. Aswe saw in Exercise 4.2-1, arepresentation of By ; consists of two points
onaline, so we have #(By 1) = 2.

Therearetwo budget matroidsof rank 3 whose column budgetsareall positive:
the complete quadrilateral B, ; and the Pappus configuration B, ; ;. We pointed
out amoment ago that #(B, 1) = 8. Itisjust aseasy to calculate that #(By11) =
10: five degrees of freedom in the three collinear A-points and five morein the
B-points, after which the C-points are uniquely determined.

The Pappus configuration differs from the complete quadrilateral in an impor-
tant respect: the Pappus constraints are redundant. It takes twelve degrees of free-
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dom to choose six arbitrary points in the plane, and, if those points are to form
a complete quadrilateral, four triples of them must be collinear. Each collinear-
ity costs one degree of freedom, so — because those four constraints are nonre-
dundant — we are left with #(B, ;) = 12 — 4 = 8 degrees of freedom. In the
Pappus case, on the other hand, it takes eighteen degrees of freedom to choose
nine arbitrary pointsin the plane, and the Pappus configuration has nine collinear-
ities, each of which naively costs one degree of freedom. But we do not have
#(B111) = 18 — 9 = 9. Instead, enforcing all nine collinearities together costs
only eight degrees of freedom, since Pappus's Theoremtellsusthat any eight of the
collinearitiestogether imply the ninth.2 Hence, we have #(By 11) = 18 —8 = 10,
in agreement with our earlier count. Redundancies of this type become more and
more prevalent, as the budgets increase.

43.1 Thepartition4=3+1

We continue our explorations by moving to rank 4. A representation of the budget
matroid Bz ; consists of eight pointsin 3-space:

T A
L A
T3 Ag
Ts A4

The four T-points span the entire 3-space, so they are the vertices of a tetrahe-
dron, while the four A-points are collinear, along alinea. There are four perfect
congtraints, which require the point A; to liein the plane spanned by {T;, Ty, T},
whenever {i, |, k, 1} = {1, 2, 3, 4}. Thus, the A-points are located where the line
a cutsthefacesof the T tetrahedron. We have #(B; 1) = 16, since there are three
degrees of freedom in each vertex T; of the tetrahedron and an additional four in
the choice of the line a.

Notethat the complete quadrilateral of Figure4.2, which representsthematroid
B..1, can be described in a analogous way: The three P-points are the vertices of
atriangle and the three A-points are located where some line a cuts the sides of
that triangle. This pattern extends to the matroid By, ; for any m. The m+ 1 points
in the first column are the vertices of an m-smplex, and the points in the second
column are located where some line cuts the m + 1 facets of that ssimplex.

2The ninth isimplied by the other eight over any commutative field. One can aso construct
projective planes over division rings of scalars that are not commutative, and Pappus's Theorem
doesnot holdin such planes. Inthismonograph, however, we alwaysrequirethat thefield of scalars
be commutative.
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4.3.2 Thepartition4 =2+ 2

A representation of the budget matroid B, , consists of eight pointsin 3-space,

2 2
A B
A B
As B |’
A, By

with no three collinear and with precisely the following eight sets of four coplanar
— the two columns and the six perfect sets:

A, A, Ag, Ay
Bi, By, Bs, B4

A1, Ay, Bz, By
A1, By, Az, By
A1, By, Bs, Ay
B1, Az, Az, By
B1, Az, B3, A4
B1, B2, Az, A4

A simple way to describe those eight sets is to note that each set has one point
from each row of the matrix and an even number of points from each column.
Looked at in this way, the eight sets fall into three classes, since the three possi-
ble column counts are (4, 0), (0, 4), and (2, 2). But we can reduce the number of
classes from three to two if we relabel the eight points with one pair swapped, as
follows:

Ci=A D, :=B;
C=~A D, =B,
Cs=Ag D; := B;
Cy:=B, D, =

Intermsof the C and D labels, the coplanar sets are those that consist of one point
from each row and an odd number from each column. So the possible column
countsare (3, 1) and (1, 3) — that is, the eight sets have theform {C;, C;, C, Dy}
and {D;, D;, Dy, G}, for {i, j, k, 1} = {1, 2,3, 4).

Thus, we have a C-tetrahedron and a D-tetrahedron with the property that, for
each| in[1.. 4], the vertex D, lies on the face plane of the C-tetrahedron that is
opposite the vertex C;, and vice versa. Two tetrahedra positioned in thisway are
called a Mobius pair, that configuration being one of the ones studied in class-
cal projective geometry [21]. The Mobius pair matroid B, » isour third example,
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along with the complete quadrilateral B, ; and the Pappus configuration By 1 1, Of
abudget matroid whose representations are aready famous on other grounds.
The eight coplanaritiesin a Mobius pair have a redundancy of much the same
sort as the nine collinearities in a Pappus configuration: If any seven of the eight
coplanaritieshold, the eighth must hold aswell. (We review the proof of this stan-
dardresultin Section 6.1.) Because of thisredundancy, it costs only seven degrees
of freedomto makeall eight coplanaritieshold, sowehave #(B, ) = 24—7 = 17.

Exercise 4.3-1 Construct an explicit Mobius pair in Euclidean 3-space.

[One answer: Let the four A-points be the vertices of an equilateral triangle,
together withitscentroid, lying in some plane«. Notethat, whenever {i, j, k, |} =
{1,2, 3,4}, thelines A Ay and AcA in«a areorthogonal. Let the B-pointsform a
congruent figure, located in aplane 8 paralld to «, but rotated by ninety degrees.
Thelines Ai Ay and BB, will then be parallel, so the perfect set {A;, A;, By, Bi}
will be coplanar.]

Exercise 4.3-2 What automorphismsare there of the budget matroid By, . 1, ? For
simplicity, let’s restrict ourselves to cases in which all of the column budgets are
positive.

An automorphism must permute the bk elements of the ground matrix in such
away that the dependency of setsispreserved. We can aways permute the rows of
the ground matrix as wholes arbitrarily, so every budget matroid has b! automor-
phisms. In addition, we can clearly interchange any two columns that have the
same budgets. Call an automorphism trivial when it smply combines some per-
mutation of the rowswith some budget-preserving permutation of the columns. (If
wewere allowing zero column budgets, atrivial automorphism could al so permute
arbitrarily the elements of any column whose budget is zero.)

Show that each of the four budget matroids B, 1, By 1, Bi1.1, ad By, has a
nontrivial automorphism.

[Hint: For By 1, Swap one diagonal; for By 1, swap two of the three rows; for
By 11, cyclically rotate thei™ row i places; for B, ,, swap two of the four rows]

Exercise 4.3-3 Let By, ., beabudget matroidinwhichall of the column budgets
are positive and in which at most one of them exceedsb — 3; in particular, let’s say
thatb; > --- > by > 1andthat b, < b — 3. Note that this condition rules out
precisely the four budget partitions discussed in the previous exercise. Show that
all of the automorphisms of the matroid By, _p, aretrivial.

[Hint: Let'scall aflat of the budget matroid By, . 1, afull flat when it has rank
less than b and cardinality precisely b. Each perfect set isafull flat of rank b — 1
— that is, afull hyperplane. In addition, the b pointsin the j™ column form afull
flat of rank b; + 1. Those are the only full flats. The full flat formed by the first
column may be a hyperplane; but for any j in[2.. K], wehaveb; +1 < b —1,
so the full flat formed by the j* column is not a hyperplane. Hence, the elements
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of the j™ column must be mapped, as a set, to the elements of the j' column, for
some |’ with b; = b;.. Since every column except the first is mapped, as a set, to
some column with the same budget, that property must hold for the first column
also, by the process of elimination.

Now, consider some element &;. In any column other than the j™, the element
of that columnintheit™ row isuniquely distinguished by the property that there are
no perfect sets — and hence no full hyperplanes — that contain both that element
and g;. So the automorphism must transform the rows as wholes.]

433 Thepartition4d=2+1+1

The last two budget matroids of rank 4 are the ones that we shall spend much of
this monograph studying.

A representation of the matroid B, ; ; consists of twelve pointsin 3-space, for
which we shall use the column letters P, A, and B:

2 1 1
PP A B
P. A B
P A B3
Pa Ay By

The four P-points are coplanar; the four A-points are collinear, as are the four
B-points; and the twelve perfect sets, of theform {R;, P, Ac, B/} for {i, j. k, |} =
{1, 2, 3, 4}, are coplanar.

There are 36 degrees of freedom involved in choosing twelve arbitrary points
in 3-space. Each perfect coplanarity costs 1 degree of freedom. The coplanarity
of the four P-points also costs 1, while the collinearities of the A-points and the
B-points cost 4 each. Thus, if the perfect constraints and the column constraints
were all nonredundant, we would have #(B,;,) =36 —-12—1—-4—4 = 15.
In fact, we shall see later — by two different constructions— that #(B, ;1) = 19.
Thus, there are four dimensions' worth of redundancy among the constraints, up
from the one dimension’s worth in the Pappus and M 6bius-pair cases.

434 Thepartition4d=1+1+1+1

As we mentioned in Section 4.1, a representation of the budget matroid By 111
consists of sixteen pointsin 3-space:

AL B C D
A B C Do
As B3 C3 Ds
Ay By C4 Dg
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Thefour pointsin each column are collinear, while the 24 perfect sets are coplanar.

Choosing sixteen arbitrary points in 3-space involves 48 degrees of freedom.
Naively, we would expect the coplanarity of each perfect set to cost 1 and the col-
linearity of each column to cost 4, leaving only 48 — 24 — 16 = 8 degrees of
freedom. But, in fact, we shal find that #(By111) = 20. Thus, the redundancy
among the constraints amounts to a full twelve degrees of freedom — the highest
that we' ve seen so far. This high level of redundancy makes a representation of
By1.1.1.1 atightly interwoven geometric structure.

4.4 Budget minorsof budget matroids

Thereisanatural sense in which abig budget matroid haslots of little budget ma-
troids sitting inside it — as minors. If one budget matroid is a minor of another,
we'll call the former abudget minor. We'll state two ssmple results about budget
minorsin this section, though we shan’t prove them until Section 5.6, where we
can prove slightly more general versions with no more work.

Proposition 4.4-1 Eliminating azero part from the budget partition gives abudget
minor. That is, if M := By, _p, iSany budget matroid and we let M’ denote the
matroid M" := By, .. p.0, then M isaminor of M.

Exercise 4.2-2 provides an example of this: The complete quadrilatera B, ; is
a budget minor of the matroid B, 1, o. To get from the latter to the former, we
simply delete all of the elementsin the columns with zero budgets.

Proposition 4.4-2 Reducing the parts of the budget partition also gives a budget
minor, as long as at least two parts remain positive. That is, if M := By, ..
....b, aretwo budget matroids with by < bj’ fordljin[l..K], then M
isaminor of M'.

Thisismoreinteresting. For an example, let’s check that the complete quadri-
lateral B, 1 isabudget minor of the matroid Bs ;. Consider some representation

31
T A
L A
T3 Ag
Ts A4

of Bz 1, Sitting in 3-space. Suppose that we put our eye at some vertex T; of the
tetrahedron, and we look out at the six points that are not in the i row. The lines
through our eyeformthe‘ points' of aprojective plane. Theface of the tetrahedron
opposite the vertex T, projects down into atriangle in that plane, whilethe linea
projects down into a line. Since the points {T;, T;, Tx, A} are coplanar, for any
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{i, ],k 1} =1{1,2, 3,4}, thelinesT;T;, Ti Ty, and T; A/ are also coplanar — which
means that, in the plane of lines through T;, the projected images of the points Tj,
Ty, and A are collinear. So, what we see isa complete quadrilateral.

Thinking about the matroid Bg ; itself, rather than a representation of it, what
we have done is to contract the i element of the T column, while deleting the
other element of thei™ row. More generally, in the situation of Proposition 4.4-2,
we contract some by — b elementsof the j ™ column, for each j, chosen so that no
two contracted elements come from the same row, and we delete al of the other
elements of any row that contains a contracted element.

By the way, when working with budget minors, it may seem unfortunate that
we haverequired at |east two of the column budgets of a budget matroid to be pos-
itive. For example, what do we see if we put our eye at the point A4, inthe repre-
sentation of Bs ; above? Answer: The points Ty, T,, and T appear to be collinear,
while the points A, Ay, and Ag appear to coincide, but don’'t appear to lie on the
line through the three T’s. Thisis arepresentation of a perfectly respectable ma-
troid of rank 3, which it would be quite natural to denote Bz o. Let's say that an
all-or-nothing matroid is the matroid By, . 1, that results from a budget partition
in which precisely one part is positive, while al of the others are zero. We could
have defined the class of budget matroids to include the all-or-nothing matroids.
But doing so costs quite a bit in complexity, as the following exercise suggests —
enough that the costs seem to outweigh the benefits.

Exercise 4.4-3 Assamples of the complexities associated with the al-or-nothing
matroids, show that:

e For m > 1, the matroid B, has rank m — 1, rather than m.

e Form > 2, thematroid By, o hasrank m, al right, but it has #( By, 0) = m?—2
degrees of freedom, as opposed to the m? — 3 predicted by the formulain
Theorem 6.2-2, the By, , Representation Theorem.

4.5 Projective configurationsin the narrow sense

Lotsof the budget matroidsare representabl e, and their representationsareintrigu-
ing geometric structures. Since the study of projective configurations was once
quite a popular field, it is a bit surprising that the budget matroids weren’t well
studied long ago. One reason why the classica geometers may have overlooked
the budget matroidsis that they defined the term ‘ configuration’ more narrowly
thanwe. Aswediscussin thissection, they required aconfiguration to have ahigh
level of symmetry, at least in a certain numeric sense. The budget matroids don’t
have that symmetry, and that may explain why they were overlooked.

Actually, whether aconfiguration does or does not have a certain symmetry can
depend upon how we interpret that configuration. The budget matroidsdon’t have
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the required numeric symmetry when they are interpreted in the obvious way. But
Jorge Stolfi came up with a devious way to reinterpret a budget matroid, thereby
converting it into a structure that does meet the classical definition of aprojective
configuration. We'll discuss Stolfi’s trick in this section aso. Keep in mind that
the Stolfi Trick is mostly of historical and nomenclatural interest. Applying the
Stolfi Trick to a budget matroid obfuscates its structure, and that generally isn't
helpful. But it isworth noting that the classical demand for numeric symmetry did
not dam the door completely on the budget matroids; there was still atiny crack
through which they could have dipped.

451 Therequired numeric symmetry

What isa‘configuration’, in the narrow sense? Classically, an arrangement in the
planeinvolving p pointsand q linesiscalled aconfiguration of type (pr, gs) if each
of the p pointsliesonr of the linesand each of the g lines passes through s of the
points [20]. Note that the four parameters p, g, r, and s must satisfy pr = gs,
since both of those products count the total incidences between points and lines.
For example, a complete quadrilateral has six points, each lying on two lines, and
has four lines, each passing through three points; so it is a configuration of type
(65,43) —andwehave6-2=4-3=12.

In aspace of any dimension, we can speak of a configuration of points and hy-
perplanes of type (pr, gs). Consider 3-space, for example. A Mobius pair of tetra-
hedrais a configuration of points and planes of type (8;, 8;): eight points, each
lying on four planes, and eight planes, each passing through four points. Classi-
cal geometry also talks about configurations of flats other than points and hyper-
planes, such as configurations of pointsand linesin 3-space. But a configuration
always involves flats of only two different dimensions, say small and large, with
every small flat lying on the same number of largeflatsand every largeflat passing
through the same number of small flats. There is no such thing as a configuration
of points, lines, and planesin 3-space, for example— at least, not in this classical
sense of the word * configuration’.

Unfortunately, the budget matroid By, ., involves noteworthy flats of various
dimensions. Each perfect set is mutually incident, its b pointslying on acommon

hyperplane, of dimension b — 2; thereare (,, b ) Such noteworthy flats. But the b

pointsin the j™ column also lie on a common flat, which is also noteworthy; and
itsdimensionisb;, whichistypically lessthan b — 2. That suggests that represen-
tations of budget matroids typically are not configurationsin the narrow sense.

452 TheStolfi Trick

But Jorge Stolfi realized that alittletrickery can get around this problem. We can
encode a column flat of dimension b; by using some number n; of hyperplanes.
Thesen; hyperplanesarein general position except that they all includethe column
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flat, and there are enough of them so that theintersection of all of them is precisely
the column flat.

What constraints are there on the numbers (n;)? Each hyperplane reduces the
dimension of their intersection by at most 1, sowemust haven; > b —b; —1,in
order toreducethe dimensionall theway fromb—1 downtob;. Ontheother hand,
thereis typically no upper limit on n;. But there are upper limitsin two special
cases. If bj = b — 1, so that the b pointsin the j™ column span the entire ambient
(b — 1)-space, we must have not only n; > O, but actually n; = 0. Similarly,
if bj = b — 2, so that the pointsin the j™ column lie in a common hyperplane,
we must have not only n; > 1, but actually n; = 1 — since we don’t want two
hyperplanes in our projective configuration to be required to coincide.

By the way, just as we don’t want two hyperplanes to be required to coincide,
wealso don’t want two pointsto be required to coincide; such athing would surely
havetroubled the classical projective geometers. Hence, weshall restrict ourselves
to budget partitions (b, .. ., bx) inwhich al of column budgets are positive.

How close are we to having a configuration of points and hyperplanes? The
hyperplane corresponding to each perfect set contains precisely b points. Each of
then; hyperplanesthat we are using to encodethe j™ column flat also contains pre-
cisely b points: the b pointsin the j! column. So we arein pretty good shape. All
that remainsisto arrange that every point lies on the same number of hyperplanes,
and we can do that by choosing the counts (n;) appropriately.

In fact, we can typically choose the counts (n;) in an infinite variety of ways
and till do that. Consider the budget matroid Bs 3 5, for example— let’s optimisti-
cally assume that this matroid is representable, sitting in 8-space. Applying the
Stolfi Trick, each point inthefirst columnliesinthen; hyperplanesthat encodethe
first column’s 5-flat, aswell asin ( i 1) = 280 of the hyperplanesthat correspond
toperfect sets. Each point inthesecond columnliesinn, column hyperplanes, plus
(s5,) = 168 of the perfect hyperplanes. And each point inthe third column liesin

nz column hyperplanes, plus (52 0) = 56 perfect hyperplanes. To achieve there-
guired numeric symmetry, it sufficesto arrangethat n;+280 = n,+168 = n3+56,
subject to the side conditionsn; > 3, n, > 5, and n3 > 7. The solution isto set
Ny := m+ 3,n; := m+ 115, and n3 = m + 227, for any nonnegative integer
m. Thus, we can view a representation of Bs 31 as a configuration of points and
hyperplanesin 8-space of type (27m 283, (3m + 849),), for any nonnegative m.
For abudget matroid By, .. b, inwhich no column budget b; exceedsb — 3, this
process cannot fail, since the side conditions put only lower bounds on the counts
(n;). Butif bj > b — 2 for some j, we have to analyze more carefully, because
some of theside conditionsarethen equalities. The casesthat requireextracareare
all contained in the three families By_1 1, By—22, and By_2 1.1, and those families
are dealt with in the first three exercises below. So we conclude the following.

Proposition 4.5-1 (Stolfi Trick) Letb = by +- - -+ by beany partition of theinte-
gerbintoat least two positive parts. Thereexistsat least onesequence (ny, . . ., Ny)
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of nonnegative countswith the property that arepresentation of the budget matroid
By,....n 1N (b — 1)-space can be interpreted as a projective configuration of points
and hyperplanes in the narrow sense by the trick of encoding its j ™ column flat as
the intersection of n; otherwise unconstrained hyperplanes.

Exercise 4.5-2 For any b > 3, show that there are unique column counts n; and
n, that make the Stolfi Trick work for the budget matroid B,_; ;. Thecaseb = 2
worksalso, inasense, but it isadelicate matter to discuss a configuration of points
and hyperplanesin the line, where hyperplanes are the same things as points.

[Answer: The counts n; and n, must satisfy therelationn; +b—1=n,+ 1
and the side conditionsn; = 0 and n, > b — 2. In addition, when b < 3, theside
condition n, > b — 2 tightens to the equality n, = b — 2. But n, works out to be
n, =b—2inany case]

Exercise 4.5-3 For any b > 3, show that there are unique column counts n; and
n, that make the Stolfi Trick work for the budget matroid B,_» ».

[Answer: We must satisfy therelationn; + (b— Db —-2)/2=n,+b -1
and the side conditionsn; = 1 and n, > b — 3. In addition, when b < 4, theside
condition n, > b — 3 tightensto the equality n, = b — 3. Solving, we find that
n, = (b—2)(b— 3)/2, whichisatleast b — 3 for al integersb and equalsb — 3
forb=30rb=4]

Exercise 4.5-4 For any b > 3, show that there are unique column counts ny, ny,
and ng that make the Stolfi Trick work for the budget matroid By 5 1 1.

[Answer: We must satisfy therelationn; + (b—1)((b—-—2) =n,+b -1 =
n3+b—1and theside conditionsn; = 1,n, > b—2,and n; > b—2. Inaddition,
when b = 3, the side conditionsn, > 1 and n3 > 1 tighten to the equalities
n, = nz = 1. Solving, wefind that n, = n3 = (b —2)?, whichisat least b — 2 for
al integersb and equalsb — 2 = 1whenb = 3]]

Exercise 4.5-5 For example, suppose that we use the Stolfi Trick to interpret a
representation of the budget matroid B, 1 1 as aconfiguration in the narrow sense.
What do we get?

[Answer: a configuration of points and planes in 3-space of type (127, 214).
We haven; = 1 and n, = n3z = 4, so each of the two column linesis encoded as
the intersection of four planes.]






Chapter 5

The budgetary matroids

In the budget matroids, the j™ column budget by is used for two purposes: as the
dimension of the common flat in which all of the points of the j™ column must lie
and as the number of points from the j™ column that any perfect set must contain.
Those two parameters of the j™ column don’t have to be the same; but the cases
in which they are the same seem to have the most intriguing geometric properties.

We shall reserve the name * budget matroid’ for those cases in which those two
parameters of each column arethe same. We shall use the clumsy term * budgetary
matroid’ for the more general situation in which those two parameters of each col-
umn arefairly independent. The budget matroids are an interesting subclass of the
budgetary matroids — interesting because so many of them are representable.

In this chapter, we generalize from the budget matroids to the budgetary ma-
troids, but we then argue, by looking at a dew of examples, that the budgetary
matroidsare pretty boring. If you get really bored, remember that our study of the
budget matroids in genera picks up again in Chapter 6, while Chapter 8 iswhere
we prepare for the study of the budget matroid B, 1 1 in particular.

5.1 Theparametersof abudgetary matroid

To define abudgetary matroid, we need both some partitionb = b; +- - - + b, of a
total budget b into k column budgets (b, . . ., by) and also a separate sequence of

.....

to involve bk points:

& d de
by by by
En En Eix
Exn Ex» Eox
Epi En2 Epk
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The column budget b; isthe number of pointsfrom the j™ column that any perfect
set must contain; so the number of rows in the matrix of pointsis till the total
budget b and the number of perfect sets is sl (,, b »)- The new parameter dj,
which we shall call the j™ column dimension, is the dimension of the span of the
b pointsin the j™ column. A budget matroid is a budgetary matroid in which the
dimensions equal the budgets, sod; = b for all j.

What constraints should we place on the parameters (d;) and (b;), the dimen-
sions and the budgets? Let's study that question starting with a blank date. In
particular, let’stry to justify why, when defining the budget matroids, we required
at least two of the column budgetsto be positive.

Firgt, if the total budget b were zero, then the empty set would be perfect and
hence dependent, which would violate the Empty-Set Axiom. We want to end up
with amatroid, so we requirethat b be positive, which impliesthat k must be pos-
itiveaswell.

Forany j in[1..K], theb pointsinthe j" column of the matrix can’t possibly
span aflat of dimension greater than b — 1. We want the parameter d; to measure
the dimension of that span; so we requirethat d; < b, for al j.

Inthe opposite direction, how small avalue of d; ispermissible? If d; < b; —1
for any j, the whole notion of aperfect set becomesirrelevant. In order to be per-
fect, aset hasto contain b; elementsfromthe j™ column. But any set that contains
morethand, +1 elementsfrom aflat of dimensiond; isalready dependent, onthose
groundsalone— so, when d; + 1 < by, the constraint on perfect sets never comes
into play. For example, suppose that we start with the complete quadrilateral

which isthe budget matroid B3 ]. (Notethat each column isnow headed with both
itsdimension and its budget.) What would happen if we reduced the dimension d;
for the first column from 2 to 0? The resulting structure, if it were legal, would be
caled B37. In arepresentation

of this structure, the three pointsin the first columnwould haveto liein acommon
O-flat, that is, would have to coincide: P, = P, = P;. Once that was true, a per-
fect set such as {Py, P>, Ag} and anon-perfect set such as{Py, P., A;} would both
be dependent, and for the same reason, so the essential character of the budgetary
matroidswould be lost. Wetherefore requirethat d; > by — 1, for all j.
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We now pause to consider a special case. Suppose that all of the column bud-
gets other than the j™ are zero, so by = b; we called this the all-or-nothing case,
in Section 4.4. Theconstraint d; > by — 1 thenimpliesthat d; > b— 1. But, when
b, = b, the b elementsin the j™ column form a perfect set — indeed, they form
the unique perfect set. They are hence dependent, so the most that they can doisto
span aflat of dimension b — 2. Wewant d; to measure the dimension of that span,
which contradicts the inequality d; > b — 1. We respond to this contradiction by
outlawing the all-or-nothing case; we require that b; < b for al j, which means
that k > 2 and that there are at |east two columns with positive budgets.

Returning to the main thread, we are already requiring that d; > b; — 1, for
al j; butif d, =b; — 1forany j, theresulting structure typically isn’t a matroid.
Since we want matroids, we shall actually require the stronger inequality d; > by.
For an example of what goeswrong if we don't, suppose that wetried to reduce the
dimension dy in the complete quadrilateral from 2 to 1, getting the structure B} 1:

Theonly effect of reducing d; from2to 1 isto makethethree P-pointsbe collinear,
that is, to make the set { Py, P,, P3} dependent. Thesets X := {P;, P} andY =
{P,, P3, A} are independent in the original matroid B3, and they remain inde-
pendent when d; is reduced, since neither X nor Y containsall three P-points. In
order for the Augmentation Axiom to hold, there must exist some element of Y
that we can add to X without destroying independence. But there is no such ele-
ment: Theelement P, isin X already, theset XU {Ps;} = {Py, P>, Ps} isdependent
becaused; = 1, andtheset XU{Ag} = {P1, P>, Ag} isdependent becauseitisper-
fect. Analogous examples of sets X and Y can be constructed in amost al cases
inwhichd; = b; — 1for some j, as shown in Exercise 5.1-1.

In summary, we henceforth require the following: There must be at least two
columns with positive budgets and, for al j, the column dimension d; must liein
the left-closed, right-open interval [b; .. b).

Exercise 5.1-1 Givencolumndimensions(dy,) and budgets (b,,) withd,, > by,—1

.....

Augmentation Axiom.

Asfor the side conditions0 < b; < b, we are already requiring that b; < b.
Thecaseb; = Oandd; = —1 doesnot cause aviolation of thematroid axioms, but
we are going to outlaw that case anyway, just to smplify things. If we did make
it legal to set d; to —1 when by was O, doing so would force all of the points in
the j™ column to be indeterminate — that is, in the resulting matroid, all of those
elements would be loops.
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[Hint: Let P be any perfect set, let i and i’ be row indices with the property
that E;; isin P but E;; isnot, and let j” be the unique column index with E;j, in
P. It sufficestotake X .= P \ {Ei/j/} adY =PU {Ei/j} \ {Eij }]

5.2 Thede€finition

The budgetary matroids are just like the budget matroids, except that, in defining
independence, the Column Rule talks about the column dimension d;, rather than
the column budget b;. Let’s spell everything out, though, to avoid any confusion.

Let (by, ..., by) beany nonnegativeintegersof which at least two are positive,
let b — the total budget — denotethesumb :=b; + - - - + by, and let d;, for each
j in[1..K], beany integer inthe half-open interval [by; . . b). We hereby define the
budgetary matroid Bf~, which has, for each j, the budget bj and the dimension

d; associated withits j™ column. The elements of the ground set are the entries of
ab-by-k matrix

i d di
by by by
€1 €1 ... €
€1 €»n ... €ex
e : . . . . ’
&1 G2 ... 6ok

which we shall refer to as the ground matrix. We define a subset X of the ground
matrix e to be perfect when X contains precisely one element from each row and,
for each j, contains precisely b elementsfrom the j™ column. A subset X of eis
independent when it has the following three properties:

Ambient Rule X contains at most b elements overall;

Column Rule X containsat most d; + 1 of the b elementsin the j™ column, for
each j in[1..Kk]; and

Perfect Rule X has no perfect subsets.
In the special case in which the budgets and the dimensions are equal — that

.....

matroid, and we shall omit the dimensionswhen we writeit: By, . p = BEi:::::bk.

Let's consider B3 asa simple example of a budgetary matroid. It isjust like
the complete quadrilateral B, ;, except that the dimension d, associated with the
second column has been increased from 1 to 2. A representation of the matroid

B3 consists of six points
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in the plane, where the three perfect sets are required to be collinear, but the three
A-points are forbidden from being collinear. So we have atriangle A P, P, P, to-
gether with three noncollinear A-points, one on each side of the P triangle. Note
that relaxing the collinearity constraint on the A-points gives us back one degree
of freedom: While #(B27) = 8, we have #(B5?) = 9.

Exercise 5.2-1 Given some complete quadrilateral Q, whose six points represent
the budget matroid B, 1, describe what three points must be added to Q in order to
represent each of the budgetary matroids B3 and B3 7.

[Answer: In the first case, the three new points must be collinear, but no two
may coincide; in the second case, they must not be collinear. In both cases, the
threenew pointsmust liein the same plane asthe quadrilateral Q, but none of them
may lie on the line determined by any two points of Q and the line determined by
any two of them must not pass through any point of Q.]

5.3 Theyreally are matroids

Itisfinally timeto verify that the budgetary matroids— and among them, the bud-
get matroids— really are matroids.

Proposition 5.3-1 Letb = by + - - - + by be apartition of the total budget b into
nonnegative, integral column budgets (b;), at least two of which are positive. For
each j in[1. .K], let the column dimensiond; liein the half-openinterval [b; . .b).
For eachi in[1..b], let R denotethei row of the b-by-k ground matrix e :=
(&]))ic[1.b.jer1.kq, @nd, foreach j in[1..K], let C; denoteits j™ column. We say
that a subset X of the ground matrix e is perfect when

o [ XNR|=1fordliin[l..b] and

o [XNCj|=bforaljin[l..K.
Finally, we say that a subset X of e is independent when:
Ambient Rule | X| < b;
ColumnRule [ XN G| <dj+1,foral jin[l..K]; and
Perfect Rule X has no perfect subsets.

The ground set e, when equipped with this family of independent subsets, formsa
matroid, which we denote Bi- k.
Proof The Empty-Set Axiom is easy: The empty set has zero elements overall,
zero elementsin each column, and is not perfect, so it satisfies al three rules.
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The Subset Axiom is also easy. Deleting an element from an independent set
doesn’'t increase the number of elements overall, doesn’t increase the number of
elementsin any column, and doesn’t add any new subsets that might be perfect.

The hard part is verifying the Augmentation Axiom. It is helpful to introduce
some nomenclature. Given some set X C e, we call thei™ row of X empty when
XN R = ¢, andwe cal the j' column of X

o tightwhen | X NG| =d +1;
e snugwhen |[X NG| € [b;..d];
e loosewhen | X N Cj| < by; and
e baggy when [XNCj| < b — 1.

With this nomenclature, the Column Rule says that, for every j, the j™ column of
X iseither tight, snug, or loose. Some of the loose columnsmay actually be baggy.
Notethat, if aset X haseither somerow that isempty or some column that isloose,
then X can’'t have any perfect subsets, so X satisfies the Perfect Rule.

Let X and Y be independent sets with |Y| > | X|. We want to find an element
e; inY \ X that can be added to X without destroying independence. We have
|X] < Y] < b, so adding any single element to X won't cause the augmented X
to have too many elements overal, and hence to violate the Ambient Rule. But
we must choose the new element with some care, lest the augmented X violate the
Column Rule or the Perfect Rule.

We are going to consider five cases, in sequence. At the outset, note that there
must be at least one column of X that isloose, since | X| < b.

Case 1: Suppose that, for some j, the j™ column of X is snug and the j*
column of Y contains some element that isn't in X; that is, suppose that b; <
XN Gj| < dj andthat (Y \ X)NCj # @. Inthiscase, we can choose any element
in (Y \ X) NC; and add that element to X without destroying independence. The
i column of X either remains snug or becomes tight, so the Column Rule still
holds. And any column of X that was |oose — and there was at |east one such —
remainsloosein the augmented X, so the Perfect Rule also holds.

In what follows, we can assume that the first case does not pertain; that is, for
every j for which the j™ column of X issnug, we have (Y \ X) N Cj = ¢, which
impliesthat [Y N Cj| < [XNCj|. SoY iseither snug or loose in such columns.
On the other hand, if the j™ column of X istight, we have |[X N Cj| = d; + 1 and
Y NG| < d + 1, thelatter because Y isindependent. But Y has more elements
than X overal. Therefore, for one or more columns j where X isloose, we have
Y\ X)NC #4.

Case 2: Suppose that X has two loose columns. We choose a column m of X
thatislooseandinwhich (Y\ X)NC,, # @, andweadd any element of (Y\ X)NCy,
to X. Adding an element to aloose column certainly doesn't violate the Column
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Rule. The Perfect Rule holds because, while we may be moving the m" column
fromlooseto snug, thereis some other column of X that wasloose and that remains
loose.

Case 3: Thiscaseisvery similar to Case 2. Supposethat X has only oneloose
column, them™, but that columnisactually baggy. Wemust have (Y \ X)NC, # @,
so we add any element of (Y \ X) N Cp, to X. The m" column remains loose even
after the augmentation, so both the Column and Perfect Rules hold.

Inwhat follows, we can assume that none of thefirst three cases pertains. Thus,
thereis precisely one column that isloosein X, say the m™, but this column is not
baggy. It follows from this and the constraint | X| < b that, infact, [ X| = b — 1,
IY| = b, and, foral j # m, wehave |[X N Cj| =bj and (Y \ X) N Cj = ¥.

Case 4: Suppose that, in the m™" column, Y has at least two elements that X
doesn’'t have; that is, |(Y \ X) N C| > 2. Since | X| = b—1, weknow that X has
at least one empty row; choose one of them. Because we have at |east two elements
of Y \ X inthem™ column to pick from, we can find oneto add to X that does not
spoil our chosen empty row.

Case 5: In theremaining case, we can assume that Case 4 also failsto pertain,
whichmeansthat |(Y \ X) N Cp| = 1. Since|(Y \ X) N C;| = Oforall j different
fromm, wededucethat |Y \ X| = 1. Sinceweaso have|Y|— |X| = 1, it follows
that X C Y. We can hencetaketheuniqueelement of Y\ X and add it to X without
destroying independence. O

54 Weakeningtherulesfor independence

Given column budgets (b;) and dimensions (d;), the budgetary matroid Bgi:::::bk
arises out of the interplay among the three rules that define the notion of indepen-
dence: the Ambient Rule, the Column Rule, and the Perfect Rule. In this section,
we attempt to justify those three rules by considering what would happen if we
omitted one of the three.

What would happen if we kept the Ambient and Perfect Rules, but dropped the
Column Rule? Then, every set with less than b elements would be independent,
every set with morethan b elements would be dependent, and, among the setswith
b elements, precisely the perfect setswould be dependent. Notethat, if aset X has
b — 1 elements, there is at most one perfect set that includes X. From this aone,
it is straightforward to check that the resulting structure would be a matroid of a
standard type, called a paving matroid [39].

If we kept the Ambient and Column Rules, but dropped the Perfect Rule, we
would again get a matroid of a standard type: atruncation of adirect sum of uni-
form matroids [40].

So what about omitting the Ambient Rule? Since the Ambient Rule was ar-
guably the least well motivated of the three rules to begin with, it is particularly
interesting to study what happenswhen we omit that rule— or perhapsjust weaken
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it somewhat. We'll call aweakened version of the Ambient Rule successful when
the structure that results from the Column Rule, the Perfect Rule, and that weak-
ened Ambient Ruleis still a matroid.

If we weaken the Ambient Ruletoo far, welose al hope of being successful. In
particular, whenever thetotal budget bisat least 3, thereare some setsof sizeb+1
that satisfy both the Column Rule and the Perfect Rule but that must be classified
asdependent, in order for the resulting structureto beamatroid. To construct such
h be any three elements of P with f and g in different columns. Let f’ be the
element that isin the samerow as f and the same column as g, and let g’ be the
fourth vertex of that rectangle. Consider applying the Augmentation Axiom to the
sets X .= PU{f'}\{glandY := PU {f’,d} \ {h}. Here are pictures of what
thesets P, X, and Y might look like, with the budget partition (by, b;) = (2, 1):

2 1

G (e () ()

We have | X| = band |Y| = b+ 1. Neither X nor Y has any perfect subsets,
since each has an empty row. And both X and Y satisfy the Column Rule, since
d, > b forall j. So, if we weaken the Ambient Rule far enough, the set Y will be
independent, as well as X. But adding either of theelementsof Y \ X = {g, '}
to X resultsin a set that has a perfect subset, and hence violates the Perfect Rule.
If we want to satisfy the Augmentation Axiom, we must preserve enough of the
Ambient Rule to classify the set Y as dependent.

When the parameters (b;) and (d;) satisfy bj = d; > Oforall j — that is,
for those budgetary matroids that are budget matroids and all of whose column
budgets are positive, which arethe cases of primary interest — much moreistrue:
There is no way to weaken the Ambient Rule at all and till be successful. To see
this, recall from Exercise 4.2-4 that the circuits (the minimal dependent sets) of the
budget matroid By, _p, are of three types:

1

O
<<
<< e

.....

perfect circuits the perfect sets,
column circuits the subsets of column j of sizeb; + 2, and

ambient circuits those sets of size b+ 1 that do not include, as a subset, any per-
fect circuit or column circuit.

Let’s refer to the perfect and column circuits as the key circuits, since they will
remain circuits, even if the Ambient Rule is somehow weakened. Suppose that
M is some other matroid on the same ground set as the budget matroid By, _p,,
and suppose that all of the key circuits of By, 1, arecircuitsalsoin M. Asthe
next exercise shows, it follows from those assumptions alone that the rank of M
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isat most b. Hence, in these cases, weakening the Ambient Rule however dlightly
would mean that we would no longer have a matroid.

Exercise 5.4-1 Show that the Ambient Rulecan’'t be successfully weakened when
bj =d; > Oforall j. Inparticular, let M be any matroid whose ground set isthe
ground matrix of the budget matroid By, . . Show that, if every key circuit of the
matroid By, 1, isacircuitalsoin M, thentherank of M isat most the total budget
b=Db; + -+ by

[Hint: Let P beany perfect set, let | be any columnindex, let f be an element
of the j™ column that belongs to P, let g be an element of the j™ column that
does not belong to P, and let X denotetheset X := P U {g} \ {f}. Because
| X| = b, it sufficesto show that al of the elements of the ground matrix elieinthe
flat Span(X), where that span is computed in the matroid M. Since the perfect set
Pisacircuitin M, theelement f dependsontheelementsintheset P\ {f}, which
isasubset of X; hence, f liesin Span(X). Theset X U {f} = P U {g} exceeds
the dimension for the j™ column by precisely 1; it follows that every element of
the j™ column depends on some subset of X U { f}, and hence lies in Span(X).
Show next, by considering new perfect sets, that every element in the same row
as f belongsto Span(X). Concludethat, infact, al of the elements of the ground
matrix e must belong to Span(X).]

Exercise 5.4-2 Show that the Ambient Rule can be successfully weakened, even
when by = d; foral j, if at least one of the column budgetsis zero. In particular,
after reviewing Exercise 4.2-2, consider those matroids M on the same ground set
as the budget matroid B, 1.0.0....0 and with the property that every key circuit of
B2.1.00...01sacircuitalsoin M. Find such amatroid M whose rank is 1003.

[Hint: Put the points Z3 through Zi0, in genera position with respect to the
plane of the complete quadrilateral.]

Exercise 5.4-3 Show that the Ambient Rule can sometimes be successfully weak-
ened, even when b; is positive for al j, if the dimensions (d;) aren’t equal to the
budgets (byj). In particular, consider the budgetary matroid B 73, whose key cir-
cuits are precisely the six perfect sets. Find a matroid M of rank 4 on the same

3-by-3 ground matrix
2 2 2
1

11
AL B C
A B G
As By GCs
2

as B2 inwhich all six of those perfect sets are circuits,

[Hint: Let the circuits of M be precisely the perfect sets, the 2-by-2 subma-
trices, and the unions of arow and a column. To check that M is a matroid, we
can either verify the circuit-based axioms for a matroid or — probably easier —
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Figure5.1: A representation in 3-space of amatroid of rank 4 that has, as circuits,
al six of the key circuits of the budgetary matroid B3 73. (Imagine the points A

and Az as being above the plane of the paper, while B, and C, are below it.)

construct a representation. To do the latter, letrq, ro, and r3 be three skew linesin
3-space and let 51, S, and s3 be three of their common transversals, as shown in
Figure5.1. (We are going to study this configuration of nine points and six lines
in Section 9.3, wherewecadll itagrid.) Weset A :=r;Ns, B :==rj;1Ns_1,and
C:=r_i1nNnsyforiin[l.. 3], whereall subscripts areinterpreted modulo 3.

By the way, amatroid theorist [42] would think of thismatroid M asthedual of
the cycle matroid of the compl ete bipartite graph K3 3. The nine edges of the graph
K3 3 correspond to the nine pointsin Figure 5.1, while its six vertices correspond
to thethreelines (r;) and the threelines (s).]

5.5 Therepresentability of budgetary matroids

What makes the budget matroids interesting, as a subclass of the budgetary ma-
troids, isthat so many of them are representable. Turning that statement around,
what makes the budgetary matroids boring — at least, to a geometer — isthat so
few of them arerepresentable. Our goal in thissectionisto report on some numeric
experimentsthat support that latter claim.
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To introduce those numeric experiments, let’s take each of the example bud-

.....

.....

the columns by various amounts. We shall refer to a matroid of the form Bgi;;;:bk,
whered; > b, forat leastone j in[1..K], asabudgetary relaxation of the budget
matroid By, . Warning: The term ‘relaxation’ has a technical meaning in ma-
troid theory that is similar in spirit to this, but is definitely not the same concept;
see Exercise 5.5-1.

The matroid By ; = Bp doesn't have any budgetary relaxations, so there is
nothing to say.

Asfor the complete quadrilateral B, ; = B57, the only way to get abudgetary
relaxationisto raisethedimension d, from 1 to 2. Aswediscussed in Section 5.2,
arepresentation of thebudgetary relaxation B3 % consists of atriangletogether with
one point on each of its sides, and we have #(B2%) = 9.

The Pappus configuration By 1 1 isamoreinteresting case. Startingfrom By 77,
we can raise either one, two, or al three of the column dimensions (d;) from 1 to
2, and the results are as follows:

1)=10  #(Br)=1

D=1 #B)=12

Recall that the Pappus configuration By'7'; itself has nine collinearities, but they
are redundant: Requiring any eight of them forces the ninth to hold as well, by
Pappus's Theorem, so we have #(B771) = 18 — 8 = 10. If werelax asingle col-
umn dimension from 1to 2, theresulting budgetary matroid B7'1'7 requireseight of
the Pappian collinearities, but forbidsthe ninth, and henceisnot representable over
any field. Indeed, in matroid theory, therelaxation B1 1§ iscalled non-Pappus, and
it serves as astandard example of a matroid whose unrepresentability has nothing
todowiththe characteristic of thefield of scalars. If werelax two or threecolumns,
however, the matroidsreturn to representability; thereis no redundancy, so the de-
grees of freedom are easy to count.

551 Thepartition4=3+1

Movingontorank 4, recall that arepresentation of the budget matroid B3 ; consists
of the four vertices of atetrahedron in 3-space, together with the four pointswhere
alinecutsitsfour faces. Recall also that #(Bs 1) = 16.

What happensiif we raise the dimension d; of the budget matroid B; 1 = B3 7,
to get a budgetary relaxation? There are no redundancies among the constraints,
so all possible relaxations are representable and counting the degrees of freedom
iseasy. If we relax the constraint on the four points of the second column from
collinearity to coplanarity, the cost of that column constraint goes down from 4 to
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1, so the overall freedom goes up to #(B32) = 19. If we let the four pointsin the
second column points span the entire ambient 3-space, we have #(B3?) = 20.

55.2 Thepartition4=2+2

Recall that arepresentation of the budget matroid B, ; consists of theeight vertices
of aMobius pair of tetrahedra. Recall also that the eight coplanarity constraintson
those eight points are redundant: If any seven of the eight coplanarities hold, the
eighth must hold aswell. Sowe have #(B,,) =24 — 7 = 17.

Our choices, in making a budgetary relaxation, are to increase either one or
both of the column dimensions from 2 to 3. If we increase just one of them, the
resulting matroid B33 is unrepresentable, since it requires seven of the Mobius-
pair coplanarities, while forbidding the eighth. So we have #(B33) = L. If we
increase both, the six coplanarity constraints remaining in the relaxation 83:3 are
nonredundant, and we have #(B33) = 24 — 6 = 18.

553 Thepartition4d=2+1+1

Recall that arepresentation of the budget matroid B, ; 1 consists of twelve points

2 1 1
PP A B
P. A B
P; A B3
Pa Ay Bg

in 3-space. Recall aso that anaive count of the degrees of freedom would |ead one

to guessthat #(B,11) = 36 — 21 = 15, whilethetruth isthat #(B, 1) = 19.
This high level of redundancy among the constraints causes lots of the bud-

getary relaxations of the budget matroid B5 7'} to be unrepresentable. Hereiswhat

seems to be the situation:

#(By11) =19  #(Bjr7) =1
#Br) =1  #(Byy) =1L
#B31) =1  #(B313) =20
#Bory) =22 #(By1)) = 22
#(Bz1) =1  #(B17) =23
#Bora) =23 #(By) = 24

Warning: The number 19 and the five unrepresentabl e cases arefacts, proved later
in this monograph (Theorem 7.3-1 and Exercises 7.2-2 and 7.2-4). The numbers
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in the other six cases are the authors educated guesses, supported by numeric ex-
periments— hence the use of the dotted equal sign* =".

Assuming that all of the numbers are correct, what do they mean? The find
relation #(B33;) = 24 tells us that 24 degrees of freedom remain if we require
only the 12 perfect constraints, so those 12 constraints are nonredundant. 1f we add
to those 12 the congtraint that any single column be coplanar, the freedom drops
to 23, so the new constraint is also nonredundant: #(B5373) = #(B557) = 23.

Oncethefour P-pointsare coplanar, however, atheorem of projective geome-
try comesinto play: When thetwelve perfect coplanaritieshold and the P column
is coplanar, Theorem 7.2-1 tells us that the A and B columns must have spans of

the same dimension. It follows that the budgetary relaxations B57%, B513, and

B>2$ are unrepresentable. Also, if we requirethe P and A columns to be copla-
nar, the B column isforced to be coplanar as well; thus, the freedom for the case
#(B227) is 22, rather than 21. Considering this case naively, one might suspect
that, given the perfect coplanarities, the three column coplanarities are mutually
redundant, with any one following from the other two. But coplanarities are quar-
tic equations on the homogeneous coordinates, not linear ones; so naive reason-
ing about redundancy can fail. It turns out that requiring both the A and the B
columns to be coplanar does not force the P column to be coplanar: Instead of
having #(B37%) = L, we have #(B375) = 22. That is, suppose that we require
the perfect coplanarities and the coplanarities of the A and B columns. The re-
sulting system of 14 quartic equations seems to define a reducible variety with at
least two components of dimension 22. Throughout one of those components, the
P column is also coplanar; but the P column is not coplanar at a generic point of
another of those components.

We havethree budgetary relaxationsof B, ; ; leftto consider, inall of whichthe
P points are not coplanar. It costs four degrees of freedom to make the A-points
collinear, and those four constraints are independent of the twelve perfect con-
straints; so, if that is al that we require, we have #(B5135) = 20. But Exer-
cise 7.2-4 shows that, once the A-points are collinear, requiring the B-points to
be coplanar — which would naively reduce the freedom to 19 — either forces
the B-points to be collinear and the P-points to be coplanar or else forces some
degeneracy. So the two remaining relaxations are unrepresentable: #(B371) =

#(B513) = L.

Exercise 5.5-1 Let M be amatroid and let X be a subset of M that is both acir-
cuit and a hyperplane. So X itself is dependent, every proper subset of X isin-
dependent, no element not in X liesin Span(X), and | X| = rank(M). It iswel
known [38] that we can build amatroid M’ that differsfrom M only in that the set
X isindependentin M’ — and hence X isabase of M’. The processof going from
M to M’ is called relaxing the circuit-hyperplane X. For example, the budgetary
matroid B3 7' istheresult of relaxing thecircuit-hyperplane{ Py, P, Ps, Ps} inthe
bUdget matroid BZ,l,l-
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.....

.....

some set of circuit-hyperplanes?

[Answer: Only occasionaly, because the j™ column of the budget matroid
Bu,,...b 1S @circuit-hyperplane only when by = b — 2. That relationship holds
only for thefirst columns of By, » and B, 1.1, for any positive m. (It holds also for
the second columns of B, ; and B, , and for all three columns of B, 1 1, but those
cases are symmetric.)]

554 Thepartitiond=1+1+1+1

Recall that arepresentation of the budget matroid B; ; ;1 1 consists of sixteen points
in 3-space:
1 1 1 1
A BB C D
A, B C D
As Bs C3 D3’
Ar By C4 Dg

Thefour pointsin each column are collinear, while the 24 perfect sets are coplanar.
A naive count of the degrees of freedomwould lead oneto guessthat #(B;111) =
48 — 40 = 8, while the truth — at least, over the complex numbers — is that
#(B1.1.1.1) = 20. So the redundancy accountsfor 12 degrees of freedom.

The more redundancy there is among the constraints of a budget matroid, the
morelikely it isthat a random budgetary relaxation of that matroid will be unrep-
resentable. Hereiswhat seems to be the story for the matroid By 1.1.1:

#(Br111) = 20

#(Br111) = L

#(Br111) = L

#(Br717) =L

#(Br171) = L

#(Br171) = L

#(Briry) =1  #(Biiin) =21

#(Brity) =1  #(Biiin) =L

#(Bri1l) =1 #(Bii1) =22

#(Brity) =L  #(Bii11) =23  #(Biiyy) =24

Warning: Only thefirst six linesin thistable are proven facts (Proposition 10.1-2
and Exercise 5.6-3); therest merely report on the authors' numeric experiments—
but let’s view the entire table as correct, in the following paragraph.
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The last line #(B}353) = 24 implies that the 24 perfect constraints them-
selves are nonredundant. The gap between this and thefirst line #(B717) = 20
isonly 4. Indeed, if we require even one of the four columnsto be collinear, that
uses up all four of those degrees of freedom, apparently forcing all four columns
to be collinear. The remaining subtle point is that requiring any three columns
to be coplanar seems to force the last column to be coplanar as well; so we have
#(BTTT]) = Land #(BI737) =24-3=2L

555 Thepartition5=2+1+1+1

We have now covered al of the budget matroids of rank at most 4. Note that, as
the number k of partsin the partitionb = b; + - - - 4+ by increases and as the parts
representable goes down. This trend continues aggressively: In Iargér ’examples,
it is often the case that none of the budgetary relaxations are representable.

One example that will be important to usin Chapter 11 is the budget matroid
B..1.1.1, arepresentation of which consists of 20 pointsin 4-space:

> 1 1 1

PP Ar Bl C
P, A B GC,
P; A; By GC;
Ps Av By C4
Ps As Bs GCs

This matroid is definitely representable (Section 11.5 gives arational representa-
tion), and numeric experiments suggest that #(B,.1.1.1) = 30; but it seems that all
of the budgetary relaxations of B, 1 11— up through and including B3 777 — are
unrepresentable.

Here is some of the reasoning behind that claim; for more details, see Sec-
tion 11.6. Todeterminethat #(B,1.1.1) = 30, wefind somerational representation
R of the matroid B, ; ;1 and we compute the Jacobian matrix of the constraints at
the point R. For the representation R that the authors studied, that Jacobian turns
out to have rank 50. Since choosing 20 arbitrary pointsin 4-space involves 80 de-
grees of freedom, we conclude that the local dimension at R of the variety of rep-
resentations is 80 — 50 = 30, so 30 isa good guess for the freedom #(B,1.1.1).
Note that (2 151 l) = 60 of the congtraints are perfect constraints. Since the rank
of the entire Jacobian isonly 50, this meansthat the perfect constraintsthemselves
must be redundant. To determine how redundant they are, by themselves, we com-
pute the rank of just those sixty rows of the Jacobian matrix; and we again get 50.
So, in the neighborhood of the representation R, some 50 of the perfect constraints
imply the other ten perfect constraints and all of the column constraints. If the be-
havior at Ristypical, it followsthat all of the budgetary relaxationsof B, ;1 ; are
unrepresentable.
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5.5.6 Somelarger partitions

So it seems likely that none of the budgetary relaxations of the matroid B, ; ;1 are
representable; but that matroid has four columns. It isworth noting that the same
phenomenon arises also when there are only three columns, once the budgets for
those three columns get high enough. On the other hand, that phenomenon prob-
ably doesn't arise when there are only two columns.

In the 3-column case, the authorsfound arational representation R of the bud-
get matroid B3 3 ;. The rank of the Jacobian of all of the constraints, at R, turned
out to be 68. Since arepresentation consists of 21 points in 6-space, which means
126 degrees of freedom, we conclude that #(Bs 3 1) = 58 would be a good guess.
Furthermore, therank at R of just the (, 7 ,) = 140 rows of the Jacobian that came
from the perfect constraints was also 68. This suggests that none of the budgetary
relaxations of Bs 31 — up through and including B35S — is representable.

As for the case of only 2 columns, we get the most perfect constraints, for a
fixed total budget, when that total budget is divided in half. The authors investi-
gated the following cases:

#(B22) =17  #(B33) =42  #(Byy) =77  #(B2Y) =122
#Byz) =18 #(Bj3) =44 #(Bj) =83  #(By) =134

Thefactsintheupper row arefrom Theorem 6.2-2; the guessesin thelower row re-
sult from calculating the ranks of appropriate Jacobians. Even though the number
of perfect constraints is growing quite rapidly, as we move from left to right, the
redundancy among those constraints grows rapidly enough that the column con-
straints continue to play an important role— they do not become consequences of
the perfect constraints.

But whatever the fine details might turn out to be, the big picture seems clear.
Starting with Chapter 6 of this monograph, we shall focus aimost exclusively on
the budget matroids, since they seem so much morelikely to be representable than
their budgetary relaxations.

5.6 Budgetary minorsof budgetary matroids

It is often the case that one budgetary matroid is aminor of another, in which case
werefer to the former as a budgetary minor. Thisrelationship isworth noting be-
cause, when M isaminor of M’ and M is not representable, we get an easy proof
that M’ is not representable either. In this section, we use appropriate deletions
and contractions to prove two results about which budgetary matroids are minors
of which others.

Our first proposition says that del eting a zero column budget from the partition
of abudgetary matroid M’ always leads to a budgetary minor M, regardless of the
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dimension of the deleted column. In this case, the ground matrix of the budgetary
minor M has the same number of rows as M’, but one less column.

Proposition 5.6-1 Let M be a budgetary matroid M = B{ ', and letb :=

.....

b, + --- + by beitstotal budget. For any value of dy. 1 intherange[O.. b), the

budgetary matroid M’ := Byl 5+ has M as aminor.

Proof Inthelarger matroid M’, let Cy,; denote the elementsin the last column,
and let X be any set of elementswith X N C;1 = @. Itiseasy to check that X
isindependent in M’ if and only if that same set X isindependent in the smaller
matroid M. Thus, wehave M = M'\Cy,;. O

Our second proposition says that reducing a column budget by onein the par-
tition of abudgetary matroid M’ also leads to a budgetary minor M, aslong asthe
dimension of the affected column is reduced by one aso, the dimensions of the
other columns are reduced by one, if necessary, to keep them less than the reduced
total budget, and at least two column budgets remain positive after the reduction.
In this case, the ground matrix of the budgetary minor M has the same number of
columnsas M’, but one less row.

.....

interval [1 .. k] be the index of a column in M. Define the augmented column
budgets (b;) by the rules

b :=by forj#m

so them™ column budget goes up by 1, while al others stay the same, and hence
the total budget b = b + 1 goes up by 1. Also, define the augmented column
dimensions (dj’) by the rules

d =d whenj #mandd; <b—-2
de{b—-1b} whenj#mandd, =b-1

so them™ column dimension goes up by 1 as well, while all others stay the same,
except that any column dimension that starts out at b — 1, which is the old upper
bound, may either stay the same or increase by 1 to b, the new upper bound. The

augmented budgetary matroid M’ .= B‘éi """ ‘;t then has M as a minor.

.....

Proof We contract some element of the m™ column of the matroid M’ — say the
last, &ym — and we delete al of the other elementsin that same row. To show that
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thisworks, let X denote any subset of the smaller matroid M. We must show that
Xisindependentin M just whenthe set X' := X U {eyn} iIsindependentin M’.

The set X’ has precisely one more element overall than does X. But the tota
budget b’ is also one larger than the total budget b; so the set X satisfies the Am-
bient Rulein M just when X’ satisfies that samerulein M’.

The Column Ruleinthem™ columnissimilar. Letting C; denotethe j™ column
of M’, wehave | X' N Cy| = | X N Cy| + 1, because of the new element gy, in X'.
But the column dimension d/, also exceeds the dimension d, by 1.

Asfor the Column Rulein the j™ column for some j # m, thesets XNC; and
X" N G have the same elements. If d; = dj, then the Column Rule holds for X
in M just when it holdsfor X"in M". If dj = b — 1 and d = b, then the Column
Rule holds both for X in M and for X" in M’.

It remains to consider the Perfect Rule. If the set X has a perfect subset Y in
the matroid M, then the set X’ hasthe perfect subset Y’ .= Y U {eym} in M’. Con-
versaly, if the set X' has any perfect subset Y’, the element e,, must belong to Y’,
since g, isthe only element of X’ inthelast row; andthesubset Y := Y’ \ {&ym}
of X isthenperfectin M. O

Exercise 5.6-3 The budgetary relaxation By1'7 of the Pappus matroid By 1 1 isnot
representable over any field. Using just that fact and the two results of thissection,
which budgetary relaxationsof thematroids B, ; ; and B, ; 1.1 canyou conclude are
not representable?

[Answer: Intheformer case, BS 17, B3 15, and B 1'1; inthelatter case, By 175,
Brity Brras, Briis, and Bryys. Comparing with the datain Sections 5.5.3
and 5.5.4, we seethat, in both cases, about half of the budgetary relaxationsthat are
unrepresentable can be shown to be so smply because they have the non-Pappus

matroid By';'} as abudgetary minor.]



Chapter 6

Representing the matroid Bm n

The budget matroids are an interesting subclass of the budgetary matroids because
so many of the former are representable. 1ndeed, to the best of the authors’ current
knowledge, it might be the case that every budget matroidisrepresentable over the
rational numbers. We shan’'t come close to proving that wild conjecture. But we
shall show that two infinite families of budget matroids are representable over the
rationals. In this chapter, we consider the budget matroids By, , that have just two
columns,

In addition to demonstrating representability, we shall aso count the degrees of
freedominvolved, showingthat #(Bp, ,) = m?+3mn-+n?—3. Recall that #(B, )
denotes the number of degrees of freedom involved in choosing a representation
of Bm.n, lying in some fixed projective space of the appropriate dimension, which
ism+n—1

6.1 Thecasem = n = 2 of aMaobiuspair

The case n = 1 (or, symmetrically, the case m = 1) iseasy. A representation of
the budget matroid By, ; consists of an m-simplex in m-space along withthem+-1
pointswhere aline cutsthe facets of the simplex. There are m degrees of freedom
in each of the m + 1 vertices of the smplex and an additional 2m — 2 degrees of
freedom in the choice of the ling, for atotal of m? 4+ 3m — 2, which agrees with
the formula above.

Thus, thefirst tricky caseisthe case B, , of aMobius pair of tetrahedra. Recall
that arepresentation of the matroid B, » consists of eight points

2 2
A B
A B
As Bs
A, By
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in 3-space, with the A-points, the B-points, and the six perfect sets coplanar.

We can construct such arepresentation in a fixed 3-space as follows. Choose
the plane g, in which the B-points will lie — that’s three degrees of freedom —
and choose the four points (B;j) in the plane 8 so that no three are collinear —
that’s another eight. Choose aline c in the plane g8 that intersects the six sides of
the complete quadrangle with vertices (B;) in six distinct points; that is, thelinec
must not pass through any of the four vertices of the quadrangle nor through any
of the three diagonal points B; B; N BBy, where{i, j} U {k, I} = {1,2, 3,4}. And
choose a plane « through the line ¢, but distinct from 8, sothat ¢ = o N 8. There
are two degrees of freedom in the choice of the line ¢ and one morein the choice
of the plane «; so the current total freedom is fourteen.

It remains to choose the points (A) in the plane «. But we must be careful,
when making these choices, to arrange that the six perfect sets end up being copla-
nar. Note that each perfect set hasthe form {A;, A, B, B}, wherei < j, k </,
and {i, j,k, 1} = {1, 2, 3, 4}. Making those four points coplanar means arranging
that the two points Ai A; N ¢ and BB, N c onthelinec coincide, as shown in Fig-
ure6.1. Let Gij..q denotethe point ByB Nc. Choosethe point A, arbitrarily in the
plane «, but not on ¢; and choose the point A, arbitrarily on the line A;Ci2.34, but
not coincident with either Ay or Cy2.34. Everything elseisforced: We must choose
Ags to be the point where the lines A;Cy3.24 and AyCos.14 intersect, and we must
choose A, similarly to be the point where A;Cy4.23 meets A, Cy4.13. This guaran-
teesthat all six perfect sets are coplanar except possibly for { Az, A4, B:, B,}. But
the six points {{Ci234, Cas;12}, {Ci3:24, Cos;13}, {Cra;2s, Coz:14} | On thelinec result
from stabbing a complete quadrangle in the plane 8; so they form a quadrangular
set, and any one of them is determined by the other five. The four points (A) in
the plane o determine another complete quadrangle, which the line ¢ stabs at five
of the same points; so the sixth point must also be shared, that is, the line Az A4
must meet c at the point Cgq, 1.

Since choosing the points A; and A, involves an additional three degrees of
freedom, the grand total is seventeen, which agrees with the formula above.

Note that Figure 6.1 has alot in common with Figure 2.3. Figure 2.3 shows a
2-block of lines, all through a common point, and shows two complete quadrilat-
eralsthat witness to the 2-dependence of the six dopes. Dually, Figure 6.1 shows
a 2-block of points, all on a common line, and shows two complete quadrangles
that witness to the 2-dependence of the six coordinates. In Figure 2.3, thereis no
projective transformation that takes the first complete quadrilateral to the second
while fixing al lines through O, because one of the three pairs gets swapped. In
Figure 6.1, there is no projective map from the plane « to the plane g that carries
thefirst quadrangleto the second whilefixing every point along theline ¢, because
all three pairs get swapped. To see concretely that no such projective map exists,
note that the lines in the plane o passing through the three points Ci2.34, Ci3.24,
and Cy4.23 concur at A;, whilethe linesin the plane g passing through those three
points are not concurrent.
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Figure 6.1: Constructing a representation of the budget matroid B, , in 3-space.
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We have shown, so far, that theeight points (A;) and (B;) constructed as above
will have all of the incidences that are required for a representation of the budget
matroid B, ,. But will they be free of forbidden incidences? To check this, since
subsets of amutually skew set are automatically mutually skew, it sufficesto check
that all of the bases of the matroid B, » are mapped, by our construction, to sets of
four points that are not coplanar.

We required the six points (Cij.ia ) to be distinct. This impliesthat neither Ag
nor A, ends up along the line ¢, so any base consisting of one A-point and three
B-points is non-coplanar. It aso implies that no three of the four points A are
collinear in the plane «, so any base consisting of three A-points and one B-point
is also non-coplanar. The remaining bases have the form {A;, A;, By, By} where
I < jand k' < I’, but the sets of row indices {i, j} and {k’, |’} are not digoint.
Theline A Ay meetsthe line ¢ at the point Cij.ia, while the line B, B, meets the
linec at the distinct point C;/j 1. It followsthat the base { A, A, B, B} isadso
non-coplanar.

6.2 Thegeneral case

Extending these arguments from the case B, » to the case By, , for any positive m
and n involvesafair amount of fussy detail, but doesn’t require much in theway of
new ideas. The only interactions between the A-points, lying in their m-flat, and
the B-points, lying in their n-flat, occur along the line where those two flats meet.
And what we have, lying along that line, arelots of overlapping quadrangular sets,
each of which can be analyzed separately.

We begin with an easy lemmathat we shall use also in Chapter 7.

Lemma 6.2-1 Let P, through P, ben mutually skew pointsin aprojectiven-space
S, andletm = Span(Py, ..., P,) be the hyperplane of S that they span. Let A
through A, be any n points of S, none lying in the hyperplane . There exists a
unique point B that liesin all n of the hyperplanes

A

Hi ::Span(Pl"“apl"“’PnaAi)’

fori in[1..n] —that is theintersection (., 5 Hi = {B} isaflat of dimension
0 — and the intersection point B does not liein .

Proof Any n hyperplanesintersect in at least a point, so the challenge isto show
that the intersection g := ),y Hi containsjust one point. Note that the points
P, through P, are the vertices of an (n — 1)-smplex in the hyperplane =, whose
n facets arethe (n — 2)-flats

7 NH =Span(Py,..., B, ..., P).
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Sinceno point iscommon to all of the facets of asimplex, it followsthat the inter-
section N B isempty. Sincetheflat 8 isskew to the hyperplane s, it must consist
of asingle point B that doesnot lieinz. O

Theorem 6.2-2 (B, , Representation) For any positive m and n, the budget ma-
troid Bm, n isrepresentable over therational s, and the number of degrees of freedom
involved in choosing a representation, lying in a fixed projective space of dimen-
sonm+n—1,is#(Byn) = m?+ 3mn+n? — 3.

Proving thistheoremwill occupy usfor therest of Chapter 6. If you get bogged
down in the proof, feel freeto skip on to Chapter 7.

6.2.1 Theinitial choices

Fix aprojective space Sof dimenson m+ n — 1. To construct a representation of
Bm.n inthespace S, wefirst pick ann-flat 8, lyingin S; thisinvolves (n+1)(m—1)
degrees of freedom. Next, we choose the points (B;), fori in[1.. m+ n], lying
inthe flat B, which involves (m + n)n degrees of freedom. Of course, every set
of at least n 4 2 of the B-points must be mutually incident, since they all liein a
common n-flat. But we constrain our choices of the (B;) so that those are the only
incidences; that is, every set of at most n + 1 of the B-pointsis mutually skew.

Givenasubset J C [1.. m + n], let us denote by 8, the subspace 8; =
Span({B; | j € J}) of B. And let us use the term t-set to describe any subset
J C [1..m+ n] that hast elements. Because we have chosen the B-points to
be in general position within the n-flat 8, we have dim(8;) = |J| — 1 whenever
|J] < n+ 1 Inparticular, for any (n+1)-set J, we have 8; = 8. For any n-set J,
we havedim(B;) = n — 1, sotheflat 8; isahyperplanein 8. If J and J’ aretwo
distinct n-sets, the two hyperplanes 8; and 83 must be distinct, since ;05 = B.
It followsthat their intersection 8; N B3 hasdimensionn — 2.

Choose aline c intheflat 8 that is skew to the (n — 2)-flat 8; N By, for al
pairsof distinct n-sets (J, J'). And choose any m-flat « that intersectsthen-flat g
precisely inthe line c. The choice of ¢ involves 2(n — 1) degrees of freedom and
the choice of « involves (m — 1) (n — 1), so our running total isnow 3mn +n?— 2.

For every n-set J, the hyperplane 85 in 8 cannot includethe entirelinec, since
Bi N By isskew to ¢ for any n-set J’ distinct from J. So the hyperplane 8; in-
tersects ¢ at a unique point. By analogy with the casem = n = 2 above, we
should denote that point of intersection by C;.;, where | denotesthe m-set | :=
[1..m+ n]\ J that is complementary to the n-set J. But, to save writing, we
shall instead denoteitsmply by C,. If (I; J)and (1'; J’) areany two distinct par-
titions of the set [1.. m + n] into an m-set and an n-set, the fact that 8; N By is
skew to ¢ impliesthat the pointsC, := g; Ncand C,, := B3 N caredistinct. So
thereare ("'") distinct points (C;) along the line c, one for each partition (I; J)

m

of [1..m+ n]intoanm-set | and an n-set J.
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6.2.2 Goalsfor choosing the A-points

Our next task isto choose the points (A;), lying in the m-flat . We want the inci-
dence structure of the A-pointsin « to be completely analogous to the structure of
the B-pointsin 8. Our first goal in thisregard isthat we want every set of at most
m+ 1 of the A-pointsto be mutually skew. That is, letting «; denote the subspace
a = Span({A |i € 1}) of o, wewantdim(c;) = |I | —1whenever |1 | < m+ 1.
Since subsets of a mutually skew set are mutually skew, it suffices to make sure,
for every (m+ 1)-set |, that oy = «. Our second goal isthat, for any m-set |, the
flat ; — which we have already said should be a hyperplane — should intersect
theline c at the single point C, .

If those two goals are met, then the incidence structure of the A-pointsin o
will be completely analogousto that of the B-pointsin 8. For example, given any
two digtinct m-sets | and |, the (m — 2)-flat &) N« will be skew to ¢, since the
hyperplanes oy and - in « intersect ¢ precisaly in the distinct pointsC, and C,..

Our plan for achieving these goals involves an induction on the weight of the
subset |, where we define the weight w(l) of aset | < [1.. m + n] to be the
number of its elementsthat exceed m; sowehave w(l) := || N[m+1..m+n]|.
We therefore formalize our two goals as follows:

Goall The property G, (t) holdswhen, for al (m+ 1)-sets | withweight w(l) =
t, wehaveo, = «.

Goal2 The property G, (t) holdswhen, for all m-sets | withweight w(l) =t, we
havedim(o;) =m—1anda; Nc={C,}.

Note that we have included, as part of Goal2, the assertion that the flat «; isahy-
perplane. If we were able to prove G;(t) for al t before worrying about Goal 2,
then this aspect of Goal2 would follow automatically. But we are actually going to
establish the two goals using a ssimultaneous induction. The base cases are G1(1),
G»2(0), and G,(1). The inductive steps show that

e Foralt > 2, theproperty G,(t — 1) implies Gy (t).

e Fordlt > 2, the properties G1(t — 1), Gy(t), Go(t — 2), and G,(t — 1)
together imply Ga(t).

6.2.3 Choosing the A-points

Choosethe points A; through An,_1 tobemutually skew in theflat o« and so that the
(m — 2)-flat that they span is skew to the line c. That involves (m — 1)m degrees
of freedom. Them points {Aq, ..., An_1, C1..m} arethen mutually skew, so their
Span

7= Span(As, ..., An-1, Ci1..m)
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isahyperplane in «. We choose the point Ay, to lie in the hyperplane r, subject
to some nondegeneracy conditions that we discussin a second. The choice of An,
involvesafinal m— 1 degrees of freedom, for agrand total of m? +3mn+n? — 3,
as claimed.

Choosing the point Ay, inthe hyperplane forcestheset {Aq, ..., An, Cio.mj}
to be mutually incident, but we constrain the choice of Ay, so that no proper subset
of that set ismutually incident. Among other things, thisimpliesthat the m points
{A1, ..., An} span the entire hyperplane r, so we have 1 = Span(A, ..., An).
Since we chose the (m — 2)-flat Span(As, ..., An_1) to be skew to the linec, the
hyperplane = can't intersect ¢ in more than a single point; sowehaver N ¢ =
{Cir.m}-

We have finished making choices, but we haven't finished constructing al of
the A-points. Let k be anindex intheinterval [m+ 1.. m+ n]. Our choice of the
point Ay isconstrained by our need to arrangethings so that, for eachi in[1..m],
thempoints{Aq, ..., A, ..., An, A} will spanahyperplanein« whoseintersec-
tion with the line ¢ consists of the single point Cj1. mjup - Turning this around,
we must choose the point A to liein the hyperplane

Hix := Span(As, ..., A, ..., An, Comjumii))-

Notethat theflat H; « isahyperplane, and not something smaller, because the point
Ci1.mugk i) doesnot liein r = Span(Aq, . .., An). We are now in perfect shape
to appeal to Lemma 6.2-1, from which we conclude that the hyperplanes H; k, for
i in[1..m],intersect in aunique point. We call that point Ac. Lemma 6.2-1 also
tellsus that the point A doesnot liein .

6.2.4 Thebase caseshold

Asaresult of choosing the A-pointsin thisway, we claim that the three base cases
G1(1), G2(0), and G,(1) of the induction hold.

Toseethat G;(1) holds, notethat any (m+1)-set | of weight 1 hastheform| =
[1..m]U{k}, forsomekin[m+1..n]. Wehavea, = Span(Ay, ..., An, A) =
Span(r U {A}) = «, Since Lemma 6.2-1 tellsusthat A, doesnot liein .

As for G,(0), the unique m-set of weight O isthe set [1 .. m], and we have
aem = Span(Aq, ..., Am) = . We have already observed that = is a hyper-
planein ¢ and that 7 N ¢ = {Cj1.m}

We claim that G,(1) also holds. An m-set | of weight 1 has the form | =
[1..m]U{k}\{i} forsomei in[1l..m]and somekin[m+ 1..m+n]. Sincethe
point A doesnot lieinthehyperplaner, theflat Span(Ay, . .., Am, Ac) isal of «;
sotheflat Span(Ad, ..., A, ..., An, A) = o isahyperplane. Our choice of A
guaranteed that this hyperplane contains the point C, . It remainsto show that the
hyperplane«, doesnot containtheentirelinec, which weshall do by showing that
the (m — 2)-flat Span(Aq, ..., A, ..., An) isskew toc. Thecasei = miseasy,
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since, in choosing the points A; through An_1, we constrained the (m — 2)-flat
Span(Ay, ..., An_1) to be skew to c. So supposethat i < m. We constrained the
choiceof thepoint Ay, to guaranteethat the (m—2)-flat Span(Ay, ..., A, ..., An)
does not contain the point C;1 ;. But that flat cannot contain any other point on
theline c either, because Cj1 . isthe only point on thelinec that liesin the entire
hyperplane r = Span(A, ..., An). Thus, theflat Span(Aq, ..., A, ..., An)is
skewtoc, foranyi in[1..m], which completesthe proof of G,(1).

6.2.5 Theeasy inductive step

We clamthat G,(t — 1) impliesG1(t), forany t > 2.

Let | beany (m+1)-set of weight t; wemust show that o, = «, that is, that the
set { A }ic) ismutually skew. Letk and| betwoindicesintheset | N\[m—+1..m+n].
Notethat thisset hascardinality at least 2, sincew(l) =t > 2. Thesets| \ {k} and
I\ {lI} are both m-setsof weightt — 1. Fromthe assumption G,(t — 1), we conclude
that dim(a\q) = m— 1 and that the hyperplane o, (; intersectsc precisely inthe
point C,\q ; and similarly with k replaced with|. Sincethe points C,\yq and C; g,
aredigtinct, it followsthat theflat « isall of «.

6.2.6 Thehard inductivestep

We claim a'so— and thisisthe heart of thewhole proof, and the place where quad-
rangular setsget involved —that G, (t—1), G1(t), G2 (t—2), and G, (t —1) together
imply Ga(t), forany t > 2.

Let | be any m-set of weight t; we must show that dim(«;) = m — 1 and that
arNc={C}. Letkand| beany twoindicesintheset | N[m+1.. m+ n],
which must exist because w(l) =t > 2. Leti and j be any two indicesin the
set[1..m]\ I, whichmust exist for the same reason. Let P denotetheset P :=
I \ {k,I}, andlet Q denotetheset Q :=[1..m+n]\ (I U{i, j}). Sowe have
IPl=m—-2,|Q] = n—2andtheset [1.. m+ n] is partitioned into the three
pats[l..m+n] =PUQUI{i, j,k,I}.

Consider thefour index sets P U {i, j,k}, P U {i, j,I}, PU{i, Kk, 1}, and P U
{], k,1}. Each of theseisan (m+ 1)-set; thefirst two haveweight t — 1, while the
|atter two have weight t. From the assumptions G1(t — 1) and G, (t), we conclude
that the flat apyyi j 1y coincides with o, and similarly for the other three index sets.
In addition to salting those facts away for the future, it follows from the relation
apuikly = o thattheflat oy = apy )y isahyperplane—that is, dim(e;) = m—1
— which is one of the claims that we are trying to show.

The set of al (m — 2)-flatsin « that include the fixed (m — 3)-flat ap formsa
projective plane U. Projecting any point Rin« \ ap fromtheflat «p producesa
unique ‘point’ Span(ap U {R}) inthisplane U, and we shall denote that ‘ point’ as
R := Span(ap U {R}). In particular, we are interested in the four ‘points’ A;, A,
A, and A intheplaneU. The fact that the flat ap . j & coincides with o tellsus
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that thethree ' points A;, A, and A, intheplaneU are not collinear, and similarly
for the other three triples. Thus, the four ‘points’ A, A, A, and A determinea
nondegenerate complete quadranglein the planeU; call that quadrangle D.

Next, we consider thefiveindex sets PU{i, j}, PU{i, k}, PU{i, I}, PU{j, k},
and P U {j, |}, omitting thesixth choice | = P U {k, |}. All six arem-sets. Of the
fivethat we are considering, thefirst hasweight t — 2, while the others have weight
t — 1. Fromthe assumption G(t — 2), we conclude that dim(apygi,j;) = m—1(as
we already knew) and that the hyperplaneapyy; j, ino cutstheline c at the unique
point Cpyyi ;. Fromtheassumption G, (t — 1), we make similar conclusions about
the four pairs {i, k}, {i, |}, {j, k}, and {j, |}. Thefact that the hyperplanes a:p; k;
and apyj K cut theline c at distinct points implies that the (m — 2)-flat apyyq IS
skew to c. It follows that the hyperplane «; = apy; intersects ¢ at a unique
point, say X. We need to show that X = C;.

If we project the hyperplane apy, j; down fromthe flat op into the projective
planeU, we deducethat the‘line’ A A inU that joinsthe ‘point’ A to thepoint’
A cutsthe‘ling & := {R | R € c} at the unique ‘point’ Cpyy;.j;. Similar results
hold with the pair {i, j} replaced by any of the other four pairs. Since the ‘line’
C cuts five of the six sides of the complete quadrangle D at five distinct ‘points’,
we deduce that € does not pass through any vertex of the quadrangle D; so the
quadrangle D cuts out, along €, three pairs of ‘points’ that form a quadrangular
set: {{Cpuii.iy> X}, {Cruiiiy» Cruiin b, {Cpuiity» Cruiiig }}-

But there is also a complete quadrangle E sitting in the n-flat 8, and we can
reason about all six of its sides, since there is no induction going on over there.
More precisely, the set of all (n — 2)-flatsin g that include the fixed (n — 3)-flat
Bo formsaprojectiveplane V. Each point Rin 8\ B determinesaunique ‘ point’
R := Span(Bq U {R}) inthe plane V, and the four points B;, B;j, By, and B, are
the vertices of a complete quadrangle E in V. The side B; B; of the quadrangle
E cutsthe‘line ¢ := {R | R € c} at the ‘point’ Cpyy, and similarly for the
other five sides. (Don't be confused by our abbreviated notation; remember that,
if weweren'’tlazy, wewould be denoting the point Cpyy 1y 8 Cpugkiy; quii, j}.-) 1tfol-
lowsthat thesix points {{Cpuji.j}» Ceugn 1 {Cpugik» Cruiin b {Cruiiily» Crutiig }}
form a quadrangular set along the line ¢. Since five points of a quadrangular set
uniquely determine the sixth, we deduce that X = Cpyy;, which completes the
induction.

6.2.7 Checkingtheincidences

It remainsto show that the A-points and B-points, chosen as above, do represent
the budget matroid By, ..

Did we achieve every required incidence? The A-pointsliein them-flat « and
the B-pointslieinthen-flat 8. Also, for every partition (I; J) of [1.. m+ n] into
anm-set | and an n-set J, the perfect set of points{A; | i e I} U{B; | ] € J}is
mutually incident, because the flats«; and 8, both meet theline ¢ at the point C, .
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To show that we have avoided every forbidden incidence, it suffices to check
that we have mapped every base of the matroid By, , to amutually skew set of m+n
points— a set that spansal of S. Therearethreetypesof bases. A base of thefirst
typehastheform{A |i € I }U{B; | ] € J}wherel isany (m—1)-setand J isany
(n+1)-set. Wehave 8; = B8, whilew; issome (m— 2)-flat in «. Notethat adding
onenew element to theset | to producean m-set I’ O | givesusahyperplane o
in« that cutsthelinec at the point C,.. Sincethe point C;. varies, depending upon
whichm-set I’ O | we choose, the (m — 2)-flat oy must be skew to c. It follows
that Span(«; U B8;) = S. The second type of base is symmetric, with m + 1 points
inthe A column and n — 1inthe B column. A base of the third and final type has
theform{A |i € I}U{B; | ] € J'} where| isanm-set and J’ isan n-set, but the
partitions (1; J) and (1’; J’) of [1.. m + n] are distinct. The span of such abase
includestheflats; and B;/, so it containsthetwo distinct pointsC, and C,, along
¢, soitincludesthe entireline ¢, so it includes both « and 8, so it coincides with
S. And that, at long last, finishes the proof of the By, , Representation Theorem.

Exercise 6.2-3 (For matroid mavens) We have finally finished proving that the
budget matroid By, , is representable over therationals. If it were also binary (that
is, representable over the Galois field of order 2), it would follow from standard
results that it was regular (that is, representable over all fields). And indeed, the
budget matroids B; ; and B, ; are both binary and regular. But show that those
two are the only budget matroids By, p, that are binary.

[Hint: Recall from Exercise 4.2-4 what the circuits of abudget matroid are. It
isastandard result that amatroid is binary if and only if the symmetric difference
CAD of any twodistinct circuits C and D alwaysincludesacircuit[41]. Let X be
the subset of By, ., Of Sizebthat contains, for each j, precisely thetop b; elements
in the j™ column. Show that one can typically find two distinct elements f and g
sothat C := X U {f}and D := X U {g} are circuits (of the type called ambient
circuitsin Exercise 4.2-4), and note that the symmetric differenceC A D = {f, g}
istoo small to include any circuit. Why are the cases B; ; and B, ; atypical?]



Chapter 7

Representing the matroid By 1.1

Asthe number of partsin the partitionb = b; + - - - + by increases and as the parts
themselves increase, it rapidly becomes quite unclear whether or not the budget
matroid By, .., iSrepresentable. But for the smplest of the budget matroids with
three columns, those of the form By, 1.1, we can still get ageneral representability
result over therational numbers. Already inthiscase, however, avoiding forbidden
incidencesis much harder than it wasin the case of the budget matroids By, ,, with
only two columns,

7.1 Thecasem = 2 of thematroid By ;1

Let’sbegin by considering thematroid B, 1 1 — the one that we are eventually go-
ing to show characterizesthe dependence of four cubic polynomials. Recall that a
representation of B, ; ; consists of twelve points

2 1 1
Po Ay Bo
PP A B
P, A B
P; As Bs

in 3-space. The four A-points lie on a common line a, the four B-points lie on
acommon line b, and the four P-points lie on a common plane . Furthermore,
each of thetwelve perfect sets{P,, P, A, B} for {i, j,k, 1} = {0, 1, 2, 3} must be
coplanar. Notethat, in thischapter, it is convenient to index the four rows starting
a O, rather than at 1.

Supposethat we choose any plane r in 3-space and four points(P,) inthe plane
s with no three collinear. We choose aline a whose intersection with = — call it
A, := anm —isnot on any linejoining two of the P-points. And we choosefour
distinct points (A)) onthelinea, nonecoincidingwith A,,. Whenever {i, j,k, 1} =
{0,1, 2, 3}, thepoint By isrestricted to liein thethree planes P, P; A, P, P Aj, and

85
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PP, Ai. By Lemma6.2-1, those three planesintersect at aunique point By, which
does not liein the plane . But are the four points (By) so determined collinear?
It turns out that they are; in fact, much moreistrue.

Note that the A-points did not have to be collinear, in order to enable the con-
struction of the B-points. Given any sequence of four A-points, nonelyingin r,
we get a sequence of four B-points, nonelying in ; and the relationship between
the sequences (A)) and (B;) issymmetric. It turns out that the spans of the two se-
guences (A)) and (B;) always have the same dimension. Furthermore, this result
generalizes from 3-gpace to projective space of any dimension.

7.2 Then-Space Pappus Theorem

Theorem 7.2-1 (n-Space Pappus) Let S be a projective space of dimension n,
and let = be ahyperplanein S. Let (P, ..., P,) ben+ 1 pointslying in , but
with no n of them mutually incident; so the points (P;) form a projective frame
for the hyperplane . We say that two sequences (Ao, ..., Ay) and (B, ..., Bp)
of pointsin S\ m are compatible just when, for all n(n+ 1) pairs(i, j) withi and
jin[0..n] andi # j, the n+ 1 points

[Po,....,P,....,B,....P0, A, B}

lie in a common hyperplane. There is a unique sequence (By) of pointsin S\ =
that is compatible with any given sequence (A;) of such points, and we have the

equality dim(Span(A;)) = dim(Span(B))).

Note that, when n = 2, this theorem is essentially Pappus's Theorem in the
plane: Given three distinct points (P, P1, P,) along aline, the collinearity of the
three points (Ao, A;, Az) implies the collinearity of the three compatible points
(Bo, B1, B2), where compatibility means that the triple of points {P;, A, B¢} is
collinear whenever {i, j,k} = {0, 1, 2}. Thus, thistheorem constitutes one pos-
sible generalization of Pappus's Theorem from the plane to n-dimensional space.

Proof The existence of aunique sequence (Bj) compatiblewith agiven sequence
(A)issmpletosee. Forany j in[0..n], thenpoints{Py, ..., P, ..., P,} aremu-
tually skew by assumption, spanning the hyperplane 7. Since none of the points
(A) liesin, we conclude from Lemma 6.2-1 that the point B; isuniquely deter-
mined by the n constraintsthat it lie in each of the hyperplanes

%ar](PO"“”P\l"“’,P\j"“’Pn’Ai)’

fori in[0..n]\ {j}, andthe point B; so determined doesnot liein .
The interesting result is that dim(Span(A)) = dim(Span(B;)). We shall use
analytic geometry to show this, choosing our coordinate system carefully. Since
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the points (P,) form a projective frame for the hyperplane 7, we can choose our
coordinate system for points [Xo, ..., X,] in the n-space S so that the hyperplane
7 has the equation Xo = 0 and so that the homogeneous coordinates of the points
(P,) aregiven by the rows of the matrix

01 2 3 ... n
P,/O 1 1 1 ... 1
PO 100 ... 0
Plo o 10 ... 0

P=plo001 ... 0
P,\O O OO .. 1

Note that we have chosen Py to be the unit point of the projective frame, hence
singling it out from the other P-points. Treating theindex O specialy, in thisway,
builds an asymmetry into our coordinate system, and that seems unavoidable.

Since none of the A-points are allowed to lie in the hyperplane =z, we can ar-
range that their coordinates are given by the rows of the matrix

O 1 2 3 ... n

Abyl O O O ... O
Alll cy Co C3 ... Cinn

a— Al 1 Cy C»n Ca ... Cpnp
"— Ag] 1l C3y Cz» C33 ... Czn
A\l Ci G2 G ... Cm

Giving the point Ag the smple coordinates[1, 0, 0, . . ., O] builds a second asym-
metry into our chosen coordinate system, an asymmetry between the A-points and
the upcoming B-points. This second asymmetry could be eliminated, but only by
splitting the difference, which would introduce annoying factors of % :

Claim: The coordinates of the compatible points (B;) are then given by the
rows of the matrix b:

0 1 2 3 . n
By /1 Ci1 C22 Cs3 e Cn
Bi| 1 0 Cxo—Cxy Cx3—C3 ... Cmn—Cn
b Bl 1 cu—=ci2 0 C3z—C3x2 ... Cuin—Cn2
~ B3| 1l Ciy—Ciz Cx—Cx 0 ... Cmn—Cn3
Bn\1l Cu—Cim Cop—0Cxn Cx—Can ... 0

To verify thisclam, let (i, j) beany pair withi and j in[0..n] andi # j; we
must show that the points

[Po,....,P,....,B,....P0, A, B}
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liein acommon hyperplane — that is, that the matrix formed by replacing thei®™
and j" rowsof p with A/ and B; has determinant zero. If neither i nor j isO, this
boils down to checking that the matrix

0 i j

Po (0 1 1
All ci Cij
Bj 1 ¢ — Gjj 0

has zero determinant, which it does; the common hyperplane in this case has the
homogeneous coefficients

0 i i
(¢ —¢i,0,...,0,1,0,...,0,—-1,0,...,0).
The specia casesi = 0and | = 0 areeven easier:
0 j 0 i
(i) = a(id)
It remainsto show that rank(a) = rank(b), which we can do by converting one

matrix into the transpose of the other using elementary row and column operations.
Start with the matrix b. Subtracting the top row from each row below it gives us

( 1 cu C» Cxz ... Cm \
O —Ciu —Cy —C3z ... —Cm
0 —Cip —Cp —Cx ... —Cp
O —Ci3 —Cpy —Cz ... —Cn3

\O —Cin —Cn —Cazn ... _Cnn)

Adding appropriate multiples of the leftmost column to each column to its right
then gives us the matrix

(1 -1 -1 -1 ... -1}
O —Ci1 —Cy —Cz ... —Cm
0 —Cip —Cp —Cx ... —Cp
O —Ciz —Cpy —Czx ... —Cl’
\O —Cin —Cn —Can ... _Cnn)

which differsfrom the transpose of a only by some unimportant signs. O
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Exercise 7.2-2 Show that the three budgetary relaxations B3 17, B5 13, and B5 73

of the budget matroid B, ; ; are not representable over any field. Recall that the
first two of these were shown to be unrepresentable al'so in Exercise 5.6-3.

[Answer: Letting n = 3 in the n-Space Pappus Theorem tells us at once that
the column dimensions of the A and B columns must be the same.]

Exercise 7.2-3 What about those budgetary relaxations B} of the budget ma-
troid By 1 1 in which the P column dimension is 3 — that is, the P-points are not
coplanar? Notethat the twelve perfect coplanaritiesstill hold, and they still suffice
to determine the B-points from the P-points and the A-points. Find the homoge-
neous coordinates of the B-points, assuming that the P-points are given by the
rows of the matrix

P,/1 00O
_PJo 100
P="plo 01 0]

P,\O O O 1

while the A-points are given by

Al fan ap a3 au
Aol a1 ax axn axy
Az| az1 azx azxz as
Ag\ayr ap a3 au

a.=

[Answer: The B-points are given by the rows of the matrix

Bo | apiazauy @dzdsy 12833342 Q12832844

Bs | andgaus aizdxpdus auzdgsdsz  &zdpzdus | J

Bi [ azi@ziau1  @pazidur  @18z3841  A831844
b:=

Bs \ @11824834 214820831 Q14824833 Q14824834

Exercise 7.2-4 Using the preceding exercise, show that the budgetary matroids
B> 11 and B3 2 are not representable over any field. Note that the first of these
was shown to be unrepresentable also in Exercise 5.6-3.

For context, recall that #(B3 ') = 20: three degrees of freedom in each of
thefour P-points, threeeachin A; and A, and oneeach in Az and Ay, after which
the B-points are determined.

[Hint: Replace the points Az and A4, which are generic pointsin 3-spacein the
previous exercise, with generic pointsontheline Ay Ay — say, Az = UsAs + v3Ap
and A, = UzA; + v4 A, — and verify that det(b) then factors as

det(b) = usU4V3V4(U3Vs — Ugv3) H (agaj — agjay).

l<i<j<4

Thus, the B-pointscan be coplanar only whenthereis somedegeneracy: either two
of the A-points coincide or the line containing the four A-points intersects one of
the six edges of the P-point tetrahedron.]
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7.3 Thegeneral case

Theorem 7.3-1 (B, 1.1 Representation) For any positive m, the budget matroid
Bm.1.1 IS representable over the rational numbers, and the number of degrees of
freedom involved in choosing arepresentation, lying in afixed projective space S
of dimensonm+ 1, is #(Bm 11) = m? + 6m + 3.

The proof of thistheorem, like the proof of the B, , Representation Theorem,
islong. The good news is that you aren't as likely to get bogged down this time.
The bad news is that we are going to use the concepts introduced in this proof, in
Chapter 9, to analyze what can go wrong when constructing a representation of
the matroid B, ; that witnesses to the 3-dependence of four cubic polynomials.
So skipping this proof will limit the depth of your understanding of Chapter 9.

7.3.1 Theplan of attack

We use n asan abbreviationfor m+ 1. We index the three columnswith the letters
P, A, and B and the m + 2 rowswith theintegers[0.. m+ 1] =[0..n].

The basic plan of attack is obvious. We choose any hyperplane r in S; that
involvesm + 1 degrees of freedom. We choose the points (P,) fori in[0..m+ 1]
to form aprojective framefor r; that involves m(m + 2) degrees of freedom. We
choose some line a, not lying in the hyperplane = — another 2m degrees of free-
dom. Finally, we choose m + 2 points (A;) ona, nonelying in sz, which involves
afinal m+ 2 degrees of freedom, for atotal of m? 4 6m+ 3. Invoking the n-Space
Pappus Theorem with n := m + 1, we let (B;) be the unique sequence of points
that is compatible with the sequence (A;), and we observe that the points (B;) will
be collinear. The resulting P-points, A-points, and B-points have al of the inci-
dences required for a representation of By, ;1. The hard part is to show that they
don’'t have any forbidden incidences. Indeed, they will have forbidden incidences
in specia cases; but they won't in the generic case.

7.3.2 Choosing the coordinate system

As in the proof of the n-Space Pappus Theorem, we can choose our coordinate
system on the space S so that the homogeneous coordinates of the P-points are
given by the rows of the matrix

012 3 n
P,/0 1 1 1 1
PO 1 00 0
Plo 0O 1 o0 0

P=p,l0 0 0 1 ol
P,\O 0 0 O 1
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while the point Ay has the coordinates Ag = [1,0,0,...,0]. When proving the
n-Space Pappus Theorem, the point A; had the coordinates Ay = [1, Gi1, ..., Cin],
foriin[1l..n]. But we herewant to constrain the points (A;) to lie on acommon
line a. One convenient way to do that is as follows.

Let A, := anN w bethe point where the line a cuts the hyperplane rr, and let
[0, v1,...,vy] = A, besome set of homogeneous coordinates for the point A, .
Now, thepoint A; liesonthelinea = AgA,. Hence, for any finite, nonzero scalar
u; that we choose, there is a unique projective coordinate system for thelinea in
which the three distinct points Ag, A, , and A; are assigned the coordinates 0, oo,
and u;. Inthat coordinate system for the line a, the points A, through A, have
finite, nonzero coordinates, which we shall denote u, through uy,.

There is a unique way to extend our chosen coordinate system for the hyper-
plane = to a coordinate system for the entire space S so that, in addition to the
point Aq getting the coordinates[1, 0,0, ..., O], the point A; getsthe coordinates
[1, ujve, ..., Usvy]. Inthat unique coordinate system for S, the point A;, fori in
[2..n], must have the coordinates [1, ujvy, . .., Ujvy], Where the scalars (u;) are
as defined above. So the homogeneous coordinates of the A-points are given by
the rows of the matrix

0O 1 2 3 ... n

Ab/1 O 0 o ... 0
Ail1l uUvy Uvr Uvs ... Ujvy
. Al 1l Uy Usvx Upuz ... Uovp
a.= A3l 1 Uzvy Uzvx, Usvz ... Usvy
A \1 U1 Upvz Unvz ...  Uptp

Notethat, fori in[1..n], we have theinhomogeneous equation A = Ay + U; A,.

Given that those are the A-points, the same argument as in the proof of the
n-Space Pappus Theorem shows that the coordinates of the B-points are given by
the rows of the matrix

0 1 2 3 . n
By /1 Uivq Uovo U3zv3 ce Unun
Bif| 1 0 Uz(v2 —v1) Us(vs—v1) ... Un(vn— 1)
b Bo| 1 ui(vi—w2) 0 Us(vz —v2) ... Un(vn—12)
— B3| 1 ui(vi—vw3) Uz(v2—v3) 0 .++ Un(vn — v3)
Bn \1 ui(vi—wvn) U2(v2—vn) Uz(vz—wn) ... 0

Notethat these points (B;) areindeed collinear. Letting B, denotethepoint B, :=
[0, us, ..., uy] inthe hyperplane i, the point B;, fori in[1.. n], liesontheline
b := ByB,, a aposition determined by the parameter v;. In fact, we have the
inhomogeneous equation B; = By — v; B,,.
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Just as in the proof of the n-Space Pappus Theorem, our chosen coordinate
system treats the A-points and the B-points asymmetrically. But that asymmetry
manifestsitself only inthe coordinatesthat are assigned to pointsoutside of the hy-
perplane 7. In particular, the asymmetry does not affect the parameters (u;) and
(vi). Wehave A, = anm =[0,vy,..., vy and, symmetrically, we have B, =
bNnmx =[0,uy,...,uy]. Alternatively, we can define the scalars (uy, ..., um) as
the coordinates of the points (A, ..., An) in some projective coordinate system
for theline a that assigns the coordinates 0 and oo to Ag and A,. Symmetrically,
thescaars (vy, ..., vm) arethe coordinates of the points (B;, . . ., By) in some co-
ordinate system for the line b that assigns the coordinates 0 and oo to By and B,,.

Each of the parameter vectors[us, ..., us] and [vy, ..., vy] IS homogeneous,
and thus representsn — 1 = m degrees of freedom. If we think of the parameters
(u;j) as the homogeneous coordinates of the point B,, they are obviously homo-
geneous. Of course, we introduced the scalar u;, instead, as the coordinate of the
point A; in some coordinate system for the line a that assigns coordinates 0 and co
to Ap and A,,. But the parameters (u;) are also homogeneous when thought of in
that way: Theratio u; : u; is determined by the crossratio (A, A, Ag, A;), but
we can rescale all n parameters (uy, .. ., U,) without changing anything.

Notethat thetwo parameter vectors[us, ..., uy] and[vy, ..., vy] determinethe
entire configuration, up to aprojective transformation of the ambient space S. The
m degrees of freedom in each of the homogeneous parameter vectors combinewith
the (m+2)2— 1 = m? 4 4m+ 3 degrees of freedomin aprojectivetransformation
of the (m + 1)-space Sto account for the grand total of m? + 6m + 3 degrees of
freedom.

7.3.3 Theresdual matrix of abase

We claim that, for generic choices of the two parameter vectors[u,, ..., u,] and
[vi, ..., vn], the resulting configuration will be free of forbidden incidences and
will hence represent the budget matroid By, 1 1. It suffices to consider each base of
Bm.1.1 and to rule out pairs of parameter vectorsthat make the m+ 2 pointsin that
base mutually incident. Our hopeisthat each base will rule out only those pairs of
parameter vectors that satisfy some algebraic relation. The bad thing — which we
must show does not happen — would be for one of the bases to rule out all pairs
of parameter vectors.

We can classify the bases of the matroid By, 1 1 by the number of pointsthat they
havein each column. Sinceno independent set is allowed to have morethan by + 1
pointsin the j ™ column, no base can contain more than two A-points or more than
two B-points. Thus, for m large, the bulk of the pointsin any base are P-points.
Wetest the points of abase for incidence by forming an (m+ 2)-by-(m+-2) matrix
whose rows are their coordinates and testing the determinant for zero. Since the
bulk of the pointsin any base are P-points, the bulk of the rows of this matrix will
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havetheform[O,...,0,1,0,..., 0], withonly one nonzero entry. WWhen comput-
ing the determinant, we can delete each such row and del ete each column inwhich
any such row hasitssingle 1. What remains— let's call it the residual matrix —
isof bounded size.

7.3.4 Thedeter minantsof theresdual matrices

To cut down on the number of cases in what follows, let’s introduce ug := 0 and
vo .= O asalternative namesfor zero. We can then rewritethe matricesaand b so
that the top row looksjust like all of the rest:

(1 Ugv1 U2 Ugus Uovn\
1 uvi Uva Uqvs U1vn
1 uv; Usva Uovus Uovn
a= 1 uszv; Uzvs Uszvs Uavun
\1 Unvl Unvz Unv?, Unvn)
and
(1 ui(vi—vo) Uz(v2—vp) Us(vs — vo) Un(vn — v0) \
1 ui(vy—v1) Uz(vz—w1) Uz(vz— 1) Un(vn — v1)
b 1 ui(vy —v2) Uz(vz —w2) Uz(vz— v2) Un(vn — v2)
|1 ui(vr—v3) Uzx(v2—v3) Uz(vs— v3) Un(vn — v3)
\1 U1(vy —vn) U2(v2 — vn) Uz(v3 — vn) Un(vn — Un))

Using the convention that uy = vy = 0, we can capture the determinants of the
residual matrices associated with all possible basesin Table 7.1. Each of the eight
rows in this table describes a possible vector of column populations for a base.
For example, in the third row, any m of the P-points and any two of the A-points
together form a base. The fourth row is special, in that, when choosing m of the
P-points, one A-point, and one B-point, we must avoid choosing precisely one
point with each of the possible indices[0.. m+ 1] — that would give us a perfect
set, whichisnot abase. We specify which A-pointsand which B-pointsare chosen
by listing their indices, intheobviousway. But, for P-points, we usethe process of
elimination, listing instead the indices of the pointsthat are not chosen. Claim: In
each row of Table 7.1, the formulain the rightmost column gives the determinant
of the (m+ 2)-by-(m+ 2) matrix formed by assembling the coordinate vectors of
the m + 2 chosen points.

Let's verify the determinant in the seventh row, the case (m — 1,1, 2), asan
example; the other cases are similar. We form a base by taking all of the P-points
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#P’s #A's #B's

inant of res i
{left) taken} | {taken) determinant of residual matrix

m+1 1 0

. +1
{e} {1} {}
m+1 0 1 41
{e} {} {k}
m 2 0

(e, f}) i, i} 0 +(vr — ve) (Uj — Uj)

m 1 1 LU vy
. +11 us v
ef) | i) | (& 1w

{e, T} {} k1 +(Us — Ue) (v — vk)

m-—1 2 1 +( ) i i UeEUe _ Uk))
o Uj — Uj Vi Uf (Vs — vk
{e, f, g} {I’ J} {k} 1 Vg Ug(Ug - Uk)
m-—1 1 2 :|:( ) i [l::e Uegﬂe_ldi))
. Uk — U o Ui(Us — U
{ea fa g} {I} {k’ I} 1 UQ Ug(Ug - ul)
UQ Ve UQUe
m-—2 2 2 Us vf Usvs

Ug vg Ugug
Unh Un Uptp

{e f.g.h} | {i,j} | k1

1
1
U] —ui) (v — ) 1
1

Table 7.1: Basesin apotential representation of the budget matroid By, 1.1
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except for P, Pr, and Py and combining them with A; and with B, and B,. We
can assume that the indices in each group are sorted, withe < f < gandk < I.
Because of our convention that ug = vo = 0, we don’'t have to single out the
subcasesi = 0 and k = 0 as special. But the subcase e = 0 might still be specidl,
so far aswe know. When e > 0, the residual matrix is 4-by-4:

0 e f g
P[0 1 1 1 239
A 1 Uj Ve Ujvs Ui Vg ( ~ )

Be| 1 Ue(ve—wk) Us(vsf —wk) Ug(vg — vk)
B \1 Ue(ve—v) Us(vf —v) Ug(vg— 1)

Itisclear that the determinant of this matrix isdivisible by the difference v, — v,
and it is straightforward to check that the quotient is the 3-by-3 determinant

1 Ue ve(Ue—Ui)
1 ur wve(us —up)

givenin Table 7.1. In the subcase e = 0, the residual matrix isonly 3-by-3:

e=0 f g
A 1 Uj v Ui vg
By 1 Us (vf —vk)  Ug(vg — ) (7.3-3)
B 1 ui(vr —w) Ug(vg—w)

But now the convention up = vy = 0 comesto our rescue once again. Notethat, if
wesete = 0inMatrix 7.3-2, thee™ column becomes|[1, 0, 0, 0], which meansthat
we can delete the " column and the 0™ row. What isleftis precisely Matrix 7.3-3.
Therefore, the formulagiven for thecase (m — 1, 1, 2) in Table 7.1 worksaso in
the special subcase e = 0. By similar arguments, al of the formulasin Table 7.1
work also whene = 0.

7.3.5 Thesgx primitive degeneracies

It remains to verify, using the formulasin Table 7.1, that for no base of the ma-
troid By, 1.1 does the determinant of the residual matrix, viewed as a polynomial in
thevariables[uy, ..., uy] and[vy, ..., vy], reduceto zero. Sincewe haveto study
each polynomial alittle, to verify that it isn’'t zero, we might aswell calcul ate what
itsirreduciblefactors are. Each irreducible factor of such a polynomial encodes a
primitive degeneracy that we must avoid, by being careful when we choose the
parameter vectors|[us, ..., Uy] and[vy, ..., vy]. Infact, we might as well build a
catalog of the various types of primitive degeneracies. It turns out that there are
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six types. six bad ways in which the positions of the A-points and the B-points,
along thelines a and b, can be related to each other.

We ruled out the first type of primitive degeneracy a while back, before we
thought about building a catalog. We shall say that adegeneracy of Type la arises
when the point A liesin the hyperplane rr, for somei in [0 .. n], that is, when
the points A, and A, coincide. Similarly, if B; = B,, then we have a degener-
acy of Type 1b. Note that, as A approaches A, , the parameter u; approaches oco.
Thus, we have ruled out al degeneracies of Type 1 as soon as we assume that the
parameters (u;) and (v;) are dl finite.

A degeneracy of Type 2a arissswhen A; = A; for somei # j in[0..n], and
of Type2b when B; = B;. Recall that A = A; just whenu; = u;, so degeneracies
of Type 2acorrespond to linear factorsof the formu; — u;, while those of Type 2b
correspond to v; — v;. Such linear factors arise frequently in Table 7.1.

We now tackle Table 7.1, case by case. Four of the eight are easy. In the cases
(m+1,1,0) and(m+1, 0, 1), thedeterminant of theresidual matrixis+1, sothere
arenofactorsto consider. Inthecases (m, 2, 0) and (m, 0, 2), therearefactors, but
they areall of theformu; — u; or v; — v;, and hence reflect Type-2 degeneracies.

The case (m, 1, 1) isthe trickiest to analyze. Table 7.1 gives the formula

1 UQ Ut
1 uf Ve
1 u

= Us Uk — Ujve + Uj Vs — Usvs + Uegle — Uelk.

Note that, if {i,k} = {e, f}, this determinant does vanish. But that is all right,
because the corresponding set of pointsis perfect, and hence is not a base. What
other subcases arethere? If i = e, two of the six termsin the determinant cancel,
and the four that remain factor as the product (us — Ug)(vx — v¢). Sincei = e
but {i, k} # {e, f}, wemust havek # f; so both of these factors reflect Type-2
degeneracies. A similar analysis handlesthe subcasesi = f,k = e, andk = f;
solet usassumethat {i, k} N{e, f} = @. Theonly remainingissueiswhetheri and
k coincide or not. In either subcase, however, thereisno cancellation: thesix-term
determinant is nonzero and irreducible, encoding a primitive degeneracy that we
can and must avoid. We shall refer to these two types of degeneracies as Type 3
and Type 4, accordingasi = k ori # k.
Let’s consder thecase (m — 1, 2, 1) next. Table 7.1 gives the determinant

1 ve Ue(ve— vk)
1 ve Us(vs — w0
1 Ug UQ(Ug - Uk)

b

multiplied by the factor of a Type-2 degeneracy, which we ignore. The issue here
iswhether k belongsto the set {e, f, g}. If k = e, for example, four of the twelve
terms of the determinant cancel, and the eight that remain factor as the product of
three Type-2 factors: (Us — Ug) (vi — ve)(vg — ve). A sSimilar analysis handles the
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subcasesk = f andk = g. Whenk ¢ {e, f, g}, thereis no cancellation and
the twelve-term determinant isirreducible, so it encodes another type of primitive
degeneracy that we must avoid — which we shall call Type 5a.
Thecase (m— 1, 1, 2) issymmetric, including atwelve-term degeneracy of a
typejust like Type 5a, but with A and B interchanged. We shall call it Type 5b.
Finally, we cometo the case (m — 2, 2, 2), for which Table 7.1 gives, ignoring
Type-2 factors, the determinant

Ue Ve Ugle
Us vf Usvs
Ug vg Ugug|
Un Uh Untn

[N

The four indices e, f, g, and h must be distinct, so no splitting into subcases is
needed. The determinant has 24 terms and is irreducible; we shall refer to the de-
generacies that result as Type 6.

Since none of the residual matrices has zero as its determinant, it follows that
generic choices of the parameter vectors[uy, ..., uy] and [vy, ..., vy] will avoid
all degeneracies, which completes the proof of By, 1.1 Representation Theorem.

7.4 Theprimitive degeneracies geometrically

In the process of proving the By, 1.1 Representation Theorem, we built a catalog
of the six types of primitive degeneracies. the six things to watch out for, when
deciding where to put the A-points and the B-points aong their lines. Each primi-
tive degeneracy can be defined either algebraically, intermsof the parameters (u;)
and (v;), or geometrically, in termsof the A-pointsand B-points. Our goal inthis
section is to find the geometric characterizations for Types 3 through 6.

Given some representation of the budget matroid B, ; 1, recall that oneway to
definethe associated homogeneousparameters[us, . . . , Uyn.1] iSasthecoordinates
of the points (A, ..., An:1) in some projective coordinate system for the line a
that givesthe points Ap and A, := a N & the coordinates 0 and co. Similarly, the
parameters[v: ..., vmy1] are the coordinates of the points (B, ..., Bny1) dong
theline b. But let’s focus, not on the coordinate systems, but on the sequences of
points(Ag, Ag, ..., Ani1; Ary) and (Bo, By, ..., Bny1; By) themselves. Notethat
each sequence consists of m+ 3 distinct, collinear points. If wefix any three of the
pointsin the A sequence, the cross ratios of the other m points with respect to the
fixed three constitute m degrees of freedom — the same m degrees of freedom that
we have been dealing with algebraically by using the homogeneous coordinates
[U]_, ceey Um+1] and [Ul, ey Um+1].

Each type of primitive degeneracy can be described either agebraicaly or ge-
ometrically. For Type 1a we have u; = oo just when Ay = A,,. For Type 2a, we
haveu; = u; just when A, = A;. In asimilar way, the algebraic definitions of
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the degeneracies of Types 3 through 6 in Section 7.3.5 correspond to projectively
invariant geometric properties of the A-points and B-points— in fact, to the con-
dition that somefour of them+ 3 points (Ao, ..., Ani1; A,) havethe same cross
ratio as some four of the points (By, . .., Bmi1; B:). To make it more convenient
to express such acrossratio, if i, throughi, are any four distinct indices in the set
[0..m+ 1] U {x}, let us denote by A, i,.i,.i,) the cross ratio of the four points
(AL, AL, A, A,) dong thelinea, and similarly for B, i, .is.i.)-

Proposition 7.4-1 For some positive m andfori in[0.. m+ 1], suppose that the
points (P), (A), and (B;), al lying in some projective (m + 1)-space S, come at
least this close to representing the budget matroid By 1.1:

e The P-pointsform aprojective frame for ahyperplaner in S.

e The A-pointslie along alinea that intersects the hyperplane r in the single
point A, := a N, and they are distinct from each other and from A, .

e Similarly, the B-pointslie along alineb that intersects in the single point
B. := bnm, and they are distinct from each other and from B,,.

e The (m+ 1)(m+ 2) perfect sets are mutually incident.
The only degeneracies that might still arise are of the following types:

Type Cross ratios Forbidden incidence
3 | Aijkm = Bgjrk {A¢, Bl UPN\{R, B}
4 | Ak = Bijxh {A. BFUPN\{PR, B}
5a | Ajjkr = Bijkn {Ac, A, BYUPN\ (PR, B, R}
5b | Agixnh = Bgjkm {A, B, B.JUPN\{R, B, B}
6 Aijxh = Bajkn | (AL ALB BJUPN\({R, B, B, R}

The symbol P .= {P, ..., Pny1} denotesthe set of all P-points. The symbol A,
means any A-point, and similarly for B,. Theindicesi, j,k, andl in[0.. m+ 1]
must be distinct in Types 4 through 6, whilei, j, andk must be distinct in Type 3.

Proof We pick up where the proof of the By, 1.1 Representation Theorem left off.
The points (Ao, Ay, ..., Ami1; A;) have coordinates (Ug = O, Uq, ..., Umy1; 00)
inavalid, projective coordinate system for thelinea. In asimilar way, the points
(Bo, By, ..., Bni1; By) havecoordinates (vg = 0, vy, ..., vmy1; 00) dongb. Itis
well known that, if the four points X; through X, have the coordinates x; through
X4 dong one line while Y; through Y, have the coordinates y; through y, along
some other line, the cross ratios X(1,2.3.4) and Y(1,2.3.4) are equal just when the de-
terminant

X1 Y1 Xi1

X2 Y2 X2Y2

X3 Y3 X3Yy3

Xa Ya XaYa

[N
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vanishes. Armed with this, it is straightforward to verify that the algebraic condi-
tionsthat defined the degeneracies of Types3 through 6in Section 7.3.5 correspond
to the geometric conditionslisted above. O

By theway, in proving the By, 1.1 Representation Theorem, we actually proved
somewhat more than we claimed. We are now in a position to state that stronger
result geometrically.

Proposition 7.4-2 For some positivem, let (S, ..., Sni1; Si) be a sequence of
m+ 3 distinct pointson alines, let (To, . .., Tmy1; T,) beasimilar sequence on a
linet, and suppose that those two sequences are free of all degeneracies of Types 3
through 6. That is, for no three distinct indicesi, j, andk in[0.. m + 1] do we
haveS; ik~ = Tq .k, andfornofourdistinctindicesi, j,k, andl in[0..m+1]
do we have €either S(i,j,k,ﬂ) = T(i,j,n,l) or S(i,j,k,n) = T(i,j,k,l) or S(i,j,k,l) = T(i,j,k,n) or
Si.ikh = Tajkn- Then, thereexist representationsof the budget matroid Bm 11 in
which the points (Ao, . .., Ani1; Ar) and (B, ..., Bni1; By) are projective im-
ages of these S-points and T -points. Furthermore, any two such representations
differ from each other only by a projective transformation of the entire ambient
(m+ 1)-space.

Proof Choose a projective coordinate system for the line s that gives the points
S and S, thecoordinatesOand oo, and let [uy, . . . , Umy1] bethecoordinates given
to the points (S, ..., Sny1). Determine the parameter vector [vq, ..., vme1] IN
asmilar way from the T-points. In proving the By, 1.1 Representation Theorem,
we saw that, aslong as all primitive degeneracies are avoided, the parameter vec-
tors[uy, ..., Uns1] @and vy, ..., vmya] determine arepresentation of By, ;1 thatis
unigue up to a projective transformation of the ambient space. O

We shall exploit the m = 2 case of this proposition, in Chapter 9, in order to
help us analyze the degeneracies that can arise in the cubic case of the Witness
Theorem.

Exercise 7.4-3 Recall that the budget matroid By ; ; is the Pappus matroid. Let-
tingm := 1 in Proposition 7.4-1, which primitive degeneracies should we watch
out for in constructing a Pappus configuration?

[Answer: Only Types 1 through 3 can occur, because Types4 through 6 require
four distinct row indices. Lettingi, j, and k bethethreerow indicesin some order,
aType-3 degeneracy occurs when the equality of crossratios A j k- = B j.x.k
causes the three points Py, A, and By in the k™ row to be collinear.]

Exercise 7.4-4 Primitive degeneracies of Types 3 through 6 can occur when con-

structing representations of the budget matroid B, ; ;. Describethe forbidden inci-

dencethat arisesin each type of degeneracy asconcretely aspossible. Inparticular,

name the P-pointsthat are involved, rather than those that are not involved.
[Answer: Leti, j, k, and| bethe four row indices, in some order.
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Type3 If Aj jxr = B jrk, thentheline PR meetstheline A, By.
Typed If A jxn = B, thentheline P.A meetstheline A¢B.
Type5a If Aj j k- = Bk, thentheline B B meetstheline a.
Type5b If Ai iy = Bi,jkr), thentheline B A meetsthelineb.

Type6 If Ag jxi) = Bk, thenthelinea meetsthelineb.]

Exercise 7.4-5 Givenaconfiguration {(P:, Ai, Bi)}ic[o.3 of pointsin 3-space that
failsto represent the budget matroid B, 1 1 precisely because of a Type 6 degener-
acy — that is, thelinesa and b fail to be skew — what geometric property do the
six points {Py, P1, Py, Ps, A;, B, } inthe plane = have?

[Answer: The equality Ag 123 = Bo.1.2.3 means that the four homogeneous
coordinates of the points A, = [0, vy, vz, v3] and B, = [0, uy, Uz, U] have the
same cross ratio. The locus of points X = [0, X3, X2, X3] whose four coordinates
have some fixed cross ratio is a conic in the plane 7 that passes through all four
of the frame points Py, Py, P, and P;. So the six listed points lie on a common
conic.]



Chapter 8

Null systems

Wehave proved somegeneral resultsabout therepresentability of budget matroids,
but our original goal wasto find a configuration that characterizes the dependence
of four cubic polynomials. It is going to turn out that the matroid B, 1 1 provides
that configuration. Unfortunately, we aren’t yet equipped to prove that.

We shouldn’t lose heart, since the results in Chapter 7 do give some positive
indications. If we let m = 2 in the By, 1.1 Representation Theorem, we find that
thematroid B, 1 1 isrepresentable over therational numbers, with #(B,11) = 19.
Representability is certainly a good sign, and nineteen degrees of freedom is also
just the number that we would have been hoping for, had we paused to give the
matter any thought.

Why isthat? (Thefollowing accounting isthe cubic analog of Exercise 2.1-1.)
Let M be some matroid on 12 elementsfor which the cubic analog of the Witness
Theorem holds. Fix some center line 0 in 3-space, and consider representations of
M that witness to the dependence of 3-blocks of planes through the line 0. There
are eleven degrees of freedom in choosing such a 3-dependent block of planes:
twelve dopes, but subject to one constraint. There are eight degrees of freedomin
a projective transformation of 3-space that fixes the center line o and fixes every
plane through o: fifteen degrees of freedom in an arbitrary projective transforma-
tion, minus six to fix two planes through o (which suffices to fix o itself), minus
one more to fix all of the other planes through o. In order for the cubic Witness
Theorem to hold for the matroid M, we must have #(M) = 11 + 8 = 19.

The bad newsisthat the recipe for constructing representations of B, 1 ; given
in Chapter 7 isn't very helpful in exploring the relationship with 3-dependency.
What we didin Chapter 7 wasto choose the P-pointsand the A-points, after which
we could easily construct the B-points. We shall refer to that construction as the
P-first construction. But suppose that we are given a 3-dependent block of planes
and that we would like to construct a representation of B, ; ; that witnesses to that
3-dependence. It isn't at all obvious how to constrain the choices of the P-points
and A-points so that the B-points end up on the proper planes.

What we do instead, in Chapter 9, isto develop an aternative construction for
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representations of B, 11, which we call the P-last construction. We choose the
four A-pointson aline a; the four B-pointson aline b, skew to a; and the plane
7, on which we want the four P pointsto lie. From that information, using the
theory of null systems, we then construct the P-points, lying in the plane . In
this chapter, we prepare for that by reviewing the pretty theory of null systems.

8.1 Polaritiesin general

The dual of a projective n-space Sis the projective n-space S* whose k-flats are
the (n — k — 1)-flatsof S. The principle of duality states that the dual space S*is
also aprojective n-space. A polarity isaself-inverse (or involutive) isomorphism
between aspace Sand itsdual S, that is, aone-to-one, projective correspondence
between the points of Sand the pointsof S*, which are the hyperplanes of S. Po-
larities come in two types, called polar systems and null systems [23], as we men-
tioned in Section 2.9. We now consider the linear algebra of this situation.

We shall represent a point in projective n-space as a column vector ¢ of ho-
mogeneous coordinates, of height n 4+ 1; and we shall represent a hyperplanein
n-space asarow vector r of homogeneous coefficients, of width n + 1. The point
c lieson the hyperplaner just when the dot product r c is zero.

Let M beaninvertible (n+1)-by-(n+1) matrix. Multiplicationby M givesusa
map from projectiven-spacetoitself, taking the point c to the point Mc. Of course,
because the coordinates are homogeneous, a nonzero scalar multiple uM of the
matrix M gives us the same map. Such amap iscalled aregular projective trans-
formation. Note that the hyperplaner is carried, by the projective transformation
M, to the hyperplaner M—1, sincewe haver c = 0 just when (rM~—1)(Mc) = 0.

We can dso useinvertible (n + 1)-by-(n + 1) matrices to describe maps from
projective n-space to its dual: The point ¢ goes to the hyperplane ¢tM, where the
superscript ‘t” meanstranspose. Note that the hyperplaner iscarried, by thismap,
to the point M~rt, since we haverc = 0 just when (ctM)(M~1rt) = cirt =
(rc)t = 0. Maps of thistype are particularly smple — and are called polarities
or involutive correlations — when they are equal to their own inverses; that is,
mapping a point ¢ to the hyperplane ¢'M and then mapping that hyperplane to the
point M~1(c!M)! = (M~tMY)c gets us back to the same point ¢ that we started
with. For this to happen for all points ¢, we must have M~1M! = vl for some
nonzero scalar v, which means that M' = vM. Transposing both sides of this
equation, we see that M = vM!, so M = v?M. Since M isinvertible and hence
far from identically zero, we have v> = 1, sov = +1.

Polaritieswith v = 1 have symmetric matrices M = M! and are called polar
systems; those with v = —1 have skew-symmetric matrices M = —M" and are
called null systems. Whilethereare many parallels between the two theories, there
are also important differences.

One difference arises when we consider whether or not a point lies on its own
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polar hyperplane. Fix acertain polarity, andlet M be one of its associated matrices
— s0 M is determined up to a scalar multiple. The polar hyperplane of the point
¢, in the chosen polarity, has the homogeneous coefficients ctM. So the point ¢
lies on its own polar just when ¢'Mc = 0. If the polarity is a polar system, then
the matrix M is symmetric and this equation determines a certain hypersurfacein
the ambient projective space, the hypersurfacesthat can be determined in thisway
being called quadrics. If the polarity is anull system, on the other hand, then the
matrix M is skew-symmetric. For any point c, it follows that the scalar c!Mc is
egual to its own negative,

c'Mc = (c'Mo)t = c!Mtc = c(—M)c = —(c'Mo),

and hence must be zero.! Thus, in anull system, every point lies on its polar hy-
perplane.

Another important differenceisthat, while polar systems exist in spaces of any
dimension, null systemsexist only in spacesof odd dimension. If wetakethedeter-
minant of both sides of the equation M! = —M, wefind that det(M!) = det(M) =
(=11 det(M). Since M has nonzero determinant, it followsthat (—1)"* = 1,
which means that n must be odd. In particular, there are no null systems in the
plane, so most people who study projective geometry never have the pleasure of
meeting a null system.

A third mgjor differenceinvolvesthe concept of equivalence, wheretwo polar-
ities on the same space are called equivalent when they differ only by a projective
transformation. All null systems on a given space are equivalent, and thisis true
regardlessof the propertiesof thefield of scalars. If every scalar has asgquare root,
then all polar systems are equivalent also; but the fewer scalars that have square
roots, the more different equivalence classes of polar systemsthereare. For exam-
ple, in 3-space over thereal numbers— because negative scalarsdon’t have square
roots — there are three equivalence classes of polar systems and hence three dif-
ferent types of quadric surfaces [49]:

empty quadrics imaginary ellipsoids,

non-ruled quadrics ellipsoids, hyperboloids of two sheets, and €elliptic parabo-
loids; and

ruled quadrics hyperboloids of one sheet and hyperbolic paraboloids.

Toverify these claimsabout equivalence, notethat two polaritiesare equival ent
just when their matrices M and M’ satisfy M’ = uP'M P, for some nonzero scalar

10Over afield of characteristic 2, theequationu = —u isan identity — it doesnot imply that u =
0. The standard cure for this, as Artin explains [4], is to define amatrix M to be skew-symmetric
(or alternating) only when both M = —M! and all of the diagonal elements of M are zero. The
latter condition followsfrom the former when the characteristicis not 2. Thiswhole issue doesn’t
affect us, however, since we are assuming that our scalar field is of characteristic zero.
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u and invertible matrix P, the matrix P giving the projective transformation that
takes one polarity into the other. Over any field of scalars, it is a standard result
of matrix algebra[4, 26] that, for any invertible, skew-symmetric matrix M, there
exists an invertible matrix P with

o (0
PMP_<_| o)

wherethetwo instances of | here areidentity matricesof thesame size. It follows
fromthisthat al null systems on a given space are equivalent.

In contrast, the extent to which an invertible, symmetric matrix M can be put
into some standard form depends upon the existence of square roots in the field
of scalars. Over the complex numbers, we can always find an invertible matrix P
with P'!MP equd to the identity matrix. Over the real numbers, we can get the
matrix P'M P to be diagonal with each diagonal entry equal to &1, but we can’t
change the number of diagonal entries of each sign; that result iscalled Sylvester’s
Lawof Inertia[3, 27]. Wecan, however, letu = —1intheformulaM’ = uP'MP,
thereby reversing all of the signs at once. It follows that, for a4-by-4, invertible,
symmetric matrix M over the real numbers, there are three standard forms, corre-
sponding to the three types of quadric surfaceslisted above:

empty quadrics all four diagonal elements of the same sign;

non-ruled quadrics three diagonal elements of one sign and the remaining one
of the other sign; and

ruled quadrics two diagonal elements of each sign.

Over therationa numbers, thingsare more complicated till; Exercise 8.1-2 shows
that, in any space of odd dimension, thereareinfinitely many different equivalence
classesof polar systems. Fortunately, weareinterested innull systems, sowedon’t
need to explore the complexities of polar systems any further.

Exercise 8.1-1 Show that, on the line, not only are any two null systems equiva-
lent, they are actually equal. In this unique null system, what is the polar P* of a
point P? Give the matrix of this null system.

[Answer: The polar P* is the same point as P, but viewed as a hyperplane;
thereis no choice about this, since the point P and itspolar hyperplane P* must be
mutually incident — which, in this case, means coincident. The matrix is ( % %)
for some nonzero w. Notethat the point on theline with homogeneous coordinates
['], when viewed as a hyperplane, has homogeneous coefficients (v, —u).]

Exercise 8.1-2 For any odd n, construct an infinite family of polar systems on
n-space over the rational numbers, no two of which are equivalent.

[Hint: Whennisodd, it followsfromtheequation M’ = uP'M P that theratio
det(M’)/ det(M) isaperfect square [24].]
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8.2 Null systemsin 3-space

The matrix of anull system in projective 3-space is 4-by-4, invertible, and skew-
symmetric. Note that there are six degrees of freedom in such a matrix, one for
each entry above the diagonal. Since an overall scalar multiple doesn’t matter,
we deduce that there are five degrees of freedom in the choice of a null system
in 3-space. Inthissection, we study the geometry of such anull system. One good
source for thismaterial is Maxwell [28].

Recall fromthe previoussection that all null systemsin 3-space are equivalent,
and thus have the same geometry, up to our choice of coordinate system. Thefive
degrees of freedom determine only how the null system sitsin 3-space.

Thereisn’t much to say about pointsor planes. The polar plane of any point P
isaplane P* containing P; and the pole of any plane = isapoint 7* lyingon .
The relationship between aline ¢ and its polar line £* is more interesting.

Proposition 8.2-1 Given any null system in 3-space, the polar ¢* of alinet isei-
ther skew to ¢ or coincides with €.

In the former case, we shall call the pair of lines {¢, ¢*} a skew-polar pair. In
the latter case, where ¢ = ¢*, theline ¢ is called self-polar.

Proof For any line ¢, whenever the point P lies on ¢, the plane P* must pass
through the line £*. Thus, as P dides along ¢, the polar plane P* rotates around
¢*, and does so in such away that P* always passes through P. Intypical cases,
thetwo lines ¢ and £* are skew, and hence form a skew-polar pair {¢, £*}.

Could it happen that aline ¢ and its polar £* intersected without coinciding?
No. Asthepoint P did along ¢ in such a case, the polar plane P* would have to
remainfixed at the unique plane spanned by ¢ and ¢*. But distinct points must have
distinct polars.

We conclude that, whenever ¢ and £* intersect, they must actually coincide. In
thiscase, as P dides aong ¢, the plane P* rotates around that same line £ = ¢*.
Thus, for any self-polar line ¢, the null system provides a projective correspon-
dence between the range of pointsaong ¢ and the pencil of planesthrough ¢. O

By the way, the geometry of a polar system in 3-space is quite different from
that of anull system[30]. Inapolar system, just because aline ¢ intersectsitspolar
£* does not mean that the two must coincide. Indeed, alineintersectsits polar just
when it istangent to the quadric surface associated with the polar system, while it
coincideswith its polar only when it lies entirely inside — that is, is a generating
line of — that quadric. But back to null systems.

Proposition 8.2-2 Given any null system in3-space, let ¢ beany lineand let P be
any pointont. Thelinet is self-polar just when ¢ liesin the plane P*.
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Proof Theline ¢* awaysliesin the plane P*. If theline ¢ is self-polar, then ¢ =
¢*, sotheline ¢ liesin P* aso. Conversely, suppose that ¢ doesliein P*. Since
both ¢ and ¢* liein P*, they are not skew, so we know from Proposition 8.2-1 that
they coincide—that is, ¢ isself-polar. O

If we fix apoint P in space, we deduce that the lines through P that are self-
polar are precisely those lying in the plane P*. Thus, whilethere are 4 degrees of
freedom in the choice of an arbitrary line in 3-space, there are 3 degrees of free-
dom in the choice of a self-polar line. In fact, the set of self-polar lines forms a
general linear complex,? and knowing this linear complex is equivalent to know-
ing the null system. Indeed, Maxwell talks more about linear complexes[31] than
he does about null systems as such [32].

Asacorollary of Proposition8.2-2, we can show that thereare no triangleswith
all three edges self-polar.

Proposition 8.2-3 If the points A, B, and C are distinct and all three of the lines
AB, AC, and BC are self-polar with respect to some fixed null system, then A, B
and C are collinear.

Proof If A, B, and C were not collinear, the polar of each vertex of the triangle
ABC would have to be the plane ABC, since the two triangle edges that meet at
that vertex are self-polar. But distinct points must have distinct polars. O

Our next result gives us an easy way to prove that alineis self-polar.

Proposition 8.2-4 Givenany null systemin3-space, if thelines{¢, ¢*} are askew-
polar pair, then any line m that meets both ¢ and ¢* is self-polar.

Proof Let m be aline that meets both ¢ and ¢*, say at the points A and B re-
spectively. Since m passes through A, the line m* must liein the plane A*, which
we know is the unique plane through ¢* that passes through A. Similarly, sincem
passes through B, the line m* must lie in the plane B*, which is the unique plane
through ¢ that passes through B. It follows that m* must coincide with the inter-
section A* N B*, whichis precisely thelinem = AB. Thus, missaf-polar. O

S0 suppose that the two opposite edges ¢ = AC and ¢* = BD of some tetra-
hedron ABCD form a skew-polar pair. It followsfrom Proposition 8.2-4 that each
of the other four edges AB, BC, CD, and D A of thetetrahedron isself-polar. We
close this section with a converse to that result.

Proposition 8.2-5 Givenany null systemin3-space, let ABCD be askew quadri-
lateral all four of whose edges are self-polar lines. Then, the two diagonal lines
{AC, BD} form a skew-polar pair.

2The word ‘general’ here means ‘ nonspecial’, a special linear complex being the 3-parameter
family of linesin 3-space that meet afixed line.
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Proof Sincethevertex Aliesonthetwolines AB and AD, itspolar plane A* must
pass through both (AB)* = AB and (AD)* = AD; so A* = ABD. Inasmilar
way, the polar of any vertex of the quadrilateral is the plane spanned by the two
adjacent edges. The polar of the diagonal AC isthen theintersection A* N C* =
ABD N CBD, whichis precisely the opposite diagonal BD. O

Exercise 8.2-6 Given anull system — or a polar system, for that matter — in
3-space, show that two lines ¢ and m meet but do not coincide just when their po-
lars ¢* and m* meet but do not coincide.

[Hint: Thisisamost trivial. Two lines in 3-space meet just when they pass
through a common point and just when they lie in acommon plane.]

8.3 Skew-polar hexagons

We pointed out in Section 2.9 that one way to specify a null systemin 3-spaceis
to giveatwisted cubic curve. Another very pretty way to specify anull system, as
discussed in Exercise 8.3-2 below, isto give a Mobius pair of tetrahedra. For our
purposes, though, it ismost convenient to specify anull system by giving acertain
type of skew hexagon.

Fix some null system in 3-space. Knowing any skew-polar pair of lines{¢, ¢*}
aready goes along way towards specifying that null system. Indeed, it specifies
four out of the five degrees of freedom. It tells us, right away, the polars of al of
the pointslying on either ¢ or £*. Furthermore, given apoint P on neither £ nor £*,
thereisauniqueline mthrough P that meetsboth ¢ and ¢*; it iscalled the common
transversal. Sincethe common transversal mtouchesboth ¢ and ¢*, it must be self-
polar, by Proposition 8.2-4. Thus, the polar plane P* must pass through the line
m. The one degree of freedom that remains rotates the plane P* about the line m.
We could tie down that one degree of freedom by specifying, for some such point
P, its polar plane P*. But we'll do something more symmetric.

Let ussay that ahexagon A; B, A3 B; A» B3 in 3-spaceis skew-polar with respect
toacertain null system whenitssix verticesaredistinct and when each side forms,
with the opposite side, a skew-polar pair of lines— that is, each of the three pairs
of lines {A1By, Ay B}, {A1Bs, AsB,}, and {AxBs, A3By}) is SkﬂN-pOlar. Those re-
guirements may not seem very strict, but it turns out that skew-polar hexagons are
guite constrained.

First, every line joining two nonadjacent vertices of a skew-polar hexagon is
self-polar. For example, because the opposite edges A; B, and A; B; form a skew-
polar pair, it followsfrom Proposition 8.2-4 that the other four edges A; Az, B1 B,
A;B; and A; B; of the tetrahedron A; A; B, B, are self-polar. Repeating this argu-
ment twice more finishesthe job.

In particular, the lines Aq Ay, A1 Az, and A, A; are al self-polar. We conclude
from Proposition 8.2-3 that the points A1, Ay, and Az lie on acommon, self-polar
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line, which we shall call a. By asimilar argument, the points B,, B,, and Bs lie
on aself-polar line b. Sincethe opposite sides A; B, and A, B, of the hexagon are
skew, it follows that the lines a and b are also skew.

We have now uncovered all of the constraints on a skew-polar hexagon, aswe
can show by working backwards to construct one. Let a and b be any two skew
lines, each of which isself-polar. For each point A on a, the polar plane A* passes
through a, and hence meets b in aunique point B. The line AB passes through A
and liesintheplane A*, soitisself-polar. It followsthat the correspondencetaking
A to B is symmetric; that is, the unique point where the polar plane B* meets the
lineais Aonceagan. Let A;, Ay, and Ag be any three distinct points on a, and
let By, By, and B; be the corresponding points on b. We claim that the hexagon
A1 B,A3B; A2 B3 is skew-polar. To see this, note that all four edges of the skew
quadrilateral A B, B, A, are self-polar. It follows from Proposition 8.2-5 that the
diagonals A; B, and A, By, which areapair of opposite edges of the hexagon, form
askew-polar pair.

For future reference, note that there are nine degrees of freedom in the choice
of ahexagon that is skew-polar for a given null system: threein the self-polar line
a, threemorein b, and afinal threein the points A;, Ay, and Az along a.

Exercise 8.3-1 Givenanull systemin 3-space, consider acycliclist €,€5¢5¢5¢,¢%
of six linesin which opposite pairsof lines are skew-polar pairsand adjacent pairs
are not skew. Show, from these assumptions alone, that the six lines are the edges
of askew-polar hexagon.

[Hints: Provefirst that no adjacent pair of lines can coincide — for example,
it cannot be the case that ¢, = ¢5. We can then make the definitions

A :Zﬁlﬂﬁé B, ::E’{ﬂﬁz
Ao :Zﬁzﬂﬁg B, ::E;ﬂﬁg
Az :Zﬁgﬂﬁak_ Bs ::E};ﬂﬁl

and switch to thinking about the hexagon in terms of its vertices A; B, Az B; A; Bg,
rather thanitsedges. Conclude by proving that thesix verticesareadl distinct. Both
proofs use Proposition 8.2-4.]

Exercise 8.3-2 Fix any null system in 3-space and fix any tetrahedron S. Show
that the polar planes of the verticesof Sarethefacesof atetrahedron T that forms,
with S,aMobiuspair. Conversely, given any Mobius pair of tetrahedrain 3-space,
show that there is a unique null system in which the faces of each tetrahedron are
the polars of the vertices of the other tetrahedron. It follows from thisthat, if we
fix any tetrahedron S, null systems in 3-space are in one-to-one correspondence
with tetrahedrathat form a Mobius pair with S. (Note that there are five degrees
of freedomin either case.)

[Hint: Theverticesof Sarenot coplanar, sothefacesof T won't be concurrent.
If A, B, and C arethreeof theverticesof S, then the three corresponding faces A*,
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B*, and C* of T will intersect at the vertex A* N B*NC* = (ABC)* of T. Thus,
thefacesof Sarethe polarsof theverticesof T, just asthefacesof T arethepolars
of theverticesof S, whichmeansthat Sand T formaMaobius pair. For the second
half of the problem, see Griffithsand Harris[13].]

8.4 Skew-Pappian hexagons

If a hexagon A3 B, A3B;A;B; is skew-polar for any null system, its six vertices
must be distinct and alternate vertices must lie on two skew lines. We shall call
any hexagon in 3-space with those two properties skew-Pappian. In other words,
a skew-Pappian hexagon is an ordered 2-block {(Aq, By), (A, By), (As, B3)} of
pointsin 3-space, where Aq, Ay, and Az are distinct pointsalong alinea and B,
B, and B3 are distinct points dong a line b that is skew to a. Our goa in this
section is to show that, given any skew-Pappian hexagon, there is a unique null
system for which it is skew-polar.

Notethat the degreesof freedomwork out correctly, at least. Therearefourteen
degrees of freedom in a skew-Pappian hexagon: four in each of thetwo linesa and
b and one in each of the six vertices, along its proper line. On the other hand, it
takes five degrees of freedom to choose a null system in 3-space and it takes nine
more to choose a hexagon that is skew-polar for that null system, so we again get
atotal of fourteen.

Lemma 8.4-1 Given two skew-Pappian hexagons, there exists a projectivetrans-
formation of 3-space that maps thefirst to the second.

More precisely, let A; B, Az B1 A, Bs be a skew-Pappian hexagon and let = be a
plane that passes through the line A, B, but does not pass through either the line
a:= AiA Az orthelineb := B1B,Bs. Let Aél. BéA/S BiA/Z Bé and ' be a second
skew-Pappian hexagon and plane, with the analogous properties. Then, there ex-
ists a unique projective transformation of 3-space that both maps the first hexagon
to the second and maps the plane r to the plane r’.

Proof Let C bethe point where the line A3 Bs cuts the plane r, and define C’ in
an analogousway. No four of thefive points (A, A2, By, B,, C) are coplanar, and
the same holds for the primed versions (A, A,, B}, B}, C'); so thereis a unique
projective transformation of 3-space that takes the former five points to the latter
five. That transformation clearly takes the plane w = A;B;C tothe plane n’ =
A; B;C'. Furthermore, under that transformation, the common transversal from C
to the lines a and b must map to the common transversal from C’ to the lines a’
and b’; so the point A; must map to A; and B; must mapto B;. O

Proposition 8.4-2 Given any skew-Pappian hexagon A, B, A3 B, A; Bs in 3-space,
thereis aunique null system N = N((Aq, B1), (A2, By), (As, Bz)) for which the
hexagon A1B,AsB1AxBs is g(a/V-pOIar.
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Proof To show that some such null system exists, let N’ be any fixed null system
inthat 3-space and let A} B, A; B; A, B; be some hexagon that is skew-polar for the
null system N’. We saw in Section 8.3 that the hexagon A} B, A;B; A, B; must be
skew-Pappian. Lemma 8.4-1 then tellsusthat there exists aprojectivetransforma
tion of 3-space that removes the primes, mapping the hexagon A} B, A; B; A, B; to
the given hexagon A; B, AsB; A;Bs. If we apply that projective transformation to
the null system N’, the result is a null system N for which the given hexagon is
skew-polar.

It remainsto show that the null system N isuniquely determined by therequire-
ment that the hexagon A, B, As B; Az B3 be skew-polar for N. To seewhy, let P be
ageneric point in 3-space. The two opposite sides A; B, and A, B; of the hexagon
form a skew-polar pair, so, by Proposition 8.2-4, the common transversal ¢c; from
P to those two lines is self-polar. In a smilar way, the common transversals c;
and ¢; from P to the skew-polar pairs (A; Bz, A3B;) and (A;Bs, AsB,) are dso
self-polar. Thus, given only the hexagon A, B, Az B1 A, Bs and the generic point P,
we can construct three linesthrough P that lie in the plane P*. It followsthat the
given hexagon uniquely determinesthe null system N. O

Of course, it had better be the case that those three concurrent lines ¢y, ¢, and
C3 are coplanar — and indeed, the argument above provesthat they are. But wecan
also show their coplanarity more directly, using Pappus's Theorem. Suppose that
we put our eyeat thegeneric point P and welook out at the skew-Pappian hexagon
A; B, A3 B; A Bs. Inthe projective plane of linesthrough our eye, the hexagon that
weseelooksPappian, that is, of thetypethat arisesin Pappus's Theorem (asshown
in Figure 4.1). The collinearity of the apparent intersections of the three pairs of
oppositesides, when viewed from P, exactly correspondsto thefact that their three
common transversals ¢;, ¢, and c; are coplanar.

Exercise 8.4-3 Given a skew-Pappian hexagon A; B, Az B; A, Bs in 3-space and a
generic plane rr, construct the pole * of the plane r in the associated null system
N((A1, By), (A2, B2), (As, By)).

[Answer: Let c; bethe uniquelinein the plane v that is acommon transversal
of thelines A; B, and A, B; — that is, the line joining the point A; B, N v to the
point A, B; Nr. Determinelinesc, and ¢; inasimilar way. The coplanar linesc;,
C, and ¢z are concurrent by the dual of Pappus's Theorem, and the pole 7* isthe
point of concurrence.]

8.5 Thehomogeneous coor dinates of a pole

Given the homogeneous coordinates of the vertices of a skew-Pappian hexagon, it
will be helpful to be ableto compute the associated null system explicitly — that is,
to go back and forth between the homogeneous coordinates of a pole point and the
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homogeneous coefficients of its polar plane. Finding formulasthat worked in full
generality would beabit clumsy, because of the skew-Pappian condition: The ver-
tices of a skew-Pappian hexagon must alternate between two skew lines, and that
puts constraintson the coordinates of the vertices. For our purposes, though, it will
suffice to deal with avery specia case, one in which the skew-Pappian collinear-
ities are guaranteed by zero coordinates.

Lemma 8.5-1 The pole of the plane = = (1, 0,0, —1) in the null system deter-
mined by the skew-Pappian hexagon A, B, A; B; A, B; with vertices

A= [1, i, O, O] B, = [O, O, b]_, 1]
A = [1, dy, O, O] B, = [O, O, bz, 1]
Az = [1, as, 0, O] Bs; = [O, 0, b3, 1]

isthe point * with homogeneous coordinates

1 a b]_ 1 a4 & b]_ 1 a]_b]_ b]_ 1 a b]_
T* = 1 & b2 , 11 a a b2 11 a b2 b2 11 a b2 .
1 a; b3 1 a3 a3 b3 1 a; b3 b3 1 a; b3

Proof We verify that the point 7z * resultsfrom the construction in Exercise 8.4-3.
Asacheck of plausbility, note that the first and last homogeneous coordinates of
the point * are the same, so the point 7* doeslie on the plane .

The pointsontheline A; B, have theform [u, uay, vb,, v] for someratiou : v.
Thus, theline A; B, intersectsthe plane r at the point [1, a;, by, 1]. Similarly, the
line A; B; meetsthe plane r at the point [1, a,, by, 1]. The construction of Exer-
cise 8.4-3 tells us that the point 7 * lies on the line in the plane i that joins those
two intersections. This happens precisely if the matrix

ad b2

o b]_
1 a b]_ 1 a a]_b]_ 1 a b]_ b]_ 1 a b]_
1 & b2 1 a a b2 1 a b2 b2 1 a b2
1 a; b3 1 a3 a3 b3 1 a3 b3 b3 1 a3 b3

hasrank only 2, whichisindeed thecase: Thethirdrow isequal to (az—a;) (bz—by)
times the second row minus (az — ay) (bz — by) timesthefirst row. O






Chapter 9

On By 1,1 and 3-dependency

9.1 Constructingthe P-pointslast

Using the theory of null systems, we can construct representations of the matroid
B..1.1 inanew order: Choose the A-points, the B-points, and the plane rr; then
construct the P-points. We shall call this the P-last construction, to contrast it
with the P-first construction used in proving the By, 1.1 Representation Theorem.
Sincethe four rows play completely symmetric rolesin the P-last construction —
there is no need to treat one row specially, as there was in the P-first case — we
return to indexing the rows starting with 1.

2 1 1
PP A B
P. A B
P; A B3
Pa Ay By

Proposition 9.1-1 (The P-Last Construction) In any representation of the bud-
get matroid By 1 1, the point Py is the pole of the plane  := Span(Py, P», P, Ps)
in the unique null system N; = N((Az, By), (A, Bs), (A4, By)) for which the
skew-Pappian hexagon A, B3 A4 B, As B4 is skew-polar, and analogous results hold
for the points P, Ps, and P,. We shall denote these results by writing P, = *,
where the superscript ‘xi’ means ‘polar in the null system N; ’.

Conversely, supposethat we choose any four collinear A-pointsin 3-space, any
four collinear B-points, and any plane . For generic choices of those nineteen
parameters, the four A-points will be distinct, the four B-points will be distinct,
and the lines a and b on which they lie will be skew. Fori in[1.. 4], we can
then define the null system N;, and we can construct the point P, := n*. For
generic choices of the nineteen parameters, once again, the resulting twelve points
{(P, A, Bi)l}ier1.4 Will represent the matroid By 1 1.

113
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Figure 9.1: The complete quadrangle that arises in the plane = when the P-last
construction is used to build a representation of the budget matroid By 1 1.

Proof Given any representation of B, ; ;, consider what happensin the plane .
Thefour P-pointslieins, and nothree of them are collinear. Thus, they determine
acomplete quadrangle, as shown in Figure 9.1. For {i, j, k, 1} = {1, 2, 3, 4}, note
that the quadruples {P,, P;, A, Bi} and {F;, P,, A, B¢} are both coplanar. Thus,
the line P, P, is the unique common transversal in the plane  of the skew lines
A¢B and A By — call thiscommon transversal ty. In particular, the point P, lies
onall three of thecommon transversalst;y, t;;, and t,. Weargued in Exercise 8.4-3
that those three transversals are indeed concurrent and that the point P, = 7*
where they concur isthe pole of the plane 7 in the null system N; determined by
the skew-Pappian hexagon A B A B; AcB.

Conversely, given the A-points, the B-points, and the plane r, suppose that we
construct P, := 7* fori in[1.. 4]; will the result be a valid representation?

Itiseasy to seethat every set that should be mutually incident will be. Thefour
P-points are coplanar because the pole of the plane 7 in any null system aways
liesin . Thefour pointsin the perfect set {P;, P,, Ac, B/} are coplanar because
P isplaced at the point of concurrence of the three common transversals t;y, tji,
and ti;, while P, is placed at the point of concurrence of t;, tj, and ty — so both
P and P, lie onthelinety, which meetstheline A B;.

To show that no forbidden incidencesarisein generic cases, it sufficesto check
that none arisein some particular case, and any representation of the matroid B, 1 1
provides such a case. Readers who made it through Chapter 7 already know that
thematroid B, ; ; iSrepresentable; therest can verify for themselvesthat thetwelve
points given in Exercise 9.1-2 congtitute a representation. O
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Be

oB;

oB:

Figure 9.2: The projectionsonto the XY -plane of the twelve vertices of a particu-
larly symmetric representation of the budget matroid B, 1 ;.

Exercise 9.1-2 Verify that the following is arepresentation of the budget matroid
B..1.1, Sitting in Euclidean (X, Y, Z)-space:

P A B

1| (24,0 (-10,0,1) (O0,-5,-1)
2 (4,-2,00 (=501 (0,10,-1)

3| (-4,2,0) (5,0,1) (0,-10,-1)
41(-2,-4,00 (10,0,1) (0,5, -1)

Theplaner istheplane Z = 0, which wetaketo behorizonta; thelineaisparallel
to the X axis, but one unit aboveit; thelinebis parallel totheY axis, but one unit
below it. Figure 9.2 showsthe (X, Y)-plane i, together with the points Af and B/,
thevertical projectionsof Ay and B; onto the plane r. Notethat thisrepresentation
iscarriedto itself by thefollowing symmetry of order 4: Map each point (X, Y, Z)
tothepoint (Y, X, —Z), permutetherow indicesthrough the4-cycle (1, 3, 4, 2),
and swap the A and B columns.

[Hint: Forany i and j, theline A B; meets the plane r at the midpoint of the
segment A B. To show that the perfect sets are coplanar, check that, whenever i,
j, and k are distinct, the point Py lies on the line joining the midpoint of A B/ to
the midpoint of A B{. To show that there are no forbidden incidences, it suffices
to verify the absence of the primitive degeneracies listed in Exercise 7.4-4.]

Exercise 9.1-3 Figure9.3isaclose-up of therope-and-polestructurefound by the
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Figure 9.3: A representation of the budget matroid B, 1 ; in the Brazilian jungle.
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explorer in Jorge Stolfi’s cartoon on the title page. Label the twelve largest knots
to demonstrate the correspondence between this structure and the representation of
B..1.1 inthe preceding exercise. (Two of the twelve are hidden by jungle foliage.)
Convince yourself that each of the twelve ropes demonstrates one of the twelve
perfect coplanarities.

[Hint: Label the four knots of the central square Py, P,, P, and P4, going from
top to bottom down the page. The four knots on the left-hand pole can then be
|abeled in numeric order from A; on the bottomto A4 on top, whilethe four knots
on the right-hand pole get the labels B,, Bs, B, and Bs, from top to bottom. The
coplanarity of the perfect set { Py, P», Az, B4} isdemonstrated by the ropefrom Ag
to B4, whichistied, at its midpoint, to the beam that joins P; to P,.]

9.2 Degeneratecasesin the P-last construction

This section is just for those readers who made it to the end of Chapter 7 — in
particular, to Proposition 7.4-2. Using that result, we can analyze exactly what to
watch out for, in carrying out the P-last construction.

Suppose that we start the P-last construction with certain points (A;) and (B;),
lying on the lines a and b, and with a certain plane . Clearly, we must require
that the four A-pointsbe distinct and that none of them liesin theplane . Letting
A, = an xm denote the point where the line a cuts the plane 7, we conclude
that the five points (Aq, Az, Az, A4; A;) must be digtinct. In a similar way, the
five points (B;, B,, Bs, Bs; B,) must also be distinct. Proposition 7.4-2 (or, more
concretely, Exercise 7.4-4) then tells us precisely what else to watch out for: the
primitive degeneracies of Types 3 through 6.

Each primitive degeneracy involves some cross ratio of four of the A-points
happening to coincide with some crossratio of four B-points. We shan't bother to
review Types 3 through 5 here, except to note that the cross ratios that coincide in
those casesinvolveeither A, or B, or both. So those cases can be avoided smply
by choosing the plane = carefully. A Type-6 degeneracy happens, on the other
hand, when the crossratios A1 2 3.4) and B 2 3.4, are equal — so the plane r isnot
involved. That makes a Type-6 degeneracy more troublesome, since perturbing
the plane = isnot enough to removeit.

If we avoid all primitive degeneracies of Types 3 through 6 in choosing our
A-points and B-points (including A, and B,), we know from Proposition 7.4-2
that there do exist representations of B, 1 ; whose A-points and B-points are pro-
jectiveimages of ours. Fix any such representation. To avoid name conflicts, let’s
writeitspointsas (A) and (B/) anditslinesasa’ and b’. By Lemmag8.4-1, thereis
aunique projectivetransformation of 3-space that takes the skew-Pappian hexagon
A B] A, B/ A B, and the plane =’ to the hexagon A, B; A; B, A1 B, and the plane
. Since cross ratios aong the lines a and b are preserved, that transformation
must also take Al to Ay and B/ to B; fori in {3, 4}. We concludethat thereisarep-
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resentation of By 1 1 that hasits A-points, its B-points, and its plane r just where
we put ours, and the P-last construction will produce that representation.

On arelated topic, it is interesting to contrast the behaviors of the P-first and
P-last constructions when given input parameters with a single, primitive degen-
eracy of one of the six types. Of course, if the input parameters are degenerate,
then the output configuration has forbidden incidences. But do the outputs of the
P-first and P-last constructions have the same forbidden incidences? It depends
on the type of degeneracy.

Theeasy casesare Types 3, 4, and 5. Those primitive degeneraciesdon’t cause
any problem for either construction, and the two constructions, when given the
same degenerate input, produce the same degenerate output.

Type2isamost assmple. Having, say, Ay = A, isno problem for the P-first
construction. It isa problem for the P-last construction, since, for i in {3, 4}, the
hexagon A; B, A B; A; B; is not skew-Pappian, and hence the null systems N3 and
N, are not well defined. But if we allow the P-last construction to determine its
output by taking the limit as A; approaches A, it produces the same degenerate
output that the P-first construction produces.

Typelisamoreinteresting case. Having, say, A1 = A, isno problem for the
P-last construction. But the way in which its output degenerates, in that case, is
to have the four points P,, P, P4, and A; become collinear, in the plane . That
could never happen inthe P-first construction, sincethefour P-pointsarefixed, at
the outset, to be aprojectiveframefor 7. As A; approaches A, inthe P-first con-
struction, what happens, instead, isthat thethree points B,, Bz, and B, al converge
to the point P;.

Type6isaso aninteresting case. Inthe P-first construction, the bad thing that
happenswhen A1 234y = B1.23.4) iSthat the linesa and b intersect. That can't
happen in the P-last construction, since the lines a and b are fixed, at the outset,
to be skew. What happensinstead, in the P-last construction, isthat the projective
correspondencefromthe linea to the line b that takes A to B; fori in[1..3] dso
takes A4 to B4. Therefore, the four null systems N; through N4 coincide, and the
four P-pointsdefinedby P, := 7* coincideat the pole of the plane  inthat single
null system.

9.3 From framestogrids

To prepare for the Projection and Witness Theorems, we heed to prove some easy
factsabout projectivetransformationsof 3-space. One convenient way todothat is
to introduce a configuration with nine points and six linesthat we shall call agrid.
Gridscan play arole analogousto therole played by projectiveframes. Recall that
a projective frame for 3-space consists of five points, with no four coplanar. Any
projectiveframe can be mapped to any other by aunique projectivetransformation,
and we are going to show that the same holds for grids.
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C2

C1

Figure 9.4: An example of a grid in 3-space: three skew lines and three of their
common transversals. (Notethat thisfigureisarelabeling of Figure5.1.)

A grid consists of three skew linesin 3-space, along with three of their com-
mon transversals, as shownin Figure 9.4. Note that the three common transversals
will also be skew. A grid has nine pairs of lines that intersect, each such pair de-
termining a point. Focusing on those points, we can think of a grid, alternatively,
asa 3-by-3 matrix g = (Gij)i,je[1.3 Of pointsin 3-space for which

e No two of the nine points coincide;

¢ three of the nine pointsare collinear just when they form arow or acolumn;
and

e four or five of the nine points are coplanar, as we shall show shortly, just
when they can be covered by the union of arow and a column.

Proposition 9.3-1 Given any grid g = (G;jj)i jep.3 in 3-space, the five points
(G, G2, Go1, Gy, G3z) form aprojective frame. Conversely, given any projec-
tive frame (Gq1, G12, Go1, G2, G33) for 3-space, there is a unique quadruple of
points (Gis, Gas, Gz1, G3p) that completesthat frameinto agrid.

Proof Given any grid, any two distinct row indicesi and j, and any two distinct
columnindicesk and |, the quadrilateral GixGjxGj Gi is not planar, since thei®"
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and j™ row lines are skew, as are the k™ and I™ column lines. It follows immedi-
ately that the four points G11, G2, G21, and Gy, are not coplanar. The four points
G11, G12, G21, and Gz3 are not coplanar either, because, if they were, then the four
points Gy, Gi3, Gs;, and Gsz would be coplanar as well. The remaining three
cases are Similar, so thefive points (Gi1, Gi2, G21, G2z, Gsz) do formaprojective
frame.

Conversely, supposethat (Gi1, G2, Go1, G2z, Gsg) isany projectiveframefor
3-space. Construct somegrid h = (H;ij), somewherein that 3-space. We have just
shown that the five points (Hi1, Hio, Ha1, Hop, Hsg) form a projective frame, so
there is a unique projective transformation that carriesthat H frame to the given,
G frame. The image of the grid h under that projective transformationis also a
grid; so thereis at least one way to complete the G frameinto agrid g.

It remains to show that this completion g is unique. The first two row lines
rp := GG andr;, ;= G, Gy, are clearly uniquely determined, as are the first
two columnlinesc; := G11G,; and ¢, := G15G. Asfor thethird row liners, it
must be the unigue common transversal from Gs3 to the two skew lines ¢; and ¢,;
and the third column line cz isdetermined in asimilar way. O

Proposition 9.3-2 Given any two grids, there is a unique projective transforma-
tion of 3-space that carries the first to the second.

Proof Use Proposition 9.3-1 to convert the gridsto frames. O

The reason that we are interested in grids is that they allow us to deduce the
existence of some projective transformations that we are going to need | ater.

Corollary 9.3-3 Letry, ro, andrs be three skew lines and let = be a plane that
does not contain any common transversal of those three lines. Letr, r;, r3, and
7’ be another three lines and plane with the same properties. There exists aunique
projective transformation of 3-space that takes each liner; to theliner, and takes
the plane r to the planer’.

Proof It cannot be the case that one of thelines, say rq, liesinthe plane . If this
did happen, the plane = would have to intersect both r, and r3 only in points, and
the linejoining those two points of intersection would be acommon transversal of
thethreelines (r;), lyingin .

It follows that, fori in[1.. 3], theliner; cutsthe plane = at a unique point,
which we shall call G;;. Let ¢ be the common transversal from G;; to the two
skew linesr; andry, wherefi, j, k} = {1, 2, 3}. Thethreelines (r;) and their three
transversals (¢;) formagrid (Gj;).

Forming agrid (Gj;) in an analogous way, there is a unique projective trans-
formation of 3-space that maps the first grid to the second. That transformation
must take each liner; to theliner! and the plane 7 = G11G2,G33 to the plane
n' =Gy G5Gs. O
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Corollary 9.3-4 If thetriple of lines (o, a, b) is skew and the triple (o, &', ') is
also skew, there exists aunique projective transformation of 3-space that fixes the
line o and every plane through o, while taking the linesa andb toa’ and b

Proof Choose three distinct planes through o, say w1, 72, and 3. In each plane
i, thereis a unique common transversal of the threelines o, a, and b. The three
lines (0, a, b) together with those three common transversals form agrid.

Repeat this construction, starting with the three lines (o, @', b") and using the
same three planes 1, 7,, and 3 through 0. The result is a second grid.

The unique projectivetransformation that mapsthefirst grid to the second fixes
all three of the planes (71j), so it fixes all planesthrougho. O

Exercise 9.3-5 Recall from Section 4.5 what it meansto bea’ configuration’ inthe
narrow sense of that term. A grid is obvioudy a configuration of pointsand lines
in 3-space of type (9,, 63). Show that agrid can also be viewed as a configuration
of points and planes of type (9s, 95).

[Answer: Each intersecting pair of lines spans a plane that passes through five
points, and each point lies on five such planes.]

9.4 TheProjection Theorem

Once we have formulas, in terms of some parameters, for all twelve of the points
in ageneric representation of By 1 1, the cubic case of the Projection Theorem re-
ducesto algebra: showing that the determinant of a certain matrix is zero. Indeed,
we could probably have proved the Projection Theorem for B, ;1 based on the
P-first construction and the formulas in terms of the parameters [u, Uy, us] and
[v1, v2, v3] inthe proof of the By, 1.1 Representation Theorem. But we can get more
symmetric formulas from the P-last construction, in terms of some new parame-
ters (ay, ap, as, as; by, by, bs, by); S0 we shall do that instead.

Theorem 9.4-1 (Projection Theorem, cubic case) Given any representation

2 1 1
PP A B
P. A B
P; A B3
Pa Ay By

of thematroid B,,1 1 in some 3-space and given agenericlineo inthat 3-space, the
twelve planes joining o to those four triples of points form a 3-dependent block.

Proof We restrict the line o to be generic only so that we don’t have to consider
such degenerate cases as 0 = a, where projecting any one of the four A-points
from the line o yields the indeterminate plane.
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We proceed by analytic geometry, choosing our coordinate system on points
[w, X, Y, Z] with some care. To make Lemma 8.5-1 applicable, we want the line
atobetheliney = z = 0, thelineb to be thelinew = x = 0, and the plane
7 to be the plane w = z, which has homogeneous coefficients (1, 0, 0, —1). We
also want the center line o of the projection to have smple coordinates — in fact,
to betheliney — w = z — x = 0, whose points have the form [u, v, u, v]. To
verify that we have enough freedom to achieve all of those goals at once, we apply
Corollary 9.3-3.

Sincethe twelve given points represent the matroid B, 1 1, thelinesa and b are
skew, and neither of them liesin the plane . Hence, there is a unique common
transversal of thelinesa and b that liesin the plane . Sincetheline o is generic,
we can assume that o is skew to that common transversal. It followsthat no com-
mon transversal of a, b, and o liesinthe plane .

Those same geometric properties hold of the lines and plane with the coordi-
nates that we want a, b, o, and r to have. Thethreelinesy =z =0, w =x =0,
andy—w = z—x = Qareindeed skew, since combining the equationsfor any two
of them yields only the indeterminate solution w = x = y = z = 0. The plane
w = zdoesnot contain any common transversal of thosethreelines, sincethethree
points[0, 1,0, 0], [0, 0,1, 0], and [1, 1, 1, 1] a which thethreelinesy = z = 0,
w=X=0,andy —w =z — x =0 cut the plane w = z are not collinear.

It follows from Corollary 9.3-3 that there is a unique coordinate system for
3-space inwhich thethreelines (a, b, 0) and the plane & have the coordinates that
we want them to have. Where are the twelve points of the given representation
in that coordinate system? The point A, := a Nz has the homogeneous coordi-
nates [0, 1,0,0]. The point A;, fori in[1.. 4], liesonthelinea but is distinct
from A;; sowemust have A = [1, a3, 0, O], for some finite scalar ;. Similarly,
we have B, = [0,0,1,0] and B; = [0, 0, by, 1], for some finite scalar bj. We
are going to use the scalars (ay, ay, ag, as; by, by, bs, by) as our parameters. Note
that these parameters involve eight degrees of freedom, while the homogeneous
parameter vectors[uy, Uy, Us] and [vy, v,, v3] that we used in analyzing the P-first
construction involve only four. We need an additional four degrees of freedomin
this analysis because we have constrained our choice of coordinate system to put
the center line o of the projection in afixed, smple place.

Lemma8.5-1 now tells us the coordinates of the P-points. When {i, j, k, |} =
{1, 2, 3, 4}, we have

1 & by (1 & aby| |1 ab b |1 & b
P=1]|1 a bq,|1 a abg|,|1 adbx by|,|1 ax by |.
1 a b| |1 & ab| (1 ab b| |1 a b

Let'sabbreviatethose four coordinatesas P = [wi, Xi, Vi, z] — SOw; = 7. Note
that swapping any two of thethreeindices |, k, and | would negate all four of the
coordinates; but that doesn’t matter, because they are homogeneous.
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Given some point [w, X, Y, Z], what is the slope of the plane joining that point
to the center line 0? It is easy to check that the homogeneous coefficients of the
joiningplaneare (z—x, w—Yy, Xx—z, y—w): Thepoint[w, X, Yy, Z] liesonthat plane
because (z—X)w+(w—Y)X+(X—2)y+(y—w)z = 0, whileevery point [u, v, U, v]
onthelineoliesonthat plane because (z—X)u+ (w—y)v+(X—2)u+(y—w)v =
0. Asfor what slope to assign to that joining plane, we showed in Lemma 2.5-1
that the notion of n-dependence is projectively invariant. Hence, we can take any
three distinct planes we like, in the pencil of planes through o, and assign to those
planesthe slopes O, 1, and co. To be definite, let’s measure the slope of the plane
(z—X,w—Y,X—2z, y—w) by usngtheratioz—x : y—w of thefirst homogeneous
coefficient to the last.

Measuring slopes in this way, the plane joining the line o to the point A =
[1, &, 0,0] hasdope —a : —1, whichisthesameasa : 1. The planejoining o to
Bi =[0,0,b;, 1] hasdopel: b. Andtheplanejoiningoto P = [wi, Xi, Vi, Z]
hasdopez — x; : yi — wj. To build the i™" row of the 4-by-4 matrix that tests
3-dependence, we take those three ratios and combine them as in the elementary
symmetric polynomials— that is, by the process that takes the three smple ratios
t":th,utut, and vt ;v into the compound ratio

t'uto! : ttutvt +ttutvt +trtutot o tTutut +tiutot +trtutyt o ttutoh

Doing so for each of the four rowsin turn, we conclude that the twelve slopes are
3-dependent just if this determinant is zero:

a(z1—x1) (I+aby)(zi—x)+ar(yri—w1) bu(zi—X)+(14+a1by) (ya—w1) bi(yr—ws)
a(Z—X2)  (1+aghy)(Zo—Xo)+an(Yo—w2)  ba(Zo—X2)+(14-a2bn) (Yo—w2)  ba(yo—w2)
a3(z3—X3) (1+aghs)(Zz—X3)+az(Ya—ws) b3(zz—X3)+(14-azbs) (Ya—ws) bs(ys—ws)
u(zs—Xa)  (1+asbs)(za—Xa)+au(Ya—wa) ba(za—Xa)+(14-a4bs) (Ya—wa) ba(Ya—wa)

That determinant is zero for the simplereason that thefirst and third rowsof the
matrix havethe same sum asthe second and fourth. To seethis, start by considering
the term a;z; in the upper-left entry. The determinant

a 1l a b]_
a1 a b2
a 1 a3 b3
a 1 a4 by
iszero, sinceitsfirst and third columns are equal; if we expand by cofactors down

thefirst column, wefind that a;z; — a2, + azzz — a4z4 = 0. A similar argument
starting with the determinant

a 1 a a]_b]_

a 1 a azbz —0
a 1 a3 a3b3 o
as 1 as auby
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showsthat a;x; — aXz + azxs — auXq = 0 aswell; so the aternating sums of each
of the two termsin the first columnis zero. In the second column, of the six terms
in each entry, smilar arguments handle four, leaving the two termsabjz + & y;.
The aternating sums of those two terms are not separately zero, but they cancel
each other out. Using cofactors down the first column again, the aternating sum
a1b1z1 — axbyz, + azbszz — asbaz4 isthe determinant

ad; b]_ 1 a b]_
o b2 1 & b2
as b3 1 a; b3 ’
asby 1 ay by

whilethesum a;y; — axy2 + agys — asys isthe determinant

a 1 a b]_ b]_
a 1 a b2 b2
a 1 a3 b3 b3 )
as 1 ajby by

Those two determinants are negatives of each other because we can convert one
matrix into the other by swapping thefirst and third columns. O

Exercise 9.4-2 In the P-last construction, suppose that the cross ratios A 23 4
and B 2.3 4) are distinct, which means that the determinant of the matrix

ar by aily
a by aby
az bz agbs
ay by ayby

3
Il
PR R

is nonzero, and suppose that the plane r is generic. In analyzing the P-last con-
struction in Section 9.2, we showed that the four P-points given by P := 7*
will then form a projective frame for the plane . Verify this directly and alge-
braically, using the formulasfrom Lemma 8.5-1 for the homogeneous coordinates
[wi, Xi, Vi, z] of the point P.. In particular, whenever {i, j,k, 1} = {1, 2, 3,4},
show that P, P,, and Py are not collinear because

Xi ¥i 4
X, Yyj z|=xdet(m)%
X Yoo &

[Hint: Given any n-by-n matrix s, let’sborrow aterm from the theory of deter-
minants[34] and refer to the matrix of cofactorsof sastheadjugate of s, and let’s

IArtin [2] uses the name ‘adjoint’ for the transpose of the adjugate, but that conflicts with the
Hermitian adjoint, which is the transpose of the complex conjugate.
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writeit (adgs). Cramer'sRule [2] tells us that s(adgs)t = (adgs)'s = (dets)l,
fromwhich it iseasy to calculate that (adg(adgs)) = (dets)"~2s. The coordinates
(%), (yi), and (z) appear, up to sign, as entries in the adjugate matrix (adgm),
which means that the determinant that we want to evaluate is, up to sign, an entry
in the matrix (adg(adgm)).]

9.5 TheWitness Theorem

The place where the P-last construction really shinesisin proving the cubic case
of the Witness Theorem.

Theorem 9.5-1 (Witness Theorem, cubic case) Let {(pi, @i, fi)}ic1.4) be some
3-dependent, ordered block of planesin 3-space, all passing throughacommonline
0.2 Ingeneric cases, thereexists arepresentation {(P:, A, Bi)}ic[1. 4 Of the budget
matroid By 1 1 each of whose twelve vertices lies on the corresponding plane and
none of whose vertices lies on the line o itself — and which hence witnesses to
the 3-dependence of the planes. Furthermore, this representation is unique in the
sensethat any witnessing representation can be carried to any other by aprojective
transformation of 3-space that fixes the line o and fixes every plane through o.

Proof To construct a witnessing representation, choose the lines a and b to be
any two lines that are skew to each other and skew to 0. Let A; denote the point
A = ajNaand B; denote B; := BiNb, fori in[1..4]. Ingeneric cases, the points
A and B; will be distinct and the two cross ratios A1 2.3.4) and B 234y Will aso
be distinct. The P-last construction tells us how to finish up building a represen-
tation of B, 1 ;. We choose some plane 7 and, whenever {i, j, k, 1} = {1, 2, 3, 4},

we define the point P, := x* to be the pole of the plane 7 in the null system
N := N((A, By), (A By, (A, B)) determined by the skew-Pappian hexagon
A BA B AB;.

How should we choose the plane 7 ? Note that the point P, = 7* will lie on
the plane p; just when the plane 7 passes through the point R := p;. So we want
7 to pass through all four of the points (R). The assumed 3-dependence of the
block of planes had better imply that the four points (R) are coplanar.

To see that it does, choose any three of them — say Ry, R;, and R; — and
choose v to be the plane 7 := Ry R;R; that those three points determine. The
resulting configuration of twelve points {(P;, A, Bi)} will, in generic cases, bea
representation of B, 1 5, and it will have all of its vertices on the appropriate input
planes, except that P, might not lieon p4. Let p, betheunique plane through o and
P,. It follows from the Projection Theorem that the slopes of the twelve planes

{()Ol, o1, ,81), (IO2’ 02, /82)a (103, o3, /83)a ()Oé,, g, /84)} WI” be 3-dependent BUt, In

2We refer to thefirst planein theit™ triple as p;, rather than as 7, in order to avoid confusion
withtheplane := Span(Py, P, Ps, P4) below.
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generic cases once again, there is only one dope that the twelfth plane can have,
given the other eleven dopes, that makes the twelve slopes 3-dependent. So we
must have p, = p,, and we are done with the construction.

Asfor uniqueness, the only free choices that we made were the choices of the
skew linesa and b. By Corollary 9.3-4, thereisaunique projectivetransformation
of 3-space that fixestheline o, fixes every planethrough o, and takesthe two lines
a and b, skew to each other and to o, to any other two such linesa’ and b’. Thus,
any witnessing representation differsfrom any other only by a projectivetransfor-
mation. O

From the proof of the Witness Theorem, we can extract a flat-side geometric
construction that solvesthefollowing problem: Given eleven planesthroughaline
o—sayaj and B foriin[l..4] and p; fori in[1.. 3] — construct the unique
twelfth plane p4 through o that makes the block {(pi, @i, Bi)}ie[1..4) 3-dependent.
We choose two lines a and b that are skew to each other and skew to o, and we
let A be the point where the line a cuts the plane «;, and similarly for B;. For i
in[1.. 3], we construct the point R := p*, the pole of the plane p; in the null
system determined by the skew-Pappian hexagon A; BcA B AcB;. Finally, letting
7 denote the plane w := Ry Ry Rs, we construct the point P, := 7*4. The plane p4
that achieves 3-dependence is the unique plane through o that passes also through
P,. Note that, if the plane p4 is our only goal, there is no need to construct the
vertices Py, P,, and P; of the witnessing B, 1 ; representation.

Exercise 9.5-2 (Cubic harmonic conjugacy) Hereisan ordered block of scalars
that is 3-dependent:

-1 -1 -1
4 4 4
5 5 5
5 -2 1

Choose alineoin 3-space, find the twelve planes through o with those dlopes, and
carry out the construction for awitnessing representation of By 1 1. Iswhat results
avalid representation, or are these dopes a degenerate case? What is special about
the resulting configuration and its relationship with the center line 0?

[Answer: The result is a valid representation of B, 3 1, but it has the special
property that the first three row planes P, A; By, P.A;B,, and P; Az B; intersect,
not in apoint, asistypically the case, but in an entire line. In addition, the center
line o of the projection coincides with that line of intersection.

Commentary: Thissituation isthe cubic analog of harmonic conjugacy. Recall
that two scalars u and v are quadratic harmonic conjugates of two distinct scalars
p and q just when the block

P P
i
u v
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IS 2-dependent. Inasimilar way, we say that three scalars u, v, and w are cubic
harmonic conjugates of three distinct scalars p, q, andr just when the block

C SO0
S S O©v
€ S oo

is 3-dependent. In the example above, the scalars (—5, —2, 1) are cubic harmonic
conjugates of the distinct scalars (—1, 4, 5).

The new wrinklethat arises in the cubic case isthat only those representations
of By 1.1 that have aspecial property can serve as witnesses to the harmonic conju-
gacy of two triples. In the quadratic case, given any representation of B, ; — that
is, given any complete quadrilateral — there are three places where we can put the
center point O so asto end up, asin Figure 2.4, with two pairs of linesthrough O
that are harmonic conjugates. In the cubic case, on the other hand, in order to end
up with two triples of planes that are harmonic conjugates, we must start with a
representation of B, ; 1 inwhich three of the four row planesliein acommon pen-
cil; and then we must choose the center line o of the projection to coincide with
the axis of that pencil.

For any degree n, harmonic conjugacy gives a binary relation on unordered
n-tuples of distinct scalars, and that relation is aways symmetric. For example,
in the cubic case, suppose that both of thetriples{p, q,r} and {u, v, w} consist of
distinct scalars. Then, when either of the blocks

C SO0
S SO 7o
S el o
o
=
T & < C
O 8 < ¢
= & e Cc

is 3-dependent, they both are.
But the relation of n-ic harmonic conjugacy is reflexive only when the degree

nisodd. For example, the 1-block [ B ] is always 1-dependent and the 3-block

p
q
r
p

ol ol o

isalways 3-dependent. Indeed, if weinterpret the 3-dependence of that latter block
geometrically, we can demonstrate a property of twisted cubic curvesthat we men-
tioned back in Section 2.9. The cubic polynomial (X — p)(X — q)(X —r) isthe
intersection of the osculating planes to the twisted cubic curve F; := (X —t)3 at
the three points Fy, Fq, and F;. We mentioned in Section 2.9 that the intersection
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point (X — p)(X —q)(X —r) alwaysliesinthe plane F,FqF determined by the
three points of osculation.

When the degree n is even, on the other hand, the relation of n-ic harmonic
conjugacy is not reflexive. For example, the 2-block

PP
qa q
P q

is 2-dependent only when p and g are equal. We can interpret that fact geomet-
rically also. The quadratic polynomial (X — p)(X — q) istheintersection of the
tangent lines to the conic curve G; := (X — t)? at the points G, and G. But, for
p and q distinct, that intersection point never lies on the chord G, Gg.]

9.6 Degeneratecasesin projection and witnessing

One unpl easant aspect of our cubic Projectionand Witness Theoremsisthat wedid
not deal with the degenerate cases. It is an obvious open question to do better —
to either outlaw or handle each possible degenerate case. What challenges would
weface, were weto tacklethis question, and what tools could we useto try to meet
those challenges?

Let’sfix acenter line o, for the remainder of this section. We would have three
primary tools.

First, we could outlaw some of the 3-dependent ordered blocks of planes

p1 a1 Pi
p2 oz P
p3 az Ps
s s PBa

through the center line o, declaring that those blocks were too degenerate to be
worthy of consideration. For example, we would amost surely want to outlaw
thoseblocksinwhich all twelve planes coincided, sincethat would forceall twelve
points of any witnessing configuration to lie in a common plane. Let's call the
blocks that we don’'t choose to outlaw the legal blocks.

Second, we could liberalize somewhat our notion of the relevant configurations
of twelve points. We probably want to demand, of our twelve points, al of thein-
cidences that are demanded for a representation of the budget matroid B, ; ;. But
we might want to alow some incidences that the matroid B, ; 1 forbids. Let's re-
fer to a configuration of twelve pointsthat satisfies the resulting weaker rulesasa
3-tester.

Third, we must set up some rules about the relationship between a 3-tester and
the center line o from which we intend to project itstwelve points. Isany point of
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the 3-tester allowed to lie on the line 0? If so, what constraints are placed on the

dope of the indeterminate plane that results? Is the line that joins two points of

the 3-tester allowed to meet the line 0? And so forth. If a 3-tester islocated, with

respect to the line o, so asto satisfy our requirements, we'll call it well-located.
By exploiting those three tools, we would try to arrange that:

e Projecting, from the line o, the twelve vertices of any 3-tester that is well-
located with respect to o resultsin a 3-block of planes through o that is both
3-dependent and legal.

e Conversely, given any 3-block of planesthrough theline o that isboth lega
and 3-dependent, there exists a 3-tester that iswell-located with respect to o
and whose verticeslie on the appropriate planes, and which hence witnesses
to the 3-dependence. Furthermore, thiswitnessing 3-tester isunique up to a
projective transformation that fixes the line o and al planesthrough o.

Here are four of the challenges that we would face in doing so.

Challenge 1: Thereisa10-dimensional family of 3-dependent blocksof planes
throughthelineoinwhichthe crossratios o1 2 3 4) and B(1.2.3.4) Of the planesin the
A and B columns are equal. These blocks cause trouble in the Witness Theorem,
since there are no representations of the matroid B, ; ; in which the crossratios of
the A-points and B-points are equal. One way to meet this challenge would be to
declare such 3-blocks of planesillegal. But the authors suspect that it would be
better to allow 3-testers in which the lines a and b intersect — that is, 3-testers
with Type-6 degeneracies. It isnot difficult to check that the Projection Theorem
continues to hold for such 3-testers.

Ignoring Challenge 1 for a moment, let’s fix the planes («;) and (5;) insuch a
way that the cross ratios «1.2,3.4) and B1.2.3.4) are distinct. There is a 3-parameter
family of columns (p1, p2, p3, p4) that make the block of planes 3-dependent. As
the column (p1, p2, p3, p4) Varies over thisfamily, theplane 7 := R R Rs Ry that
appears in the P-last congtruction varies over al possible planes. Thus, lots of
degenerate cases arise. Some are pretty mild, such as degeneracies of Types 1, 3,
4, or 5. But others are worse.

Challenge 2: Suppose that we choose the planes («;) and (3;) arbitrarily and
that we choose an additional plane i, aso inthe pencil through o. We then choose
each plane p; so that the cross ratios (pi, o, ax, o) and (u, B, Bk, Bi) are equal,
where {i, |, k, I} = {1, 2, 3, 4}. The resulting block is aways 3-dependent — so
such blocks form a 9-parameter family. But, if wetry to carry out the P-last con-
struction to get a witnessing configuration, the four points (R) will lie, no three
collinear, on aplane v that passes through theline a, and the four points (P,) will
al liealong a.

Challenge 2 looks harder to meet than Challenge 1. If we liberalize our no-
tion of a 3-tester enough to alow such configurations, we run into trouble in the
Projection Theorem: Sincethe P-pointsand the A-pointsall liealong oneline, the
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perfect coplanaritieshold trivially, so each of thetwelve points can didearbitrarily
aongitsline. It may be possibleto deal withthis problem by makingthe planex a
separate component of a 3-tester and by requiring, in addition to the dependencies
of the matroid B, 1 1, that the P-points satisfy therelations P = =*, for the spec-
ified plane r. But it isfar from clear what we should do if the linesa and b also
happen to intersect, asin Challenge 1 above, which means that the null systems N,

are not well-defined.

Challenge 3: Thereisa 9-dimensional family of 3-dependent blocks in which
the plane p4 isnot uniquely determined by the other eleven planes. What typically
happens, if we apply the P-last construction to such acase, isthat the point P, ends
up lying on the center line 0. That isn’t too bad. The geometry istrying, asbest it
can, to tell usthat we can take p,4 to be any plane in the pencil through o without
destroying 3-dependence. Note that the two degrees of freedom that are lost by
requiring this specia property of the block of planes, taking us from 11 down to
9, match the two degrees of freedom that are lost by requiring that the point P, lie
on the center line o.

Challenge4: Thereisan 8-dimensional family of 3-dependent blocksinwhich
all three of the planesin any single row can be varied arbitrarily without destroy-
ing 3-dependence; we studied one such block in Exercise 2.4-4. What typically
happens, if we apply the P-last construction to such ablock, isthat the four points
(R) end up collinear along aliner, leaving the plane = with an extra degree of
freedom. Choosing a generic plane = throughtheliner resultsin arepresentation
of By 11 that does witness to the 3-dependence of the twelve planes; but different
choicesof 7 givedifferent representations. Thus, the uniqueness claim in the Wit-
ness Theorem fails; rather than too few witnesses, we have too many.

But enough, already, about degenerate cases. Let’s return to happier topics.

Exercise 9.6-1 Inthesituation of Challenge4, it turnsout that theliner, on which
al four of the points (R ) givenby R := p* lie, isacommon transversal of the
four lines (0*). This means that, as we vary the plane r in the pencil with axis
r, there are four special cases: the planes given by ; := Span(r, 0*), for i in
[1..4]. What is specia about the witnessing representation of By ; ; that results
from choosing 7 to be 7; ?

[Answer: When the plane 7 passes through the line 0*', the point P = 7*
lieson the line 0. Thus, the resulting representation witnesses — in the sense of
Challenge 3 — to the 3-dependence, not only of the given block, but also of any
block obtained from it by varying the single plane p; .]



Chapter 10

The budget matroid By 111

Thefinal budget matroid of rank 4is By 1.1.1. Recall that arepresentation of By 111
consists of sixteen points

101 1 1
AL B C D
A B C D,
As B3 C3 Ds
Ar By C4 Dg

in 3-space, where the four pointsin each column are collinear, lying along the four
skew lines a, b, ¢, and d, and where the four pointsin any of the 4! = 24 perfect
sets are coplanar. The resulting structure has lots of combinatorial symmetries,
note that the symmetric group on four letters acts independently on the rows and
on the columns.

Asit happens, the null-system machinery that we have devel oped to study rep-
resentation of the matroid B, ; ; can also be used to construct representations of
B1.1.1.1. That result seems worth exploring here, even though the matroid By 111
isn't relevant to the concept of n-dependence for any n.

Be warned that one step in our construction for arepresentation of B; 3 1 1 iSto
solve aquadratic equation. That makes the success of the construction contingent
upon the existence of square rootsin the field of scalars.

10.1 Genericrepresentations

Lemma 10.1-1 In any representation of the budget matroid By 1 1 1, the point D4
lieson the linec**, the polar of the column linec = C,C,C3C4 in the null system
Ns := N((Aq, By), (Az, By), (As, B3)). Analogoudly, for anyi in[1. .4], the point
D; liesonthelinec* and the point C; lies on the lined*.

Proof Whenever {i, j,k} = {1, 2, 3}, theset { A, Bj, C«, D4} isperfectand hence
coplanar, asisthe set {A;, B, C«, D4}. So the line C,D4 meets both of the lines

131
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A Bj and A B;. Sincethosetwo linesformaskew-polar pair inthenull system N,
we conclude from Proposition 8.2-4 that the line Cy D, is self-polar in Ng, from
which it follows that the point Cy lies in the plane D}*. This holds for any k in
[1..3], sotheentirelinec must liein the plane D;*. Hence, the point Dy lies on
thelinec™. O

Lemma 10.1-1 states only one-sixth of the full truth, because we could use
any pair of columnsin building the null systems — there is nothing special about
columns A and B. But it ssimplifiesthe notation abit to assume that columns A and
B areawaysthetwo that are used to build the null systems (N;), and that restricted
result is enough for our needs.

Proposition 10.1-2 In generic cases and when the requisite square root exists in
the field of scalars, the following process produces a representation in 3-space of
the budget matroid By 1.1.1: Choose three skew lines a, b, and c, choose four dis-
tinct points (A )iep1..4) 0N the line a, and choose four distinct points (B;)icj1.4) 0N
b. For{i, j,k,1} ={1,2,3,4}, letc’ bethelinethat is polar to the linec in the
null system N; :== N((A;, Bj), (Ac, By, (A, By)). Ingeneric cases, thefour lines
(c*") will be skew and, when the requisite square root exists, they will have two
distinct common transversals; let d be one of them. Fori in[1.. 4], let C; bethe
point where c meetsd* and let D; be the point whered meetsc* .

Furthermore, there exist nondegenerate, rational choices for the input param-
etersa, b, c, (A), and (B;) for which the requisite square root is also rational. So
the matroid By 1 1.1 IS representable over the rational numbers, and hence over any
field of characteristic zero.

Proof Wefirst verify that, in generic cases, thefour lines (c*') are skew. It suffices
to check that they are skew in some particular case — for example, writing points
intheform[w, X, Y, 7], in the casein which

A =1[1,8,0,0] B, = [0,0, -5, 1]
A =[1,-2,0,00 B,=[0,0,0,1]
As=[1,7,0,0] B; =[0,0,2 1]
Ay =1[1,4,0,0] B, =[0,0, -1, 1]

andinwhichcistheliney — w = z— x = 0. The polar lines (c*) then turn out
to be:

*1: 64w — 22x — 108y = 31y + 227 — 108w = 0
98w —9X—-—y=7y+92—w =0

2w —X—4y=3y+z—-4w =0

4 24w — 2x — 28y = 41y + 2z — 28w = 0.



10.1. GENERIC REPRESENTATIONS 133

And those four lines' are indeed skew.

Finding acommon transversal of four skew lines involves solving a quadratic
equation. If every scalar has asguareroot, then we can solve any quadratic, so any
four skew lineshave two common transversals. (In degenerate cases, the quadratic
eguation might be a perfect square, in which case the two transversals will coin-
cide. What distinguishes these cases geometrically is that each of the four skew
linesis tangent to the unique ruled quadric that contains the other three. In cases
that are even more degenerate — in particular, when all four skew linesliein a
singleruled quadric — thereisaone-parameter family of common transversals—
to wit, the other family of generating lines of that same quadric. What happensto
the quadratic equation, in such cases, isthat al three of its coefficients are zero.)
But if there exist scalarsthat don’'t have square roots, then four skew lines may not
have any common transversals.

Fortunately, there are rationa input parameters for which the requisite square
root isrational. For example, the four polar lines (¢c*') above have the two rational
lines 68w — 14x 4+ 4y = 27y + 14z — 66w = 0 and 68w — 14x — 66y =
27y + 14z + 4w = 0 astheir common transversals.

Next, we suppose that the input parameters have been chosen so that the four
lines (c*) are skew and have two common transversals. By Lemma 10.1-1, we
must choose the fourth column line d to be one of those two common transversals,
in order to have any hope of arriving at a representation of Bj 1 11. Furthermore,
we must place the point D, for i in[1.. 4], where the line d meetsthe line ¢*.
Since the line d is a common transversal of the four lines (c*'), it follows from
Exercise 8.2-6 that the line ¢ will be acommon transversal of the four lines (d*).
Sowecan placethepoint C;, symmetrically, wherethelinec meetsthelined* . We
claim that, in the resulting configuration, al sets of pointsthat should be mutually
incident are so. The column collinearities are obvious, so we consider a perfect
set, such as{Aq, By, Cs, D4}; are those four points coplanar?

We have placed the point C3 where theline ¢ meetsthe line d*3. It followsthat
the plane C;® passes through both of the lines c*® and d. In particular, the plane
C33 passes through the point Dy4; so the line C3 Dy is self-polar in the null system
N3. From a similar argument focused on the point D4, we conclude that the line
C3D4 isalso self-polar in the null system N4. Thus, the line C3D4 lies in both of
the planes C;® and C3*.

Could it be that the two planes C3* and C3* coincide? No. Thelinec*® liesin

Peopl e doing serious geometry in 3-space usually choose to represent lines using Pliicker line
coordinates[28, 50]. Werepresent aline here as theintersection of two planesonly to avoid setting
up the Pliicker machinery. Note that, in the four lines (¢*') and in their two common transversals
below, the coefficient of x in thefirst equation isthe negative of the coefficient of z in the second
equation; those two coefficients come from the same Pliicker coordinate. In the four lines (c*),
the coefficient of y in the first equation is equal to the coefficient of w in the second; but those
equalitiesresult from our special choices of thelinesa and b — that equality doesn’t hold for most
lines. Indeed, the two common transversals differ in that those two coefficients are interchanged.
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the plane C3* and the line ¢** lies in the plane C3*, and we are assuming that the
four lines (c*') are skew. Therefore, the two planes C3° and C3* are distinct, and
theline C3 D4 istheir unique line of intersection.

Meanwhile, the lines A; B, and A, B; form a skew-polar pair in the null sys-
tem N3, since they are an opposite pair of edges of the skew-Pappian hexagon
A; B, A4B; A B4 that defines N3. Inasimilar way, the sametwo linesform a skew-
polar pair inthenull system N,. It followsfrom Proposition 8.2-4 that the common
transversal from Cs to the skew lines A; B, and A, B; is self-polar in both N3 and
N;. Thus, that common transversal must liein both of the planes C;* and C3*, so
it must coincide with C3 D4, their line of intersection. We conclude that the line
C3;D,4 isacommon transversal of the lines A; B, and A, By, so both of the perfect
sets{A;, By, Cs, Dy} and{ Az, B;, Cs3, D4} arecoplanar. Therest of the perfect sets
are coplanar by similar arguments.

It remainsto show that, in generic cases, the resulting configuration is free of
forbiddenincidences. It sufficesto verify that there are no forbidden incidencesin
some particular case. Continuing the example above, suppose that we choose, as
our line d, the first of the two common transversals, the line 68w — 14x + 4y =
27y + 14z — 66w = 0. We then end up with the following sixteen points:

A B C D
[1,8,0,0] [0,0,-51 [L3,1,3 [16,76,—6,87]

[1,-2,0,0] [0,0,0,1] [13,59,13,59] [L, 6,4, —3]
[1,7,0,0] [0,0,2,1] [1212  [3 14, —2, 1§
[1,4,0,00 [0,0,—1,1] [1,13,1,13] [4,20,2, 15]

A OWDN P

There are (f) = 1820 sets of 4 of these points. Of those sets, 49 are coplanar
because they contain at least 3 points from the first column, another 49 smilarly
from each of the other three columns, 24 are coplanar because they are perfect, and
the remaining 1600 — the bases of the matroid B, ; ;.1 — are all non-coplanar. O

Corollary 10.1-3 Over afield, such as the complex numbers, in which all scalars
have square roots, choosing a representation of the budget matroid By 1 1 1, Sitting
in afixed 3-space, involves #(By 1.1.1) = 20 degrees of freedom.

Exercise 10.1-4 In arepresentation of the budget matroid By 1 1.1, show that the
two lines A; B, and A, B, are the two common transversals of the four skew lines
a, b, C3Dy, and C4Ds.

10.2 A projective compass
Our next goal isto convert the processthat Proposition 10.1-2 usesto producerep-

resentations of the matroid By ;11 INto a geometric construction. In order to do
that, we need some geometric tool more powerful than a flat-side; essentialy, we
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need atool that solves quadratic equations — at least, solves those quadratics that
do have solutions. In Euclidean geometry over the real numbers, the standard tool
for thisjobisthe compass; so, it seemsreasonableto call thetool that we need here
aprojective compass. There arelots of alternativesfor precisely what a projective
compass might do, but the different models all have equivalent power:

Model 1 Given three distinct points A, B, and C along aline ¢ and three more
distinct points A, B, and C’ adong that same line ¢, the projective compass
constructs for us the two fixed points of the unique projectivity from ¢ to ¢
that maps (A, B,C) to (A, B', C').

Model 2 Giventwo pairsof points(A, B) and (C, D) along aline, theprojective
compass constructs for us the two fixed points of the unique involution of ¢
that swaps A with B and swaps C with D.

Model 3 Given five points and one line in the plane, the projective compass con-
structs for us the two intersections of the line with the unique conic through
the five points.

Model 4 Given four skew linesin 3-space, the projective compass constructs for
us their two common transversals.

Of course, if we are working over afield in which some scalars don’t have square
roots, then the projective compass may fail on some probleminstances; that istrue
for any of the four models of a projective compass.

Exercise 10.2-1 Show that the four models of a projective compass have equiva-
lent power.

[Hint: Implementing Model 2 with Model 1istrivial.

Toimplement Model 3with Model 2, suppose that we are given five points and
aline £. Construct some point P on the conic through the five given points and
construct the tangent line m to the conic a P, both of which we can do with just
a straightedge. Also with a straightedge, we can construct the second tangent m'’
to the conic that passes through the point £ "' m and the point P” where m’ touches
the conic. The mapping that takes P to P’ is an involution on the conic, and the
fixed points of that involution give us the points where the line ¢ cuts the conic.

To implement Model 1 with Model 3, note first that we can think of a projec-
tivity as acting either on the pointsin arange or on thelinesin apencil. Using the
second form, suppose that we aregiven two triples (a, b, ¢) and (a/, b/, ¢’) of lines
through a point P and that we want to construct the two fixed lines of the projec-
tivity of the P pencil that takes (a, b, ¢) to (&, b’, ¢'). Let Q be some point and let
¢ be someline. Given any lineethrough P, let e bethelinethat joins Qtoen ¢.
Thereisaunique projective correspondence from the P pencil to the Q pencil that
takes (a, b, ¢) to (a™, b™, ¢*), and theintersections of corresponding pairsof lines
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(e, €*) trace out a conic. The two points where the line £ cuts that conic give us
the two fixed lines of the original projectivity.

To implement Model 4 with Model 1, let a, b, ¢, and d be the four skew lines.
The one-parameter family of all common transversalsof a, ¢, and d determinesone
projective correspondence between ¢ and d, while the similar family of all com-
mon transversals of b, ¢, and d determines another. If we map fromc to d viaone
of those correspondences and then back from d to c viathe other, we get a projec-
tivity of the line ¢ whose two fixed points give us the two common transversals.

Finally, to implement Model 1 with Model 4, let P — P’ be the given pro-
jectivity of the line ¢, and choose two lines m and n that are skew to each other
and to ¢. For each point P on ¢, let P* denote the point on m that liesin the plane
Span(P, n). Asthe point P varies along ¢, the lines of the form P’ P* sweep out
aruled quadric. The lines ¢ and m are generators of that same quadric, from the
other family. Let k be athird generator from that other family, skew to ¢ and m.
The common transversals of k, £, m, and n give usthe two fixed points of the orig-
inal projectivity.]

Which model of the projective compass is most convenient depends upon the
application. When constructing a representation of By 111 in Proposition 10.1-2,
we needed to find a common transversal of four skew lines. But thereis an impor-
tant special case of the same construction where what we need to do, instead, isto
find the fixed points of a projectivity.

Suppose that the A-points and B-points in Proposition 10.1-2 are chosen so
that the crossratios A1 2.3.4) and B 2.3.4) areequal. Thisequality doesnot holdin
general, but it might be desirable to have it hold in certain cases — for example,
when trying to construct arepresentation of B, ; ;1 with lots of geometric symme-
tries. When those two cross ratios are equal, the four null systems (N;) coincide,
so the four lines (¢*) all coincide with the polar ¢* of theline ¢ in that single null
system. It follows from Lemma 10.1-1 that we must take d to be the line c*. But
where on the lines c and d = c¢* should we put the C-points and the D-points?

One way to figure out whereis as follows. Choose any point along thelinec,
and tentatively cal it C;. Using one of the perfect coplanarities { Az, Bs, C1, D3}
or { A4, B3, C1, D}, figure out where D, should go along thelined, given that C;
isas we have guessed. In asimilar way, compute the points C3, D4, and C; again,
each from the previous one. If the final point C; coincides with our initial guess
for C;, we were very lucky, and we have found a representation of B; 1.1.1. Typ-
ically, the initia and final values of C; will not coincide. But the mapping that
takesour initial guessfor C; to theresulting final valueis some projectivity of the
linec. We can characterizethat projectivity uniquely by carrying out thisfour-step
tracing process three times, starting with three distinct, initial guesses for C;. We
then employ aModel-1 projective compass to construct the two fixed points of that
projectivity — those two points being the two places where C; can go in avalid
representation.
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10.3 Representationswith Euclidean symmetries

If al of the column budgets of a budget matroid are equal, the columns play sym-
metricroles. It istempting to try to find representations of such matroidsin which
asmany as possible of the combinatorial symmetriesthat permutethe columns are
modeled by geometric symmetries— that is, by projective transformations of the
ambient space that map the representation to itself.

Exercise4.1-1 considered thisissue for the Pappus matroid B, ; 1, inwhich the
three columns play symmetric roles. For the representations of B; 1 ; discussed in
that exercise, all six permutations of the three columns can be achieved by pro-
jective transformations — even by Euclidean transformations — of the ambient
plane. Furthermore, al six of those transformations leave the rows fixed. In this
section and the next, we see how close we can come to that same behavior for the
matroid Bl,l,l,l in 3—Space.

Asawarm-up for the projective case, let’s first consider representing the ma-
troid By 111 in Euclidean 3-space so that as many as possible of the 24 column
permutations are achieved by Euclidean transformations. We shan't do very well
with Euclidean transformations — in particular, we shall handle only those 6 of
the 24 permutations that leave one of the four columns fixed. But at least the re-
sulting representationsare easy to visualize, as demonstrated in the accompanying
videotape [44].

The basic ideais as follows: Given a hyperboloid of one sheet with circular
crosssections, we choose threeof thefour column linesof therepresentation— say
b, c, and d — to be generating lines of that hyperboloid, so arranged that they are
cyclicaly permuted by a120° rotation around the axis of the hyperboloid— which
we choose to be theremaining columnline, a. One convenient way to set thisupin
coordinatesisto choose, asthe hyperboloid, thesurface XY+ XZ+YZ+1=0in
Euclidean (X, Y, Z)-space. That surfaceisrotationally symmetric about the main
diagonal a and it includes, as one generating line, the line b parameterized by t +—
(t, =1, 1). Cyclicaly permuting the three coordinates X, Y, and Z correspondsto
rotating thishyperboloid by 120° about itsaxis, which aso cyclically permutesthe
generating lineb: t — (t, —1, 1) anditstwo cyclic shiftsc: t — (1,t, —1) and
d:t— (—1,1,1).

Givenany point (X, Y, Z), let usrefer to the sum of itscoordinates X +Y + Z
asits height. Note that the planes of constant height are orthogonal to the main
diagonal a, and that the hyperboloid XY + XZ 4+ Y Z 4+ 1 = 0issymmetric under
reflection through the plane of height 0. We envision arepresentation of By ;11 Of
the form:

A B C D
1) (O, 0, o) (P, —1D (1, p1.—1) (=11 py)
21 (02,0, %) (P2.—11D (1, p2,—-1 (-1,1, p2)
31 (03,03, 03) (P3,—1 1 (1, p3,—1) (1,1, p3)
4| (04, 04,04) (Pa,—1, 1) (1, ps,—1) (=1,1, pa)
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The parameter p;, fori in[1.. 4], isthe common height of the points B;, C;, and
D;, whilethe point A lies at height 3g; along the main diagonal.

For arbitrary values of the parameters (p;), there are unique values for the pa-
rameters (q;) that make the 24 perfect coplanarities of thematroid B; 1.1 ; hold. To
determine the requisite value of ¢, we intersect the plane B; C D; with the main
diagonal a, where {i, j, k,1} = {1, 2, 3, 4}.

Exercise 10.3-1 Verify that the plane B; C, D; intersects the main diagonal at the
point (¢, ¢, i), where

_ (P + P+ P) + P PP
O+ (PP + PP+ PxP1)

Because of the three-fold rotational symmetry, the formulafor q; clearly had
to be symmetric under cyclic shiftsof theindices (j, k, I). It turns out to be sym-
metric under arbitrary permutations of (j, k,l). Thus, if weset A := (G, Gi, Gi)
for each i, where g isasgivenin Exercise 10.3-1, the resulting configuration has
all of the incidences that are required for a representation of the matroid By 1 1.1.
It may also have forbidden incidences, of course, depending upon our choices for
the parameters (p;).

We can double the number of Euclidean symmetries, from threeto six, by stip-
ulating that p; + ps and p, + ps are both zero, from which it followsthat g, + g4
and g, + gz will al'so be zero. Under this stipulation, a 180° rotation about the line
X =Y+ Z = 0—whichmapsthepoint (X, Y, Z) tothepoint (- X, —Z, —=Y) —
thenmaps A to As_j, BitoBs_i, Ci toDs_j,and D; toCs_;, foradl i in[1. .4]. That
is, the A and B columns are held fixed while the C and D columns are swapped,
but at the cost of uniformly swapping row 1 with row 4 and row 2 with row 3.

Thereisnoway that aEuclidean symmetry of the configuration could avoid fix-
ing theaxisa of the hyperboloid; so wearen’t going to be ableto achieve morethan
6 of the 24 column permutations with Euclidean symmetries. Hence, we might as
well set the two remaining free parameters p; and p; to achieve some lesser goal,
such as beauty. For example, we can set p; := 3, S0 that the B-points, C-points,
and D-pointsare equally spaced, aong their lines. We can then choosethe remain-
ing parameter p, so that the A-points also end up equally spaced, along the main
diagonal.

G-

Exercise 10.3-2 Assuming that we set p; := 3py, ps := — P2, and ps ;= —3py,
find the positive, real values of p, that result in the four A-points being equally
spaced, in some order, along the main diagonal a.

[Answer: The values p, = (v/17 + 24/2)/3 make the four A-points equally
spaced in the order (Aq, As, Az, A4). But the resulting configurations are not rep-
resentationsof By ; 1 1, because they have twelveforbidden coplanarities, of which
{A1, B, C4, Dy} isan example. Luckily, thevalues p, = (v/5342+/2)/3v/5 a0
make the A-points equally spaced, thistime in the order (Ag, A1, A4, Az). The
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configurationsthat result from these two val ues have no forbidden incidences, and
hence do represent B; ;11. The representation shown in the videotape [44] has

p> = (v/53 — 2/2)/3V/5 = 0.6636" ]

Thisisaconvenient timeto interject acomment about crossratios. Recall that
thereis no representation of the budget matroid By 1 ; in which thetwo crossratios
Aa1.2.3.4) and By 2.3 4) dong the two column lines are equal. Given that, one might
wonder whether thereis any constraint on the four cross ratios A1.2.3.4), B1.2.3.4,
C1.2.3.4), ad D1 2 3 4 In arepresentation of the matroid By 1 1 1. Theanswer seems
to be no. By varying p, continuoudly in the construction of the previous exer-
cise, we can keep the last three of those four fixed while varying the first contin-
uoudly; so there can’'t be any algebraic constraint relating the four crossratios. In
that example, of course, the last three are not only fixed, but also equal. Generi-
cally, however, we know that no two of the four cross ratios are equal, since that
iswhat happened in the example in Proposition 10.1-2. Indeed, in that example,
the six possible cross ratios that we can get by taking the four A-pointsin some
order together with the six similar cross ratios from the other three lines constitute
24 distinct scalars. Thus, generically, even if we allow ourselves to reorder the
points, no cross ratio along any column line coincides with any cross ratio along
any other column line. On the other hand, it can aso happen that all four cross
ratios are equal, with no reordering allowed, as we see in the next section.

Exercise 10.3-3 Arethere representations of the budget matroid By ;.5 1 in which
all sixteen pointslie on acommon quadric? In such arepresentation, the four col-
umn lines must be generating lines of that quadric, all drawn from the same family.

[Answer: Yes — at least, the authors Newton-Raphson search converged on
a convincing approximation to such arepresentation.]

Exercise 10.3-4 Continuing the theme of the preceding exercise, suppose that the
sixteen points {(Ai, Bi, Ci, Di)}i¢1.4 formarepresentation of the matroid By 11,1
in which all sixteen pointslie on acommon quadric. Show that the four crossra-
tios Ai.2.3.4y, B1.2.3.4), C1.2.3.4), ad D1 2 3.4y along the four column lines must be
distinct, and hence this representation is not very symmetric.

[Hint: Given three skew lines, all of their common transversals form a one-
parameter family that iscalled — at least, was once called [29] — aregulus. The
lines of a regulus sweep out aruled quadric surface, forming one of that surface’'s
two families of generating lines. The other family of generating lines of the same
ruled quadric is called the complementary regulus.

Getting back to the exercise, suppose, by way of contradiction, that the cross
ratios A(1,2,3,4) and B(1,2,3,4) are equal The four lines {A| B }ie[l..4] then belong to
a common regulus whose complement — call it R — contains both a and b. The
linesc and d are constrained in two ways. They are polars of each other inthe sin-
glenull syssem N = N((A, B), (A, By), (A, By)) that results from any subset
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{i, j,k} C{1,2, 3,4}, andthey also belong to some regulus R’ that contains both
a and b. Show that those two constraints imply that the lines (c, d) are harmonic
conjugates of the lines (a, b) inthesingleregulus R = R. But, if R = R, the
lines (A Bi) meet the lines ¢ and d, which cannot happen because, for example,
theset { Ay, By, C1, C,} isforbidden to be coplanar.]

10.4 Representationswith projective symmetries

We now turn from Euclidean 3-space to projective 3-space, which givesusamuch
richer class of transformationsto exploit. We withdraw our decision to set p; :=
3p2 — that decision was motivated only by a quest for beauty, after all — but we
keep everything el se the same as before, including the constraints p; + ps = 0 and
p2 + ps = 0. The key idea in the projective case is to restrict our choices of the
parameters (p;) so that the identity

P1P2P3Ps + (P1P2 + P1Ps+ P1Pa+ P2P3 + P2Pa+ P3pPa) +9=0

holds. Note that thisidentity is symmetric in the four variables (p;). If thisiden-
tity holds, it follows from Exercise 10.3-1 that we have g = —1/p; for al i.
Thus, converting from Euclidean coordinates (X, Y, Z) to homogeneous coordi-
nates[w, X, Y, z], we can write our configuration in the form:

A B C D
1/ [-p, L1 1] [1,p,—11] [L1 p,—1] [1,-1,1 pa]
2([=p21, L1 [1,p2,—11] [11 p2,—1] [1,-1,1, po]
3([—ps 1,11 [1,ps,—-1,1] [1,1 ps,—1] [1,-11, p3]
41[-ps 1,11 [1ps,—1,1] [1,1, ps,—1] [1,-1,1, p4g]

Given a configuration of thisform, what column permutations can we achieve
viaprojectivesymmetries? The six column permutationsthat fix the A column can
al be achieved by the same Euclidean transformations as before. In addition, the
projective transformation [w, X, Y, Z] — [X, —w, —z, y] swaps the point A, with
Bi and C; with D;, foral i in[1..4]. Thus, we can achieve al 24 column permu-
tations via projective symmetries. The symmetries that achieve the even column
permutations leave the rows fixed; those that achieve the odd permutations swap
row 1 with row 4 and swap row 2 with row 3.

It remains to choose the parameters (p;), being careful to avoid any forbidden
incidences. Sofar, we havethree constraintson those four parameters. Perhapsthe
prettiest way to tie down the final degree of freedom isto requirethat p; = 1/p,,
sothat theset {p1, p2, Ps, P4} ISclosed under both negation and inversion. A little
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algebrareveasthat we then have

pL=+v3+ 2
P2 = +v3 -2
p3=—\/§+\/§
p4=—\/§—\/§;

and some further algebra verifies that these choices do not lead to any forbidden
incidences. The resulting representation of Bs 1 1.1 Seems like agood candidate to
win the projective beauty contest.






Chapter 11
Open questions

Wewrap up by discussing some open questions about the budget matroidsand their
relationship to n-dependency.

11.1 Representability in general

Since what makes the budget matroidsinteresting is that so many of them arerep-
resentable, the most tempting challenge about the budget matroidsisto determine
precisely which of them are representable.

Challenge 11.1-1 Determine which of the budget matroids are representabl e over
the complex numbers. For those that are representable, count the degrees of free-
dom involved in choosing a representation — that is, compute the dimension of
the set of representations. Also, if possible, show how to construct a generic rep-
resentation using a flat-side as the only geometric tool — that is, find a rational
parameterization of the set of representations.

One could ask the same questions for the budgetary matroids as well. But the
evidence in Chapter 5 suggests that most of them are unrepresentable, so the an-
swers are less likely to be interesting.

Of course, the set of representations of a budget matroid has to be more than
just aset, in order for its dimension to be well defined. The books by Harris[14],
by Reid [46], and by Cox, Little, and O’ Sheg[7] are fine places to learn algebraic
geometry at thelevel that you need to follow the next few paragraphs. 1tissmplest
to assume, at this point, that our field of scalarsis algebraically closed.

_____ b beabudget matroid and et Sdenote projective space of dimension
b—1,whereb:=b;+- - -+ by isthetotal budget. Each incidencethat the matroid
_____ b requiresisapolynomial constraint on the homogeneous coordinates of our
bk pointsin S. Those constraints determine a certain variety W in the Cartesian
product S of bk copies of S. (If we like, we can use the Segre embedding [16]
to view the Cartesian product S°* as a subvariety of projective space of dimension

143
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btk — 1, thusrealizing W also as asubvariety of that single, high-dimensional pro-
jective space — so W is aprojective variety.) Each point in the variety W givesa
way of mapping the elements of the matroid By, p, to pointsin S so that al de-
pendent sets of elements map to sets of points that are mutually incident — but
various independent sets of elements may also map to sets of pointsthat are mu-
tually incident. Such amap is called a weak representation.

The variety W of weak representations is typically reducible, but we can de-
composeit intoitsirreducible components. Each of theirreducible componentsV
of W iseither good or bad:

good The bulk of the pointsin V givetrue representations; only thosein aproper
subvariety of V have forbidden incidences.

bad All of the pointsin V give weak representations that share some forbidden
incidence.

We define the freedom #(By, . p,) to be the maximum of the dimensions of the
good components — unless al of the components are bad, in which case we set

Note that there typically exist bad componentswhose dimension islarger than
that of any good component. For example, consider the matroid By 1.1.1. On the
good side, we have #(B;.111) = 20. On the other hand, one way to build aweak
representationisto let thethree columnlinesa, b, and c coincide, which isenough
to ensure that all of the perfect coplanarities hold. There are four degrees of free-
dom in the choice of thelinea = b = ¢, four morein the skew lined, and onein
each of the sixteen points along its column line, for atotal of 24. Thus, speaking
loosely, there are many more weak representations than there are true representa-
tions— many more degenerate cases than nondegenerate ones.

Exercise 11.1-2 A simpler flavor of weak representation of the budget matroid
B1.1.11 hasal sixteen of its points lying in a common plane. How many degrees
of freedom areinvolved in choosing one of those?

[Answer: 27, assuming that we still take the ambient projective space to be a
3-space, as opposed to a plane.]

Let By,....n be abudget matroid that is representable, let W be its variety of
weak representations, and consider those irreducible components VV of W that are
good. It seems reasonable to hope, even if several good componentsV exist, that
only one of them will have the maximal dimension #(By, ). Whenever that
is true, we have a particular, irreducible variety V that we can think of, loosely,
as being ‘the variety of representations of the matroid. We can then go on to ask
whether that variety V iseither rational, meaning that V isbirationally isomorphic
to projective space of dimension #(By, . 1, ), or — failing that — perhaps unira-
tional, meaning that there exists a dominant rational map from projective space
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of dimension #(By, . ) to V. Roughly speaking, either of those two conditions
meansthat we can express the coordinates of the pointsin ageneric representation
asrational functionsof #(By, . 1, ) free parameters. For the variety V to be ratio-
nal, the correspondence between vectors of parameter values and representations
must be generically one-to-one, whereas even a many-to-one correspondence is
enough to qualify V as unirational [17].

In the By, , and B, 1.1 Representation Theorems, we constructed generic rep-
resentations of the budget matroids By, , and Bn, 11 using a flat-side as our only
geometric tool. In such a construction, the points of the representation are chosen
in some order. When each point is chosen, the required incidences of the matroid
force that point to liein a certain k-flat, which can be constructed from the previ-
ously chosen points using only a flat-side. (If the dimension k of that flat is zero,
thereisn't actually any choice about where the new point will go.) When al points
have been chosen intheir appropriateflats, al of therequiredincidences of the ma-
troid are guaranteed to hold and, in generic cases, no forbidden incidences hold. A
construction of thistype gives abirational isomorphism between projective space
of the appropriatedimension and thevariety of representationsof the matroid. That
is, when such a flat-side construction exists, precisely one irreducible component
of the variety of weak representationsis good and that unique good component is
arational variety.

It would be delightful if al of the budget matroids were representable and if
ageneric representation of any budget matroid could be constructed using only a
flat-side. But that isalot to hopefor.

11.2 Thebudget matroidswith few columns

What are the smallest budget matroids whose representability is still open? There
are severa answersto that question, depending upon what ordering we impose on
the budget matroids. Two reasonable choices are to order them by the number of
columns or by the number of rows.

The B, Representation Theorem resolves the representability issues for all
budget matroids with two columns: They are al representable, flat-side construc-
tionsalwaysexist, and thefreedominvolvedis #(Bn ) = m?+3mn+n?—3. The
Bm. 1.1 Representation Theorem gives similar good news about those budget ma-
troids with three columns, two of whose column budgets are ones. Representable,
flat-side constructions exist, and the freedom is #(By,1.1) = m? + 6m + 3. The
authors suspect that the latter result can probably be extended to the case where
only one of the column budgetsisfixed at 1.

Conjecture11.2-1 For every positive m andn, the budget matroid By, , 1 iSrepre-
sentable over the rationals, a generic representation can be constructed using only
aflat-side, and the number of degrees of freedom involved in choosing arepresen-
tation is #(Bmn1) = (M+ N+ 2)? — 6.
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The authors have checked this conjecture numerically for various cases, up
through B; 3.1. Asfor that particular case, we said in Section 5.5.6 that #(Bs 3 1) =
58, which is consistent with the conjecture.

One might be tempted to broaden Conjecture 11.2-1 to say that #(Bmnp) =
(m+ n+ p+ 1)2 — 6 for any three positive column budgets m, n, and p. But
that broadened conjecture doesn’t square with the authors numeric experiments,
which suggest that #(B, ) = 42, rather than 43.

Exercise 11.2-2 Calculate the freedom #(Bnm n0) and compare your result with
that predicted by the broadened form of Conjecture 11.2-1. When does the broad-
ened conjecture get the right answer?

[Answer: The By, Representation Theorem tells us that #(By,,) = m? +
3mn + n? — 3; so we have #(Bnno) = M +3mn+n>4+ m+n — 4. The
broadened conjecture predictsthat #(Bm no) = (M+n+1)2— 6, whichiscorrect
only when (m — 1)(n — 1) = 0 — that is, only in those cases that are covered
by the original, unbroadened form of Conjecture 11.2-1. Of course, zero column
budgets might have to be treated as a special case.]

For budget matroidswith four columns, very littleis known. Indeed, that little
can be summed up in the two equations #(By111) = 20 and #(B111) = 30.
And nothing at all isknown about the representability of particular budget matroids
with more than four columns.

11.3 Thebudget matroids of low rank

Instead of ordering the budget matroids by the number of columns, we can order
them by the number of rows— that is, by rank.

The budget matroids of rank at most 4 are all representable over the complex
numbers, and we know the freedom involved in each case:

#(By1) =2 #(Bs1) = 16
#(Bg o) =17
#(Bo1) =8 #(By11) =19

#(B111) =10 #(B1111) = 20.

Furthermore, there is a flat-side construction for a generic representation in every
case except possibly for By 1.1.1.

Challenge 11.3-1 Proposition 10.1-2 uses aflat-side and a projective compass to
construct a generic representation of the budget matroid B, 1 11. By making the
choicesin some different order, isit possible to achieve the same result with only
aflat-sde?
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For the budget matroids of rank 5, we have the following freedoms:

#(By1) = 26
#(Bs2) = 28
#(Bg1,1) = 30
#(By21) = 30

#(B2111) =30
#(B11111) ="

The first three are covered by the B, , and B, 11 Representation Theorems, so
thosethree cases al so haveflat-side constructions. The authorshave found rational
representations of B, 1 and of By ;1 1.1. Given such arepresentation, it is straight-
forwardto use linear algebrato calculate thelocal dimension of the space of repre-
sentations at that point, which is a good guess for the true freedom involved. But
the authors have been unableto find arational — or even an approximate, complex
— representation of the matroid By 1.1.1.1.

Challenge 11.3-2 Isthe budget matroid B, ; 1 1.1 representable over the complex
numbers? Over the rationals?

There is a subtlety about the way that a budget matroid relates to its minors
that should be discussed here, since it can impact the search for a representation
of By11.1.1. Inparticular, aminor of a generic representation is not necessarily a
generic representation of the minor.

One way to search for a representation of some matroid, such as By 1111, IS
to use a numeric method on the system of nonlinear equations that encodes the re-
quired incidences. If we are lucky enough to find an approximate solution of the
incidence equations, we can check that solution to determine whether any forbid-
denincidences aso hold. The authors performed various experiments of thistype,
using a Newton-Raphson iteration as their numeric method.

The bane of this search strategy is degeneracy. Unlesswe do something clever
to constrain the numeric search, it isoverwhelmingly likely that whatever solution
weconvergetowill have someforbiddenincidences. Recall that therearetypically
many more weak representations than there are true representations.

How can we constrain the numeric search so asto improvethe odds that it will
converge to a solution that is free of forbidden incidences? Recall that a budget
matroid of rank r haslots of budget matroids of rank r — 1 asminors. One way to
constrain the search is to fix the representation of one of those minorsto be some
particular, true representation of the smaller budget matroid. In some of the au-
thors experiments, this strategy worked splendidly.

But now we come to the subtle point: Just because any representation of the
larger matroid includes, within it, a representation of the minor, it does not follow
that any representation of the minor can be extended into a representation of the
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larger matroid. Instead, it may bethe case that the bulk of the representationsof the
minor cannot be extended — the ones that can be extended being only those that
satisfy certain algebraic constraints. In particular, the authors' search for a repre-
sentation of By ;11,1 may have been torpedoed at the start, because the particul ar
representation of theminor B, ; ;1 that they choseto try to extend was not, in fact,
extensible.

For concreteness, here is a blatant case of this phenomenon. We know from
the B, Representation Theorem that the matroid Bg g iS representable and that
#(Bg g) = 402. Assuming that Conjecture 11.2-1 istrue, the matroid By o1 iSalso
representable, and #(Bg g 1) = 394. Given any representation of Bg g 1, Sitting in
18-space, if we place our eye at one of the pointsin the third column and ook out
at the points that are neither in our row nor in our column, we see arepresentation
of Bgg, ditting in the 17-space of lines through our eye. Since 394 < 402, the
representation of Bg g that we see must have some special properties. But what
those special propertiesareis not clear.

Challenge 11.3-3 Which representations of the budget matroid B; ;.11 are most
likely to be extensible into representations of By 11117

11.4 Pushing pointstogether

Before we turn to consider the relationship between the budget matroids and the
notion of n-dependence, Jorge Stolfi contributes one more open problem about the
budget matroids themselves.

The budget matroidswhose column budgetsareall onesarethe most delicateto
construct representations of, but they are also the most symmetric. In many cases,
if we take two pointsin a representation of such a matroid and we push them to-
gether until they coincide, the resulting configuration consists of a representation
of asimpler budget matroid of the same rank, along with someirrelevant trash. For
example, consider the Pappus matroid B, ; ;. If we push A, and A together in the
Pappus configuration of Figure 4.1, the point C; comesin to join them and we are
left with a complete quadrilateral — that is, a representation of B, ; — formed by

the six points
2 1

A1 B

G B,

C: Bs
along with thetrash point A, = Az = C;.

Challenge 11.4-1 Isit alwaysthe casethat, when two pointsin arepresentation of
abudget matroid are pushed together in thisway, what remainsis arepresentation
of another budget matroid of the same rank, but with fewer columns? Explore the
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extent to which the representations of different budget matroids of the same rank
are degenerate cases of one another.

Someone tackling this challenge would probably benefit from studying the re-
sults of Bokowski and Sturmfels[6].

11.5 ThematroidsBy 1 . 1

We were led to study the budget matroids because the matroid B, 1 1 character-
izes the dependence of four cubic polynomials, just as B, ; characterizes the de-
pendence of three quadratic polynomials. Sad to say, the obvious pattern does not
continue: The matroid By 11,1 cannot characterize the dependence of five quartic
polynomialsin an analogous way, because the degrees of freedom don’t work out
properly.

Let'sfix a plane o in 4-space and then count. There are nineteen degrees of
freedom in a 4-dependent block of 3-flats through o — twenty scalar dopes, sub-
ject to one congtraint. There are fifteen degrees of freedom in a projective trans-
formation of 4-space that fixes the plane o and fixes also every 3-flat through o .
To see why, note that there are twenty-four degrees of freedom in an arbitrary pro-
jective transformation of 4-space; but it costs four to fix one 3-flat through o, four
more to fix a second, and one more to fix al of the rest. Therefore, if a quartic
analog of the Witness Theorem wereto hold, the configuration involved must have
19+15 = 34 degreesof freedom. But theauthors experiments, asreported above,
indicate that there are only 30 degrees of freedom in arepresentation of By 111 —
four less than the 34 required.

While the obvious quartic generalization of the Witness Theorem thus cannot
hold, the quartic generalization of the Projection Theorem does seem to hold. For
each of therational representations of the matroid B, ; 1 ; that the authors have in-
vestigated, projecting the twenty points of that representation from any plane o
awaysresults in ablock of twenty 3-flats whose slopes are 4-dependent.

By the way, here is an example rationa representation of the matroid By 1 1 1,
in case some readers would like to do their own experiments:

P A B c
1| [12 16,76, —6,87] [1,1,8,0,0] [-7,0,0,-5,1] [71,1,3,1, 3]
2 [11,1,6, 4, —3] [-9,1,—2,0,0] [-2,0,0,0,1]  [623,13,59,13, 59
3 | [125, 93, 434, —62, 558 [0,1,7,0,0] [0,0,0,2,1] [86,1,2,1,2]
4 [97, 4, 20, 2, 15] [-3,1,4,0,0] [-3,0,0,-1,1]  [-79,1,13,1,13]
5 [1,0,0,0,0] [-93,127,796,0,0] [31,0,0,5 —13] [991,71, 483,71, 483]

Note that, if you put your eye at the point Ps and look out at the sixteen pointsin
the first four rows, what you see is the rational representation of By 11, that we
used in proving Proposition 10.1-2.
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Challenge 11.5-1 Provethequartic case of theProjection Theorem. That is, given
any representation of the budget matroid By 1 1.1 in projective 4-space and given a
generic plane o, provethat the dopes of the twenty 3-flatsthat join o to the twenty
points of the representation form a block of scalars that is 4-dependent.

Let’stemporarily call an ordered 4-block of 3-flatsthrough aplane o in4-space
nice when a representation of B, ; ;1 doesexist, each of whose twenty pointslies
on the appropriate 3-flat. Assuming that the quartic case of the Projection Theo-
rem does hold, any nice block must be 4-dependent — the representationof B, 1 1.1
serving as awitness to the 4-dependence of the block. But a nice block must have
additional propertiesas well. Since any projective transformation of 4-space that
fixeso and fixesevery 3-flat through o clearly takes awitnessing representation to
another such, each nice block has 15 dimensions’ worth of witnesses. So therecan
beonly #(B,1.11) — 15 = 15 degrees of freedom in a nice block. In addition to
4-dependence, there must be four more dimensions’ worth of algebraic constraints
on the twenty 3-flatsin a nice 4-block.

Challenge 11.5-2 Determine all of the algebraic constraints that relate the dopes
of the twenty 3-flatsin a nice 4-block.

Challenge 11.5-3 Extend thistheory to n = 5 and beyond, thereby revealing the
connection between representations of the budget matroid B, 1. 1 — wherethere
aren columns, al but the first of whose budgets are ones— and ordered n-blocks
of dopesthat are‘nice'.

11.6 Characterizing 4-dependence

But wait a minute. Perhaps we are giving up too soon on our origina problem.
While the budget matroid B, ; 1.1 characterizes some property — the property of
being ‘nice’ — that isstronger than 4-dependence, perhapsthereis some other con-
figuration that characterizes 4-dependence itself. Since representations of B, 111
do seem to yield 4-dependent blocks when projected, anatural way totry to design
such anew configurationisto relax the constraints of the matroid By 1 1 ;. Perhaps,
if werelax constraints correctly, we can find anew matroid M, with #(M) = 34,
for which the Projection Theorem still holds.

One way to relax our constraints on the configuration would be to replace the
budget matroid B, ; 1.1 with one of its budgetary relaxations. Unfortunately, aswe
mentioned in Section 5.5.5, it seems that all of those budgetary relaxationsare un-
representable. All of them still insist on the sixty perfect incidences; and the rank
of the Jacobian matrix of those sixty constraints, when evaluated at arational repre-
sentation of By ; ;1 1, turnsout to be 50. Thus, of the eighty degrees of freedom that
are present in twenty arbitrary pointsin 4-space, fifty are taken away by the sixty
perfect constraints themselves, leaving only thirty. But those same fifty are taken
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away by the combination of the sixty perfect constraintsand all of the column con-
straints of the budget matroid B, 1 1.1. Thus, it seems that the perfect constraints
— in the presence of appropriate nondegeneracy conditions — imply the column
constraints. It isthiswhich makesall of the budgetary relaxations unrepresentable.

We might consider going further and relaxing away some of the perfect con-
straints also — perhaps fourteen of them: ten to remove the redundancy and four
moreto increase the freedom of the constrained configurationsfrom 30 to 34. But
there is good evidence of adifferent sort that no such approach could succeed.

Whatever we do, we want the Projection Theorem to continue to hold for our
relaxed configurations. Given five quadruples of pointsin 4-space whose coordi-
nates are independent variables, suppose that we constrain those twenty points by
requiring that, when projected from each of m different random planes, the block
of twenty slopesthat resultsis 4-dependent. That givesus m nonlinear constraints
on the twenty varying points— that is, m constraints on 80 variables. (In the au-
thors experiment, m was 70; but any m comfortably larger than 50 would do just
aswell, aswe shall see shortly.)

If the twenty varying points happen to be located at the twenty vertices of a
rational representation of By ; 11, then all m constraints are satisfied, because we
are currently assuming the quartic case of the Projection Theorem. So we then
compute the rank of the Jacobian matrix of the m constraints, at the point corre-
sponding to some rational representation of B, 11:. We know that there must be
at least 30 degrees of freedom in the variety that those m constraints define, since
#(B2.1.1.1) = 30. Andlo, the rank of the Jacobian turns out to be 50; that is, there
are precisely 80 — 50 = 30 degrees of freedom, and no more.

This experiment gives good evidence that there is no way to get a configura-
tion that characterizes precisely the notion of 4-dependence simply by relaxing the
congtraints of thematroid B, 5 1 1. It doesn’t matter which constraints we decide to
relax. As soon as we relax enough constraints to increase the freedom in the con-
strained configurations, the Projection Theorem startsto fail.

It isstill possible that there is some compl etely different configuration — il
with no auxiliary points and whose twenty key points span all of 4-space — that
does characterize precisely the notion of 4-dependence. Theinstances of that con-
figuration would have to form a 34-dimensional variety, presumably completely
different from the 30-dimensional variety of representations of B, 1 1. Oneway
to search for such a thing would be to take the system of m nonlinear equations
above and to look for some solution of it where the rank of the Jacobian falls, not
just from m down to 50, but all the way down to 46. Unfortunately, it isn’'t clear
how to look for such asolution. And even if we found one, any theory that we then
managed to build probably wouldn’t have much to do with the budget matroids—
so it is perhaps best if we leave that investigation for another time.
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