December 1, 1994

Research

SRC Report

Oblig-3D
Tutorial and Reference M anual

Marc A. Najork

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Pdlo Alto, California 94301

Systems Research Center

The charter of SRC isto advance both the state of knowledge and the state of the art
in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digita’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypesand usingthemasdaily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their propertiesin depth. This experience is useful in the short termin
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the magjor advancesininformation systems have come through thisstrategy,
including personal computing, distributed systems, and the Internet.

We aso perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretica computer science, such as the analysis
of agorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professiona
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

Oblig-3D
Tutorial and Reference M anual

Marc A. Ngork

December 1, 1994

(©Digital Equipment Cor poration 1994

Thiswork may not be copied or reproduced inwhole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individual contributors to the
work; and al applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require alicense with payment of feeto
the Systems Research Center. All rights reserved.

Abstract

Oblig-3D is an interpreted language that is embedded into the 3D animation system Anim3D.
Anim3D is based on afew simple, yet powerful constructsthat allow a programmer to describe
three-dimensional scenes and animations of such scenes. Oblig-3D, by virtue of itsinterpretive
nature, providesthe programmer with a fast turnaround environment. The combination of sim-
plicity and fast turnaround allows application programmers to construct non-trivial animations
quickly and easily.

The first half of this report contains a tutoria to Oblig-3D, which develops the various
concepts of the animation system. The second part containsareference manual, which describes
the functionality of Oblig-3D module by module.

Contents

1

I ntroduction

11

RelatedWork e

Tutorial

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
213
214
2.15
2.16
217
2.18
2.19
2.20

Oblig-3DinaNutshell o
AFirstExample L
Properties e
TheOn-LineHelpFacility
Non-TreeSceneGraphs e
MoreonProperty Values
Overloading
Behaviors e
AsynchronousBehaviors L L
SynchronousBehaviors oL oL
DependentBehaviors. L
Locking e
Calbacks.
ExtendingObjects L
Naming Graphical Objects
Requests e
DepthCueing e
LightObjects. o e
CameraObjects L
CreatingRootObjects

Reference Manual

31
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
311

ThePoint3Module.
TheMatrix4Module
TheAnim3D Module
TheProxiedObj Module L
TheGraphicsBaseModule
TheX'Pex'BaseModule
TheAnimHandleModule,
TheGOModule o
TheGroupGOModule o
TheRootGOModule. o
TheLightGOModule

[N

[o2JNN NN SN N

11
11
13
15
16
17
18
20
21
24
26
28
29
32
33
34
38

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
321
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
331
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
342

The AmbientLightGOModule
TheVectorLighntGOModule
ThePointLightGOModule
The SpotLightGOModule o L
TheCameraGOModule
TheOrthoCameraGOModule
ThePerspCameraGOModule
TheLineGOModule
TheMarkeelGOModule
TheSurfaceGOModule
ThePolygonGOModule
TheBoxGOModule
TheDiskGOModule
TheSphereGOModule. o
TheCylinderGOModule
TheConeGOModule
TheTorusGOModule
TheQuadMeshGOModule
ThePropModule.
TheBooleasnPropModule L oL
TheReadPropModule
ThePointPropModule o
TheColorPropModule o
TheTransformPropModule oL
TheLineTypePropModule
TheMarkerTypePropModule o oL
TheRasterModePropModule
The ShadingPropModule o oL
TheMouseCBModule
ThePositionCBModule L
TheKeyCBModule

Acknowledgments

References

I ndex

100

101

105

1 Introduction

Obliq [3] is alexicaly-scoped, untyped, interpreted language that supports distributed object-
oriented computation. The Obliq interpreter iswritten in Modula-3 [17], and is designed to be
both easy to extend and easy to embed into other programs.

Anim3D isa Modula 3 library for building programs that use interactive, animated three-
dimensional graphics. It uses the X Window System [21] as the underlying window system,
and MPEX (Digita’s extension of PEX [8], the 3D extension of X) as the underlying graphics
library. Support for other window systems (e.g. Trestle [14, 15]) and graphics libraries (e.g.
OpenGL [18]) isunder way.

Anim3D isdesigned to interconnect easily with an embedded language, athough it does not
rely on one. Possible choices for such a language are Lisp, Python, or any other interpreted
language that can be easily embedded. We chose Obliq, because its linguistic features closely
match those of Modula-3, and because it is particularly easy to embed an Obliq interpreter into
some other Modula-3 program. The resulting embedded language is called Oblig-3D.

Oblig-3D isasuperset of Oblig; it provides the same syntactic constructs, as well as all the
built-in libraries described in SRC Research Report 122 [3]. In addition, it provides 42 extra
modulesthat support the construction of 3D animations.

Thisreport is divided into two parts. The first part gives an example-driven introduction to
the basic concepts of the animation system. It assumes the reader is familiar with SRC Report
122, but does not make any further assumptions. The second part contains a reference manual
for Oblig-3D. The manual contains a section for each module that is specific to Oblig-3D.

Our initial motivation for developing a fast-turnaround 3D animation system was our ex-
perience in using 3D views for algorithm animation [2]. We found that building enlightening
3D animations, using a low-level graphics library such as PEXIib, was both hard and time-
consuming. Since then, we have used Oblig-3D for building a variety of agorithm animations.
A detailed development of one such animation (Dijkstra's shortest-path algorithm) can be found
in [16]; the accompanying videotape shows a collection of animations done with Oblig-3D.

1.1 Reated Work

The last 20 years have seen a variety of device-independent 3D graphics libraries, such as
Core [9], GKS-3D [11], PHIGS [1] and PHIGS+ [19]. Today’s most popular “traditiona” 3D
graphicslibraries are PEXIib [8], IRIS GL [22], and its OpenGL variant [18].

The potential benefits of applying object-oriented methods to computer graphics have been
pointed out since the inception of the object-oriented paradigm. Some of the earlier object-
oriented libraries, such as HOOPS [27] and Doré[13], use an object-ariented design mode!, but
provide no interface to an object-oriented language.

More recent systems, such as Grams|[6], Inventor [24, 25, 26], and GROOP [12], are written

2 1. INTRODUCTION

in C++, and provide a C++ application programmers’ interface. Inventor in particular has been
quiteinfluential. Oblig-3D adopts some of itskey ideas: Scenes are modeled as directed acyclic
graphs of graphical objects, and geometric primitives, cameras, and light sources are treated
uniformly. But there are also some important differences. In Inventor, shapes and properties
can both be added as nodes to the scene tree. This means that the order in which nodes are
inserted into the tree affects the appearance of the scene: Inserting first a color node and then
a sphere node will produce a different image than that obtained by adding first the sphere and
then the color. Another key difference isthat Inventor propertiesare not inherently time-variant.
Animation is achieved through engines, which change the state of property nodes and shape
nodes. Finaly, Inventor lacks an interpreted language, a feature crucial to rapid prototyping of
animations.

Paul Strauss' “Brown Animation Generation System” [23], or BAGS for short, is one of
the first 3D animation systems to provide such an embedded interpreted language (ironically,
Strauss later on designed Inventor). BAGS uses an interpreted language called SCEFO to
describe the structure and the animation behavior of a scene. Although quite powerful, SCEFO
isan animation language, not a full-fledged programming language. It provides assignment and
iteration constructs, aset of arithmeticfunctions, and procedural abstraction, but no conditionals.
However, BAGS alowsthe user to write C code stubsthat can be compiled into the system and
can then be called from SCEFO.

BAGS was succeeded by UGA, the “Unified Graphics Architecture” [28, 10]. UGA uses
an interpreted language called FLESH that is based on the prototype-and-del egation paradigm.
Scenes are modeled as collections of objects. Attached to each object is a list of “change
operators’ or chops. Each chop defines some aspect of the appearance of an object, such asits
color, transformation, and even its shape. Moreover, chops are functions of time; they are the
basisfor animationin UGA.

Alice[4, 5] is another rapid prototyping system for creating 3D animations. It uses Python
asitsembedded interpreted language. There are many commonalities between Aliceand Oblig-
3D. Both systems use an object-oriented interpreted language to alow for rapid prototyping.
Both separate the application from therendering. (Aliceusesaprocessto perform therendering;
Oblig-3D usesaseparate animation server thread.) Both systemsallow for hierarchical geometry,
that is, graphical objects that contain other graphical objects. However, the two systems differ
in their basic animation model: Alice treats a scene as a hierarchy of graphical objects, each
of which hasalist of action routineswhich are called each frame of the simulation, and which
are responsible for changing the internal state of the object. New animation effects are created
by defining new action routines and adding them to the graphical object. Oblig-3D, on the
other hand, uses propertiesto specify the appearance of objects; these properties are inherenty
time-variant. In other words, Alice performs frame-based animation, whereas Oblig-3D has an
explicit notion of time.

Finally, TBAG [7, 20] isavery recent toolkit for rapid prototyping of interactive 3D anima-

1.1 Rdated Work 3

tions. TBAG providestwo programmer interfaces: an interpreted functional language, intended
to allow casua users to utilize the existing functionality of the system; and a compiled, object-
oriented language, namely C++, to allow more sophisticated usersto extend the system. On the
surface, TBAG and Oblig-3D look different, mainly due to the different paradigms underlying
their embedded languages. Closer examination, however, uncovers afair number of similarities:
Both systems distinguish between values that define geometry and values that define attributes
(such as color); both alow the user to impose a hierarchical structure on the geometry of the
scene; both systemstreat light sources likeany other geometric primitive; both systems have the
notion of time-varying values; and both support constraints (however, TBAG alowsfor a more
general class of constraintsthan Oblig-3D).

4 2. TUTORIAL

2 Tutoria

Thetutorial section of thisreport devel opsthe fundamental concepts of Oblig-3D, using aseries
of gradated examples. We start with the smallest program that actually generates a 3D image
(Oblig-3D’s equivaent of “Hello World!”), and we work our way up to alevel where we show
how parts of the functionality of the system could be reimplemented.

Thereader should be abletowork hisway through thetutorial withinthecourse of amorning.
All the examples are self-contained and short enough to be tried out during thisreading'.

2.1 Oblig-3D in a Nutshell

Oblig-3D (and Anim3D) is founded on three basic concepts: graphical objectsfor constructing
scenes, time-variant properties for animating various aspects of a scene, and callbacks for
providing interactive behavior.

Graphical objects subsume geometric shapes (spheres, cones, cylinders, and thelike), light
sources, cameras, groups for composing complex graphical objects out of simpler ones, and
roots for displaying graphical objects on the screen.

Properties describe attributes of graphical objects, such as their color, size, location, or
orientation. A property consists of a name that determines what attribute is affected, and a
valuethat determines how it is affected. Property values are not simply scalar values, but rather
functions that take a time and return a scalar value. Thus, property values form the basis for
animation.

Callbacks can be attached to graphical objects; they define how these objects react to events
such as key strokes or mouse position changes. Callbacksform the basisfor interactive behavior.

2.2 A First Example

Thefollowing programisthe smallest Oblig-3D programthat actually createsathree-dimensional
image. It opensup agraphicswindow on the screen, and displaysawhite sphere (see Figure 1a):

let r = Root GO _NewStd();
r. add(Spher eGO _New([0,0,0],0.5));
(Program 1)
Thefirst line creates aroot object, whichisaspecia kind of graphical object, and assignsit
to the variabler . Associated with each root object is a window on the screen, and creating the
root object creates thiswindow and installsit on the screen.

'1f you read this document using the LECTERN Virtual Paper viewer, you can cut and paste the examples directly
from the document into a window running an Oblig-3D interpreter.

2.2 A First Example 5

RootGO
(r)
< SphereGO)

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 1: Scene and Scene Graph created by Program 1

The expression Spher eGO_New([0, 0, 0], 0. 5) creates a sphere object, which is another
kind of graphical object. This particular sphere object represents a sphere whose center lies at
the origin of the coordinate system, and whose radiusis 0.5 units.

Finally, r. add(---) adds the sphere object to the root object, and thereby causes it to be
displayed in the window associated with the root object. The user can manipulate the scene
interactively, that is, he can move and rotate the displayed objects through mouse controls. This
interactive behavior is not innate to root objects, but rather added to the root object by the
function Root GO_NewsSt d() . Thisfunction a so creates (in addition to theroot itself) a camera
through which the scene is viewed, and several light sources.

The add method, which makes an object part of alarger object, is understood by all objects
of type G oup@O. In particular, it isunderstood by objects of type Root GO, which isthe type of
root objects and a subtype of G oupGO. Thisahility to group objectstogether into larger objects
allows usto build up hierarchies of graphical objects. In general, these hierarchies must form a
directed acyclic graph, called the scene graph. Figure 1b shows the scene graph corresponding
to Program 1. For the sake of simplicity, the camera and the light sources that were created by
the call to Root GO_NewSt d() are omitted.

We can display acone together with the sphere by adding the cone object to the root object.
Here isa program that doesthis:

let r = Root GO NewStd();
r.add(SphereGO New([0,0,0],0.5));
r.add(ConeG New([0,0,0],[1,1,1],0.5));
(Program 2)

6 2. TUTORIAL

RootGO
(r)
(Sph ereGO) (ConeGO)

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 2: Scene and Scene Graph created by Program 2

The expression ConeGO New([0, 0,0],[1, 1, 1], 0. 5) creates an object that represents
a cone whose base is centered at the origin and is of radius 0.5, and whose tip lies at point
(1,1, 1). Figure 2 shows the window associated with r , and the scene graph.

All the scene graphs we have seen so far have been trees. Associated with the root of the
tree was awindow for viewing the scene. But itis possibleto have several windowsviewing the
same scene. The following program creates two windows that display a scene consisting of a
sphere and a cone:

let g = GoupGO _New();
Root GO _NewsSt d() . add(g) ;
Root GO _NewsSt d() . add(g);
g. add(Spher eGO_New([0,0,0],0.5));
g. add(ConeGO New([0,0,0],[1,1,1],0.5));
(Program 3)

Thefirst linecreates agroup object and assignsit to the variableg. The next two linescreate
two root objects, and add g to each. Creating the two roots also creates two windows on the
screen. Finally, thelast two lines create the sphere and the cone, just asin the previous example.
Thistime, however, the sphere and the cone are not added directly to the roots, but to the group
g instead. Figure 3 shows the two windows and the scene graph.

2.3 Properties

The graphical objectsin ascene graph describe what types of objects are contained in the scene.
But there are other attributes to an object besidesits shape: its color, location, size, etc. These

2.3 Properties 7

i

< RootGO > < RootGO >
GroupGO
9
= : . 4 (SphereGO) (ConeGO>

(a) The two Windows created by Program 3 (b) Corresponding Scene Graph

4

Figure 3: Thetwo Windows and the Scene Graph created by Program 3

aspects of an object are described by properties.
Let’'s assume we want to create a scene that contains a red sphere. We can create such a
scene by modifying Program 1 as follows:

let r = Root GO _NewStd();
r.add(SphereGO New([0,0,0],0.5));
Sur f ace@0_Set Col or (r, "red");
(Program 4)

Thefirst twolinescreatearoot object which containsasphereobject. Thelast line“attaches”
the color property “red” to the root object and all objects contained in it. Figure 4a shows the
resulting scene.

The Sur f aceGO prefix indicates that the color property is associated with surfaces, that is,
objectsthat are composed of polygons. (Sphere objectsare actually approximated by polyhedra.)

A property consistsof two parts: a name and avalue. The name describes what aspect of a
graphical object is affected by the property, and the value describes what this aspect looks like.
In Program 4, the name of the property isSur f ace@0_Col or , and the valueisthe color “red”.

Many properties can be attached to a graphical object. These propertiesform a mapping —
apartial function from names to values.

In the scene graphs shown throughout this report, we represent property values through
boxes. For each property that is attached to agraphical object, we draw an arrow from the oval
representing the graphical object to the box representing the property value. Thearrow islabeled
with the property name. Figure 4b shows the scene graph created by the program above.

Properties affect not only the graphical object they are attached to, but also all those objects
that are contained in this object and that do not “override” this property. Consider the following

8 2. TUTORIAL

ColorPropConstVal
RootGO Sur f aceG0 Col or

r red

< SphereGO)

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 4: Scene and Scene Graph created by Program 4

modification of Program 2:

let r = Root GO NewStd();
let s = SphereGO New([O0,0,0],0.5);
r.add(s);
let ¢ = ConeGO New([0,0,0],[1,1,1],0.5);
r.add(c);
Sur f ace@0_Set Col or (r, "red");
(Program 5)

The first five lines create a root object that contains a sphere and a cone. (This time, we
created names for the sphere and the cone.) The last line attaches the color property “red” to the
root object. This turnsthe root (and with it, the sphere and the cone) red. Figure 5a showsthe
result. Adding the statement

Sur f ace@0_Set Col or (c, "yel | ow');

(Program 5— continued)
to Program 5 attaches the color property yellow to the cone. This property “overrides’ the color
of the root: The cone turns yellow, while the rest of theroot (i.e. the sphere) remains red (see
Figure 5b).

2.3 Properties

(@) Initial Scene (b) After setting the Color of the Cone

ColorPropConstVal
RootGO Sur f aceGO Col or i

r red

ColorPropCi tval
SphereGO ConeGO SurfaceGo Col or | 22IroPCONStva
: :

(c) Final Scene Graph

Figure 5: Scenesand Scene Graph created by Program 5

10 2. TUTORIAL

Note that the sequence of the statements is immaterial? (except that a variable cannot be
referenced before it is declared). The following program creates exactly the same scene:

let r Root GO _NewsSt d() ;

let s SphereGO New([0, 0, 0], 0. 5);

let ¢ = ConeGO New([O0,0,0],[1,1,1],0.5);
Sur f ace@0_Set Col or (c, "yel | ow');

Sur f ace@0_Set Col or (r, "red");

r.add(c);

r.add(s);

(Program 6)

Color properties are one kind of property. Other kinds include boolean properties, rea
properties, point properties, and so on.

Recall that properties control not only surface attributes of an object, such as its color and
transparency, but also spatial attributes, such asitslocation and size. For example, the center of a
sphereiscontrolled by apoint property named Spher eGO_Cent er , and theradiusis controlled
by areal property named Spher eGO_Radi us. Theexpression Spher eGO_New(¢, r) createsa
sphereobject, and attaches a property with name Spher eGO_Cent er and valuec and aproperty
with name Spher eG0_Radi us and valuer to the new sphere object.

Itispossibleto detach these propertiesfrom the sphere object, usingtheunset Pr op method.
Consider the following program:

let r = Root GO _NewStd();
let s = SphereG New[0,0,0],0.5);
r.add(s);
s. unset Prop(SphereGO Center);
s. unset Prop(Spher eGO_Radi us) ;
Sphere@0 Set Center(r,[1,0,0]);
Spher eG0_Set Radi us(r, 0. 3);
(Program 7)

Thefirst three lines create aroot object r and a sphere object s, and add s tor . The center
of the sphere is at point (0,0, 0), and its radius is 0.5. So far, the program is equivalent to
Program 1.

The next two lines detach the center and the radius property from the sphere object. As
these properties are not defined for the root object either, the sphereis now displayed at adefault
location and with a default radius.

The last two lines attach a center property and a radius property to the root object. The

sphereis displayed centered at point (1, 0, 0), and with aradius of 0.3.

2Thisisone of thekey differencesbetween Anim3D and Inventor [24, 25, 26]. Inventor usesavery similar model:
scenesare described by ascenegraph composed of nodes. However, it doesnot distinguish between graphical objects
and properties; both are nodes in the scene graph. A property node in a scene graph affects all its “right” siblings,
until it is“overridden” by another property node. So, the order of hodesin the scene graph becomesimportant.

24 TheOn-Line Help Facility 11

So, the center property and the color property behave exactly the same: A property attached
to an object (be it a group or a sphere) affects that object and al objects contained in it, except
those that have a property with the same name attached.

It should aso be noted that any property can be attached to any object, but that the way an
object is displayed does not necessarily depend on every property. For example, it is perfectly
legal to attach a Spher eGO_Cent er property to a cone, but thiswill not affect the appearance
of the cone.

24 TheOn-LineHelp Facility
Oblig has a built-in facility that provides on-line help to the user. Typing
hel p;

shows a list of al preloaded libraries. You can also obtain more information on a particular
library. For example, typing “hel p Spher eGQ " reved s the types and functions exported by
the Spher eGOmodule:

- hel p SphereGO
SphereG0 New(p: PointVal, rad: Real Val): SphereG)
SphereG0O_ NewW t hPrec(p: PointVal, rad: Real Val, prec: Int): SphereQO
SphereG0 _Cent er: Poi nt PropNane
Spher eG0 _Radi us: Real PropNane
Sphere@0 Set Center(go: GO center: PointVal):
Spher eG0 _Set Radi us(go: GO, radius: RealVal): Ck
WHERE
Sphere@0 <: Surface@O
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

Thetypenotation followstheonedescribedin [3]; itisreviewed at the beginning of thereference
manual .

2.5 Non-Tree Scene Graphs

We mentioned before that scene graphs are directed acyclic graphs, and not simply trees.
Program 3 created a scene graph with two roots (where “root” refers to a node with in-degree
0), which allowed us to view the same scene from two different vantage points.

There are also meaningful scene graphs that contain more than one path between a pair of
nodes. For example, consider the following program:

12 2. TUTORIAL

RootGO
(r)
GroupGO GroupGO
gl g2
SphereGO '\ Spher eGO _Cent er PointPropConstval
s (0,0,0)

(@) Initial Scene (b) Corresponding Scene Graph

RootGO
r
PointPropConstVal PointPropConstVal
Spher eG0 _Cent er GroupGO GroupGO Spher eGO _Cent er
(1,0,0) gl 92 (0,1,1)
< SphereGO >
S

(c) Final Scene (d) Corresponding Scene Graph

Figure 6: Scenesand Scene Graph created by Program 8

2.6 More on Property Values 13

let r = Root GO _NewStd();
let g1 = GoupGO_New);
r.add(gl);
let g2 = GoupGO_New);
r.add(g2);
let s = SphereG New[0, 0,0],0.5);
gl. add(s);
g2. add(s);
(Program 8)
This program creates aroot object that contains two group objects that in turn both contain
the same sphere object. The program so far displays a scene that apparently contains a single
sphere (see Figure 6a). However, adding the following three lines reveals that there are really

two spheresin the scene, which just happen to be superimposed:

s. unset Prop(SphereGO Center);
Sphere@0 Set Center(gl,[1,0,0]);
Sphere@0 Set Center(g2,[0,1,1]);
(Program 8— continued)

These statements detach the center property from the sphere object, and attach two differing
center propertiesto the groups g1 and g2. This causes the sphere to be shown at the location
described by the center property attached to g1, and also at the location described by the center
property attached to g2 (see Figure 6¢).

We can describe the semantics of scene graphswith multiple pathsbetween any pair of nodes
in a procedural fashion: For each path between a root node » and aleaf node /, ! is rendered
once, using the current va ue of the properties attached to the nodes along this path.

We can also describeit in amore declarativeway: Every scenegraph can be“unfolded” into
aforest of scene trees. Table 1 gives an algorithm for performing the unfolding, and Figure 7
shows an example of an unfolding.

2.6 Moreon Property Values

Let'stake a closer look at property values. A property value represents atime-variant value. It
isimplemented as an Obliq object that has a method val ue which takes atime and returns the
value at that time.

So far, we have seen only constant property values, that is, property values that do not
change over time. The expression Real Pr op_NewConst (0. 5) creates a new real property
value, whose valueis 0.5 regardless of the current time.

The same property valuemay be attached to several graphical objects. Consider thefollowing
program:

14

2. TUTORIAL

INPUT: Scene graph . G isadirected acyclic graph.
OuTrPUT: Unfolded scene graph &’. ' isaforest of trees.

1. Let G’ bethe empty graph.

2. Add an artificial source vertex s to . Add artificial arcs from s to every vertex in
G within-degree 0.

3. For every vertex « in G and each path p from s to «, add avertex u, to . We say
that u,, correspondsto u.

4. For each arc (u,v) inG, and for al vertices u,, v,» in G’ such that «,, corresponds
to u, v, corresponds to v, and p’ = pv, add an arc (u,, v,) to G’. We say that
(up, vy) cOrrespondsto (u, v).

5. Remove the artificial source vertex and arcs from (&, and the corresponding vertex
and arcsfrom .

Table 1: Unfolding of Scene Graphs

ONO (& (®)
(<) () ()
0'0 (@ (&) @ ()
(r) () (¢ () ()
ONO ONONOCNONORONGEG
before unfolding after unfolding

Figure 7: Example Unfolding of a Scene Graph

2.7 Overloading 15

RootGO
r

RealPropConstVal

Spher eGO _Radi us

Spher eGO _Radi us

SphereGO

SphereGO

(a) Window displaying the scene (b) Corresponding Scene Graph

Figure 8: Scene and Scene Graph created by Program 9

let r = Root GO NewStd();
let rad = Real Prop_NewConst (0.5);
r.add(SphereG New([-1,0,0],rad));
r.add(SphereGO New([1,0,0],rad));
(Program 9)

Figure 8 shows the scene displayed by the program, together with the corresponding scene
graph. The scene contains two spheres; the radius of each sphere is controlled by the rea
property valuer ad. Changing r ad affects both spheres.

The ability to attach the same property value to several graphical objects provides us with
an aternativeto “ property inheritance”. In the example above, instead of attaching r ad to each
sphere, we could have attached it to their common ancestor r instead. If no other radius property
were attached to either sphere, then the radius of both sphereswould have been “inherited” from
r . However, there are many cases in which the “natural” structure of the scene graph prevents
us from using property inheritance. For example, in a scene describing a car, we might want to
put two tires and an axle into the same group, but we aso want the four tires to have the same
color, and the two axles to have a different color. Having the tires and the axle in the same
group prevents us from using property inheritance to describe their color; in such a case, shared
property values are the best solution.

2.7 Overloading

You may have noticed that in Program 1, we invoked the function Spher eGO_New with a real
number as the second argument, whereas in Program 9, we used areal property value for the
second argument. Spher eGO_New is what is called an overloaded function: a function that

16 2. TUTORIAL

a property value (e.g. a RealPropVal)

a behavior (e.g. a RealPropConstBeh)

raw
extend | ,aw
get Beh | extend
set Beh

val ue
get

set

Figure 9: Properties and Behaviors

accepts arguments of different types. Spher eGO_New accepts either points or point property
values as the first argument, and either integers, reas, or rea property values as the second
argument. A point, in turn, isan array of three elements, which can be either integers or reals.

It is important to remember that only the 3D functions of Oblig-3D are overloaded. The
rest of Obliq distinguishes between, say, integers and reals, and these types cannot be freely
interchanged. For example, the expression1 + 0. 1 will cause arun-time error.

2.8 Behaviors

There are many different ways in which a property value might change over time. It might
remain constant, it might change perpetually, it might start to change from one value to another
when signaled, and so on.

When a property value is attached to a single graphical object, we can change the way this
property value changes over time simply by replacing it with another one. But this approach
is impractical when the property value is attached to many graphical objects. So, instead of
replacing the entire property value by a new one (and having to update every graphical object
that usesthis property value), we simply change the behavior of the property value.

Behaviors, just like property values, are represented by Obliq objects. In a sense, property
values serve merdly as“clerks’ for behaviors: they forward val ue-inquiring messages from the
client program or the animation server to the behavior. Replacing one behavior with another one
istransparent to the client program and the animation server because the property vaue acts as
an intermediary. Figure 9 illustratesthis encapsulation.

Constant property values are really property values that contain constant behaviors. A
property value might change from being constant to being time-variant during itslifetime, while
a constant behavior will remain constant for its entire existence.

TheexpressionReal Pr op_NewConst Beh(0. 5) createsanew real-valued constant behav-
ior object b, which encapsulates the value 0.5, and returnsit. b understands the message set .

2.9 Asynchronous Behaviors 17

Figure 10: Snapshotsof the animation created by Program 10

Thecdl b. set (0. 7) will change b’svaluefrom 0.5t0 0.7.

We can access the behavior of a property value by sending the message get Beh() to the
property value. Recall Program 9, which displaystwo spheres whoseradiusis controlled by the
constant property valuer ad. The following statement changes the radius of the two spheres to
0.3:

rad. get Beh().set (0. 3);

We can replace the behavior of aproperty valueby sendingit theset Beh message. For example,

rad. set Beh(Real Prop_NewConst Beh(0.7));

will replace the existing behavior of r ad with a new behavior that always evaluatesto 0.7.

2.9 AsynchronousBehaviors

Aswe said before, both property values and behaviorsrepresent time-variant values. A behavior
implements afunction from amoment intimeto theactual valueat that time?; the property value
serves as an intermediary between graphical objects and behaviors, alowing us to exchange
behaviors without having to update graphical objects.

In the previous section, we encountered the most primitive form of behaviors, namely
constant behaviors, that is, behaviors whose value does not change (unless explicitly changed
through aset message).

Asynchronous behaviors are the second class of behaviors in our system. Asynchronous
behaviors change over time; and they change throughout their entire lifetime. They do not
depend on other property values, and they do not synchronize their changes with them.

The following program displays a sphere, whose radius oscillates between 0.3 and 0.7:

let root = Root GO NewsStd();
let rad = Real Prop_NewAsync(neth(self,time) 0.5 + math_sin(tine) * 0.2 end);
root . add(Spher eGO New([0, 0,0],rad));

(Program 10)

*Thisis aslight simplification, as behaviors, unlike mathematical functions, can have local state.

18 2. TUTORIAL

The second line creates anew real property valuer ad with an asynchronousbehavior. This
behavior is defined by a method that takes two arguments, the behavior itself and the current
time, and returnsareal. Inthiscase, thevalueof r ad at timet isdefined to be 0.2 sin (¢) + 0.5.%

r ad is attached as the radius property to a sphere object, which causes the sphere to pulse.
Figure 10 shows a“film-strip” of successive snapshots of the scene generated by this program.

2.10 SynchronousBehaviors

A synchronous behavior represents a value that does not change continuously, but rather upon
being signaled. Each synchronous behavior is connected to a synchronization object, called an
animation handle. We say that the animation handle controls the behavior. Many synchronous
behaviors can be controlled by the same handle.

Conceptudly, a synchronous behavior consists of a current value and a request queue.
Requests are objects that change the current value of the behavior. For each type of behavior,
thereisaset of predefined requeststhat perform linear interpolations between the current value
of the behavior and anew one; in addition, the client program can define arbitrary new requests.
Each synchronous behavior has methods for adding predefined and user-defined requests to
its request queue; these requests will be processed once the animation handle controlling the
behavior is signaled.

Associated with each request is a start time and aduration. A request with start time s and
duration d starts to affect the value of the behavior s seconds after the controlling animation
handle issignaled, and ceases to do so d seconds later.

The following program demonstrates the use of synchronous behaviors:

l et ah = AninHandl e_New();

let p = PointProp_NewSync(ah,[0,0,0]);
let ¢ = Col orProp_NewSync(ah, "red");
let r = Root GO _NewStd();

let s = SphereGO _New p, 0.5);

r.add(s);

Sur f ace@0_Set Col or (s, c);
p. getBeh().linMveTo([O0,1,0],1,3);
c. get Beh(). rgbLi nChangeTo("green", 0, 4);
ah. ani mate();
(Program 11)

Thefirst line creates a new animation handle ah. The next two lines create a point property
valuep whoseinitid valueis (0, 0, 0), and acolor property value c whoseinitia valueis“red”.
Both p and ¢ are synchronous property values (that is, property val ues contai ning a synchronous
behavior), and both are controlled by the animation handle ah.

*It should be noted that Obliq differs from many other languages with infix operators in that all operators have
the same precedence, and associateto the right. So, 4* 7+3 evaluatesto 40, not 31.

2.10 Synchronous Behaviors 19

ROthGO ColorPropVal ¢
a ColorPropSyncBeh
Sur f ace@D Col or current value: red
request queue: B\

AnimHandle ah

r gbLi nChangeTo request
target value: green
start time: 0

duration: 4

SphereGO
s

PointPropVal p

a PointPropSyncBeh
current value: (0,0,0)
request queue: B\

Spher eGO _Cent er

| i nMoveTo request
target value: (0,1,0)
start time: 1
duration: 3

Figure 11: Scene Graph created by Program 11

The next three lines create a root object, which contains a sphere object. The center of the
sphere depends on the current value of p, and its color depends on the current value of c. So,
initially the sphereisred, and centered at the origin.

In the next line, we send the message | i nMoveTo to the behavior of p, asking it to change
from its present valueto (0, 1, 0). This change will start 1 second after the animation handleis
signaled, and will take 3 secondsto complete. Similarly, we send amessager gbLi nChangeTo
to the behavior of c, asking it to change from its present value (that is, red) to green. The change
will start right when the animation handle is signaled, and will take 4 seconds to complete.
Figure 11 shows the state of the scene graph after this message.

Up to this point, no changes have actually taken place. Sending the message ani mat e to
the animation handle ah causes the requests to be processed. The ah. ani nat e() call returns
only after all requests have been processed, that is, it will run for 4 seconds.

Many requests can be added to the request queue of a synchronous behavior. However, the
time intervals of these requests must not overlap. So,

let ¢ = Col orProp_NewSync(ah, "red");

c. get Beh().rgbLi nChangeTo("green", 0, 2);
c. get Beh().rgbLi nChangeTo("bl ue", 2, 2);

islegal, astheintervals (0, 0 + 2) and (2, 2 + 2) do not overlap. On the other hand,

20 2. TUTORIAL

let ¢ = Col orProp_NewSync(ah, "red");
c. get Beh(). rgbLi nChangeTo("green", 0, 2);
c. get Beh(). rgbLi nChangeTo("bl ue", 1, 2);

isillegal, andwill cause an Obliqexceptionto beraised. It shouldalso benoted that zero-duration
intervals are closed, whereas others are open. So

let ¢ = Col orProp_NewSync(ah, "red");
c. get Beh(). rgbLi nChangeTo("green", 0, 0);
c. get Beh(). rgbLi nChangeTo("bl ue", 0, 2);

islegal, astheintervals[0, 0] and (0, 2) do not overlap, whereas

let ¢ = Col orProp_NewSync(ah, "red");
c. get Beh(). rgbLi nChangeTo("green", 0, 0);
c. get Beh(). rgbLi nChangeTo("bl ue", 0, 0);

isillegal, because [0, 0] and [0, 0] overlap.

211 Dependent Behaviors

A dependent behavior is abehavior whose value depends on other property values. Dependent
behaviors allow us to specify functional dependencies between property values. Such depen-
dencies are often called one-way constraints. It is a checked run-time error if the dependency
graph induced by the dependent behaviorsincludes any cycles.

A dependent behavior is defined just like an asynchronous behavior, through a method that
is passed to its creation function. This method takes the behavior itself and the current time as
arguments, and returns the value for the behavior at that time.

The following program creates a sphere and a torus. The radius of the sphereis defined by
an asynchronous property value, which causes the sphere to pulsate. The radius of the torusis
dependent on the radius of the sphere; it will alwaysbe 1.5 times as large.

let root = Root GO NewStd();
let radl = Real Prop_NewAsync(neth(self,tine) 0.5 + math_sin(tinme) * 0.2 end);
root.add (SphereG) New ([0,0,0],radl));
let rad2 = Real Prop_NewDep (neth(self,tine) radl.value(time) * 1.5 end);
root.add (TorusGO New([0,0,0], [0,1,0], rad2, 0.1));
(Program 12)

Thefirst three lines of this program are identical to Program 10. The fourth line defines a
new dependent property valuer ad2, whosevalue a agiventimeis1.5timesthevaueof r adl
at that time. The last line creates a torus, whose center is (0, 0, 0) and whose normal vector is
(0,1,0). Themgjor radiusof thetorusis defined to ber ad1, and the minor radius has aconstant
valueof 0.1.

Figure 12 shows a “film-strip” of successive scenes created by this program.

212 Locking 21

HEEEE

Figure 12: Snapshotsof the animation created by Program 12

2.12 Locking

You may have noticed that none of the programs we have shown contained an explicit statement
to draw the scene. Oblig-3D is based on a damage-repair model: modifying the scene graph
damages the scene, that is, the scene shown on the screen is no longer consistent with the scene
graph. An animation server thread detects any damage, and repairs it by redrawing the scene.

This model isintriguing because of its simplicity, and because it minimizes the amount of
Oblig-3D code a user has to write. However, there are cases where we would like a set of
changes to the scene graph to be atomic; that is, we do not want the animation server to redraw
the scene before we have performed all the changes.

We can declare aset of operationsto be atomic by surrounding them with alocking construct.
Thereisaglobal lock Ani n8D_| ock, which the animation server must hold in order to perform
any redrawing. So, acquiring thislock prevents the animation server from redrawing the scene.

Thefollowing program demonstratesthe use of thislockingfacility. Theaim of thisprogram
isto visualize a simple data structure, namely a binary search tree. We want to show each key
as a color-coded sphere, where colorsrange from yellow over green, cyan, blue, and magentato
red. Yellow correspondsto a small key, whereas red correspondsto alarge key.

There are two ways in which this could be done: we could write a visualization function
that incrementally updates the scene graph whenever a new element isinserted into the tree, or
we could write afunction that, given a tree, computes the entire scene graph from scratch. The
latter method implies that we have to discard the old scene graph and replace it with a new one.
Such an action should certainly be atomic, otherwise the display might occasionally be empty.

22 2. TUTORIAL

let rec Insert =
proc (tr, el)
if tr is ok then
{key => el, left => ok, right => ok}
elsif tr.key > el then
{key => tr.key, left => Insert (tr.left, el), right =>tr.right}
el se
{key => tr.key, left =>tr.left, right => Insert (tr.right, el)}
end
end;

| et maxkey = 10;

let KeyColor =

proc (key) color_hsv(real _float(key)/real float(nmaxkey), 1.0, 1.0) end,
let leftXf = Matrix4_Translate(Matrix4_Scal e(Matrix4_1d,0.5,0.5,0.5),-1,-2,0);
let rightXf = Matrix4_Transl ate(Matrix4_Scal e(Matrix4_1d,0.5,0.5,0.5), 1,-2,0);

let rec VisTree =
proc (tr)
let g = GoupGO _New();
if tr isnot ok then
| et node = SphereGD New ([0,0,0],0.4);
Sur f ace@0_Set Col or (node, KeyCol or (tr.key));
g. add(node) ;
if tr.left isnot ok then
g. add(Li neGO_ New([0,0,0],[-2,-2,0]));
let left = VisTree(tr.left);
G0 Set Transforn(left,left Xf);
g. add(l eft);
end;
if tr.right isnot ok then
g. add(Li neGO_New([0,0,0],[1,-2,0]));
let right = VisTree(tr.right);
G0 _Set Transforn(right, rightXf);
g. add(right);
end;
end;
g,
end;
(Program 13)

212 Locking 23

let Run =
proc (keylist)
var tree = ok;
let root = Root GO NewStd();
let treeRoot = G oupGO New);
root.add (treeRoot);
foreach key in keylist do
tree := Insert (tree, key);
| ock AninBD_| ock do
treeRoot . flush();
treeRoot . add(VisTree(tree));
end;
t hread_pause(2. 0);
end;
end;

Run ([5,3,7,2,10,8,4,6,1,9]);
(Program 13— continued)

Trees are represented as objects with threefields: key for thekey, | ef t for theleft subtree,
andr i ght fortheright subtree. Theempty treeisrepresented by thevalueok (Oblig'sequivalent
of NI L).

I nsert isafunctionthat takesabinary searchtreet r and an element el to beinserted, and
returnsthetree that resultsfrominsertingel intotr asaleaf node. | nser t hasno side effects.

Keycol or isafunction that takes a key (i.e. a number) and returns a color corresponding
to this number. KeyCol or relies on the constant maxkey, which indicates the largest key that
should be expected.

Vi sTr ee isafunction that takes a tree and returns a graphical object representing the tree.
Vi sTr ee worksasfollows: First, it creates anew group object g. If thetreeisempty, it simply
returns the empty group, otherwise, it creates a sphere centered at the origin, attaches a color
corresponding to the key of the root to the sphere, and adds the sphereto g. If theleft subtreeis
not empty, it also adds a line from the sphere to the position where the root of the left subtree
is. It then callsitself recursively, obtaining a graphical object | ef t containing the left subtree.
The sphere representing the root of this left subtree again lies at the origin. Vi sTr ee attaches
atransformation matrix | ef t Xf to | ef t, which shifts the entire subtree down and to the left,
and also scales it down to half itssize. Then, Vi sTree adds| eft tog. Theright subtreeis
visualized analogously. Finaly, Vi sTr ee returns the group g, which now contains graphical
objectsvisualizing the entire tree. 1t should be noted that Vi sTr ee is entirely functiona; it has
no side-effects whatsoever.

Run is the main procedure of the program. It takes an array of keys as an argument. It
starts out by creating an empty treet r ee, aroot object r oot , and agroup object t r eeRoot to
contain the visuaization of t ree. t r eeRoot isadded as a child to r oot . The main loop of
Run iterates over the array of keys. Each key isinserted into the tree, and then the scene graph

24 2. TUTORIAL

Figure 13: Final state of the animation created by Program 13

isupdated. The update consists of two steps: first, weflusht r eeRoot , discarding the previous
visuaization of the tree. Second, we call Vi sTr ee to obtain a graphica object showing the
new tree, and add this object to t r eeRoot . To prevent flicker, these two steps must be atomic,
so they are protected by alocking construct that acquires Ani n8D_| ock. The main loop ends
withacall tot hr ead_pause, which causes the program to pause for two seconds during each
iteration, making the visualization easier to follow.

Thelast lineinvokesour program on asmall test case. Figure 13 showsthe scenevisualizing
thefina state of the tree.

2.13 Callbacks

So far, we have encountered two major concepts. graphical objects, which provide various
geometric primitivesand which allow usto arrangethe primitivesinto hierarchies; and properties,
which determinethe appearance of graphical objects (apart from their intrinsic shape), and which
are the basic vehicle for animation. The third major concept in Oblig-3D are callbacks: objects
which are used to specify the way a graphical object reacts to input events.

We di stingui sh between three different kinds of events: mouse events, which aretriggered by
mouse button transitions; position events, which are triggered by changesin the mouse position;
and key events, which are triggered by keyboard key transitions. For each kind of event, thereis
a corresponding type of callback object.

Let's take a detailed ook at how mouse events are processed. When the user presses or
rel eases a mouse button while a rendering window is selected, amouse event isgenerated. This
event causes the message i nvokeMouseCB(nt) to be sent to the root object associated with
that window. nr isamouse event record, an Obliq object that contains information about the
mouse event (such as which button was pressed or released, whether the transition was a button

2.13 Cadllbacks 25

press or a release, what the position of the mouse was, and what other buttons or option keys
were pressed at thistime).

Associated with every graphical object isamouse callback stack, that is, a stack for mouse
callback objects. When agraphical object receivesani nvokeMuseCB(nt) message, it checks
if thereare any callback objectson itsmouse callback stack. If thereisone, it sendsthe message
i nvoke(nt) tothetopmost callback object; if not, the mouse event isignored.

Each mouse callback object has a corresponding i nvoke method that takes two arguments:
the callback object itself and a mouse event record. The i nvoke method is responsible for
deciding what action should be taken in order to respond to the callback. Possibilities are to
simply ignoreit, to forward it to other graphical objects (this makes sense particularly for group
objects), or to change some property values (for instance transformation properties, to rotate the
scene).

Mouse callback objects are created through the MouseCB_New function, which takes a
method as its argument and assignsit to the i nvoke field of the new mouse callback object.

The client program can push new mouse callback objects onto the mouse callback stack
of a graphical object by sending the pushMbuseCB method to that object, and it can remove
the top or an arbitrary callback object from the stack by sending the messages popMouseCB or
r enoveMbuseCB to the graphical object. Pushing a callback object means establishing a new
reactive behavior, and popping the stack means reverting back to a previous behavior.

The following example demonstrates the use of a mouse callback. The program initialy
shows a sphere. Whenever the user presses the left mouse button, the sphere is replaced by a
box, and when he rel eases the button, the sphere reappears.

let root = Root GO NewStd();
let ball = SphereGO New ([0,0,0], 1);
let box = BoxGO New ([-1,-1,-1],[1,1,1]);
root.add(ball);
let M= meth(self,nr)
if (nr.change is "Left") then
if (nr.clickType is "FirstDown") or
(nr.clickType is "QtherDown") then
root.remove(ball);
root . add(box) ;
el se
root.renmove(box);
root. add(bal l);
end;
end;
end;
root . pushibuseCB(MouseCB_Newm(M)) ;
(Program 14)

Position events and key events are handled similarly.

26 2. TUTORIAL

Oblig
ProxiedObj

Modula-3
forwarder
object

Figure 14: Oblig and Modula-3 counterparts of a Proxied Object

2.14 Extending Objects

Oblighasac! one construct, which takesan arbitrary number of objectsand returnsanew object
which isthe “concatenation” of the arguments. More precisely, cl one requiresthe sets of field
names of the argument objects to be pairwise disjoint, and it returns a new object whose set of
field namesisthe union of the sets of field names of the arguments, and whosefield contentsare
identical to the contents of the corresponding fields of the argument objects.

The clone construct fulfills several purposes: it provides a mechanism for performing a
shallow copy of an object, and it allows us to extend objects (that is, add additional fields).

Thereis arestriction in Oblig-3D that certain objects must not be cloned. To understand
the reason for this, we have to understand the connection between Oblig-3D and the underlying
Modula-3 animation library Anim3D.

Oblig-3D provides a variety of different object types. graphica objects (objects of type
Q0), property names (Pr opNanre), property values (Pr opVal), property behaviors (Pr opBeh),
and so on. All of these are subtypes of Pr oxi edObj , the type of proxied objects. In our
terminology, a proxied object is an Oblig object with a Modula-3 counterpart. Conversely, on
the Anim3D side, thereisatypePr oxi edObj . T with subtypesGO. T, Pr op. Nane, Pr op. Val ,
Pr op. Beh, and so on. The two objects are connected to each other: the Oblig Pr oxi edQbj
will forward certain messages to the Modula-3 Pr oxi edQbj . T, and the Modula-3 object canin
turn invoke methods of the Obliq object. Figure 14 illustratesthe relationship.

Each Proxi edObj has (at least) two fields: raw and ext end. The r aw field contains
an opaque Oblig value, which in turn contains a reference to the corresponding Modula-
3 Proxi edObj . T. The Modula-3 object could in turn contain a pointer back to the Oblig
Pr oxi edObj . However, one of our goalsin designing Anim3D was to alow for an embedded
language, but to make it independent of any particular one. Therefore, we put a forwarder

2.14 Extending Objects

original
Oblig
ProxiedObj

Modula-3
forwarder
object

(8) Beforecalling cl one

original
Oblig
ProxiedObj

Modula-3
ProxiedObj.T

Modula-3
forwarder
object

(b) After calling cl one

27

Figure 15: The effect of ¢l one on Proxied Objects

object, whose signature is not Oblig-specific, between the Modula-3 Pr oxi edQoj . T and the
Oblig Pr oxi edj .

Theimportant point to remember isthat an ObliqPr oxi edObj andaModula-3Pr oxi edQoj . T
refer to each other, and that there is a one-to-one relationship between them. So what would
happen if we clone an Obliq object? Assume we have a behavior object beh with a Modula-3
counterpart x. The relationship between the two objectsis shown in Figure 15a. Executing the
statement

let beh2 = clone (beh, {newField => ...});

will create anew behavior beh2, which hasan extrafield newFi el d. But ther awfield of beh2
still refers to the same opague value and therefore to the same Modula-3 object x. x inturn still
refers to beh, not to beh2 (see Figure 15b). Thismight have fatal consequences. For instance,
we would expect that

pv. set Beh(beh?2);

should make beh2 the behavior of the property value pv. However, pv. get Beh() will return
beh instead of beh2, asthe Modula-3 counterpart of beh2 still pointsback to beh.

To overcome this problem, Oblig-3D offers an alternative way to extend Pr oxi edQbj
objects. Each Proxi edObj p has a method ext end, which takes a second Obliq object o
(which must not beaPr oxi edObj), and returnsanew object p’ , whose set of field namesisthe
union of the field names of p and o. In other words, the result of p. ext end(0) isthe same as
theresult of cl one(p, 0) . However, ext end aso modifiesthe forwarder to pointtop’ instead
of p. So, after calling p. ext end(0) , p should not be used any more. Figure 16 illustratesthe

28 2. TUTORIAL

original
Oblig
ProxiedObj

original
Oblig
ProxiedObj

Modula-3
ProxiedObj.T

Modula-3
forwarder
object

(8) Before calling ext end (b) After calling ext end

Figure 16: The effect of ext end on Proxied Objects

effect of ext end.

2.15 Naming Graphical Objects

There are cases where it would be convenient to find a particular graphical object withinascene
graph, without having to traverse the graph.

In order to build such afacility for finding objects in a scene graph, we have to decide on
how to identify the object we are searching for. We could use the object itself as a search key,
but that would be somewhat useless: if we aready have the object, why search for it?

An dternative is to attach a symbolic label, a name, to graphical objects, and then search
for them by name. In Oblig-3D, a name n is simply a value of type Text. We can attach n
to a graphical object g by calling g. set Nane(n). We can also inquire the name of a given
graphical object: g. get Name() returnsthenameof g if itisdefined, and ok otherwise. Finaly,
g. fi ndNane(n) traverses the scene graph to seeif g or any of its descendants are named n;
if so, it returns the object named n, otherwise, it returns ok. If there are several nodes with the
same name in the scene graph, f i ndName will return the one it finds first.

We have indicated before (see page 5) that the expression Root GO NewSt d(), which
creates a new root object and returns it, also attaches a camera and several light sources to it.
The naming facility give us the ability to access these objects. The name of the camera that
comes with the standard root object is def aul t - canmer a, the name of the first light sourceis
def aul t - anbi ent - 1 i ght , and the name of the second isdef aul t - vect or -l i ght .

216 Requests 29

2.16 Requests

Section 2.10 explained how synchronous behaviors can be used to change a property valuefrom
its current valueto anew one. At least for continuous property values(e.g. reals, points, colors,
and transformations), thisimplies that some interpol ation between theinitial value and the new
one must be performed, in order to make the transition appear smooth. Each synchronous
behavior provides one or more default interpolation methods. These methods create a request
object for performing theinterpolation, and they add the request to the behavior’s request queue.

Synchronous real behaviors have a method | i nChangeTo, which performs a linear, i.e.
constant-speed, interpol ation between the two values. Synchronous point behaviors have meth-
ods | i nMoveTo and | i nMoveBy which move a a constant speed and over a straight path
through 3-space, either to a specified point, or by a specified amount. Synchronous color behav-
iors provide a method r gbLi nChangeTo which interpolates between the two colors such that
the intermediate values move at a constant speed over astraight path through RGB space®. Syn-
chronous transformations provide a method changeTo that interpolates between two (slightly
restricted) transformation matrices by using arather complicated technique.

But what if you want to use a different interpolation method? For instance, you might want
to change a color property value from its current valueto a new one, but move on a straight path
through HSV-space® instead of RGB-space. Oblig-3D enables you to do just that by allowing
you to create arbitrary request objects, which encapsulate an interpolation method. All the
interpolation methods that are provided by default are implemented in terms of request objects.

A color request object is created by calling the function Col or Pr op_NewRequest . This
function takes the desired start time of the interpolation (relative to the time at which the
controlling animation handle is signaed), its desired duration, and a method m which will
be used to interpolate between the initial color value and the desired new one. mtakes three
arguments: the request itself, a color that shall be the value to start interpolating from, and the
time that has elapsed since the controlling animation handle was signaled. It returns the value
the color shall have at thistime.

Color request objects have three methodsin addition to the normal r awand ext end fields,
which contain the values passed to Col or Pr op_NewRequest . Themethod st art returnsthe
time at which the interpolation shall start, the method dur returnsits desired duration, and the
method val ue performstheactua interpolation. Virtually every request object will be extended
to contain some additional fields, such as the target value of the interpolation.

A request object r can be added to the request queue of a synchronousbehavior b by calling

SRGB stands for “Red-Green-Blue’. An RGB value consists of ared, agreen, and a blue component, indicating
the intensity of these primary colors.

SHSV standsfor “Hue-Saturation-Value”. An HSV value consists of a hue, a saturation, and a value component.
The hue component identifies a rainbow color, and the saturation and value components indicate how much white
and black is mixed into this rainbow color.

30 2. TUTORIAL

b. addRequest (r) . Thetimeintervalsof requestsin the request queue must not overlap.

Let us extend the type of synchronous color behaviors by adding a new method
hsvLi nChangeTo to it. This method shall have the same signature as r gbLi nChangeTo,
but shall interpolate on a straight line through HSV space instead of RGB space.

In order to do this, we have to replace the functions Col or Prop_NewSync and
Col or Prop_NewSyncBeh by new versions, which create the extended version of the color
behavior. So, we haveto “re-open” the Col or Pr op module and add to it:

nodul e MyCol orProp for Col orProp;

let valueMeth =
nmeth (self, startcol, reltinmne)
let frac = (if (self.dur() isnot 0.0) then
(reltime - self.start()) / self.dur();
el se
1.0;
end) ;
let h = color_h(startcol), s
color_hsv (h + ((self.h - h)
s + ((self.s - s)
v + ((self.v - v)

color_s(startcol), v = color_v(startcol);
frac),
frac),
frac));

* Ok k)

end;

| et hsvLi nChangeTo =
neth (self, col, start, dur)
let ¢ = Col orProp_NewConst (col).get(); (* nmake the 1st arg overl oaded *)
sel f. addRequest (Col or Prop_NewRequest (start, dur, val ueMeth).extend(
{h => color_h(c),
s => color_s(c),
v => color_v(c)}));
end;

| et NewSync =
proc (ah, col)
I et pv = Col orProp_NewSync(ah, col);
pv. set Beh(pv. get Beh().extend ({hsvLi nChangeTo => hsvLi nChangeTo}));
pv;
end;

I et NewSyncBeh =
proc (ah, col)
Col or Prop_NewSyncBeh(ah, col).extend({hsvLi nChangeTo => hsvLi nChangeTo});
end;

end nodul g;
(Program 15)

216 Requests 31

val ueMet h is the interpolation method. It takes three arguments: sel f, startcol , the
initial value of the color, and r el t i ne, the time that has elapsed since the animation handle
was signaled. The request object sel f contains the usual methods st art, dur, and val ue;
it aso contains three extra fields h, s, and v, which hold the hue, saturation, and value of the
target color of the interpolation. val ueMet h first computes what fraction of the interpolation
has aready elapsed. If theinterpolation hasazero duration, then thisfractionisassumed to be 1.
Next, val ueMet h extractstheh, s, and v componentsof theinitia color. Finaly, itinterpolates
between the h, s, and v components of theinitial and the final color, and returns the resulting
intermediate color.

The method hsvLi nChangeTo takes a behavior sel f, a target color col , a start time
start, and aduration dur . We would liketo allow col to be overloaded, that is, to be either
aCol or or aText denoting acolor. But as the operationsin the col or module cannot deal
with such overloading, we have first to convert col into a value that is guaranteed to be a
color. We do so by using the overloaded function Col or Pr op_NewConst to create a constant
Col or PropVal , and then extract its current value. Then, we call Col or Pr op_NewRequest
to create a new request object with start time st ar t , duration dur , and interpolation method
val ueMet h. We extend this object by threefieldsh, s, and v, which contain the hue, saturation,
and value components of col , and finally we return the extended object.

The last two procedures NewSync and NewSyncBeh replace the default procedures for
creating synchronous color property values and behaviors. NewSync first invokes the original
version of NewSync to create a new property value pv. It then extracts the behavior of pv,
extends this behavior by a new method hsvLi nChangeTo, and replaces the original behavior
with the extended one. Finally, it returns pv.

NewSyncBeh simply invokes the original version of NewSyncBeh to create a new syn-
chronous behavior, extends this behavior by a new method hsvLi nChangeTo, and returns the
extended behavior.

Ending the module causes NewSync and NewSyncBeh to be accessible as
Col or Prop_NewSync and Col or Pr op_NewSyncBeh, thereby truly hiding the default pro-
cedures.

We can test the extended version of color property values with the following program:

let root = Root GO NewsStd();

let ball = SphereGO New ([0,0,0], 0.5);
root.add (ball);

l et ah = AninHandl e_New();

let col = Col orProp_NewSync (ah, "yellow');
Surface@0 _Set Col or (ball, col);

col . get Beh() . hsvLi nChangeTo ("blue", 0, 2);
ah.animate ();

(Program 15— continued)

32 2. TUTORIAL

This program creates a root object, which contains a sphere. Attached to the sphere is a
synchronouscolor property value, whichisinitially yellow. Thiscolor property valuediffersfrom
the normal ones in that its behavior understands one extra method, namely hsvLi nChangeTo.
We send such amessageto the behavior, asking it to turn blue, over the course of two seconds. If
wehad usedther gbLi nChangeTo request, the col or would have changed from yellow over grey
to blue. The hsvLi nChangeTo message, however, causes it to move “through the rainbow”,
that is, from yellow over green to blue.

2.17 Depth Cueing

Depth cueing (also known as “fog”) simulates the effects of atmosphere and the dimming of
objects as they become more distant. Objects “fade” towardsa color, called the depth cue color,
the further they are away from the viewer.

Depth cueing can be switched on or off. If itison, itseffect isdetermined by five parameters:
afront plane P, aback plane F;, afront scalefactor S, aback scalefactor S, and adepth cue
color Cy.

The part of the scene that is displayed by a given root object is surrounded by a “bounding
box”". The front face of the bounding box is orthogonal to the viewing direction of the camera.
The box is treated as a unit cube; the z-coordinate of itsfront face is 1, and the z-coordinate of
itsback faceis0. P; and P, are two real numbers that describe the z-coordinates of two planes
within this unit cube, so they can range between 0 and 1.

Given an object (or a part of an object) whose z-coordinate (normalized to the bounding box)
is z and whose reflected color (i.e. the color determined by lighting and shading computations)
isC,, the color after depth cueing of thisobject isaC', + (1 — «)Cy, Where:

Sy if z < P, (i.e the part is behind the back plane)
o= Sb—|—(Sf—Sb)]§f__P]2b if P, <z< Pf
Sy if Py <z

Figure 17 plotsthe value of « asafunction of =.

Depth cueing is associated with aroot object. It affects al the objects shown in the window
that correspondsto thisroot. C'; iscontrolled by the color property named Root GO_Dept hcue-
Col or; Py and P, are controlled by the real properties Root GO_Dept hcueFr ont Pl ane
and Root GO_Dept hcueBackPl ane; Sy and S are controlled by the real properties
Root GO _Dept hcueFr ont Scal e and Root GO _Dept hcueBackScal e; and whether depth
cueingisin effect or notiscontrolled by the boolean property named Root GO_Dept hcueSwi t ch.

The following program shows how depth cueing can be used. It aso makes clear that,
because depth cueing is controlled by properties, all the standard mechanisms for animation

7In the current implementation, this bounding box is more conservative than necessary.

218 Light Objects 33

Back Front

0 Py Py 1

Figure 17: Relationship between fading factor « and depth = in depth cueing

are available to control it. The program constructs a scene that shows a cone. Depth cueing is
switched on, and the back scaling factor is made to oscillate between O (far objects fade amost
fully into black) and 1 (objects do not fade away).

let root = Root GO NewsStd();
root.add (ConeGO New[0,0,0],[0,0,50],1));
let bs = Real Prop_NewAsync(neth(self,tine) 0.5 + math_sin(time) * 0.5 end);
Root GO_Set Dept hcueBackScal e(root, bs);
Root GO_Set Dept hcueSwi t ch(root, true);
(Program 16)

2.18 Light Objects

In Section 2.2 and again in Section 2.15, we mentioned that the function Root GO_NewSt d()
creates two light sources along with aroot object, and adds these light sources to the new root.

Light sources are treated as ordinary graphical objects: they can be added to groups, prop-
erties can be attached to them, and their effect is controlled by properties.

In particular, light sources are affected by the GO_Tr ansf or mproperty. Thisfeature allows
us make a light source part of a more complex graphical object, say a car. Moving the car by
changing a transformation property attached to it moves the light just like the other parts of the
car. Thefollowing program illustratesthe point:

34 2. TUTORIAL

Figure 18: Snapshotsof the animation created by Program 17

let root = Root GO NewsStd();
root.renove(root.findName("default-vector-light"));
root . add(Cyl i nder GO_New([0,0,-0.5],[0,0,0.5],1));
let g = GoupGO _New();
root . add(g);
g. add(ConeGO New([0.5,0,0],[0,0,0],0.2));
g. add(Spot Li ght GO_New("whi te",[0,0,0],[0.5,0,0],1,1,0.5,0.5));
let rot = TransfornProp_NewAsync (meth(self, time)
Matri x4_RotateZ(Matrix4_ld, time)
end) ;

@G0 Set Transforn{g, rot);

(Program 17)
First, we call Root GO NewSt d() to create a root object root . This call aso creates an
ambient and a vector light source. We remove the vector light source (which is named
"defaul t-vector-1ight")fromroot,andadd acylindertor oot .

Next, we create a group object g, add g to r oot , and add a cone and a spot light source to
g. Thetip and the central axis of the cone object and the light cone emitted by the spot light
coincide.

Finally, wecreate an asynchronoustransformation property val ue, which continuously rotates
around the = axis, and attach it to g. Thiscauses g and all objects contained in it (i.e. the cone
and the spot light) to rotate around the = axis.

The animation created by this program showsthat the cone of light emitted by the spot light
sweeps across the walls of the cylinder. Figure 18 shows a series of snapshots of the animation
in progress.

219 Camera Objects

In Section 2.2 and again in Section 2.15, we mentioned that the function Root GO_NewSt d()
creates not only aroot object, but also a camera object. Thiscameraisused to view thegraphical
objects that occur below the root node in the scene graph.

Cameras (just like light sources) are treated as graphical objects. They can be added to
groups, properties can be attached to them, and their appearanceis controlled by properties. The

2.19 Camera Objects 35

camerathat isused to view ascene can be, but does not have to be, adescendant of aroot object.
However, if it isadescendant of aroot node, there must be a unique path from the root node to
the camera. The camera “inherits’ the current values of properties that are attached along the
path from the root to the camera, just like any other graphical object does (see Section 2.3).

In particular, cameras are affected by the GO_Tr ansf or mproperty. This feature allows us
to make a camera part of a more complex graphical object, say an airplane. Moving the plane
by changing a transformation property attached to it moves the camera as well. Thisallows us
to view a scene from inside the planes's cockpit.

The following program illustrates the concept:

let root = Root GO NewStd();

root.add (SphereG New ([0,1,0],0.3));

root.add (SphereG New ([1,0,0],0.3));

root.add (SphereG) New ([0,-1,0],0.3));

root.add (SphereG New ([-1,0,0],0.3));

var caml = root.findName ("default-canera");

var can? = PerspCanmeraG New ([0,0,0],[0.5,0,0],[0,1,0],1.0);

let g = G oupGO_New();

root.add (g);

g. add (ConeGO New ([0.5,0,0],[0,0,0],0.2));
g. add (can?);

let rot = TransfornProp_NewAsync (neth (self, tinme)
Matri x4_RotatezZ (Matrix4_ld, time)
end) ;
G0 _Set Transform (g, rot);

let cb = KeyCB_New(neth (self, kr)
if (kr.change is "c") and (kr.wentDown is true) then
let tnp = caml; canl := canR; can? := tnp;
root . changeCaner a(cant) ;
end
end) ;
root . pushKeyCB(ch);
(Program 18)
Thefirst five lines create aroot object and four spheresthat are arranged in a diamond formation.
The next line finds the default camera that was created by Root GO _NewSt d() , and binds it
to the variable cantl. The following line creates a new perspective camera, and bindsit to the
variablecanp.
The next next four lines create agroup g, add g to the root object, and add a cone and can?
to g. Thetip of the cone coincides with the location of can®, and the camera views aong the
central axis of the cone.

Next, we create an asynchronoustransformation property value, which continuously rotates

36 2. TUTORIAL

Clo el

Figure 19: Snapshotsof the animation created by Program 18

around the = axis, and attach it to g. This causes g and all objects contained in it (i.e. the cone
and the camera) to rotate around the z axis.

Finally, we create a key callback object, and pushit onto the root object’s key callback stack.
Thei nvoke method of the callback object checks whether the ‘¢’ key was pressed, and if so,
toggles between the stationary camera and the rotating camera

Figure 19 showsaseries of snapshotsof theanimationin progress. Theupper row of pictures
showsthe scene as observed by the stationary camera; thelower row showsthe scene asobserved
by the rotating camera.

Program 18 demonstrated one way to move a camera: by modifying a transformation
property that affects the camera. But all the relevant parameters of a camera, including its
location and its target point (the point the camerais looking at) are controlled by properties, so
instead of changing a transformation matrix, we can change the values of these properties.

The following program demonstrates this technique. It creates a scene that contains a
stationary torus, and a cone that moves around in acircle. On its way, the cone passes through
the torus; it "jumps through the hoop", so to speak. A perspective camera is mounted at the tip
of the cone, and is set to point in the direction of movement. The program allows the user to
switch between the stationary default camera and the camera mounted at the tip of the cone.

2.19 Camera Objects 37

Figure 20: Snapshotsof the animation created by Program 19

let pl = PointProp_NewAsync (meth (self, tine)
[math_sin(tinme), math_cos(time), O]
end) ;
l et p2 = PointProp_NewAsync (meth (self, tine)

[math_sin(time+0.1), math_cos(tine+0.1), O]
end) ;
et p3 = PointProp_Newbep (neth (self, time)
let vl = pl.value(tinme), v2 = p2.value(tine);
Point 3_Plus (v2, Point3_Mnus (v2, vl))
end) ;

let r = Root GO _NewStd ();
r.add (TorusGO New([1,0,0],[0,1,0],0.5,0.1));
r.add (ConeGO_New (pl, p2, 0.1));

var caml
var can®

r.findName ("default-canera");
Per spCaner aGO_New p2, p3,[0,0, 1], 1);

r. pushKeyCB(KeyCB_New(nmeth (self, kr)
if (kr.change is "c") and (kr.wentDown is true) then
let tnp = canl; caml := can®; canR := tnp;
r.changeCaner a(caml);
end
end));
(Program 19)

Thefirst few lines of the program create three point property valuesp1, p2, and p3. p1 and

p2 rotate around the origin of the coordinate system, at a radius of 1 unit. The angle between
the two pointsis 0.1 degrees radian. Thethird point is a point reflection of p1 on p2.

38 2. TUTORIAL

The next three lines create aroot object, and add a cone and atorusto it. The parameters of
the torus are constant, while the base of the coneis controlled by p1, and itstip is controlled by
p2.

Next, a perspective camerais created. Itslocationis controlled by p2, and itstarget pointis
controlled by p3.

Thelast few lines are identical to those of Program 18; they attach a callback object to the
root that allows the user to toggle between the stationary and the moving camera

Figure 20 showsaseries of snapshotsof the animationin progress. Theupper row of pictures
showsthe scene, when viewed from the stationary camera; the lower row showsthe scene, when
viewed from the rotating camera.

2.20 Creating Root Objects

Inal examples so far, we have used the function Root GO_NewSt d() to create new root objects.
Root GO _Newst d() calsafunctioninthe underlying Modula-3 layer, which creates a graphics
base, a perspective camera, and aroot object, connects the root object to the graphics base, and
attaches the camera to the root such that all objectsin the scene graph below the root are viewed
through the camera. It also creates an ambient and a vector light source, and adds them to the
root. Finally, it creates mouse and position callback objects that allow the user to interactively
manipulate the scene, that is, move, scale and rotate it.

AlthoughRoot GO _NewsSt d() isdefinedinthe Modula-3layer, thereisno “magic” involved
init. At thispoint, we have encountered all the machinery needed to reimplement the function
at the Obliglevel. We start out by reopening the Root GOmodul e, and by redefining the function
NewSt d:

nodul e Root GOExt ensi on for Root GO

let NewsStd =
proc ()
| et base = X PEX Base_New ("Ani n8D Viewer", 10, 10, 500, 500);
|l et cam = PerspCaneraGO New ([O, O, 100], [0, O, O], [O, 1, O], O0.05);
cam set Name ("default-camera");
let root = Root GO New (cam base);
let lightl = AnbientLi ght GO New ("white");
lightl. set Nane ("default-anbient-Iight");
root.add (lightl);
let light2 = VectorLight GO New ("white", [-1, -1, -1]);
l'ight2.setNane ("default-vector-light");
root.add (light2);
@G0 _Set Transform (root, TransfornProp_NewConst (Matrix4_Id));
(Program 20)

220 Creating Root Objects 39

l et posMeth =
neth (self, pr)
let isin =
proc (e, 1)
var res = fal se;

foreach x in|l dores :=res or (x is e) end;
res
end;
let dx real _float (pr.pos[0] - self.pos[0]);

let dy real _float (pr.pos[1] - self.pos[1]);
let beh = GO Get Transform (root). getBeh();
if isin ("Shift", pr.nodifiers) then
if self.but is "Left" then
beh.translate (dx * 0.01, (-dy) * 0.01, 0.0);
elsif self.but is "Mddle" then
beh.scale (1.0 + dx * 0.01, 1.0 + dx * 0.01, 1.0 + dx * 0.01)
elsif self.but is "Right" then
beh.translate (0.0, 0.0, dx * 0.01)
end;
el se
if self.but is "Left" then
beh.rotateX (dx * 0.01);
elsif self.but is "Mddle" then
beh.rotateY (dx * 0.01);
elsif self.but is "Right" then
beh.rotatez (dx * 0.01);
end;
end;
sel f.pos := pr.pos;
end;
l et posCB = PositionCB_New (posMeth).extend ({pos => ok, but => ok});
l et nmouseMeth =
neth (self, nr)
if nr.clickType is "FirstDown" then
posCB. pos : = nr. pos;
posCB. but : = nr.change;
root . pushPositi onCB (posCB);
elsif nr.clickType is "LastUp" then
root . popPositi onCB ();
end;
end;
root . pushMbuseCB (MouseCB_New (nouseMet h));
r oot
end;

end nodul e;
(Program 20— continued)

40 2. TUTORIAL

The first few lines create an X' PEX Base object and a perspective camera named
"def aul t-canmera”. Next, a Root GO object r oot is created. The Root GO creation func-
tion takes two arguments: the X' PEX' Base (meaning al graphica objects below r oot are
displayed in an X window, using the PEX 3D protocol), and the camera (meaning all graphical
objectsbelow r oot are viewed through this camera).

Next, an ambient light source named " def aul t - anbi ent -1 i ght " and a vector light
source named " def aul t -vector-1ight" are created, and added to the root object. This
causes all objects below root to be illuminated by these two light sources.

Next, aconstant transformation property valueis created and attached asthe GO_Tr ansf or m
property tor oot .

Next, aposition callback object and amouse callback object are created. The mouse callback
object is immediately pushed onto r oot 's mouse callback stack, whereas the position callback
object is assigned to the variable pos CB. Finally, the new object is returned.

Thei nvoke method (see Section 2.13) of the mouse callback object is called when amouse
button is pressed or released. It checks whether the button is thefirst button to go down, or the
last button to go up. In thefirst case, it saves the button and the current mouse position in two
fields of posCB, and pushes posCB onto r oot ’s position callback stack. In the second casg, it
pops pos CB from ther oot ’s position callback stack. So, thei nvoke method of posCB will be
called only when amouse button is pressed.

In order for acallback object to be active, it must be ontop of acallback stack. So, posCBis
active only when it ison top of r oot 's position callback stack, that is, only if amouse buttonis
pressed. Inthiscase, itsi nvoke method is called whenever the position of the mouse changes.
pos CB checks whether the shift key is held down or not, and whether the left, middle, or right
mouse buttonis pressed, and changesthevalueof r oot 'sGO_Tr ansf or mproperty accordingly.
Holding theleft button while moving the mouse causes arotation around the X axis, holdingthe
middle button causes arotation around the Y axis, and holding the right button causes arotation
around the 7 axis. The angle of the rotation depends on how much the mouse was moved in
the = dimension. If the shift key is pressed, holding the left button while moving the mouse
causes atrandationin the XY plane (depending on the zy movement of the mouse), holding
the middle button causes a uniform scaling, and holding the right button causes a translation in
the 7 direction (both depending on the = movement of the mouse).

This version of Root GO_NewSt d is completely equivalent to the default one. In other
words, including this code fragment before any of the programs we have encountered before
would cause no observabl e difference in their behavior.

So, thisfunction is not interesting per se, but because it can be used as atemplate to create
alternative Root GOcreation functionswith slightly different behavior. Asan exercise, thereader
might try to construct a Root GO creation function whose callback functions transform &l the
objectsin the scene, except the light sources.

41

3 Reference Manual

The remainder of thisreport contains areference manual for Oblig-3D. Asin thefirst part, we
assume the reader is familiar with Obliq [3]. Furthermore, we assume that the reader has read
thetutoria part of the report, and understands the basic concepts of Oblig-3D.

The reference manual containsa section for each module. We show theinterface description
provided by the on-line help system (see Section 2.4), and we explain the types and functions
exported by the module in more detail. Explanations are terse, but contain references to the
tutorial part where appropriate.

Notation for Obliq Types

To paraphrase Carddlli, “Although Oblig is an untyped language, every Oblig program, like any
other program, respects the type discipline in the programmer’s mind.” [3] Oblig enables the
programmer to make this discipline explicit by allowing for type comments, which are parsed
according to afixed grammar, but have no effect after parsing. This type notation is described
in the Obligreport [3]. The following section excerpts the pieces relevant to Oblig-3D:

Top > Thetypeof al values.
(04

v

Contains asingle value, ok. This value should be considered as having every
type, so it can be used to initialize variables; however, its normal typeis Ok.

Bool >> Thetype of boolean values. Containsthetwo valuest r ue andf al se.

I nt >> Thetype of integer values.

Real > Thetype of real values.

Text > Thetype of text values.

Col or >> Thetype of color values.

Mut ex > Thetype of mutex values.

Exception > Thetype of exceptions.

A+ A >> Theunionof thetypesA; and A,. Thisisan extension of the notation presented
in[3].

A &A >> The concatenation of the object types Ay and A,. Thisis an extension of the
notation presented in [3].

[Al > Thetype of arrays of As.

[n*A] > Thetype of arrays of As of length n (wheren isan integer).

42 3. REFERENCE MANUAL

(A, ..., A,) - >Al exc;. . .exc, > Thetypeof proceduresof argument typesA; (n > 0), re-
sulttypeA, and exceptionsexc; (where! exc;. . . excy
may be omitted).

(A, ..., A,) =>Al exc;. . .exc, > Thetypeof methodsof argument typesA; (n > 0), result

typeA, and exceptionsexc; (where! exc;. . . exc, may
beomitted). Thetypeof theself argumentisnot included

inA;.

X0 AL Xn: An} >> The type of objects with components named x; of field
type or method type A; .

Sel f (X) B{X} > Where B{X} is a method type with possible covariant

occurrencesof X. Thisconstructionisused to giveaname
(X) to the type of the method's self (e.g. for methods
that return self) This is a modification of the notation
presented in [3].

Al | (X<: A) B{X} > Where B{X} is any type with possible occurrences of X.
Thisis the type of valuesthat, for all subtypes A, of A,
havetype B{A,}. If <: Aisomitted, it standsfor <: Top.

A<: Bisread as“Aisasubtypeof B". Itimpliesthat every value of type A isalso avalue of type
B. In particular, A<: Top holdsfor any type A, and B<: {} holdsfor any object type B.
The notation for giving the type of a procedure within an interfaceis as follows:
p(Xy A, ..., Xn: Ay) @ Al excy. .. excy
indicates that procedure p has formal parameters x; of type A; (n > 0), result type A, and
exceptionsexc; (where! exc;. . . exc, may be omitted).

We extended the type notation of [3] with two new type operators: the type union operator
+ and the object type concatenation operator &.

The type union operator is used to describe ad-hoc polymorphism. The type A+ B denotes
the union of the types A and B. A value of thistypebelongsto either A or B. We can usethetype
union operator to describe the type of the overloaded functionr eal _f 1 oat :

real _float(n:Int +Real): Real

Note that Oblig provides no construct for discriminating between types. So, it is not possible
for the user to define overloaded procedures that work for arbitrary type unions; al overloaded
procedures eventually have to invoke some built-in facilitiesto discriminate between the possible
types.

The object type concatenation operator is used to describe the type aspects of operations
that merge several objects. The type A&B denotes the concatenation of the object types A

43

and B. If A={x;: A, ..., Xai A}, B={y;: By, ...,y By}, and x; # y; fordli, j, then
A&B = {X1: A, .. Xai Ay Y1 Biy oL YR Bo)s

We can use the object type concatenation operator to give a type to the cl one con-
struct: If each of the expressions x; is of type A;<: {} (for 1 <i < n), then the expression
clone(Xy, ..., X,) isof typeA; &. .. &A,.

Coercion Functions for Overloaded Procedures and M ethods

Many of the functions and methods of Oblig-3D are overloaded, that is, the same formal
parameter can be bound to arguments of different types. We introduced the type union notation
to be able to describe this overloading.

It turns out that all our uses of overloading are uniform enough to allow us to define avery
simple way for resolving overloading. For each typeunion A, +. . . +A,, we declare one of the
A; (by convention A;) to be the desired type, and we give coercion functionsfrom A,,- - -, A, to
A; . Below are the union types used in Oblig-3D, and the corresponding coercion functions:

Num = Real + Int

I nt iscoerced to Real viareal _fl oat
Col = Color + Text

Text iscoerced to Col or viacol or _naned
Bool eanVal = Bool eanPropVal + Bool

Bool iscoerced to Bool eanPr opVal viaBool eanPr op_NewConst
Real Val = Real PropVal + Num

Numis coerced to Real Pr opVal viaReal Prop_NewConst
Col orVal = Col or Propval + Col

Col iscoerced to Col or PropVal viaCol or Prop_NewConst
Poi nt Val = Poi nt PropVal + Point3

Poi nt 3 is coerced to Poi nt Pr opVal viaPoi nt Prop_NewConst
Transformval = TransfornPropVal + Matri x4

Mat ri x4 is coerced to Tr ansf or nPr opVal viaTr ansf or nPr op_NewConst
Li neTypeVal = LineTypePropVal + LineType

Li neType iscoerced to Li neTypePr opVal viaLi neTypePr op_NewConst
Mar ker TypeVal = Marker TypePropVal + Marker Type

Mar ker Type iscoerced to Mar ker TypePr opVal viaMar ker TypePr op_NewConst
Rast er ModeVal = Raster ModePropVal + Raster Mode

Rast er Mbde iscoerced to Rast er ModePr opVal viaRast er ModePr op_NewConst
Shadi ngVal = Shadi ngPropVal + Shadi ng

Shadi ng is coerced to Shadi ngPr opVal viaShadi ngPr op_NewConst

44

3. REFERENCE MANUAL

3.1 ThePoint3 Module

- hel p Point3;
Point3_Plus(a b: Point3): Point3
Point3_Mnus(a b: Point3): Point3
Poi nt 3_Scal eToLen(a: Point3, s: Num: Point3
Poi nt 3_Ti mesScal ar(a: Point3, s: Nun): Point3
Poi nt 3_Lengt h(a: Point3): Real
Poi nt 3_Di stance(a b: Point3): Real
Poi nt 3_M dPoint(a b: Point3): Point3

WHERE

Point3 = [3*Nun
Num = Real + Int

A Poi nt 3isanarray of three numbers, whereanumber isan integer or areal. Onecan construct
anew point by writing an array constant: [z,y,z] denotesapoint at position (z, y, z) in cartesian
3-gpace. Conversely, the components of a point can be accessed through Obliq's standard array
indexing mechanism: given a point a of value [z,y,z], a[0] evaluatesto z, a[1] evaluatesto
y, and a[2] evaluatesto z. ThetypePoi nt 3 is a so used to denote vectors.

The following functions are provided by the Poi nt 3 module:

Poi nt 3_Lengt h(a) returnsthelength of the vector a.
Poi nt 3_Pl us(a, b) addsthetwo vectorsa andb.
Poi nt 3_M nus(a, b) subtractsvector b from vector a.

Poi nt 3_Di st ance(a, b) returns the distance between the pointsa and b, that is, it is
equivaent to Poi nt 3_Lengt h(Poi nt 3_M nus(a, b)) .

Poi nt 3_Ti mesScal ar (a, s) multipliesthe vector a with the scalar s.

Poi nt 3_Scal eToLen(a, s) returns a vector parallel to a of length s, that is, it is
equivalentto Poi nt 3_Ti mesScal ar(a, real _fl oat (s)/Poi nt3_Length(a)).

Poi nt 3_M dPoi nt (a, b) returns the midpoint between the two pointsa and b, that is,
itisequivalentto Poi nt 3_Ti mesScal ar (Poi nt 3_Pl us(a, b), 0.5).

3.2 TheMatrix4 Module 45

3.2 TheMatrix4 Module

- help Matrix4;
Matrix4_1d: Matrix4
Matrix4_Miltiply(m nR: Matrix4): Mtrix4
Matrix4_Translate(m Matrix4, x y z: Nun): Matrix4
Matrix4_Scale(m Matrix4, x y z: Num: Matrix4
Matri x4_RotateX(m Matrix4, a: Num): Matrix4
Matri x4_RotateY(m Matrix4, a: Num: Matrix4
Matri x4_RotatezZ(m Matrix4, a: Num: Matrix4
WHERE
Matri x4 is opaque
Num = Real + Int

A Mat ri x4 can be viewed as a transformation function that takes a point in 3-space and maps
it onto another point in 3-space. Typical transformations are translation, scaling, and rotation.
Internally, values of type Mat r i x4 are represented asa 4 x 4 array of reals.

Mat ri x4_1 d isthe identity transformation, the transformation that maps every point onto
itself.

Mat ri x4_Mul tiply(m, ms) returns atransformation m that is the composition of
and m». Applying m to apoint p isthe same asfirst applying m to p and then applying m; to
the resulting point.

Matri x4_Transl at e(m, q, b, ¢) creates a transformation m’ that maps a point [z,y,z]
onto apoint [z + a,y + b,z 4 ¢], composes m’ with m, and returns the resulting transformation.

Mat ri x4_Scal e(m, a, b, ¢) creates atransformation m’ that maps a point [z,y,z] onto a
point [ax,by,cz], composes m’ with 2, and returns the resulting transformation. The scaling
operation is called uniformif a = b = ¢.

Mat ri x4_Rot at eX(m, a) creates atransformation m' that takes a point p and returns p
rotated by « degrees (radian) around the z-axis. It then composes m' with m, and returns the
resulting transformation. Mat ri x4_Rot at eY(m, a) and Mat ri x4_Rot at eZ(m, a) perform
similar rotations around the y- and z-axis, respectively.

46 3. REFERENCE MANUAL

3.3 The Anim3D Module

- hel p Ani n8D;
Ani n8D_| ock: Mt ex

The Ani n8D module provides resources that are global to the entire animation session. There
is only one such resource: the mutex Ani n8D_| ock, which is used to ensure that a batch of
operations on the scene graph is“atomic” (see Section 2.12).

Our animation library is based on a damage-repair model, where operations on the scene
graph “damage” the scene. These damages are repaired by a dedicated animation server thread.
Normally, damage-repair is transparent to the client program. However, the animation server
thread must acquire Ani nBD_| ock before performing any repairs. So, by locking this mutex,
the client program can prevent the animation server from updating the display. Thisis useful
for programs that modify the scene graph such that at some intermediate points the scene graph
does not reflect the intended scene.

34 TheProxiedObj Module

- hel p Proxi edQj ;

TYPE ProxiedObj <: { extend: Self(X) Al(Y<:{}) (YY) == X &Y}
Oojects of this type also contain a field "raw',
which is for internal use only.

A Proxi edObj is an Oblig object that has a Modula-3 counterpart (see Section 2.14). All
animation-specific object types used in Oblig-3D are subtypes of Pr oxi edQoj .

Each Pr oxi edObj contains (at least) two fields, r aw and ext end. Thefield r aw contains
an opaque value that in turn contains a reference to the corresponding Modula-3 object. The
Modula-3 object contains a reference back to the Pr oxi edQbj . The client program should not
attempt to modify r aw.

The method ext end is used to add additional fields to the object. Given a Pr oxi edQbj
p and an ordinary object o, the expression p. ext end(0) returns a new object p’ , which is
equivalent to the object returned by cl one(p, o). In addition, the corresponding Modula-3
object now refersto p’ instead of p.

The client program should never use cl one on aPr oxi edObj ; calling ext end isthe only
legal way to add fields to such an object. Furthermore, after extending a Pr oxi edObj p, the
origina object p must not be used any longer.

3.5 The GraphicsBase Module 47

3.5 TheGraphicsBase Module

- hel p G aphi csBase;
TYPE G aphi csBase <: Proxi edObj

Associated with each root object is awindow on the screen. Thiswindow is represented by a
G aphi csBase object. G- aphi csBase isasubtype of Pr oxi edQbj .

A G aphi csBase aso serves as an abstraction of the underlying window system and
graphics system. Currently, Oblig-3D supportsonly the X window system [21] and the MPEX
graphicslibrary (MPEX isDigita’s extension of PEX [8], the 3D extension of X).

G aphi csBase isan abstract class; the module does not provide any creation functions.

3.6 TheX'Pex'Base Module

- hel p X PEX Base;
X' PEX Base_Fail ure: Exception
X PEX Base_New(title: Text, x y wh: Int): X PEX Base ! X PEX Base_Failure
X PEX Base_NewStd(): X PEX Base ! X PEX Base_Failure
WHERE
X PEX Base <: G aphicsBase & { changeTitle: (Text) => C,
awai tDelete: () => (,
destroy: () => Ck }

An X' PEX' Base object representsa 3D rendering window that is displayed using the X window
system and the MPEX graphicslibrary.

Therearetwofunctionsfor creating X' PEX Base objects: X' PEX' Base_New(t, x, y, w, h)
returns a new X' PEX' Base, and as a side effect it creates a window of width w and height h
(in pixels), x pixels right of and y pixels below the upper left corner of the screen. It also
puts the text t into the title bar of the window. X PEX Base_NewSt d() is equivalent to
X' PEX' Base_New(" Ani nBD Vi ewer", 10, 10, 500, 500) .

X' PEX‘ Base objects contain three extra methods: b. changeTi t1 e(t) changesthetitle
of thewindow associated withthebaseb tot ; b. awai t Del et e() suspendsuntil the window
associated with b isdeleted, and b. dest r oy() deletesthe window associated with b.

48 3. REFERENCE MANUAL

3.7 TheAnimHandleModule

- hel p Ani nHandl e;
Ani mHandl e_New(): Ani nHandl e
WHERE
Ani mHandl e <: ProxiedQj & { animate: () => Ck }

AnAni nHandl e (or animation handle) isan object that isused to synchronizeaset of animation
requests. As described in Section 2.10, clients can create property values with synchronous
behaviors. Each synchronousbehavior iscontrolled by an animation handle, and many behaviors
can be controlled by the same handle. Clients can send animation requests to those behaviors.
These requests are not executed immediately, but instead are held in request queues. Requests
issued to a behavior are processed only when the animation handle controlling that behavior is
signaled.

Ani nHandl e_New() createsanew animation handle and returnsit. In additionto thefields
common to al subtypes of Pr oxi edoj , an Ani nHandl e has one extra method, ani mat e.
Given an animation handle ah, the call ah. ani mat e() signasall the behaviors controlled by
ah to process their requests.

3.8 The GO Module

3.8 TheGO Module

49

- help GO
GO _PropUndefi ned: Exception
@GO _St ackError: Exception
@GO _Transform Transf or nPropNane

@0 _Set Transforn(go: GO, xf: Transfornval):

@G0 _CGet Transform(go: @GO : TransfornPropVal
WHERE
&0 <: ProxiedObj &
{ setProp: (PropNane, PropVal) => Ck

Gk
I GO_PropUndefi ned

unset Prop: (PropName) => Gk ! GO _PropUndefi ned,
get Prop: (PropNane) => PropVal ! GO _PropUndefi ned,

set Name: (Text) => X,

get Name: () => Text,

findNane: (Text) => GO

pushMbuseCB: (cbh: MuseCB) => (X,
popMouseCB: () => Ck ! GO _StackError,
removeMouseCB: (cb: MuseCB) => Ck !
i nvokeMbuseCB: (nr: MuseRec) => (K,

@GO _St ackError,

pushPosi ti onCB: (cb: PositionCB) => (X,

popPositionCB: () => Ok ! GO _StackError,

removePosi tionCB: (ch: PositionCB) => Ok ! GO _StackError,
i nvokePosi tionCB: (nr: PositionRec) => (X,

pushKeyCB: (ch: KeyCB) => (X,
popKeyCB: () => & ! QO_StackError,

removeKeyCB: (ch: KeyCB) => k ! QO _StackError,

i nvokeKeyCB: (nr: KeyRec) => K }
TransfornVal = TransfornPropVval + Matrix4

A GO (or graphical object) is an object that describes some part of the scene. Geometric
primitives, such aslines, spheres, tori, etc. are specia kinds (and therefore subtypes) of graphical
objects, and so are light sources and cameras. Thereis also a subtype of GO, namely Gr oupGO,
that allows us to combine severa graphical objects into a single one, thereby allowing us to

impose a hierarchical structure on the scene.
Graphica objects are subtypes of Pr oxi edObj

related methods.

. In addition to the fields and methods
common to all Pr oxi edObj ’s, each graphical object g has anumber of additional methods. We
can group these methods into three categories. property-related, name-related, and callback-

50 3. REFERENCE MANUAL

How Properties Affect the Scene

A property describes some aspect of the appearance of a graphical object, such asits color, its
size, or itslocation. Properties consist of a name and a value. The name defines what aspect of
agraphical object is affected (for example, its color), and the value describes how this aspect
appears at agiventime.

In order for aproperty (n, v) to influence the appearance of a graphical object g, (n, v) has
to be attached to ¢.

Conceptually, every graphical object contains a property mapping, a partial function from
property names to property values. The function is partial, as it may be undefined for some
property names. Attaching a property (n, v) to a graphical object means replacing the object’s
property mapping M by the extended mapping M [n — v].

Alternatively, we can assume that every graphical object contains an association list. Asso-
ciationlistsarelistsof name-value pairs such that each name is unique; they are commonly used
to implement finite functions. In this model, attaching a property to a graphical object means
adding it to the object’s association list.

If we view the graphica objects in a scene as nodes, and the containment relationships
induced by Gr oupGO abjects as arcs, we obtain a directed graph, called a scene graph. Scene
graphsmust be acyclic. If agroup ¢ containsanother graphical object o, we say that g isaparent
of o, or conversely, that o isachild of g. We use the terms ancestor and descendant to describe
the transitive closures of the parent and the child relationship, respectively.

Our system uses a damage-repair model. A dedicated thread (called the animation server
thread) redisplays the scene when it changes. It does so by traversing the scene graph, starting
from the roots (the vertices with in-degree 0). So, whenever a graphical object ¢y is drawn,
thereisapath[g, . ., g»] fromg; toaroot ¢, (Section 2.5 explains how scene graphs can be
“unfolded” into forests of trees).

The animation server has a state vector, which contains the current transformation, surface
color, line width, etc. For each property name, there is a corresponding element in the state
vector. Initialy, the state vector contains default values. When the scene is rerendered, and the
traversal process reaches a particular graphical object, al properties attached to this object are
used to update the state vector. Upon backtracking, the state vector reverts back to its previous
state.

When a GO_Tr ansf or mproperty is encountered, its current value m; is multiplied with
the current transformation entry m of the state vector, that is, the new entry of the state vector
isMat ri x4_Mil tipl y(my, mg) . When any other property is encountered, its current value
simply replaces the current entry of the state vector.

The effect of al this is that properties that are attached to a graphical object affect the
appearance of this object and al those objects contained in it. However, if a descendant of
the graphical object has a property with the same name attached to it, then this property will

3.8 The GO Module 51

Val = Bool + Real + Point3+ Color + Matrix4 4 --- (ordinary values)
PropMap = PropName — PropVal (property mappings)
PropVal = Tinme — Val (property values—functional view)

D : PropNane — Val
D(n) isthe default value of property name n
P : GO— PropMap
P(g) isthe property mapping of graphical object ¢
S : [Gd — PropName — Ti me — Val
S([g1, -+ gn)) (n)(t) isthe value of property n at graphical object ¢; and time¢

S isdefined as follows:
S([)(n)(t) = D(n) fordl n,t

Slgzs -+ gm]) (n) (1)
it P(g1)(n) isundefined
P(g1)(n)(t)
S(lgr, -+, gm)) (n) () = i? P(g1)(n) isdefined and n is not GO Tr ansf or m

Matri x4_Mil tiply (S([g2, .. gn]) (n)(t), P(g1)(n)(t))
if P(g1)(n) isdefined and n isGO_Transf orm

Table 2: From Propertiesto State

“override” the value of the ancestor (or, in the case of transformation properties, will modify it).

Table 2 formalizes how the current state is determined. For the purpose of this explanation,
we view property values not as objects, but simply as functions from time to some value.

We want to define the state function S. S takes a path [¢y, ..., g,»] in the scene graph
(represented as alist of graphical objects, with the root being the last element), a property name
n, and atime ¢, and returns the value of » at time ¢ used for rendering object ¢; during the
rendering traversal along the path [g, ..., g,,.].

We define S in terms of two other functions, D and P. D isafunction from property names
to values; it describes the default values for each property. For instance, the transformation
property is by default the identity matrix. P is afunction from graphica objects to property
mappings. P(g) denotes the property mapping of ¢, that is, the set of properties attached to g.

52 3. REFERENCE MANUAL

Property-Related M ethods

The following methods are used to manipul ate the property mapping of a graphical object g:

e g.set Prop(n,v) atachesaproperty withnamen andvauev tog. If thereisaready a
property named n attached to g, itsvalue will be replaced by v.

e g. unset Prop(n) detachesthe property named n fromg. If no such property isattached
to g, the exception GO_Pr opUndef i ned israised.

e g. get Prop(n) checkswhether a property named n is attached to g. If so, the value of
the property is returned; otherwise, the exception GO_Pr opUndef i ned israised.

Name-Related M ethods

Oblig-3D alowstheclient program to attach aname, avalue of type Text , to agraphical object.
Names serve as symbolic [abels, they are used to retrieve e ements of ascene, without having to
traverse the scene graph explicitly.

Here are the name-related methods common to all graphical objects:

e g.set Nane(t) attachesthetextt asanameto g (see Section 2.15). An existing name
will be replaced.

e g. get Nane(t) returnsthe name of g, and ok if no nameis attached.

e g.findNanme(t) traverses the scene graph below g to seeif g or any of its descendants
arenamed t . It returns the first graphical object named t that it finds; and ok if no such
object can be found.

Callback-Related M ethods

Oblig-3D dlows the client program to specify the interactive behavior of individual graphical
objects. Input actions (such as key presses or mouse movements) trigger events. We distinguish
between three different kinds of events. mouse events (caused by mouse button transitions),
position events (caused by mouse movements), and key events (caused by keystrokes). Events
are handled by callback objects, objects that specify what action should be taken in response to
an event. There are three types of callback objects (mouse, position, and key callback objects),
corresponding to the three kinds of events.

Events occur within the scope of a window w of the screen. The relevant data associated
with each event is wrapped into an event record, and sent to the root object associated with w.
Each graphical object (including root objects) containsthree callback object stacks, onefor each
type of callback object. When a mouse event record nr is sent to a graphical object g, g will
check whether it has any callback objectson itsmouse callback stack. If so, it sends the message

3.8 The GO Module 53

i nvoke(nt) to the topmost object on the stack, otherwise, it ignores the event. Position and
key events are treated similarly.

Here are the methods that interact with the callback stacks:
e g. pushMbuseCB(ch) pushesamouse callback object cb onto the mouse callback stack
of g.
e g. popMuseCB() removes the topmost mouse callback object from the mouse callback
stack of g. If the stack isempty, the exception GO_St ackEr r or israised.

e g.renpveMuseCB(ch) removesthe mouse callback object cb from the mouse callback
stack of g. If cb isnot contained in the stack, the exception GO_St ackEr r or israised.

e g.i nvokeMouseCB(nr) sendsthemessagei nvoke(nr) tothetopmost element of the
mouse callback stack of g.

e pushPositi onCB, popPositi onCB, renovePositionCB,andi nvokePositi onCB
provide similar functionality for the position callback stack.

e pushKeyCB,popKeyCB,r enpveKeyCB, andi nvokeKey CBprovidesimilar functionality
for the key callback stack.

Transformations

All graphical objects are affected by a property named GO_Tr ansf or m which describes how
the graphical object is transformed relative to its parent(s). GO_Tr ansf or m associates with
Transf or nPropVal property values. These property values can compute a transformation
based on the current time.

A transformation is a mapping from pointsto points. Particular transformations are transla-
tions, which move points by afixed amount, scalings, which move pointstowards or avay from
the origin by a fixed factor, and rotations, which rotate points by a fixed angle around one of
the mgjor axes of the coordinate system. Internaly, transformations are represented as val ues of
type Mat ri x4 (see Section 3.2).

GO _Set Transforn(g, t) takesagraphical object g and a transformation property value
t (or amatrix, whichis coerced into a transformation property value, as described on page 43).
Modulo coercion, the expression is equivalent to g. set Prop(G0 _Transformt). In other
words, the following equivalences hold:

GO _Set Transform(g, x) =
g. set Prop(GO_Transf or m x)
if x isaTransf or nPr opVal
g. set Prop(GO_Transf orm Transf or mPr op_NewConst (x))
if xisamatrix4

GO _Get Transforn(g, t) isashortformfor g. get Prop(GO _Transform.

54 3. REFERENCE MANUAL

3.9 TheGroupGO Module

- hel p G oupGg
G oupGO BadEl enent: Exception
G oupGO New(): G oupQ®O
G oupGO _NewW t hSi zeH nt (size: Int): GoupGO
WHERE
Goup@0 < G & { add: (O => ,
renove: (GO => Ok ! G oupGO BadEl enent,
flush: () => ,
content: () => [}

A G oupQGO (or group object) is a graphical object that can contain other graphical objects.
Group objects are the basic mechanism for imposing a hierarchical structure onto the graphical
objectsin ascene.

G oup@isasubtypeof GO. It addsfour extramethods: add, r enove, f | ush,andcont ent .

e g. add(o) addsagraphical object o tothegroupg. Afterwards, we say that o iscontained
ing.

e g.renove(o) removes agraphical object o from thegroup g. If o isnot containedin g,
the exception GO_BadEl enent israised.

e g. flush() removesal graphical objectsfromg. g isempty afterwards.
e g. content () returnsan array of the graphical objectscontaineding.

G oupGO_New() creates anew group object and returnsit. Initially, the group is empty.
Internally, a group object contains an array of pointers to its children. When a group is
created, asmall initial array (5 elements) is alocated; when the array fillsup, it isautomatically
grown.
G oup@D _NewW t hSi zeHi nt (i) aso creates and returns anew group. Asa performance
optimization, it allowsthe client program to request the array of childrento bei elementswide,
potentially avoiding the need for having to grow the array later on.

3.10 The RootGO Module 55

3.10 TheRootGO Module

- hel p Root GG,
Root GO _New(cam CameraG0O, base: G aphicsBase): Root GO
Root GO NewSt d(): Root GO
Root GO_NewSt dW t hBase(base: G aphi csBase): Root GO
Root GO _Background: Col or PropNane
Root GO _Dept hcueSwi t ch: Bool eanPr opName
Root GO _Dept hcueCol or: Col or PropNane
Root GO _Dept hcueFr ont Pl ane: Real PropNane
Root GO _Dept hcueBackPl ane: Real PropName
Root GO _Dept hcueFr ont Scal e: Real PropNane
Root GO _Dept hcueBackScal e: Real PropNane
Root GO_Set Background(go: GO, c¢: ColorVal):
Root GO_Set Dept hcueSwi t ch(go: GO, b: Bool eanVal): &
Root GO_Set Dept hcueCol or (go: GO c: ColorVal): Ck
Root GO_Set Dept hcueFront Pl ane(go: GO r: RealVal): &
Root GO_Set Dept hcueBackPl ane(go: GO r: RealVal): &
Root GO_Set Dept hcueFront Scal e(go: GO r: Real Val): Ck
Root GO_Set Dept hcueBackScal e(go: GO r: RealVal): &

VWHERE
Root QO <: G oup®0 & { changeCanera: (Canera® => Ck }
Bool eanVal = Bool eanPropVal + Bool

Real Val = Real PropVal + Real + Int
Col orVal = Col orPropVal + Color + Text

A Root GO (or root object) isagraphical object that forms aroot in the scene graph.

Associated with each root object r isaG aphi csBase (see Section 3.5), which represents
awindow on the screen, and a connection to the window system and to the graphics system.

Also associated with each root object r is a camera object cam (see Section 3.16). The
window associated with r showsthe part of the scene graph below r , as seen throughcam The
camera can be, but does not have to be, part of the scene graph. If itis part of the scene graph,
then there must be auniquepath fromr tocam Transformation properties aong this path affect
the location and orientation of the camera.

There are three Root GO creation functions:

e Root GO _New(cam base) createsand returns a new root object that is associated with a
graphics base base, and views the scene through a camera cam

e Root GO NewSt d() creates and returns a new root object. The root object is associated
with the graphics base created by X' PEX' Base_NewSt d(). The camera is set to be

56

3. REFERENCE MANUAL

Per spCanmer aGO_New([0, 0, 100],[0,0,0],[0, 1,0], 0. 05). In addition, an am-
bient light source and a vector light source are created and added to the root, and mouse
and position callbacks for rotating, translating, and scaling the scene are attached to the
root. Program 20 shows how Root GO_NewsSt d could be implemented.

Root GO_NewSt dW t hBase(base) is similar to Root GO_NewSt d(), but allows the
client program to supply the graphics base.

Root GDisasubtypeof Gr oupGO, and thussupportsall the group-specific methods. In particular,
it allows the client program to add other graphical objects to the root object. In addition, it
provides one extra method: r oot . changeCaner a(can) changes the camera through which
the sceneisviewed to becam

Root objects, like all graphical objects, are affected by the GO_Tr ansf or mproperty. In
addition, there are afew more properties that affect root objects:

The color property named Root GO_Backgr ound controlsthe color of the background of
the window associated with the root object. By default, this color isblack.

The boolean property named Root GO _Dept hcueSwi t ch controls whether depth cueing
(see Section 2.17) is used or not. By default, depth cueing is off.

The color property named Root GO _Dept hcueCol or controls the depth cue color. By
default, this color is black.

The real property named Root GO _Dept hcueFr ont Pl ane controls the front plane z-
value P;. By default, Py is 1.

Thereal property named Root GO_Dept hcueBackPl ane controlsthe back plane z-value
B, By default, P, isO.

Therea property named Root GO _Dept hcueFr ont Scal e controlsthe front scale factor
Sy. By default, Sy is1.

The real property named Root GO_Dept hcueBackScal e controls the back scale factor
Sp. By default, S, isO.

Root GO_Set Backgr ound, Root GO_Set Dept hcueSwi t ch, Root GO_Set Dept hcueCol or ,
Root GO _Set Dept hcueFr ont Pl ane, Root GO_Set Dept hcueBackPl ane, Root GO Set -
Dept hcueFr ont Scal e and Root GO_Set Dept hcueBackScal e are overloaded convenience
procedures for attaching the line-specific properties to graphical objects; they are similar to
GO_Set Tr ansf or m(see Section 3.8).

311 TheLightGO Module 57

3.11 TheLightGO Module

- hel p LightGg
Li ght GO _Col or: Col or PropNane
Li ght GO_Swi t ch: Bool eanPr opNane
Li ght GO _Set Col or(go: GO c¢: ColorVal): Ck
Li ght GO_Set Swi tch(go: GO, b: Bool): Ck
WHERE
Light QO <: QO
Col orVal = Col orPropVal + Color + Text
Bool eanVal = Bool eanPropVal + Bool

A Li ght QO is a graphica object representing a light source. Like all graphical objects,
light sources are affected by transformation properties, that is, attaching a property named
GO _Transf or mto a light source object may affect the location and orientation of the light
source.

In addition, there are two other properties specific to light sources: The property named
Li ght GO _Col or defines the color of the light emitted by the light source, and the property
Li ght GO_Swi t ch determineswhether thelight sourceisonor off. Li ght GO_Col or associates
with color property values, and Li ght GO_Swi t ch associates with boolean property values.

Li ght GO_Set Col or and Li ght GO_Set Swi t ch are overloaded convenience procedures
for attaching the Li ght GO_Col or and Li ght GO_Swi t ch propertiesto graphical objects; they
aresimilar to GO_Set Tr ansf or m(see Section 3.8).

Li ght GO is an “abstract class’, therefore the module does not contain any function for
creating light sources.

3.12 TheAmbientLightGO Module

- hel p Anmbi ent Li ght GO,

Anbi ent Li ght GO_New(c: Col orVal): Anbi ent Li ght GO
WHERE

Anbi ent Li ght GO <: Li ght GO

Col orVal = Col orPropVal + Color + Text

An Anbi ent Li ght GOisagraphical object that describes an ambient light source, that is, alight
source that emits undirected, non-positional, non-attenuating light. Another way to describe
ambient light isthat its effect on surfaces does not depend on their location or orientation.

58 3. REFERENCE MANUAL

Anbi ent Li ght GOisasubtypeof Li ght GO; therefore, itisaffected by theLi ght GO_Col or
and Li ght GO_Swi t ch properties. However, although it is (by transitivity) a subtype of GO, it
is not affected by the GO_Tr ansf or mproperty, as it has no spatial attributes.

Thefunction call Ambi ent Li ght GO_New(c) takesavaluec,whichcanbeaCol or PropVval ,
aCol or, or aText identifying a color, and returns a new ambient light source, which emits
light of the specified color. One can imagine Anbi ent Li ght GO_Newto be defined as:

proc(c)
| et | =anew Anbi ent Li ght GO,
Li ght GO _Set Col or (1, ¢);
Li ght GO _Set Swi tch(I, true);
I

end

3.13 TheVectorLightGO Module

- hel p Vect orLi ght GO

Vect or Li ght GO_New(c: ColorVal, dir: PointVal): VectorlLi ghtG

Vect or Li ght GO_Di recti on: Poi nt PropName

VectorLight GO SetDirection(l: VectorLight@), dir: PointVal):
WHERE

Vector Li ght GO <: Li ght GO

Poi nt Val = Poi nt PropVal + Point3

Col or Val Col or PropVal + Col or + Text

A Vect or Li ght GOis a graphical object that describes a vector light source, that is, a light
source that emits directed, non-positional, and non-attenuating light. One can think of vector
light sources as being infinitely far away (and extremely bright), so that all rays that reach the
scene are parallel to each other, and are of constant intensity. The closest real-life example of a
vector light source is the sun (sun rays that reach the earth are very close to being parallel and
non-attenuating; however, the sun has a well-defined position).

Vect or Li ght GOisasubtypeof Li ght GO, and assuch,itisaffected by theLi ght GO_Col or
andLi ght GO_Swi t ch properties. It isalso (by transitivity) a subtype of GO, and thereforeisaf-
fected by the GO_Tr ansf or mproperty (therotation component of the transformation affectsthe
directionof thelightrays). Inaddition, thereisaproperty named Vect or Li ght GO _Di r ecti on
which affects only vector light sources. This property describes the direction of the light rays;
its value component is of type Poi nt Pr opVal . A Poi nt PropVal can beviewed asafunction
that, given atime, returnsa Poi nt 3; in this context, the point is interpreted as a vector.

Vect or Li ght GO _Set Di rect i on is an overloaded convenience procedure for attaching

3.14 The PointLightGO Module 59

Vect or Li ght GO _Di r ect i on propertiestographical objects;itissimilartoG0_Set Tr ansf or m
(see Section 3.8).

Vect or Li ght GO_New(¢, d) isanoverloaded functionfor creating new vector light sources.
c canbeacCol or PropVal ,aCol or,oraText identifyingacolor; d canbeaPoi nt Pr opVal or
aPoi nt 3. Thenew light object hasLi ght GO_Col or, Li ght GO_Swi t ch,and Vect or Li ght -
GO _Di rect i on propertiesattached toit. Onecan imagineVect or Li ght GO_Newto be defined
as.

proc(c, d)
| et | =anew Vect or Li ght GO,
Li ght GO _Set Col or (1, ¢);
Li ght GO_Set Swi tch(I, true);
VectorLi ght GO SetDirection(l,d);
I

end

3.14 ThePointLightGO Module

- hel p Poi nt Li ght GG,

Poi nt Li ght GO _New(c: ColorVal, orig: PointVal,

att0 attl: Real Val): PointLight G

Poi nt Li ght GO_Ori gi n: Poi nt PropName

Poi nt Li ght GO_Set Origin(go: GO orig: PointVal):

Poi nt Li ght GO_Att enuati on0: Real PropNane

Poi nt Li ght GO_Set Att enuation0(go: GO att: RealVal):

Poi nt Li ght GO_Attenuati onl: Real PropName

Poi nt Li ght GO_Set Att enuationl(go: GO att: RealVal):
WHERE

Poi nt Li ght GO <: Li ght QO

Poi nt Val = Poi nt PropVal + Point3

Real Val = Real PropVal + Real + Int

Col orVal = Col orPropVal + Color + Text

A Poi nt Li ght GOis a graphical object that describes a point-shaped light source, which is
emitting directiona light uniformly in all directions. The amount of light that strikes another
graphical object depends on the distance between this object and the point light source. This
phenomenon is called attenuation.

In a scene with positional light sources (vector lights or spot lights), there is an attenuation
factor associated with every point in the scene. The attenuation factor is the fraction of light
from the light sources that reaches this point.

60 3. REFERENCE MANUAL

Consider a scene with a single point light source. Given a point, let d be the distance
between this point and the light source. In real life, the attenuation factor is proportional to d%
Unfortunately, computer-generated scenes that use this lighting model tend to look unnatural,
because real-life scenes are not only illuminated by light from a single source, but also by light
reflected from other scene objects.

Therefore, PEX and OpenGL use different formulas for the attenuation factor. In PEX, it
is defined to be _—1—; in OpenGL, it is defined to be ———. ¢ is caled the constant
attenuation coefficient, ¢, iscaled thelinear attenuation coefficient, and ¢, iscalled thequadratic
attenuation coefficient.

Oblig-3D started out as a PEX -based animation system; thereforeit allowsthe client program
to control only the constant and the linear attenuation coefficients. Control for the quadratic
attenuation coefficient is alikely extension.

Poi nt Li ght GOisasubtypeof Li ght GO, and assuch, it isaffected by theLi ght GO_Col or
and Li ght GO_Swi t ch properties. It is also (by transitivity) a subtype of GO, and therefore is
affected by theGO_Tr ansf or mproperty. Inaddition, the modul e providesthreeextraproperties:

e The point property named Poi nt Li ght GO_Ori gi n controls the location of the point
light source. By default, point lightsare located at the origin.

e Therea property named Poi nt Li ght GO_At t enuat i on0 controls the constant attenu-
ation coefficient ¢o. By default, ¢q is1.

e Thereal property named Poi nt Li ght GO_At t enuat i onl controlsthelinear attenuation
coefficient ¢;. By default, ¢y is1.

Poi nt Li ght GO_Set Ori gi n, Poi nt Li ght GO _Set Att enuati on0, and Poi nt Li ght -
G0_Set At t enuat i onl are overloaded convenience proceduresfor attaching the corresponding
propertiesto graphical objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

Poi nt Li ght GO_New(c, p, a0, al) isan overloaded function for creating new point light
sources. c can be a Col or PropVal , a Col or, or a Text identifying a color; p can be
a Poi nt PropVal or a Poi nt3; a0 and al can be Real PropVal, Real, or | nt vaues.
The new light object has Li ght GO _Col or, Li ght GO_Swi t ch, Poi nt Li ght GO Ori gi n,
Poi nt Li ght GO_At t enuat i on0, and Poi nt Li ght GO_At t enuat i onl properties attached
toit. One canimagine Poi nt Li ght GO_Newto be defined as:

proc(c, p, a0, al)
| et | =anew Poi nt Li ght GO,
Li ght GO_Set Col or (1, ¢);
Li ght GO_Set Swi tch(I, true);
Poi nt Li ght GO _Set Ori gi n(!, p);
Poi nt Li ght GO_Set At t enuat i onO(I, a0) ;

3.15 The SpotLightGO Module 61

Poi nt Li ght GO_Set Att enuati on1(l, al);
I
end

3.15 TheSpotLightGO Module

- hel p Spot Li ght GG,
Spot Li ght GO_New(c: ColorVal, orig dir: PointVal,
conc spread attO attl: Real): SpotlLight QG
Spot Li ght GO_Ori gi n: Poi nt PropName
Spot Li ght GO_SetOrigin(go: GO orig: PointVal): Gk
Spot Li ght GO_Di recti on: Poi nt PropName
Spot Li ght GO_Set Di recti on(go: GO dir: PointVal):
Spot Li ght GO_Concentrati on: Real PropNane
Spot Li ght GO_Set Concentration(go: GO conc: RealVal):
Spot Li ght GO_Spr eadAngl e: Real PropNane
Spot Li ght GO_Set SpreadAngl e(go: GO spread: Real Val): Ck
Spot Li ght GO_Att enuati on0: Real PropNane
Spot Li ght GO_Set At t enuati on0(go: GO, att: Real Val): Gk
Spot Li ght GO_Att enuati onl: Real PropNane
Spot Li ght GO_Set At t enuationl(go: GO, att: RealVal): Ck
WHERE
Spot Li ght GO <: Li ght QO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int
Col orVal = Col orPropVal + Color + Text

A Spot Li ght GOisagraphica object that describes a positional light source that is emitting a
coneof directed, coloredlight. Lightfrom aspot light source attenuateswith increasing distance.
Attenuation follows the same formula and is controlled by the same parameters as attenuation
of light emitted by point light sources (see Section 3.14).

The geometry of the cone of emitted light is determined by the position p of the light
source, the direction d of thelight, and the spread angle « of the cone. Figure 21 illustratesthe
relationship.

The concentration exponent v determinesif and by how much theintensity of aray decreases,
the further it is away from the central axisof the cone. Given aray whose angleto the main axis
isf (where0 < g < «), theintensity of thisray iscos” () timestheintensity of thelight along
the central axis. Choosing ~ to be 0 means that the intensity of the light is constant throughout
the cone (modulo attenuation), choosing a higher v+ means that light rays are less intense the
more they are off-center.

Spot Li ght GOisasubtypeof Li ght GO, and as such, it is affected by theLi ght GO_Col or

62

3. REFERENCE MANUAL

position S0 R LR RN > direction

e

Figure 21: Geometry of the light cone emitted by a spot light source

and Li ght GO_Swi t ch properties. It is aso (by transitivity) a subtype of GO, and therefore
is affected by the GO_Tr ansf or mproperty. In addition, the module provides severa extra
properties:

The point property named Spot Li ght GO_Ori gi n controlsthe location of the spot light
source. By default, spot lights are located at the origin.

The point property named Spot Li ght GO _Di r ect i on controls the direction of the spot
light source. By default, spot lights point along the vector (1,1, 1).

The real property named Spot Li ght GO_Concent r ati on controls the concentration
exponent ~ of the spot light source. By default, v is 1.

The real property named Spot Li ght GO_Spr eadAngl e « controls the spread angle of
the spot light source. By default, o is 1.

Thereal property named Spot Li ght GO_At t enuat i on0 controls the constant attenua-
tion coefficient ¢y. By default, ¢ is 1.

Thereal property named Spot Li ght GO_At t enuat i onl controlsthe linear attenuation
coefficient ¢;. By default, ¢y is1.

Spot Li ght GO_Set Ori gi n, SpotLight GO SetDirection, SpotlLightGO SetCon-
centration, Spot Li ght GO_Set Spr eadAngl e, Spot Li ght GO_Set At t enuat i on0, and
Spot Li ght GO_Set At t enuat i onl are overloaded convenience procedures for attaching the
corresponding properties to graphical objects; they are similar to GO_Set Tr ansf or m(see Sec-
tion 3.8).

3.16 The CameraGO Module 63

Spot Li ght GO_New(col , pos, di r, conc, sprd, a0, al) is an overloaded function for
creating new spot light sources. col can be a Col or PropVal , a Col or, or a Text identi-
fying a color; pos and di r can be Poi nt PropVal or Poi nt 3 values, conc, sprd, a0 and
al can be Real PropVal , Real , or I nt values. The new light object has Li ght GO_Col or,
Li ght GO_Switch, SpotLight@G Oigin, SpotLightGO Direction, SpotlLight-
GO _Concent rati on, Spot Li ght GO_Spr eadAngl e, Spot Li ght GO_At t enuat i on0, and
Spot Li ght GO_At t enuat i on1 propertiesattachedtoit. OnecanimagineSpot Li ght GO_New
to be defined as:

proc(col, pos, dir, conc, sprd, a0, al)
| et | =anew Spot Li ght GO,
Li ght GO _Set Col or (1, col);
Li ght GO_Set Swi tch(I, true);
Spot Li ght GO_Set Ori gi n(I, pos);
Spot Li ght GO SetDirection(l,dir);
Spot Li ght GO_Set Concentrati on(l, conc);
Spot Li ght GO_Set Spr eadAngl e(1, sprd);
Spot Li ght GO_Set At t enuat i on0O(I, a0) ;
Spot Li ght GO_Set At t enuati on1(l, al);
I

end

3.16 TheCameraGO Module

- hel p CaneraGO
Camer aG0_From Poi nt PropName
Camer aG0 _To: Poi nt PropName
Camrer aG0_Up: Poi nt Pr opName
Camer aG0_Aspect: Poi nt PropNane
Camer aG0 _Set From(go: GO, PointVal):
Camer aG) _Set To(go: GO PointVal): Ck
Camer aG) _Set Up(go: GO PointVal): Ck
Camer aG0 _Set Aspect (go: GO, Real Val): &
TYPE
Canmera® <: GO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A Caner aGOisagraphical object that describesacamera. Camera objectsare used for viewing
the scene. Every root object has a window and a camera associated with it (see Section 3.10),
and the picturethat is shown in the window is the part of the scene graph below the root, as seen

64 3. REFERENCE MANUAL

through the camera.

A scene can contain many cameras, but each root object uses only one camera at any given
time; however, the client program can change what camera is being used (see Section 3.10).

A camera behaveslikeany other graphical object. In particular, it may be part of agroup, and
itisaffected by the GO_Tr ansf or mproperty. So, itisfor instance possibleto build agroup that
describes a car, place a camera inside the car, then move the car by changing a transformation
property attached to it, and view the scene from inside the moving car. Program 18 shows a
similar (but simpler) program that moves a camera

Cameras depend on several parameters: Their position, their target, their up-vector, and
their aspect ratio. The position is the point where the camera is located. Thetarget is a point
in the center of the camera’s field of vision; in other words, it determines the viewing direction.
The up-vector determines what direction “up” isin the projected image. A line parald to this
vector appears vertically in the viewing window. Finally, the aspect ratio controls width/height
distortion. Our use of the term “aspect ratio” differs from the standard usage. Normally, aspect
ratio refers to the ratio between width and height (for instance, NTSC TV has a 4-to-3 aspect
ratio). However, we define the aspect ratio not to be the absolute width/height ratio, but rather
the width/height distortion. An aspect ratio of 1, |eaves the picture undistorted, an aspect ratio
of 2 flattens objectsin the scene®.

Camer a@0 is a subclass of GO Camera abjects do not provide any additional methods,
however, they are affected by four propertiesin additionto GO_Tr ansf or m

e The point property named Caner aGO_Fr om controls the position of the camera. By
default, the cameraislocated at point (0, 0, 100).

e The point property named Camer aGO_To controls the target point of the camera. By
default, the cameraislooking at the origin.

e Thepoint property named Carmer aG0_Up control stheup-vector of thecamera. By default,
itis(0,1,0).

e Thereal property named Camer aGO_Aspect controlsthe aspect ratio of the camera. By
default, itis1.

Caner aBG0_Set Fr om Camer aG0_Set To, Caner a@)_Set Up, and Camer aG0_Set Aspect
are overloaded convenience procedures for attaching the corresponding properties to graphical
objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

Camer a@0is an abstract class, hence there isno function for creating new camera objects.

#In the current system, the active area of the rendering window is always square.

3.17 The OrthoCameraGO Module 65

Figure 22: Parameters of an Orthographic Camera

3.17 TheOrthoCameraGO Module

- hel p OthoCaneraGO
Ot hoCaner aGO_ New(from to up: PointVal, height: RealVal): OthoCanmeraGO
Ot hoCaner aGO_Hei ght: Real PropName
Ot hoCaner aGO_Set Hei ght (go: GO, height: Real Val): Gk
WHERE
Ot hoCaner aGO <: Canera@)
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

An Ot hoCaner aGOisagraphical object describing an orthographic camera. An orthographic
camera uses an orthographic projection (or parallel projection) to map the scene onto the
viewing area. Linesthat are parallel in the scene appear paraldl in theimage. The volume of
space observed by such a camera forms a parallel opiped. The geometry of the parallelopipedis
determined by the camera’s position (“from”), its viewing direction (specified through the target
point“to”), itsup-vector (“up”), the parallelopiped’sheight (“height”), and itswidth (determined
by the height of the parall€ opiped, and the aspect ratio of the camera). Figure 22 illustratesthe
role of these parameters.

Ot hoCaner aG0is a subclass of Camer a@0. Orthographic camera objects do not provide
any additional methods. They observe all the properties defined for their supertypes GO and
Caner aGO. In addition, they provide area property named Or t hoCanmer aG0_Hei ght , which
controls the height of the volume of space observed by the camera. By default, orthographic
cameras are 10 units high.

Ot hoCaner aG0_Set Hei ght is an overloaded convenience procedure for attaching the
property Ort hoCamer aG0_Hei ght to graphical objects; it is similar to GO_Set Tr ansf orm
(see Section 3.8).

66 3. REFERENCE MANUAL

Ot hoCanmer aGO_New(fr, to, up, ht) is an overloaded function for creating new or-
thographic cameras. fr, to, and up can be Poi nt PropVal ’s or Poi nt 3’s; ht can be a
Real PropVal ,aReal ,oranl nt. Thenew cameraobject hasCarmer aGO_Fr om Camer aG0 _To,
Camer aG0_Up, and Ot hoCanmer a@) Hei ght properties attached to it. One can imagine
Ot hoCaner aG0_Newto be defined as.

proc(fr,to,up, ht)
l et c=anew Ot hoCaneraG0O
Caner aG0 _Set Fron(c, fr);
Caner aG0 _Set To(c, to);
Caner aG0_Set Up(c, up);
Ot hoCaner aG0_Set Hei ght (¢, ht);
c

end

3.18 ThePerspCameraGO Module

- hel p PerspCaneraGO
Per spCaneraGO New(from to up: PointVal, fovy: Real Val): PerspCanmeraGO
Per spCaner aGO_Fovy: Real PropNane
Per spCaner aGO_Set Fovy(go: GO, fovy: Real Val): Gk
VWHERE
Per spCaner aGO <: CaneraGO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A PerspCaneraGO is a graphical object describing a perspective camera. A perspective
camera behaves like areal-world camera; it uses a per spective projection to map the scene onto
the viewing area. The volume of space observed by such a camera forms an (infinitely high)
pyramid. The geometry of the pyramid is determined by the camera's position (“from”), its
viewing direction (specified through the target point “to”), its up-vector (“up”), the field-of-
vision (“fovy”), which is the angle between the “up” and the “down” wall of the pyramid, and
the width of the pyramid, which is determined by its height and the aspect ratio of the camera.
Figure 23 illustratesthe role of these parameters.

Per spCaner a@)is a subclass of Camer aG0. Perspective camera objects do not provide
any additional methods. They observe al the properties defined for their supertypes GO and
Caner aG0. In addition, they provide a rea property named Per spCanmer aGO_Fovy, which
controlsthe field of vision of the pyramidal area of space observed by the camera. By default,
perspective cameras have afield of vision of 0.1 degrees radian.

3.18 The PerspCameraGO Module 67

Figure 23: Parameters of a Perspective Camera

Per spCaner aG0_Set Fovy isan overloaded convenience procedure for attaching the prop-
erty Per spCaner aGO_Fovy to graphica abjects; it is similar to GO_Set Tr ansf or m (see
Section 3.8).

Per spCaner a@ New(fr, to, up, fv) is an overloaded function for creating new or-
thographic cameras. fr, to, and up can be Poi nt PropVal 's or Poi nt 3's; fv can be a
Real PropVal ,aReal ,oranl nt. Thenew cameraobject hasCarmer aGO_Fr om Canmer aG0 To,
Camer aG0_Up, and Per spCaner aG0_Fovy properties attached to it. One can imagine
Per spCanmer aG0_Newto be defined as:

proc(fr,to,up,fv)
| et ¢ =anew PerspCaner aCGQ,
CaneraGO_Set Fron{c, fr);
Caner aG0_Set To(c, to);
Caner aG0_Set Up(c, up);
Per spCaner aG0_Set Fovy(c, fv);
c

end

68 3. REFERENCE MANUAL

3.19 ThelLineGO Module

- hel p LineGg

Li neGO_ New(pl p2: PointVal): LineGO

Li neGO_Col or: Col or PropNane

Li neGO_ Wdth: Real PropName

Li neGO _Type: LineTypePropName

Li neGO_Poi nt 1: Poi nt PropNane

Li neGO_Poi nt 2: Poi nt Pr opNane

Li neGO_SetCol or(0: GO c: ColorVval): Ck

Li neGO _ SetWdth(o: GO r: RealVal): Ck

Li neGO_Set Type(o: GO, t: LineType): Ck

Li neGO_Set Poi nt1(o: GO p: PointVal):

Li neGO_Set Poi nt2(o: GO, p: PointVal):
WHERE

Li neGO < GO

Poi nt Val = Poi nt PropVal + Point3

Real Val = Real PropVal + Real + Int

Col orVal = Col orPropVval + Color + Text

Li neTypeVal = LineTypePropVal + LineType

A Li neGOobject isagraphical object describing aline. It isa subtype of GO, and does not add
any extrafields or methods.

A line is a graphical object, and as such, it is affected by the GO_Tr ansf or m property.
The two endpointsof aline are controlled by two point propertiesnamed Li neGO_Poi nt 1 and
Li neGO_Poi nt 2. If these two properties are undefined, the line goes from point (0, 0, 0) to
point (1,0, 0) with respect to the local coordinate system. The line color is controlled by acolor
property named Li neGO_Col or ; by default, lines are white. The line width is controlled by a
real property named Li neGO_W dt h; by default, lines are one pixel wide. Finally, the type of
theline (that is, whether it is solid, dashed, dotted, or dashed and dotted) is controlled by aline
type property named Li neGO_Type; by default, lines are solid.

Li neGO _Set Poi nt 1, Li neG0_Set Poi nt 2, Li neG0 _Set Col or, Li neGO_Set W dt h,
and Li neG0_Set Type are overloaded convenience procedures for attaching the line-specific
propertiesto graphical objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

Li neGO_New(p1, p2) creates a new line object and returnsit. In the process, it attaches
pl as property Li neGO_Poi nt 1 and p2 as property Li neGO_Poi nt 2 to the new line object,
thereby defining its two endpoints.

320 TheMarkerGO Module 69

3.20 TheMarkerGO Module

- hel p Marker GO

Mar ker GO_New(poi nt: PointVal): Marker GO

Mar ker GO_Cent er: Poi nt PropNane

Mar ker GO_Col or: Col or PropName

Mar ker GO_Scal e: Real PropNane

Mar ker GO_Type: Mar ker TypePr opName

Mar ker GO_Set Center(o: GO p: PointVal):

Mar ker GO_Set Col or (0: GO c¢: ColorVal): Ck

Mar ker GO_Set Scal e(o: GO r: Real Val): Ck

Mar ker GO_Set Type(o: GO t: MarkerTypeVal):
WHERE

Marker GO < GO

Poi nt Val = Poi nt PropVal + Point3

Real Val = Real PropVal + Real + Int

Col orVal = Col orPropVal + Color + Text

Mar ker TypeVal = Mar ker TypePropVal + Marker Type

A Mar ker GOobject isagraphical object describing amarker, that is, agraphical representation
of asinglepoint. It is asubtype of GO, and does not add any extra fields or methods.

A marker isagraphical object, and as such, it is affected by the GO_Tr ansf or mproperty.
The location of a marker is controlled by a point property named Mar ker GO_Poi nt ; if this
property is undefined, the marker is located at the origin of the local coordinate system. The
marker color is controlled by a color property named Mar ker GO_Col or ; by default, markers
are white. The scale of the marker is controlled by areal property named Mar ker GO_Scal e;
the default scale factor is 1. Finaly, the type of the marker (that is, whether it looks like a
dot, acircle, across, an asterisk, or an “X") is controlled by a marker type property named
Mar ker GO_Type; by default, markers are shown as asterisks.

Mar ker GO _Set Poi nt Mar ker GO_Set Col or, Mar ker GO_Set Scal e, and
Mar ker GO_Set Type are overloaded convenience procedures for attaching the marker-specific
propertiesto graphical objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

Mar ker GO_New(p) creates a new marker object and returnsit. In the process, it attaches p
as property Mar ker GO_Poi nt to the new marker object, thereby defining its center.

70 3. REFERENCE MANUAL

3.21 TheSurfaceGO Module

- hel p SurfaceGQO
Sur f ace@0_Col or: Col or PropNane
Surface@0 Set Col or(0: GO <color: ColorVal): &
Sur f ace@0_Rast er Mode: Rast er ModePr opName
Surface@0_Set Raster Mode(o: GO t: RasterMdeVal):
Sur f ace@0_Anbi ent Ref | ecti onCoef f: Real PropNane
Sur f ace@0_Set Anbi ent Ref | ectionCoeff(o: GO r: RealVal): &
Surface@0 D ffuseRefl ectionCoef f: Real PropNane
Surface@0 Set Di ffuseRefl ecti onCoeff(o: GO r: RealVal): &
Sur f ace@0_Specul ar Ref | ecti onCoeff: Real PropName
Sur f ace@0_Set Specul ar Ref | ecti onCoeff(o: GO r: RealVal):
Sur f ace@0_Specul ar Ref | ecti onConc: Real PropNane
Sur f ace@0_Set Specul ar Ref | ecti onConc(o: GO r: RealVal): &
Sur f ace@0_Tr ansni ssi onCoef f: Real PropName
Surface@0_Set Transni ssionCoef f(0: GO r: RealVal): Ck
Sur f ace@0_Specul ar Ref | ecti onCol or: Col or PropName
Sur f ace@0_Set Specul ar Refl ecti onCol or(o: GO, color: ColorVal):
Sur f ace@0_Li ghti ng: Bool eanPr opNane
Surface@0O _Set Lighting(o: GO t: BooleanVal): Gk
Sur f ace@0_Shadi ng: Shadi ngPr opNane
Sur f ace@0_Set Shadi ng(o: GO, sh: ShadingVal): Gk
Sur faceG0 _EdgeVi sibility: Bool eanPropNane
Surface@O Set EdgeVisibility(o: GO b: BoolVal): &
Sur f ace@0_EdgeCol or: Col or PropNane
Sur f ace@0_Set EdgeCol or (0: GO, color: ColorVal): &
Sur f ace@G0_EdgeType: Li neTypePropName
Sur f ace@0O_Set EdgeType(o: GO, It: LineTypeval):
Sur f aceGO_EdgeW dt h: Real PropNare
Surface@0 _Set EdgeWdt h(o: GO r: RealVal):
TYPE
Surface® <: QO
Col orVal = Col orPropVval + Color + Text
Bool eanVal = Bool eanPropVal + Bool
Real Val = Real PropVval + Real + Int
Li neTypeVal = LineTypePropVal + LineType
Rast er MbdeVal = RasterMdePropVal + RasterMde
Shadi ngVal = Shadi ngPropVal + Shadi ng

A surfaceisagraphical object that is made out of polygons. One important difference between
surfaces and non-surfaces (such as lines and markers) is that surfaces are affected by light
sources, whereas non-surfaces are not.

Sur f ace@O, the abstract type of surface objects, is a subtype of GO. It does not add any

321

The SurfaceGO Module 71

extra fields or methods; however, it defines a number of extra property names that affect the
appearance of surfaces.

The color property named Sur f ace@0_Col or controlsthe color of the surface.

The raster mode property named Sur f ace@G0_Rast er Mbde controls the rasterization
mode used for drawing the surface, that is, whether the interior or only the boundary is
drawn, or whether nothingis drawn at all.

The boolean property named Sur f aceGO_Li ght i ng controlswhether any lighting com-
putationsare performed. If the property is false, no lighting computations are performed.
In this case, the surface is drawn in its natural color, unaffected by light sources (but still
affected by depth cueing).

The shading property named Surf aceGO_Shadi ng controls which surface shading
method is used. We support two shading methods: Flat Shading and Gouraud Shad-
ing. The Flat Shading method computes an intensity value for a single point of the
surface, and uses thisintensity value for the entire surface. The Gouraud shading method
computes intensity values for each vertex of the polygons that make up the surface, and
then interpol ates between these values to determine intensity values for the other points
on the surface.

The real property named Sur f aceGO_Tr ansni ssi onCoef f controls the transparency
of asurface. A value of 0 means that the surfaceis completely opague, whileavaueof 1
means that isit completely transparent.

Thereal property named Sur f aceGO_Anbi ent Ref | ect i onCoef f controlsthe amount
of ambient light reflected by the surface, as a fraction of the ambient light falling onto
the surface. A value of 0 indicates that no ambient light is reflected, while a value of 1
indicatesthat all ambient light striking the surface is reflected.

Thereal property named Sur f aceGO Di f f useRef | ect i onCoef f controlsthe amount
of non-ambient light reflected diffusely (in all directions), asafraction of all thedirectional
light strikingthesurface. A valueof Oindicatesthat noneof thedirectional light isreflected
diffusely; avaueof 1indicatesthat al of it isreflected.

Thereal property named Sur f aceGO_Specul ar Ref | ect i onCoef f controlsthebright-
ness of specular highlights. A value of 0 turns off specular reflection entirely; a value of
1 makes the highlightsas pronounced as possible.

The rea property named Sur f aceGO_Specul ar Ref | ecti onConc controls how fo-
cused specular highlightsare. A value of 1 creates avery blurry highlight; higher values
create increasingly more sharply focused highlights.

72 3. REFERENCE MANUAL

e Thecolor property named Sur f aceGO_Specul ar Ref | ect i onCol or controlsthecolor
shift of specularly reflected light.

e Theboolean property named Sur f aceGO_EdgeVi si bi | i t y controlswhether the bound-
aries of the polygonsthat make up the surface are visible or not.

e The color property named Sur f aceGO_EdgeCol or controls the color of the boundary
lines.

e The color property named Sur f aceGO_EdgeW dt h controls the width of the boundary
lines.

e Theline type property named Sur f aceGO_EdgeType controls how the boundary lines
are drawn (sold, dashed, dotted, or dashed and dotted).

For each property name defined in the Sur f aceGOmodule, there is an overloaded convenience
procedure for attaching the property to graphical objects; these procedures are al similar to
GO_Set Tr ansf or m(see Section 3.8).

3.22 ThePolygonGO Module

- hel p Pol ygonGO,

Pol ygonGO New(pts: [PointVal]): Pol ygonGO

Pol ygonGO_NewW t hShapeHi nt (pts: [PointVal], s: Shape): Pol ygonGO
WHERE

Pol ygonGO <: SurfaceGO

Poi nt Val = Poi nt PropVal + Point3

Shape = Text (one of "Unknown", "Convex", "NonConvex", "Conplex")

A Pol ygonGO object is a graphical object describing a polygon. Pol ygonGOis a subtype of
Sur f ace @G0, and does not add any extrafields, methods, or properties. A polygonis affected by
all the properties defined in the GO and Sur f aceGOmodules.

Pol ygonGO_New(pt s) creates a new polygon object and returns it. pts isan array of
points. Each of these points can be a constant Poi nt 3 value or atime-variant Poi nt Pr opVal
value.

Pol ygonGO_NewW t hShapeHi nt (pt s, s) issimilar to Pol ygonGO_New(pt s), but al-
lowstheclient program to supply a“ shapehint” s, indicating the shape of the polygon. Possible
shape hints are " Convex" (the polygon is convex), " NonConvex" (the polygon is concave,
but not self-intersecting), " Conpl ex" (the edges of the polygon are self-intersecting), and

3.23 The BoxGO Module 73

" Unknown" (the shape is unknown). Supplying a shape hint can increase rendering perfor-
mance. On the other hand, shape hints must be accurate. In particular, if the shape of a polygon
changes (that is, if the vertices defining the polygon change over time), the shape hint must
be conservative enough to be accurate for the entire lifetime of the polygon. Pol ygon_New
assumes the shape of the polygon to be unknown; in other words, it makes the safest, most
conservative choice.

3.23 TheBoxGO Module

- hel p BoxGQO,
BoxGO New(pl p2: PointVal): BoxGO
Box@GO_Cor ner 1: Poi nt PropNane
Box@GO_Cor ner 2: Poi nt PropNane
Box@0O Set Corner1(o: GO p: PointVal):
Box@0O Set Corner2(o: GO p: PointVal):
VWHERE
BoxGO <: SurfaceGO
Poi nt Val = Poi nt PropVal + Point3

QR

A Box GO object is a graphical object describing a box, or more precisely, an axis-aligned
parallelopiped. The geometry of such an object can be specified in terms of two opposing corner
points.

Box@QOis a subtype of Sur f aceG0O, and does not add any extrafields or methods. A box is
affected by all the properties defined in the GO and Sur f aceGO modules. In addition, the two
opposing corners of the box are controlled by the point properties named BoxGO_Cor ner 1 and
BoxG0O _Cor ner 2.

Box @0 _Set Cor ner 1 and BoxGO_Set Cor ner 2 are overloaded convenience procedures for
attaching the box-specific propertiesto graphical objects; they aresimilarto GO_Set Tr ansf or m
(see Section 3.8).

Box@GO New(pl, p2) creates a new box object and returnsit. In the process, it attaches
pl as property BoxGO_Cor ner 1 and p2 as property BoxGO_Cor ner 2 to the new box object,
thereby defining its two corners.

74 3. REFERENCE MANUAL

3.24 TheDiskGO Module

- hel p D skGG,
Di skGO New(center normal: PointVal, rad: RealVal): D skGO
Di skGO NewW t hPrec(center normal: PointVal, rad: RealVal, prec: Int): D skG
Di skGO _Center: Poi nt PropNane
Di skGO_Nornal : Poi nt PropNane
Di skGO_Radi us: Real PropNane
Di skGO _SetCenter(o: GO p: PointVal):
Di skGO_Set Normal (0: GO, p: PointVal 3):
Di skGO _Set Radi us(o: GO r: RealVal): Ck
WHERE
Di skGO <: SurfaceG
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A Di sk@Oobject is a graphical object describing a disk. It is a subtype of Sur f aceGO, and
does not add any extra fields or methods.

A disk is affected by all the properties defined in the GO and Sur f ace GO modules as well
as by three additional, disk-specific properties: The center of a disk is controlled by a point
property named Di skGO_Cent er, its normal vector is affected by a point property named
Di skGO_Nor mal , and itsradiusis controlled by areal property named Di skGO_Radi us.

Di skGO _Set Cent er ,Di skGO_Set Nor mal ,andDi skGO_Set Radi us areoverloaded con-
venience procedures for attaching the disk-specific properties to graphical objects; they are
similar to GO_Set Tr ansf or m(see Section 3.8).

Di skGO _New(p, n, r) createsanew disk objectand returnsit. Intheprocess, it attachesp as
property Di skGO_Cent er , n asproperty Di skGO_Nor mal ,andr asproperty Di skGO_Radi us
to the new disk object, thereby defining its center, normal vector, and radius. Disks are approxi-
mated by polygons; by default, this polygon has 10 sizes.

Di skGO NewW t hPrec(p, n,r,i) behaves like Di skGO New(p, n, r), but alows the
client program to specify the number of sides of the polygon. The new disk is approximated by
apolygonwith i sides.

325 The SphereGO Module 75

3.25 The SphereGO Module

- hel p SphereGO
SphereG0 New(p: PointVal, rad: Real Val): SphereG)
SphereGO_NewW t hPrec(p: PointVal, rad: Real Val, prec: Int): SphereQ
SphereG0 _Cent er: Poi nt PropNane
Spher eG0 _Radi us: Real PropNane
SphereG0 _Set Center(go: GO, center: PointVal):
Spher eG0 _Set Radi us(go: GO, radius: RealVal): Ck
WHERE
Sphere@0 <: Surface@O
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A Spher eG0Oobject is a graphical object describing a sphere. It is a subtype of Sur f aceGO,
and does not add any extra fields or methods.

A sphere is affected by al the properties defined in the GO and Sur f aceGO modules as
well as by two additional, sphere-specific properties: The center of a sphere is controlled by
a point property named Spher eGO_Cent er ; itsradius is controlled by areal property named
Spher eGO_Radi us.

Spher eG0_Set Cent er and Spher eG0_Set Radi us are overloaded convenience proce-
dures for attaching the sphere-specific properties to graphical objects; they are similar to
GO_Set Tr ansf or m(see Section 3.8).

Spher eGO_New(p, r) createsanew sphereobject and returnsit. Intheprocess, it attachesp
asproperty Spher eGO_Cent er andr asproperty Spher eGO_Radi us tothenew sphereobject,
thereby defining its center and radius. Spheres are approximated by polyhedra; by default, a
sphere consists of 30 strips, each one containing 30 triangles.

Spher eGO_NewW t hPrec(p, r, i) behaves like Spher eGO New(p, r), but alows the
client program to specify the precision of the polygonal approximation to a sphere. The new
sphere is composed of i? triangles.

76 3. REFERENCE MANUAL

3.26 TheCylinderGO Module

- hel p Cylinder GO
Cyl i nder GO_New(pl p2: PointVal, rad: Real Val): Cylinder G
Cyl i nder GO_NewW t hPrec(pl p2: PointVal, rad: RealVal, prec: Int): CylinderQ
Cyl i nder GO _Poi nt 1: Poi nt PropNane
Cyl i nder GO_Poi nt 2: Poi nt PropNane
Cyl i nder GO_Radi us: Real PropNane
CylinderGO Set Point1(o: GO, p: PointVal): K
Cylinder GO _Set Point2(o: GO, p: PointVal):
Cylinder GO _Set Radius(o: GO, r: RealVal): &

WHERE
CylinderGO <: SurfaceGO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A Cyl i nder GOobject isagraphical object describing acylinder. Itisasubtypeof Sur f aceGO,
and does not add any extra fields or methods.

A cylinder is affected by all the properties defined in the GO and Sur f aceGO modules as
well as by three additional, cylinder-specific properties: The two endpoints of a cylinder are
controlled by two point properties named Cyl i nder GO_Poi nt 1 and Cyl i nder GO_Poi nt 2;
itsradiusis controlled by area property named Cyl i nder GO_Radi us.

Cyl i nder GO_Set Poi nt 1,Cyl i nder GO_Set Poi nt 2,andCyl i nder GO_Set Radi us are
overloaded convenience procedures for attaching the cylinder-specific properties to graphical
objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

Cyl i nder GO_New(p1, p2, r) creates a new cylinder object and returnsit. In the process,
it attaches p1 as property Cyl i nder GO_Poi nt 1, p2 as property Cyl i nder GO_Poi nt 2, and
r as property Cyl i nder GO_Radi us to the new cylinder object, thereby defining its endpoints
and radius. Cylinders are approximated by polyhedra; by default, a cylinder consists of 30
rectangles.

Cyl i nder GO_NewW t hPrec(pl, p2,r,i) behaveslikeCyl i nder GO_New(pl, p2,r),
but allows the client program to specify the precision of the cylinder. The new cylinder is
composed of i rectangles.

3.27 The ConeGO Module 77

3.27 TheConeGO Module

- hel p ConeGg,
ConeGO _New(base tip: PointVal, rad: Real Val): ConeGO
ConeGO_NewW t hPrec(base tip: PointVal, rad: RealVal, prec: Int): Cone®O
ConeGO Base: Poi nt PropName
ConeGO _Ti p: Poi nt PropNane
ConeGO_Radi us: Real PropNane
Cone@0 Set Base(o: GO p: PointVal):
Cone@GO Set Ti p(o: GO, p: PointVal): Gk
Cone@O Set Radi us(o: GO r: RealVal): &
WHERE
Cone@0 <: SurfaceGO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A ConeGO object is a graphical object describing a cone. It is a subtype of Sur f aceGO, and
does not add any extra fields or methods.

A coneis affected by al the properties defined in the GO and Sur f aceGOmodules as well
as by three additional, cone-specific properties: The base of a cone is controlled by a point
property named ConeGO Base, itstip is controlled by a point property named ConeGO _Ti p,
and itsradius at the base is controlled by areal property named ConeGO_Radi us.

ConeG0O _Set Base, ConeGO Set Ti p, and ConeGO_Set Radi us are overloaded conve-
nience proceduresfor attaching the cone-specific propertiesto graphical objects; they aresimilar
to GO_Set Tr ansf or m(see Section 3.8).

Cone@0_New(pl, p2, r) createsanew coneobject and returnsit. Inthe process, it attaches
pl asproperty ConeGO_Base, p2 asproperty ConeGO _Ti p,andr asproperty ConeGO_Radi us
to the new cone object, thereby defining its endpoints and radius. Cones are approximated by
polyhedra; by default, a cone consists of 30 triangles.

ConeGO NewW' t hPrec(pl, p2,r,i) behaveslike ConeGO New(pl, p2,r), but alows
the client program to specify the precision of the cone. The newc oneiscomposed of i triangles.

78 3. REFERENCE MANUAL

3.28 TheTorusGO Module

- hel p TorusGg
Torus@O New center nornal: PointVal, radl rad2: RealVal): TorusGO
TorusGO NewWt hPrec(c n: PointVal, rl r2: RealVal, prec: Int): TorusGO
Torus@O Cent er: Poi nt PropName
TorusGO_Nor el : Poi nt Pr opName
Torus@O _Radi us1l: Real PropName
Torus@O_Radi us2: Real PropNane
VWHERE
TorusGO <: SurfaceGO
Poi nt Val = Poi nt PropVal + Point3
Real Val = Real PropVal + Real + Int

A Tor usGOobject is agraphical object describing atorus. It is a subtype of Sur f aceGO, and
does not add any extra fields or methods.

A torus is an object that is shaped like a doughnut. It can be described as a surface of
revolution: if we rotate a circle C' around an axis A that does not intersect €', the resulting
surface forms atorus. Theradius of ' iscalled the minor radius of the torus, the perpendicular
distancefrom the center of C' to A iscalled themajor radiusof thetorus, theintersection between
A and the perpendicular vector from C' to A iscalled the center of thetorus, and the directional
vector of A iscaled the normal of the torus.

Alternatively, we can describe a torus as a cylinder which is bent such that its ends connect.
The axis of the cylinder, which was straight before, now forms acircle. The center of thiscircle
is called the center of the torus, the normal vector of the circle (in 3D) is called the normal of
the torus, the radius of the sphereis called the major radius of the torus, and the radius of the
cylinder is caled the minor radius of the torus.

A torusis affected by all the properties defined in the GO and Sur f aceGOmodules as well
as by three additional, torus-specific properties: the center of the torusis controlled by a point
property named Tor us@0_Cent er, its normal vector is controlled by a point property named
Tor usGO_Nor mal , itsmajor radiusis controlled by areal property named Tor usGO_Radi us1,
and itsminor radius is controlled by areal property named Tor usGO_Radi us2.

TorusGO _Set Cent er, Tor usGO_Set Nor nal , Tor usGO _Set Radi us1, and
Tor usGO_Set Radi us?2 are overloaded convenience procedures for attaching the torus-specific
propertiesto graphical objects; they are similar to GO_Set Tr ansf or m(see Section 3.8).

TorusGO_New(c, n, r1,r2) creates a new torus object and returnsit. In the process, it
attaches ¢ as property Tor usGO_Cent er, n as property Tor usGO_Nor mal , r 1 as property
Tor usGO_Radi us1, and r 2 as property Tor usGO_Radi us2 to the new torus object, thereby
defining its geometry. Tori are approximated by polyhedra; by default, a torus consists of 30

3.29 The QuadMeshGO Module 79

strips, each one with 30 rectangles.

TorusGO_NewW t hPrec(c, n,r1,r2,i) behaveslikeTorusG New(c, n,r1,r2), but
allowsthe client program to specify the precision of thetorus. The new torus is composed of i
strips, each onewithi rectangles.

3.29 TheQuadMeshGO Module

- hel p QuadMeshGO,

QuadMeshGO _BadSi ze: Exception

QuadMesh@O_Col or sUndef i ned: Exception

QuadMesh@O New(pts: [[Point3]]): QuadMeshGO

QuadMeshGO_NewW t hShapeHi nt (pts: [[Point3]], s: Shape): QuadMeshGO
WHERE

QuadMesh@D <: Surface@ &

{ addFacetColors: ([[Col]]) => Ok ! QuadMeshGO BadSi ze,
setCol orOf Facet: (i j: Int, c: Col) => Ok ! QuadMeshGO_Col or sUndefi ned }
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Conplex")
Col = Color + Text

A QuadMesh@Ois a graphical object that describes a quadrilateral mesh, a grid of four-sided
polygons (also called quadrilaterals). A quadrilateral mesh is defined by a two-dimensional
array of points

Poo - Pon

Pmo - Pmmn

Neighboring pointsp; i, pi j—1, Pi—1,j—1, Pi—1,; (1 <7 <m ;1 <7 < n)inthearray define
aquadrilateral; the entire mesh consists of m x n quadrilaterals.

Assumingpt s isan (m+1) x (n+1) array of points, thefunction QuadMeshGO_New(pt s)
creates and returns a new quadrilateral mesh, consisting of m x n quadrilaterals.

QuadMeshGO_NewW t hShapeHi nt (pt s, sh) acts similarly, but it alows the client to
supply a*“shape hint”. Shape hints are described in Section 3.22.

By default, the color of a QuadMesh@O is the color defined by the current value of the
Sur f aceG0O_Col or property. But QuadMeshGO objects have two methods (in addition to the
methods common to all Sur f aceGO objects) that allow the client to attach an individual color
to each individual quadrilateral. Given a quad-mesh gmthat consists of m x n quadrilateras,
gm addFacet Col or s(col s) takesan m x n array of colors, and setsthe color of the quadri-
lateral (¢, j) tobecol [i][j] (foradl 1l <i¢ < m;1 < j<n) Ifcols hasincompatible
dimensions, the exception QuadMeshGO_BadSi ze israised.

80 3. REFERENCE MANUAL

gm set Col or Of Facet (i, j, c¢) assignsthecolor ¢ to thequadrilateral (i, j) of the quad-
mesh gm Thismethod may beinvoked only if acolor-array was previously attached to the quad-
mesh (viaaddFacet Col or s), otherwise, the exception QuadMeshGO_Col or sUndef i ned is
raised.

QuadMeshGO objects are affected by all the properties defined in the GO and Sur f aceGO
modules, and by no others.

3.30 TheProp Module

- hel p Prop;
Prop_BadMet hod: Exception
Prop_Badl nterval : Exception

TYPES
Prop <: Proxi edObj
PropNane <: Proxi edObj
PropVal <: Proxi edObj

PropBeh <: Proxi edj
PropRequest <: ProxiedQj & { start: () => Real, dur: () => Real }

A property is an object that describes the appearance of some particular aspect of a graphical
object (its color, size, location, etc). A property consists of two parts. a property name, which
states what aspect of the object is affected, and a property value, which stateshow it is affected.

Property names are objects of type Pr opNane, or a subtype thereof. PropNane inturnis
a subtype of Pr oxi edQbj ; it does not add any extra fields or methods. Thereis afixed set of
property names; the client program cannot create new ones at run time.

Property values are objects which describe the value of a property at a given point in time.
They are represented by objects of type PropVal . PropVal is an “abstract class’; it has
subtypesthat represent particular types of property values (such as real numbers or colors).

Wejust stated that property values encapsul ate time-variant values. So, at afirst approxima-
tion, they are functionsfrom timeto some value (reals, colors, etc). Because property valuescan
be shared by many properties, and be referred to by many other property values, it is desirable
to be able to change the function without having to create a new property value. For thisreason,
property values contain a behavior, which describes this function, and which can be changed
without having to create a new property value.

Property behaviors are represented by objects of type Pr opBeh. Thistypeis an “abstract
class’; its subtypes implement mappings to concrete values like real numbers or colors. These
subtypeshavein turn several subtypes, for constant, asynchronous, synchronous, and dependent
behaviors.

3.30 TheProp Module 81

A constant behavior is a behavior whose value does not depend on the current time. An
asynchronousbehavior isabehavior whoseval ue changes perpetual ly and over itsentirelifetime,
and does not depend on other property values. A dependent behavior is abehavior whose value
is dependent on other property values. The value of an asynchronous or dependent behavior is
computed using amethod supplied by the client program. If thismethod isfaulty (e.g. ill-typed),
the exception Pr op_BadMet hod israised.

Finally, a synchronous behavior isa behavior that accepts requeststo perform changes over
some finite period of time, and processes these changes only when a controlling animation
handle (see Section 3.7) issignaled. Each synchronousbehavior has afew methodsthat enqueue
standard requests (such as “move at constant speed over a straight path”) into its request queue.
In addition, it allowsthe client program to enqueue arbitrary requests. Requests are represented
by objects of type Pr opRequest , or a subtype thereof. Each request has a well-specified start
time (relative to the time at which the controlling animation handle is signaled) and duration,
and these values can be accessed by the methods st art and dur .

Start time and duration determine a time interval for each request. By definition, zero-
duration intervals are closed; all other intervals are open. Within the request queue of a
synchronous behavior, no two requests may have overlapping time intervals. If arequest that
would cause an overlap is enqueued, the exception Pr op_Badl nt er val israised.

82 3. REFERENCE MANUAL

3.31 TheBooleanProp Module

- hel p Bool eanPr op;
Bool eanPr op_NewConst (b: Bool): Bool eanPropVal
Bool eanPr op_NewSync(ah: Ani mHandl e, b: Bool): Bool eanPropVal
Bool eanPr op_NewAsync(beh: Bool eanPropAsyncBeh): Bool eanPr opVal
Bool eanPr op_NewDep(beh: Bool eanPr opDepBeh): Bool eanPr opVal
Bool eanPr op_NewConst Beh(b: Bool): Bool eanPr opConst Beh
Bool eanPr op_NewSyncBeh(ah: Ani nHandl e, b: Bool): Bool eanPropSyncBeh
Bool eanPr op_NewAsyncBeh(conput e: ML) : Bool eanPr opAsyncBeh
Bool eanPr op_NewDepBeh(conput e: M) : Bool eanPr opDepBeh
Bool eanPr op_NewRequest (start dur: Num value: M): Bool eanPropRequest
WHERE
Bool eanPr opNane <: PropNane & { bind: (v: Bool eanPropVal) => Prop }
Bool eanPropVal <: PropVal & { getBeh: () => Bool eanPropBeh,
set Beh: (Bool eanPropBeh) => (X,
get: () => Bool,
value: (Num => Bool }
Bool eanPr opBeh <: PropBeh
Bool eanPr opConst Beh <: Bool eanPropBeh & { set: (Bool) => & }
Bool eanPr opSyncBeh <: Bool eanPr opBeh &
{ addRequest: (Bool eanPropRequest) => Ck ! Prop_Badlnterval,
change: (Bool,Num) => Ck ! Prop_Badlnterval }
Bool eanPr opAsyncBeh <: Bool eanPropBeh & { conpute: M }
Bool eanPr opDepBeh <: Bool eanPropBeh & { conmpute: M }
Bool eanPr opRequest <: PropRequest & { value: M }

ML = Self (X <: Bool eanPropAsyncBeh) (Real) => Bool
M2 = Self (X <: Bool eanPropDepBeh) (Real) => Bool
MB = Self (X <: Bool eanPropRequest) (Bool,Real) => Bool

Num = Real + Int

A Bool eanPr opNane is a property name that associates with a boolean property vaue.
Bool eanPr opNane is a subtype of Pr opNane (see Section 3.30). It has one extra method,
bi nd, which isfor internal use only.

A Bool eanPr opVal isan object representing aboolean property value. Bool eanPr opVal
isasubtypeof Pr opVal . In addition to the methods commonto al Pr opVal and Pr oxi edbj
objects, aboolean property valuev has four additiona methods:

e v. get () returnsthe current value of v.

e v.val ue(t) returnsthevalueof v at timet . °

? Assuming that v has the same behavior at timet asit has now

3.31 The BooleanProp Module 83

e v. get Beh() returnsthe behavior of v.
e v. set Beh(beh) changesthe behavior of v to beh.
A Bool eanPr opBeh represents the behavior of a boolean property value. It has four subtypes:

1. Bool eanPr opConst Beh objects represent constant boolean behaviors. The function
Bool eanPr op_NewConst Beh(b) takesaboolean b and returns anew constant behavior
object whose initial value isb. The function Bool eanPr op_NewConst (b) returns a
new boolean property value v whose behavior is Bool eanPr op_NewConst Beh(b) . In
other words, v. get () evauatestob.

Bool eanPr opConst Beh objects understand one extra message: beh. set (b) changes
thevalue of beh to b.

2. Bool eanPr opAsyncBeh represents asynchronous boolean behaviors. Objects of this
type have one extra method, conmput e. This method is supplied by the client program,
but meant to be called only by the animation server. The method defines the value of beh
over time; beh. conput e(t) returnsthe value of beh at timet .

The function Bool eanPr op_NewAsyncBeh(nj takes a method mand returns a new
asynchronous behavior beh, such that beh. conmput e isset tom

The function Bool eanPr op_NewAsync(m) returns a new boolean property value v
whose behavior isBool eanPr op_NewAsyncBeh(n) .

3. Bool eanPr opDepBeh abjects represent dependent boolean behaviors, that is, boolean
behaviors whose value depends on other property values. Dependent boolean behaviors
have one extra method conput e, just like asynchronous boolean behaviors; they aso
have similar creation functions. The main difference between the two types is that
dependent bool ean behaviors ensure that the dependency relationshipsare acyclic. Cyclic
dependencies cause the exception Pr op_BadMet hod to be raised.

4. Bool eanPr opSyncBeh objects represent synchronous boolean behaviors. The function
Bool eanPr op_NewSyncBeh(ah, b) takesan animation handleah and abooleanb, and
returns a new synchronous boolean behavior that is controlled by ah and whose initial
valueisb. Bool eanPr op_NewSync(ah, b) returnsanew boolean property valuewhose
behavior isBool eanPr op_NewSyncBeh(ah, b) .

Synchronous boolean behaviors have two extra methods: beh. change(b, t) puts a
request into beh’s request queue that asks beh to changeits current valueto b, t seconds
after the controlling animation handle ah is signaled. beh. addRequest (r) puts a
client-defined reguest object r into beh’s request queue.

84

3. REFERENCE MANUAL

Recall that all request objects have start times and durations, and methodsst art and dur

to access them (see Section 3.30). Bool ean request objects have oneextramethod, val ue,
which is supplied by the client program, but meant to be caled only by the animation
server. Assume that the boolean request r has a start time of s and a duration of d, and
that it is enqueued in the request queue of a behavior beh whose controlling animation
handleah was signaled a timet,. Thenr. val ue(bg, t) returnsthe value beh should
haveat timet o+t , assuming that itsvaluewasb, at timet +s, just beforer became active.
t can range between s and s+d.

Bool eanPr op_NewRequest (s, d, m returnsanew boolean request object whose start
timeiss, whose durationisd, and whoseval ue method issettom

3.32 The RealProp Module 85

3.32 TheRealProp Module

- hel p Real Prop;
Real Prop_NewConst (r: Num: Real PropVal
Real Prop_NewSync(ah: AninmHandl e, r: Num: Real PropVal
Real Prop_NewAsync(beh: Real PropAsyncBeh): Real PropVal
Real Prop_NewDep(beh: Real PropDepBeh): Real PropVal
Real Prop_NewConst Beh(r: Num): Real PropConst Beh
Real Prop_NewSyncBeh(ah: AninHandl e, r: Nunm): Real PropSyncBeh
Real Prop_NewAsyncBeh(conpute: ML): Real PropAsyncBeh
Real Prop_NewDepBeh(conpute: M) : Real PropDepBeh
Real Prop_NewRequest (start dur: Num value: M): Real PropRequest
WHERE
Real PropName <: PropName & { bind: (v: Real PropVal) => Prop }
Real PropVal <: PropVal & { getBeh: () => Real PropBeh,
set Beh: (Real PropBeh) => C,
get: () => Real,
value: (Nun) => Real }
Real PropBeh <: PropBeh
Real PropConst Beh <: Real PropBeh & { set: (Num => X }
Real PropSyncBeh <: Real PropBeh &
{ addRequest: (Real PropRequest) => Ok ! Prop_Badl nterval,
I'i nChangeTo: (Num Num Num) => Ok ! Prop_Badl nterval,
I'i nChangeBy: (Num Num Num) => Ok ! Prop_Badl nterval }
Real PropAsyncBeh <: Real PropBeh & { compute: M }
Real PropDepBeh <: Real PropBeh & { conpute: M }
Real PropRequest <: PropRequest & { value: M }
ML = Self (X <: Real PropAsyncBeh) (Real) => Real
M2 Sel f (X <! Real PropDepBeh) (Real) => Real
VB Self (X <: Real PropRequest) (Real,Real) => Real
Num = Real + Int

A Real Pr opNane isaproperty namethat associateswith areal property value. A Real Pr opVal
is an object representing a real property value. A Real PropBeh represents the behavior of
a real property value. It has four subtypes: Real PropConst Beh, which represents con-
stant real behaviors, Real PropAsyncBeh, which represents asynchronous real behaviors;
Real Pr opDepBeh, which representsdependent real behaviors; and Real Pr opSyncBeh, which
representssynchronousreal behaviors. Finally, aReal Pr opRequest isanabject that represents
arequest to a synchronous real behavior.

The methods and creation functions associated with these types are completely anal ogous
to those provided by the Bool eanPr op module, except for the methods of Real Pr opSyncBeh
objects.

86 3. REFERENCE MANUAL

A synchronous real behavior is a Real PropBeh object that has three extra methods:
beh. 1 i nChangeTo(r, s, d) putsarequest into beh’s request queue that asks beh to change
its current value to r . The change starts s seconds after the controlling animation handle ah
issignaled, and completes d seconds later. The interpolationis linear, that is, the intermediate
values move at constant speed through R. The method call beh. | i nChangeBy(r, s, d) is
similar, but changesthevalueof beh by r . Finaly, beh. addRequest (r) putsaclient-defined
request object r into beh’s regquest queue.

3.33 ThePointProp Module

- hel p Poi nt Prop;
Poi nt Prop_NewConst (r: Point3): PointPropVal
Poi nt Prop_NewSync(ah: AninHandl e, r: Point3): PointPropVal
Poi nt Prop_NewAsync(beh: Poi nt PropAsyncBeh): Poi nt PropVal
Poi nt Prop_NewDep(beh: Poi nt PropDepBeh): Poi nt PropVal
Poi nt Prop_NewConst Beh(r: Poi nt3): PointPropConst Beh
Poi nt Prop_NewSyncBeh(ah: AninmHandl e, r: Point3): PointPropSyncBeh
Poi nt Prop_NewAsyncBeh(conput e: ML) : Poi nt PropAsyncBeh
Poi nt Prop_NewDepBeh(conput e: M) : Poi nt PropDepBeh
Poi nt Prop_NewRequest (start dur: Num value: M): PointPropRequest
WHERE
Poi nt PropName <: PropNane & { bind: (v: PointPropVal) => Prop }
Poi nt PropVal <: PropVal & { getBeh: () => PointPropBeh,
set Beh: (PointPropBeh) => C,
get: () => Point3,
value: (Num) => Point3 }

Po
Po
Po

nt PropBeh <: PropBeh
nt PropConst Beh <: PointPropBeh & { set: (Point3) => & }
nt PropSyncBeh <: Poi nt PropBeh &
{ addRequest: (PointPropRequest) => Ok ! Prop_Badlnterval,
I'i nMoveTo: (Point3, Num Num) => Ok ! Prop_Badl nterval,
I'i nMoveBy: (Point3, Num Num) => Ok ! Prop_Badlnterval }
Poi nt PropAsyncBeh <: PointPropBeh & { conpute: M }
Poi nt PropDepBeh <: Poi nt PropBeh & { conpute: M }
Poi nt PropRequest <: PropRequest & { value: M }

ML = Self (X <: PointPropAsyncBeh) (Real) => Point3
M2 = Self (X <: PointPropDepBeh) (Real) => Point3
MB = Self (X <: PointPropRequest) (Point3,Real) => Point3

Num = Real + Int

A Poi nt Pr opNane isaproperty namethat associateswith apoint property value. A Poi nt Pr op-
Val isan object representing apoint property value. A Poi nt Pr opBeh represents the behavior

3.33 The PointProp Module 87

of a point property value. It has four subtypes: Poi nt Pr opConst Beh, which represents con-
stant point behaviors; Poi nt Pr opAsyncBeh, which represents asynchronous point behaviors;
Poi nt Pr opDepBeh, which represents dependent point behaviors; and Poi nt Pr opSyncBeh,
which represents synchronous point behaviors. Finally, aPoi nt Pr opRequest isan object that
represents a request to a synchronous point behavior.

The methods and creation functions associ ated with these types are compl etely anal ogousto
those provided by the Bool eanPr op module, except for the methods of Poi nt Pr opSyncBeh
objects.

A synchronous point behavior is a Poi nt PropBeh that has three extra methods:
beh.1inMoveTo(p, s, d) puts arequest into beh’s request queue that asks beh to change
its current value to p. The change starts s seconds after the controlling animation handle ah
issignaled, and completes d seconds later. The interpolationis linear, that is, the intermediate
values move at constant speed through R3. The method call beh. | i nMveBy(p, s, d) is
similar, but changesthevalue of beh by p. Finadly, beh. addRequest (r) putsaclient-defined
request object r into beh’s request queue.

88 3. REFERENCE MANUAL

3.34 TheColorProp Module

- hel p Col orProp;
Col or Prop_NewConst (r: Col): Col or PropVval
Col or Prop_NewSync(ah: AninmHandl e, r: Col): Col orPropVal
Col or Prop_NewAsync(beh: Col or PropAsyncBeh): Col or PropVal
Col or Prop_NewDep(beh: Col or PropDepBeh): Col or PropVal
Col or Prop_NewConst Beh(r: Col): Col or PropConst Beh
Col or Prop_NewSyncBeh(ah: AninHandl e, r: Col): Col orPropSyncBeh
Col or Prop_NewAsyncBeh(conpute: ML) : Col or PropAsyncBeh
Col or Prop_NewDepBeh(conput e: M) : Col or PropDepBeh
Col or Prop_NewRequest (start dur: Num value: M): Col or PropRequest
WHERE
Col or PropName <: PropName & { bind: (v: ColorPropVal) => Prop }
Col or PropVal <: PropVal & { getBeh: () => Col or PropBeh,
set Beh: (Col orPropBeh) => (x,
get: () => Color,
value: (Nun) => Color }
Col or PropBeh <: PropBeh
Col or PropConst Beh <: Col orPropBeh & { set: (Col) => & }
Col or PropSyncBeh <: Col or PropBeh &
{ addRequest: (Col orPropRequest) => Ok ! Prop_Badl nterval,
rgbLi nChangeTo: (Col, Num Num) => Ok ! Prop_Badlnterval }
Col or PropAsyncBeh <: Col orPropBeh & { conmpute: M }
Col or PropDepBeh <: Col orPropBeh & { conpute: M }
Col or PropRequest <: PropRequest & { value: M }

ML = Self (X <: Col or PropAsyncBeh) (Real) => Col or

M2 = Self (X <: Col orPropDepBeh) (Real) => Col or

MB = Self (X <: Col orPropRequest) (Color, Real) => Col or
Col = Color + Text

Num = Real + Int

A Col or Pr opNarre isaproperty namethat associateswith acolor property value. A Col or Pr op-
Val isan object representing acolor property value. A Col or Pr opBeh represents the behavior
of acolor property value. It has four subtypes: Col or Pr opConst Beh, which represents con-
stant color behaviors; Col or Pr opAsyncBeh, which represents asynchronous color behaviors;
Col or Pr opDepBeh, which represents dependent color behaviors; and Col or Pr opSyncBeh,
which represents synchronous color behaviors. Finally, a Col or Pr opRequest isan object that
represents a request to a synchronous color behavior.

The creation functions for these types are similar to those provided by the Bool eanPr op
module, except that they are overloaded: wherethe Bool eanPr op creation functions accepted
a boolean as an argument, these creation functions accept either a Col or or a Text describ-

3.34 The ColorProp Module 89

ing a color. For example, the expression Col or Pr op_NewConst (" red") is equivaent to
Col or Prop_NewConst (col or _named("red")).

The methods associated with these types are also analogous to those provided by the
Bool eanPr op module, except for the methods of Col or Pr opSyncBeh objects.

Synchronous color behaviors are Col or PropBeh objects that have two extra methods:
beh. addRequest (r) puts a client-defined request object r into beh’s request queue.
beh. rgbLi nChangeTo(c, s, d) puts a predefined request object into beh’s request queue
that asks beh to changeits current valueto c. The change startss seconds after the controlling
animation handle ah is signaled, and completes d seconds later. The interpolation is linear
through RGB space, that is, the intermediate colors move on a straight path and at a constant
speed through the RGB cube.

90

3.35 TheTransformProp Module

3. REFERENCE MANUAL

- hel p Transf or nPr op;

Transf or mProp_NewConst (m Matri x4):
Ani nHandl e,

Tr ansf or nPr op_NewSync(ah:
Transf or mProp_NewAsync(beh:

m Matrix4):
Tr ansf or nPr opAsyncBeh) :

Tr ansf or nPr opVal

Tr ansf or nPr opVal
Tr ansf or nPr opVal

Tr ansf or nPr op_NewDep(beh:

Tr ansf or nPr opDepBeh) :

Tr ansf or nPr opVal

Transf or mPr op_NewConst Beh(m Matri x4):
Tr ansf or mPr op_NewSyncBeh(ah: Ani nHandl e,

Tr ansf or mPr opConst Beh

m Matrix4):

Transf or nPr opSyncBeh

Transf or nPr op_NewAsyncBeh(conput e:

ML) : Tr ansf or mPr opAsyncBeh

Tr ansf or mPr op_NewDepBeh(conput e:

M) : Tr ansf or mPr opDepBeh

Transf or nProp_NewRequest (start dur:
WHERE

Tr ansf or nPr opName <:

Transf or nPropVal <:

PropNane & { bind:
PropVal & { getBeh:
set Beh:
get: ()
val ue:
Tr ansf or nPropBeh <:
Tr ansf or mPr opConst Beh <:

Pr opBeh

{ set:

Num val ue:

(Num)

MB) :

(v:

Transf or mPr opVal)

Tr ansf or nPr opRequest

=> Prop }

() => Transf or nPropBeh,

(Transf or mPr opBeh)

=> Matri x4,

Transf or nPropBeh &
(Matrix4)

(Matrix4)

=> O(,

=> Matrix4 }

=> O(,

=> O(,

Transf or mPropSyncBeh <:
{ addRequest:
reset: (Num
changeTo:

transl ate:

scal e:
rotateX
rotatey:
rotatez:

Tr ansf or nPr opAsyncBeh <:
Tr ansf or mPr opDepBeh <:
Tr ansf or nPr opRequest <:
ML Self (X <
MR Self (X <
VB Self (X <
Num = Real = Int

(Transf or mPr opRequest)
= & !
(Matri x4, Num Num)
(Num Num Num Num Num)
(Num Num Num Num Num
(Num Num Nunj)
(Num Num Nunj)
(Num Num Nunj)
Transf or nPropBeh & { conpute:

conpose:
reset: ()
transl ate:
scal e:
rot at eX:
rotatev:
rot at eZ:

Transf ormPropBeh &

Prop_Badl nt erval,
= X !

= K !
= !
= Ck !
= !

Transf or nPropBeh & { conpute:
Pr opRequest
Tr ansf or nPropAsyncBeh) (Real)
Tr ansf or nPr opDepBeh) (Real)
Tr ansf or nPropRequest) (Matri x4, Real)

& { val ue:

=> O(’

(Num Num Num)
(Num Num Num)
(Num)
(Num)
(Num)

= Ck !

=> O(,
=> O(,

= (X,

=> O(,

= kK }

Prop_Badl nterval ,

Prop_Badl nterval ,
= !
Prop_Badl nt erval ,
Prop_Badl nterval ,
Prop_Badl nterval ,
Prop_Badl nterval }

Prop_Badl nterval ,

ML}
M}

MB }
=> Matrix4
=> Matrix4

=> Matrix4

3.35 The TransformProp Module 91

A Transf or nPr opNane is a property name that associates with a transformation property
value. A Transfor nPropVal is an object representing a transformation property value. A
Tr ansf or nPr opBeh representsthebehavior of atransformation property value. It hasfour sub-
types: Tr ansf or mPr opConst Beh represents constant transformation behaviors; Tr ansf or m
Pr opAsyncBeh represents asynchronous transformation behaviors; Tr ansf or nPr opDepBeh
represents dependent transformation behaviors; and Tr ansf or nPr opSyncBeh represents syn-
chronous transformation behaviors. Finally, a Tr ansf or nPr opRequest is an object that
represents a request to a synchronous transformation behavior.

The methods and creation functions associ ated with these types are compl etely anal ogousto
those provided by the Bool eanPr op module, except for the methods of Poi nt Pr opConst Beh
and Poi nt Pr opSyncBeh objects.

Tr ansf or nPr opConst Beh isasubtypeof Tr ansf or nPr opBeh that adds 8 extramethods.
In the following, assume that n denotes the current value (a Mat ri x4; see Section 3.2) of the
constant transformation behavior beh:

e beh. set (m) changesthevaueof beh tom

e beh. reset () changesthevalueof beh toMatri x4_1d.

e beh. conpose(n) changesthevalueof beh toMat ri x4_Mul ti pl y(mn).
e beh.transl ate(x,y, z) changesthevalueof behtoMat ri x4_Transl ate(n, x, vy, z) .
e beh. scal e(x, vy, z) changesthevalueof beh toMat ri x4_Scal e(n, x, vV, z) .
e beh. rot at eX(a) changesthevalueof beh to Mat ri x4_Rot at eX(n, a) .

e beh. rotateY(a) changesthevalueof beh toMat ri x4_Rot ateY(n, a) .

e beh. rotat eZ(a) changesthevalueof beh to Mat ri x4_Rot at eZ(n, a) .

Tr ansf or nPr opSyncBeh is another subtype of Tr ansf or nPr opBeh that also adds 8 extra
methods. The first method, beh. addRequest (1), puts a client-defined request object r into
beh’s request queue. The remaining seven methods all put predefined request objects into the
behavior’'s request queue, asking it to change its current value (cal it n) to a new value. The
methods take arguments s and d, indicating that the requested change should start s seconds
after the controlling animation handleis signaled, and should be completed d seconds | ater.

e beh.reset(s) enqueues arequest to change to the value Mat ri x4_I d. This method
has no argument d, so there is no interpolation between n and Mat ri x4_1I d.

92

3. REFERENCE MANUAL

beh. changeTo(m s, d) enqueues arequest to change to the valuem Theinterpolation
between the two matrices is done so that it |eads to a smooth-looking motion of the scene.
Both mand n must be matrices that can be constructed using only translation, rotation,
and uniformscaling operations.

beh. transl ate(x,y, z, s, d) enqueuesareguest to changeto the value
Matri x4_Transl ate(n, x,vy, z).

beh. scal e(x, vy, z, s, d) enqueues arequest to change to the value
Matri x4_Scal e(n, x,Vy, 2).

beh. r ot at eX(a, s, d) enqueues arequest to changeto the value
Mat ri x4_Rot at eX(n, a) .

beh. rot at eY(a, s, d) enqueues arequest to changeto the value
Matri x4_Rot ateY(n, a) .

beh. r ot at eZ(a, s, d) enqueues arequest to change to the value
Mat ri x4_Rot at eZ(n, a) .

3.36 ThelineTypeProp Module 93

3.36 TheLineTypeProp Module

- hel p Li neTypeProp;
Li neTypeProp_NewConst (I t: LineType): LineTypePropVal
Li neTypePr op_NewSync(ah: AninHandl e, It: LineType): LineTypePropVal
Li neTypePr op_NewAsync(beh: LineTypePropAsyncBeh): LineTypePropVal
Li neTypePr op_NewDep(beh: Li neTypePropDepBeh): LineTypePropVal
Li neTypePr op_NewConst Beh(It: LineType): LineTypePropConstBeh
Li neTypePr op_NewSyncBeh(ah: AninHandl e, |t: LineType): LineTypePropSyncBeh
Li neTypePr op_NewAsyncBeh(conput e: ML) : Li neTypePr opAsyncBeh
Li neTypePr op_NewDepBeh(conput e: M) : Li neTypePr opDepBeh
Li neTypePr op_NewRequest (start dur: Num value: M): LineTypePropRequest
WHERE
Li neTypePropNane <: PropName & { bind: (v: LineTypePropVal) => Prop }
Li neTypePropVal <: PropVal & { getBeh: () => LineTypePropBeh,
set Beh: (LineTypePropBeh) => Xk,
get: () => LineType,
val ue: (Nun) => LineType }
Li neTypePropBeh <: PropBeh
Li neTypePropConst Beh <: LineTypePropBeh & { set: (LineType) => Ck }
Li neTypePropSyncBeh <: LineTypePropBeh &
{ addRequest: (LineTypePropRequest) => k ! Prop_Badlnterval,
change: (LineType, Num => Ck ! Prop_Badlnterval }
Li neTypePr opAsyncBeh <: LineTypePropBeh & { conmpute: M }
Li neTypePr opDepBeh <: LineTypePropBeh & { conpute: M }
Li neTypePr opRequest <: PropRequest & { value: M }

ML = Self (X <: LineTypePropAsyncBeh) (Real) => LineType
M2 = Self (X <: LineTypePropDepBeh) (Real) => LineType
MB = Self (X <: LineTypePropRequest) (LineType, Real) => LineType

Li neType = Text (one of "Solid", "Dashed", "Dotted", "DashDot")
Num = Real + Int

There are two types of graphical objects that use lines: Li neGO objects, which represent lines
themselves, and Sur f aceGOobjects (including spheres, cones, etc). Thelatter are composed of
individua polygons, and the outline of a polygon can be surrounded by aline.

Oblig-3D supportsfour different line styles: solid, dashed, dotted, and alternatingly dashed
and dotted lines. We identify these line types by the strings " Sol i d", " Dashed" , " Dot t ed",
and " DashDot ", and refer to the set of these four stringsasthetypeLi neType.

The Li neTypePr op module supplies line type property names, values, behaviors, and
request objects. All of thetypesand functions exported by the module are compl etely anal ogous
to those exported by the Bool eanPr op module, with all occurrences of Bool replaced by
Li neType.

94

3. REFERENCE MANUAL

3.37 TheMarker TypeProp Module

WH

hel p Mar ker TypePr op;
Mar ker TypePr op_NewConst (1t: Marker Type): Marker TypePr opVal
Mar ker TypePr op_NewSync(ah: Ani nHandl e, [t: MarkerType): Marker TypePropVal
Mar ker TypePr op_NewAsync(beh: Marker TypePr opAsyncBeh): Marker TypePropVal
Mar ker TypePr op_NewDep(beh: Mar ker TypePropDepBeh) : Mar ker TypePr opVal
Mar ker TypePr op_NewConst Beh(1t: Marker Type): Marker TypePropConst Beh
Mar ker TypePr op_NewSyncBeh(ah: Ani nHandl e,
t: MarkerType): Marker TypePropSyncBeh
Mar ker TypePr op_NewAsyncBeh(conmput e: ML) : Mar ker TypePr opAsyncBeh
Mar ker TypePr op_NewDepBeh(conput e: M) : Mar ker TypePr opDepBeh
Mar ker TypePr op_NewRequest (start dur: Num value: M): Marker TypePropRequest
ERE
Mar ker TypePropNane <: PropNanme & { bind: (v: MarkerTypePropVal) => Prop }
Mar ker TypePropVal <: PropVal & { getBeh: () => Marker TypePropBeh,
set Beh: (MarkerTypePropBeh) => (X,
get: () => MarkerType,
val ue: (Num) => MarkerType }
Mar ker TypePr opBeh <: PropBeh
Mar ker TypePr opConst Beh <: Marker TypePropBeh & { set: (MarkerType) => K }
Mar ker TypePr opSyncBeh <: Marker TypePropBeh &
{ addRequest: (MarkerTypePropRequest) => Ck ! Prop_Badl nterval,
change: (MarkerType, Nun) => Ok ! Prop_Badlnterval }
Mar ker TypePr opAsyncBeh <: Marker TypePropBeh & { conmpute: M }
Mar ker TypePr opDepBeh <: Marker TypePropBeh & { compute: M }
Mar ker TypePr opRequest <: PropRequest & { value: M }
ML = Self (X <: MarkerTypePropAsyncBeh) (Real) => MarkerType
%4 Sel f (X <: Marker TypePropDepBeh) (Real) => MarkerType
MB = Self (X <: MarkerTypePropRequest) (MarkerType, Real) => MarkerType
Mar ker Type = Text (one of "Dot", "Grcle", "Cross", "Asterisk", "X')
Num = Real + Int

Mar ker GOobjectsrepresent markers, that is, objectsthat mark asinglepoint. Oblig-3D supports
five different marker styles: -, o, +, *, and x. We identify these marker types by the strings
"Dot","Circle","Cross","Asterisk",and" X", and refer to the set of these five strings

as

thetype Mar ker Type.
TheMar ker TypePr op modul e suppliesmarker type property names, values, behaviors, and

request objects. All of thetypesand functions exported by the module are compl etely anal ogous

to

those exported by the Bool eanPr op module, with al occurrences of Bool replaced by

Mar ker Type.

3.38 The RasterModeProp Module

3.38 TheRasterModeProp Module

95

- hel p Rast er ModePr op;

Rast er MbdePr op_NewConst (1t: Raster Mde):

Rast er ModePr op_NewSync(ah: Ani nHandl e,

It:

Rast er MbdePr opVal
Rast er Mbde) : Rast er ModePr opVal

Rast er MbdePr op_NewAsync(beh: Raster ModePr opAsyncBeh): RasterMbdePropVal
Rast er ModePr op_NewDep(beh: Rast er ModePropDepBeh): Rast er ModePr opVal

Rast er ModePr op_NewConst Beh(It: RasterMde):
Rast er ModePr op_NewSyncBeh(ah: Ani nHandl e,
It: RasterMde):

Rast er ModePr opConst Beh

Rast er ModePr opSyncBeh

Rast er MbdePr op_NewAsyncBeh(conmput e: ML) : Rast er ModePr opAsyncBeh
Rast er ModePr op_NewDepBeh(conput e: M) : Rast er ModePr opDepBeh
Rast er ModePr op_NewRequest (start dur: Num value: M): RasterMdePropRequest

WHERE
Rast er ModePr opNanme <: PropNanme &

{ bind: (v: RasterMdePropval) => Prop }

Rast er ModePropVal <: PropVal & { getBeh:
set Beh:

get: ()

val ue:
Rast er ModePr opBeh <: PropBeh

=> Rast er MbdePr opBeh,
(Rast er ModePr opBeh) => Ck,
=> Rast er Mbde,

=> Rast er Mbde }

Rast er ModePr opConst Beh <: Raster MbdePropBeh &

{ set: (RasterMde) => & }

Rast er ModePr opSyncBeh <: Raster ModePropBeh &
{ addRequest: (RasterMdePropRequest)

=> Ck ! Prop_Badlnterval,

change: (RasterMde, Num) => Ok ! Prop_Badl nterval }
Rast er ModePr opAsyncBeh <: RasterMbdePropBeh & { conpute: M }
Rast er ModePr opDepBeh <: Raster ModePropBeh & { conpute: M }
Rast er ModePr opRequest <: PropRequest & { value: M }

=> Rast er Mbde

ML = Self (X <: RasterMdePropAsyncBeh) (Real) => RasterMde
M2 = Self (X <: RasterMdePropDepBeh) (Real)
MB =

Num = Real + Int

Sel f (X <: RasterMdePropRequest) (RasterMde, Real) => RasterMde
Rast er Mbde = Text (one of "Hollow', "Solid",

" Enpty")

Sur f ace@0objectsrepresent surfaces, and these surfaces are composed of polygons. Oblig-3D
supportsthree different rendering stylesfor polygons: they can be solid, meaning that the entire
surface is shown, they can be hollow, meaning that only the edges are shown, or they can be
empty, meaning that neither interior nor edges are shown. Weidentify these stylesby the strings
"Solid", "Holl ow', and "Enpty", and refer to the set of these three strings as the type

Rast er Mode.

TheRast er ModePr op module suppliesraster mode property names, values, behaviors, and
request objects. All of thetypesand functions exported by the module are compl etely anal ogous

96

3. REFERENCE MANUAL

to those exported by the Bool eanPr op module, with all occurrences of Bool replaced by
Rast er Mode.

3.39

The ShadingProp Module

- hel p Shadi ngPr op;
Shadi ngPr op_NewConst (I t: Shading): Shadi ngPropVal
Shadi ngPr op_NewSync(ah: AninHandl e, It: Shading): ShadingPropVal
Shadi ngPr op_NewAsync(beh: Shadi ngPr opAsyncBeh): Shadi ngPr opVal
Shadi ngPr op_NewDep(beh: Shadi ngPr opDepBeh): Shadi ngPr opVal
Shadi ngPr op_NewConst Beh(1t: Shadi ng): Shadi ngPropConst Beh
Shadi ngPr op_NewSyncBeh(ah: AninHandl e, |t: Shading): Shadi ngPropSyncBeh
Shadi ngPr op_NewAsyncBeh(conput e: ML) : Shadi ngPr opAsyncBeh
Shadi ngPr op_NewDepBeh(conmput e: M) : Shadi ngPr opDepBeh
Shadi ngPr op_NewRequest (start dur: Num value: M): Shadi ngPropRequest

WHERE

Shadi ngPr opNane <: PropNane & { bind: (v: Shadi ngPropVal) => Prop }
Shadi ngPropVal <: PropVal & { getBeh: () => Shadi ngPropBeh,

set Beh: (Shadi ngPropBeh) => Xk,
get: () => Shading,
value: (Num => Shading }

Shadi ngPr opBeh <: PropBeh
Shadi ngPr opConst Beh <: Shadi ngPropBeh & { set: (Shading) => Ck }
Shadi ngPr opSyncBeh <: Shadi ngPropBeh &

{ addRequest: (Shadi ngPropRequest) => Ck ! Prop_Badlnterval,
change: (Shading, Num => Ck ! Prop_Badlnterval }

Shadi ngPr opAsyncBeh <: Shadi ngPropBeh & { conpute : M }
Shadi ngPr opDepBeh <: Shadi ngPropBeh & { conpute: M }
Shadi ngPr opRequest <: PropRequest & { value: M }

ML
%4
VB

Sel f (X <: Shadi ngPropAsyncBeh) (Real) => Shading
Sel f (X <: Shadi ngPropDepBeh) (Real) => Shading
Sel f (X <: Shadi ngPropRequest) (Shading, Real) => Shading

Shading = Text ("Flat" or "CGouraud")
Num = Real + Int

Oblig-3D supports two shading methods for polygona surfaces: Flat shading and Gouraud
shading. We identify these stylesby the strings" Fl at " and " Gour aud" , and refer to the set of
these two strings as the type Shadi ng.

ThePEX 5.0 standard providesfor two other shading methods, namely “ dot-product” shading
and Phong shading. However, since most implementations of PEX (including the ones available
to us) do not support these two shading methods, and since OpenGL does not provide them at
al, we did not include them in Oblig-3D.

340 The MouseCB Module 97

The Shadi ngPr op module supplies shading property names, val ues, behaviors, and request
objects. All of thetypesand functionsexported by the modul e are completely anal ogousto those
exported by the Bool eanPr op module, with all occurrences of Bool replaced by Shadi ng.

340 TheMouseCB Module

- hel p MouseCB;
MouseCB_New(i nvoke: M: MuseCB
WHERE
MouseCB <: ProxiedObj & { invoke: M}
M= Self (X <: MuseCB) (MuseRec) =>
MouseRec = { pos: Point2, change: Button,
nodi fiers: [Mdifier], clickType: dickType }

Point2 = [2*Int]
Button = Text (one of "Left", "Mddle", "Right")
Modi fier = Text (a Button or one of "Shift", "Lock", "Control", "Option")

CickType = Text (one of "FirstDown", "QherDown", "CQherUp", "LastUp")

Section 3.8 described Oblig-3D’s basic model of how to specify interactive behavior. User
actions (such as key strokes or mouse actions) that occur within the scope of an animation
window cause events to be forwarded to the root object associated with the window. Each
graphical object (including the root object) contains a stack of callback objects for each event
type. Callback objects are used to encapsulate reactive behavior. The topmost callback object
on each stack determines how the graphical object reacts to an event of the corresponding type.
One possibleresponseisto forward the event to the children of the graphical object.

A MbuseCB, or mouse callback object, describes the reactive behavior of a graphical object
in response to a mouse button transition. MouseCB is a subtype of Pr oxi edQbj ; it adds one
extra method, i nvoke, which is supplied by the client, and called by the animation server in
response to a mouse button transition. i nvoke takes two arguments, the mouse callback object
sel f that isreceiving the message, and a mouse event record nr .

A mouse event record is an object with four fields, pos, change, nodi fiers, and
clickType. Note that MouseRec has no supertype and does not contain any methods; in
other words, its Modula-3 equivalent would be a record rather than an object.

The pos field contains a Poi nt 2, an array of two integers. pos describes the position of
the mouse pointer when the button transition occurred.

The change field contains one of thefollowing strings: " Left","M ddl e",or "Ri ght ".
It describes which mouse button was pressed or rel eased.

Thenodi fi er s field containsan array of strings; each string can have one of the following
values. "Left","Mddle", or "Right", "Shift", "Lock", "Control", or "Qption".

98 3. REFERENCE MANUAL

The nodi fi er s field describes which other mouse buttons and keyboard modifier keys were
depressed while the mouse button transition occurred.

Finaly, the clickType field contains one of the following strings: " Fi r st Down",
"t her Down", "Qt her Up", or "Last Up". It describes whether the mouse button went up
or down, and whether any other mouse buttons were pressed at that time.

MouseCB_New(n) creates a new mouse callback object, setsitsi nvoke method to m and
returnsit.

341 ThePositionCB Module

- hel p PositionCB;
Posi ti onCB_New(i nvoke: M: PositionCB

WHERE
PositionCB <: Proxied®j & { invoke: M}
M= Self (X <: PositionCB) (PositionRec) =>
PositionRec = { pos: Point2, nodifiers: [Mdifier] }
Point2 = [2*Int]
Modi fier = Text (one of "Left", "Mddle", "Right",

"Shift", "Lock", "Control", "Option")

A Posi t i onCB, or position callback object, describesthe reactive behavior of agraphical object
in response to a change in mouse position. Posi ti onCB isa subtype of Pr oxi edQbj ; it adds
oneextramethod, i nvoke, whichissupplied by theclient, and called by the animation server in
response to a position change. i nvoke takes two arguments, the position callback object sel f
that is receiving the message, and a position event record pr .

A positionevent record isan object (really arecord) with two fields, pos and modi fi ers.
pos describesthe new position of the mouse pointer; modi f i er s describeswhich other mouse
buttons and keyboard modifier keys were depressed while the position change occurred. The
two fields have the same types as the corresponding MouseRec fields (see Section 3.40).

Posi ti onCB_New(n) createsanew position callback object, setsitsi nvoke methodto m
and returnsit.

342 TheKeyCB Module 99

342 TheKeyCB Module

- hel p KeyCB;
KeyCB_New(i nvoke: M: KeyCB
WHERE
KeyCB <: ProxiedObj & { invoke: M}
M= Self (X <: KeyCB) (KeyRec) =>
KeyRec = { change: Text, wentDown: Bool, nodifiers: [Mdifier] }
Modi fier = Text (one of "Left", "Mddle", "Right",
"Shift", "Lock", "Control", "Option")

A KeyCB, or key callback object, describesthereactive behavior of agraphical object inresponse
to a keyboard key transition. KeyCB is a subtype of Pr oxi edQbj ; it adds one extra method,
i nvoke, which is supplied by the client, and called by the animation server in response to a
key transition. i nvoke takes two arguments, the key callback object sel f that isreceiving the
message, and akey event record kr .

A key event record is an object (really arecord) with three fields, change, went Down, and
modi fi ers. Thechange field contains a string indicating which key was pressed or rel eased.
The went Down field contains a boolean indicating whether the key went down or up. Finaly,
the nodi fi er s field describes which other mouse buttons and keyboard modifier keys were
depressed while the key transition occurred. Itstypeisthe same as the type of the nodi fi ers
field of MouseRec (see Section 3.40).

KeyCB_New(m) createsanew key callback object, setsitsi nvoke method to m and returns
it.

100 3. REFERENCE MANUAL

Acknowledgments

Anim3D and Oblig-3D were designed jointly with Marc Brown. The final design of the
system owes much to Marc's taste for solutions that are both simple and elegant. Stephen
Harrison made some important contributions to the early design of the system. Luca Cardelli
designed and implemented Oblig, the interpreted language used by our animation system. Luca
also helped in embedding the Obliq interpreter into Oblig-3D. Lyle Ramshaw explained the
relationship between transformation matrices and quaternionsto us. All drawingsin this report
were produced using Juno-I11, a constraint-based drawing editor devel oped by Allan Heydon and
Greg Nelson. Marc, Allan, and Lucaread various drafts of thisreport; their comments improved
both technica accuracy and clarity of the exposition. Finally, thanks to Cynthia Hibbard for
helping to improve the presentation, and for explaining the subtleties of the defining relativein
the process.

REFERENCES 101

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

(8]
[9]

[10]

[11]

American National Standards Institute. American National Standard for Informa-
tion Processing Systems — Programmer’s Hierarchical Interactive Graphics Sys-
tem (PHIGS) Functional Description, Archive File Format, Clear-Text Encoding of
ArchiveFile, X3.144-1988, American National Standards Institute, New York, NY, 1988.

Marc H. Brownand Marc A. Ngjork. Algorithm Animation using 3D I nter active Graph-
ics. In ACM Symposiumon User Interface Software and Technol ogy, 93 — 100 (November
1993). Also appeared as Research Report 110a, Digital Equipment Corp., Systems Re-
search Center, Palo Alto, CA (September 1993). There is an accompanying video tape,
SRC Research Report 110b.

Luca Cardelli. Oblig — A Language with Distributed Scope. Research Report 122,
Digital Equipment Corp., Systems Research Center, Palo Alto, CA (June 1994).

Matthew Conway: Randy Pausch, Rich Gossweiler, and Tommy Burnette. Alice: A Rapid
Prototyping System for Building Virtual Environments. In Conference Companion,
CHI’94, 295-296 (April 1994).

Robert DeLine. Alice: A Rapid Prototyping System for Three-Dimensional I nteractive
Graphical Environments. University of Virginia, Dept. of Computer Science (May 1993).

Parris Egbert and William Kubitz. Application Graphics M odelling Support Through
Object Orientation. IEEE Computer, 84-91 (October 1992).

Cona Elliott, Greg Schechter, Ricky Yeung, Salim Abi-Ezzi. TBAG: A High Levd
Framework for Interactive, Animated 3D Graphics Applications. Computer Graphics
Proceedings, Annual Conference Series (SGGRAPH '94 Proceedings), 421434 (July
1994).

Tom Gaskins. PEXlib Programming Manual. O'Rellly & Associates, Inc., 1992.

Graphics Standards Planning Committee. Status Report of the Graphics Standards
Planning Committee. Computer Graphics, 13(3) (August 1979).

Philip M. Hubbard, MatthiasM. WIloka, and Robert C. Zeleznik. UGA: A Unified Graph-
ics Architecture. Technical Report CS-91-30, Brown University, Dept. of Computer Sci-
ence, Providence, RI (June 1991).

International Standards Organization. I nternational Standard I nformation Processing
Systems — Computer Graphics — Graphical Kernel System for Three Dimensions

102

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

(GKS-3D) Functional Description, 1ISO Document Number 8805:1988(E), American
National Standards Institute, New York, NY, 1988.

Larry Koved and Wayne Wooten. GROOP: An object-oriented toolkit for animated 3D
graphics. ACM SIGPLAN Notices (OOPS_A ' 93 Proceedings) 28(10):309-325 (October
1993).

Dor & Programmer’s Guide, Release 5.0, Kubota Pacific Computer Inc., SantaClara, CA,
1991.

Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Research Report 68,
Digital Equipment Corp., Systems Research Center, Palo Alto, CA (December 1991).

Mark S. Manasse and Greg Nelson. Trestle Tutorial. Research Report 69, Digital Equip-
ment Corp., Systems Research Center, Palo Alto, CA (May 1992).

Marc A. Najork and Marc H. Brown. A Library for Visualizing Combinatorial Struc-
tures. In |EEE Visualization’ 94 (1994). Also appeared as Research Report 1283, Digital
Equipment Corp., Systems Research Center, Palo Alto, CA (September 1994). Thereisan
accompanying video tape, SRC Research Report 128b.

Greg Nelson (Editor). Systems Programming with M odula-3. Prentice-Hall, 1991.

OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley,
1992.

PHIGS+ Committee, Andiesvan Dam, chair. PHI GS+ Functional Description, Revision
3.0. Computer Graphics, 22(3):125-218 (July 1988).

Greg Schechter, Conal Elliott, Ricky Yeung, and Salim Abi-Ezzi. Functional 3D Graphics
in C++—with an Object-Oriented, M ultiple Dispatching I mplementation. In Proc.4th
Eurographi cs Wor kshop on Object-Oriented Graphics, 1994.

Robert W. Scheifler and James Gettys. X Window System. Third Edition. Digital Press,
1992.

Graphics Library Programming Guide. Silicon Graphics Inc., Mountain View, CA,
1991.

Paul S. Strauss. BAGS: The Brown Animation Generation System. Technical Report
No. CS-88-22, Brown University, Dept. of Computer Science, Providence, Rl (May 1988).

Paul S. Strauss. | RI SInventor, a3D Graphics Toolkit. ACM SIGPLAN Notices(OOPS_A
'93 Proceedings) 28(10):192-200 (October 1993).

REFERENCES 103

[25] Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit. ACM Com-
puter Graphics (SGGRAPH ’92) 26(2):341-349 (July 1992).

[26] Josie Wernecke. The Inventor Mentor. Addison-Wesley, 1994.

[27] Gary Wiegand and Bob Bovey. HOOPS Reference Manual, Version 3.0, Ithaca Software,
1991.

[28] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Danidl G. Aliaga, Nathan
T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes and Andries
van Dam. An Object-Oriented Framework for the Integration of Interactive Animation
Techniques. Computer Graphics (SIGGRAPH 91 Proceedings) 25(4):105-112 (July
1991).

104 REFERENCES

INDEX

I ndex

add method, 5, 54
addFacet Col or s method, 79
addRequest method
of Bool eanPr opSyncBeh type, 83
of Col or PropSyncBeh type, 89
of Li neTypePr opSyncBeh type, 93
of Mar ker TypePr opSyncBeh type, 94
of Poi nt Pr opSyncBeh type, 87
of Rast er ModePr opSyncBeh type, 95
of Real PropSyncBeh type, 86
of Shadi ngPr opSyncBeh type, 96
of Tr ansf or nPr opSyncBeh type, 91
Anbi ent Li ght GOmodule, 57
Ambi ent Li ght GOtype, 57
Ani mHandl e module, 48
Anmi nHandl e type, 48
Anim3D animation library, 1
connection to Oblig-3D, 26-28
Ani n8D module, 21-24, 46
ani mat e method, 48
animation handle, 18, 48, 81
attenuation coefficient
constant, 60
linear, 60
guadratic, 60
attenuation factor, 59
awai t Del et e method, 47

behavior, 16, 80

asynchronous, 17, 81

constant, 16, 81

dependent, 20, 81

synchronous, 18, 29, 48, 81

within property value
accessing, 17, 83
updating, 17, 83

105

bi nd method
of Bool eanPr opNane type, 82
of Col or Pr opNane type, 88
of Li neTypePr opNane type, 93
of Mar ker TypePr opNarre type, 94
of Poi nt Pr opNane type, 86
of Rast er ModePr opNarre type, 95
of Real Pr opNane type, 85
of Shadi ngPr opNane type, 96
of Tr ansf or nPr opNane type, 91
Bool eanPr op module, 82
Bool eanPr opAsyncBeh type, 83
Bool eanPr opBeh type, 83
Bool eanPr opConst Beh type, 83
Bool eanPr opDepBeh type, 83
Bool eanPr opNane type, 82
Bool eanPr opRequest type, 84
Bool eanPr opSyncBeh type, 83
Bool eanPr opVal type, 82
Bool eanVal type, 43
box, 73
BoxGOmodule, 73
BoxGOtype, 73
But t on type, 97

callback object, 4, 52
key, 99
mouse, 97
position, 98
calback stack, 25
camera, 5, 63
orthographic, 65
perspective, 66
Caner aGOmodule, 63
Caner aGOtype, 63
change field

106

of KeyRec type, 99
of MbuseRec type, 97
change method
of Bool eanPr opSyncBeh type, 83
of Li neTypePr opSyncBeh type, 93
of Mar ker TypePr opSyncBeh type, 94
of Rast er ModePr opSyncBeh type, 95
of Shadi ngPr opSyncBeh type, 96
changeCaner a method, 56
changeTi t | e method, 47
changeTo method
of Tr ansf or nPr opSyncBeh type, 92
clickType field
of MbuseRec type, 98
Col type, 43
Col or Pr op module, 88
Col or Pr opAsyncBeh type, 88
Col or Pr opBeh type, 88
Col or Pr opConst Beh type, 88
Col or Pr opDepBeh type, 88
Col or Pr opNane type, 88
Col or PropRequest type, 88
Col or Pr opSyncBeh type, 88
Col or PropVal type, 88
Col or Val type, 43
conpose method
of Tr ansf or mPr opConst Beh type, 91
conmput e method
of Bool eanPr opAsyncBeh type, 83
of Bool eanPr opDepBeh type, 83
of Col or Pr opAsyncBeh type, 88
of Col or Pr opDepBeh type, 88
of Li neTypePr opAsyncBeh type, 93
of Li neTypePr opDepBeh type, 93
of Mar ker TypePr opAsyncBeh type,
94
of Mar ker TypePr opDepBeh type, 94
of Poi nt Pr opAsyncBeh type, 86
of Poi nt Pr opDepBeh type, 86

INDEX

of Rast er ModePr opAsyncBeh type,
95
of Rast er ModePr opDepBeh type, 95
of Real PropAsyncBeh type, 85
of Real Pr opDepBeh type, 85
of Shadi ngPr opAsyncBeh type, 96
of Shadi ngPr opDepBeh type, 96
of Tr ansf or mPr opAsyncBeh type, 91
of Tr ansf or mPr opDepBeh type, 91
cone, 6, 77
ConeGOmodule, 77
ConeGOtype, 77
cont ent method, 54
cylinder, 76
Cyl i nder GOmodule, 76
Cyl i nder GOtype, 76

def aul t - anbi ent -1 i ght name, 28, 40
def aul t - caner a name, 28, 40

def aul t -vect or -1 i ght name, 28, 40
dest r oy method, 47

disk, 74

Di skGOmodule, 74

Di skGOtype, 74

dur method, 81

event, 52, 97
key, 24, 52
mouse, 24, 52
position, 24, 52
event record, 52
key, 99
mouse, 24, 52, 97
position, 98
ext end method, 46

f i ndName method, 52
f I ush method, 54

get method

INDEX

of Bool eanPr opVal type, 82
of Col or PropVal type, 88
of Li neTypePr opVal type, 93
of Mar ker TypePr opVal type, 94
of Poi nt PropVal type, 86
of Rast er ModePr opVal type, 95
of Real PropVal type, 85
of Shadi ngPr opVal type, 96
of Tr ansf or nPr opVal type, 91
get Beh method
of Bool eanPr opVal type, 83
of Col or PropVal type, 88
of Li neTypePr opVal type, 93
of Mar ker TypePr opVal type, 94
of Poi nt PropVal type, 86
of Rast er ModePr opVal type, 95
of Real PropVal type, 85
of Shadi ngPr opVal type, 96
of Tr ansf or nPr opVal type, 91
get Nane method, 52
get Pr op method, 52
GOmodule, 49
GOtype, 49
graphical object, 4, 49
G aphi csBase module, 47
G aphi csBase type, 47
group, 4, 54
G oupGOmodule, 54
G oupGOtype, 54

i nvoke method
of KeyCB type, 99
of MbuseCB type, 97
of Posi ti onCB type, 98
i nvokeKeyCB method, 53
i nvokeMouseCB message, 24
i nvokeMbouseCB method, 53
i nvokePosi ti onCB method, 53

KeyCB module, 99
KeyCB type, 99
KeyRec type, 99

light source, 5, 57

ambient, 57

point, 59

spot, 61

vector, 58
Li ght GOmodule, 57
Li ght GOtype, 57
| i nChangeBy method

of Real PropSyncBeh type, 86
| i nChangeTo method

of Real PropSyncBeh type, 86
line, 68
Li neGOmodule, 68
Li neGOtype, 68, 93
Li neType type, 93
Li neTypePr op module, 93
Li neTypePr opAsyncBeh type, 93
Li neTypePr opBeh type, 93
Li neTypePr opConst Beh type, 93
Li neTypePr opDepBeh type, 93
Li neTypePr opNane type, 93
Li neTypePr opRequest type, 93
Li neTypePr opSyncBeh type, 93
Li neTypePr opVal type, 93
Li neTypeVal type, 43
[i nMoveBy method

of Poi nt Pr opSyncBeh type, 87
i nMoveTo method
of Poi nt Pr opSyncBeh type, 87

marker, 69

Mar ker GOmodule, 69

Mar ker GOtype, 69, 94

Mar ker Type type, 94

Mar ker TypePr op module, 94

107

108

Mar ker TypePr opAsyncBeh type, 94

Mar ker TypePr opBeh type, 94

Mar ker TypePr opConst Beh type, 94
Mar ker TypePr opDepBeh type, 94
Mar ker TypePr opNane type, 94

Mar ker TypePr opRequest type, 94
Mar ker TypePr opSyncBeh type, 94

Mar ker TypePr opVal type, 94
Mar ker TypeVal type, 43
Mat ri x4 module, 45
Mat ri x4 type, 43, 45, 53, 91
Modi fi er type, 97
modi fi ers field

of KeyRec type, 99

of MbuseRec type, 97

of Posi ti onRec type, 98
MouseCB module, 97
MouseCB type, 97
MouseRec type, 97

Numtype, 43

Ot hoCaner aGOmodule, 65
Ot hoCaner aGOtype, 65

parallel opiped, see box

Per spCaner aGOmodule, 66
Per spCaner aGOtype, 66
point

constant value, 4

type, see Poi nt 3

nt 2 type, 97

nt 3 module, 44

nt 3 type, 43, 44

nt Li ght GOmodule, 59

nt Li ght GOtype, 59

nt Pr op module, 86

nt Pr opAsyncBeh type, 87
nt Pr opBeh type, 86

nt Pr opConst Beh type, 87

Poi
Poi
Poi
Poi
Poi
Poi
Poi
Poi
Poi

Poi
Poi
Poi
Poi

nt Pr opDepBeh type, 87
nt Pr opNane type, 86
nt Pr opRequest type, 87
nt Pr opSyncBeh type, 87
Poi nt PropVal type, 86
Poi nt Val type, 43
polygon, 72
Pol ygonGOmodule, 72
Pol ygonGOtype, 72
popKeyCB method, 53
popMouseCB method, 53
popPosi t i onCB method, 53
pos field
of MbuseRec type, 97
of Posi ti onRec type, 98
Posi ti onCB module, 98
Posi ti onCBtype, 98
Posi ti onRec type, 98
projection
orthographic, 65
perspective, 66
Pr op module, 80
Pr opBeh type, 80
property, 4, 7, 50, 80
property mapping, 7
property name, 4, 7, 50, 80
property value, 4, 7, 50, 80
Pr opNane type, 80
Pr opRequest type, 81
PropVal type, 80
proxied object, 26, 46
Pr oxi edObj module, 46
Pr oxi edObj type, 26, 46
pushKeyCB method, 53
pushMuseCB method, 53
pushPosi t i onCB method, 53

QuadMeshGOmodule, 79
QuadMeshGOtype, 79

INDEX

INDEX

quadrilateral mesh, 79

Rast er Mbde type, 95
Rast er MbdePr op module, 95
Rast er ModePr opAsyncBeh type, 95
Rast er ModePr opBeh type, 95
Rast er ModePr opConst Beh type, 95
Rast er ModePr opDepBeh type, 95
Rast er ModePr opNane type, 95
Rast er ModePr opRequest type, 95
Rast er ModePr opSyncBeh type, 95
Rast er ModePr opVal type, 95
Rast er MbdeVal type, 43
rawfield, 46
Real Pr op module, 85
Real Pr opAsyncBeh type, 85
Real Pr opBeh type, 85
Real Pr opConst Beh type, 85
Real Pr opDepBeh type, 85
Real Pr opNane type, 85
Real PropRequest type, 85
Real Pr opSyncBeh type, 85
Real PropVal type, 85
Real Val type, 43
r emove method, 54
r enoveKeyCB method, 53
r enoveMbuseCB method, 53
r emovePosi t i onCB method, 53
request, 18-20, 29-32, 48, 81, 83
timeinterval of, 19-20, 81
reset method
of Tr ansf or nPr opConst Beh type, 91
of Tr ansf or nPr opSyncBeh type, 91
r gbLi nChangeTo method
of Col or Pr opSyncBeh type, 89
root, 4, 55
Root GOmodule, 55
Root GOtype, 55
r ot at eX method

109

of Tr ansf or nPr opConst Beh type, 91

of Tr ansf or nPr opSyncBeh type, 92
r ot at eY method

of Tr ansf or nPr opConst Beh type, 91

of Tr ansf or nPr opSyncBeh type, 92
r ot at eZ method

of Tr ansf or nPr opConst Beh type, 91

of Tr ansf or nPr opSyncBeh type, 92
rotation, see transformation, rotation

scal e method
of Tr ansf or nPr opConst Beh type, 91
of Tr ansf or nPr opSyncBeh type, 92
scaling, see transformation, scaling
scene graph, 5, 50
set method
of Bool eanPr opConst Beh type, 83
of Col or Pr opConst Beh type, 88
of Li neTypePr opConst Beh type, 93
of Mar ker TypePr opConst Beh type,
94
of Poi nt Pr opConst Beh type, 86
of Rast er ModePr opConst Beh type,
95
of Real PropConst Beh type, 85
of Shadi ngPr opConst Beh type, 96
of Tr ansf or nPr opConst Beh type, 91
set Beh method, 17
of Bool eanPr opVal type, 83
of Col or PropVal type, 88
of Li neTypePr opVal type, 93
of Mar ker TypePr opVal type, 94
of Poi nt PropVal type, 86
of Rast er ModePr opVal type, 95
of Real PropVal type, 85
of Shadi ngPr opVal type, 96
of Tr ansf or nPr opVal type, 91
set Col or Of Facet method, 80
set Nane method, 52

110

set Pr op method, 52
Shadi ng type, 96
Shadi ngPr op module, 96
Shadi ngPr opAsyncBeh type, 96
Shadi ngPr opBeh type, 96
Shadi ngPr opConst Beh type, 96
Shadi ngPr opDepBeh type, 96
Shadi ngPr opNane type, 96
Shadi ngPr opRequest type, 96
Shadi ngPr opSyncBeh type, 96
Shadi ngPr opVal type, 96
Shadi ngVal type, 43
shape hint, 72, 79
Shape type, 72, 79
sphere, 5, 75
center property of, 10
radius property of, 10
Spher eGOmodule, 75
Spher eGOtype, 75
Spot Li ght GOmodule, 61
Spot Li ght GOtype, 61
st art method, 81
surface, 7, 70
color property of, 8
Sur f aceGOmodule, 70
Sur f aceGOtype, 70, 93, 95, 96

torus, 78
Tor us@GOmodule, 78
Tor usGOtype, 78
transformation

rotation, 45

scaling, 45

uniform, 45, 92

translation, 45
transformation matrix, see Mat ri x4
Tr ansf or nPr op module, 90
Tr ansf or mPr opAsyncBeh type, 91
Tr ansf or nPr opBeh type, 91

INDEX

Tr ansf or nPr opConst Beh type, 91

Tr ansf or nPr opDepBeh type, 91

Tr ansf or nPr opNarre type, 91

Tr ansf or mPr opRequest type, 91

Tr ansf or mPr opSyncBeh type, 91

Tr ansf or nPropVal type, 91

Tr ansf or nVal type, 43

transl at e method
of Tr ansf or nPr opConst Beh type, 91
of Tr ansf or nPr opSyncBeh type, 92

tranglation, see transformation, translation

unset Pr op method, 52

val ue method
of Bool eanPr opRequest type, 84
of Bool eanPr opVal type, 82
of Col or PropRequest type, 88
of Col or PropVal type, 88
of Li neTypePr opRequest type, 93
of Li neTypePr opVal type, 93
of Mar ker TypePr opRequest type, 94
of Mar ker TypePr opVal type, 94
of Poi nt Pr opRequest type, 86
of Poi nt PropVal type, 86
of Rast er ModePr opRequest type, 95
of Rast er ModePr opVal type, 95
of Real PropRequest type, 85
of Real PropVal type, 85
of Shadi ngPr opRequest type, 96
of Shadi ngPr opVal type, 96
of Tr ansf or nPr opRequest type, 91
of Tr ansf or nPr opVal type, 91
Vect or Li ght GOmodule, 58
Vect or Li ght GOtype, 58

went Down field, 99

X' PEX' Base module, 47
X' PEX' Base type, 47

