
December 1, 1994

SRC
Research
Report 129

Obliq-3D
Tutorial and Reference Manual

Marc A. Najork

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art
in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their properties in depth. This experience is useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

Obliq-3D
Tutorial and Reference Manual

Marc A. Najork

December 1, 1994

c
Digital Equipment Corporation 1994

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

Abstract

Obliq-3D is an interpreted language that is embedded into the 3D animation system Anim3D.
Anim3D is based on a few simple, yet powerful constructs that allow a programmer to describe
three-dimensional scenes and animations of such scenes. Obliq-3D, by virtue of its interpretive
nature, provides the programmer with a fast turnaround environment. The combination of sim-
plicity and fast turnaround allows application programmers to construct non-trivial animations
quickly and easily.

The first half of this report contains a tutorial to Obliq-3D, which develops the various
concepts of the animation system. The second part contains a reference manual, which describes
the functionality of Obliq-3D module by module.

Contents

1 Introduction 1
1.1 Related Work : 1

2 Tutorial 4
2.1 Obliq-3D in a Nutshell : 4
2.2 A First Example : 4
2.3 Properties : 6
2.4 The On-Line Help Facility : 11
2.5 Non-Tree Scene Graphs : 11
2.6 More on Property Values : 13
2.7 Overloading : 15
2.8 Behaviors : 16
2.9 Asynchronous Behaviors : 17
2.10 Synchronous Behaviors : 18
2.11 Dependent Behaviors : 20
2.12 Locking : 21
2.13 Callbacks : 24
2.14 Extending Objects : 26
2.15 Naming Graphical Objects : 28
2.16 Requests : 29
2.17 Depth Cueing : 32
2.18 Light Objects : 33
2.19 Camera Objects : 34
2.20 Creating Root Objects : 38

3 Reference Manual 41
3.1 The Point3 Module : 44
3.2 The Matrix4 Module : 45
3.3 The Anim3D Module : 46
3.4 The ProxiedObj Module : 46
3.5 The GraphicsBase Module : 47
3.6 The X‘Pex‘Base Module : 47
3.7 The AnimHandle Module : 48
3.8 The GO Module : 49
3.9 The GroupGO Module : 54
3.10 The RootGO Module : 55
3.11 The LightGO Module : 57

3.12 The AmbientLightGO Module : 57
3.13 The VectorLightGO Module : 58
3.14 The PointLightGO Module : 59
3.15 The SpotLightGO Module : 61
3.16 The CameraGO Module : 63
3.17 The OrthoCameraGO Module : 65
3.18 The PerspCameraGO Module : 66
3.19 The LineGO Module : 68
3.20 The MarkerGO Module : 69
3.21 The SurfaceGO Module : 70
3.22 The PolygonGO Module : 72
3.23 The BoxGO Module : 73
3.24 The DiskGO Module : 74
3.25 The SphereGO Module : 75
3.26 The CylinderGO Module : 76
3.27 The ConeGO Module : 77
3.28 The TorusGO Module : 78
3.29 The QuadMeshGO Module : 79
3.30 The Prop Module : 80
3.31 The BooleanProp Module : 82
3.32 The RealProp Module : 85
3.33 The PointProp Module : 86
3.34 The ColorProp Module : 88
3.35 The TransformProp Module : 90
3.36 The LineTypeProp Module : 93
3.37 The MarkerTypeProp Module : 94
3.38 The RasterModeProp Module : 95
3.39 The ShadingProp Module : 96
3.40 The MouseCB Module : 97
3.41 The PositionCB Module : 98
3.42 The KeyCB Module : 99

Acknowledgments 100

References 101

Index 105

1

1 Introduction

Obliq [3] is a lexically-scoped, untyped, interpreted language that supports distributed object-
oriented computation. The Obliq interpreter is written in Modula-3 [17], and is designed to be
both easy to extend and easy to embed into other programs.

Anim3D is a Modula-3 library for building programs that use interactive, animated three-
dimensional graphics. It uses the X Window System [21] as the underlying window system,
and MPEX (Digital’s extension of PEX [8], the 3D extension of X) as the underlying graphics
library. Support for other window systems (e.g. Trestle [14, 15]) and graphics libraries (e.g.
OpenGL [18]) is under way.

Anim3D is designed to interconnect easily with an embedded language, although it does not
rely on one. Possible choices for such a language are Lisp, Python, or any other interpreted
language that can be easily embedded. We chose Obliq, because its linguistic features closely
match those of Modula-3, and because it is particularly easy to embed an Obliq interpreter into
some other Modula-3 program. The resulting embedded language is called Obliq-3D.

Obliq-3D is a superset of Obliq; it provides the same syntactic constructs, as well as all the
built-in libraries described in SRC Research Report 122 [3]. In addition, it provides 42 extra
modules that support the construction of 3D animations.

This report is divided into two parts. The first part gives an example-driven introduction to
the basic concepts of the animation system. It assumes the reader is familiar with SRC Report
122, but does not make any further assumptions. The second part contains a reference manual
for Obliq-3D. The manual contains a section for each module that is specific to Obliq-3D.

Our initial motivation for developing a fast-turnaround 3D animation system was our ex-
perience in using 3D views for algorithm animation [2]. We found that building enlightening
3D animations, using a low-level graphics library such as PEXlib, was both hard and time-
consuming. Since then, we have used Obliq-3D for building a variety of algorithm animations.
A detailed development of one such animation (Dijkstra’s shortest-path algorithm) can be found
in [16]; the accompanying videotape shows a collection of animations done with Obliq-3D.

1.1 Related Work

The last 20 years have seen a variety of device-independent 3D graphics libraries, such as
Core [9], GKS-3D [11], PHIGS [1] and PHIGS+ [19]. Today’s most popular “traditional” 3D
graphics libraries are PEXlib [8], IRIS GL [22], and its OpenGL variant [18].

The potential benefits of applying object-oriented methods to computer graphics have been
pointed out since the inception of the object-oriented paradigm. Some of the earlier object-
oriented libraries, such as HOOPS [27] and Doré [13], use an object-oriented design model, but
provide no interface to an object-oriented language.

More recent systems, such as Grams [6], Inventor [24, 25, 26], and GROOP [12], are written

2 1. INTRODUCTION

in C++, and provide a C++ application programmers’ interface. Inventor in particular has been
quite influential. Obliq-3D adopts some of its key ideas: Scenes are modeled as directed acyclic
graphs of graphical objects, and geometric primitives, cameras, and light sources are treated
uniformly. But there are also some important differences. In Inventor, shapes and properties
can both be added as nodes to the scene tree. This means that the order in which nodes are
inserted into the tree affects the appearance of the scene: Inserting first a color node and then
a sphere node will produce a different image than that obtained by adding first the sphere and
then the color. Another key difference is that Inventor properties are not inherently time-variant.
Animation is achieved through engines, which change the state of property nodes and shape
nodes. Finally, Inventor lacks an interpreted language, a feature crucial to rapid prototyping of
animations.

Paul Strauss’ “Brown Animation Generation System” [23], or BAGS for short, is one of
the first 3D animation systems to provide such an embedded interpreted language (ironically,
Strauss later on designed Inventor). BAGS uses an interpreted language called SCEFO to
describe the structure and the animation behavior of a scene. Although quite powerful, SCEFO
is an animation language, not a full-fledged programming language. It provides assignment and
iteration constructs, a set of arithmetic functions, and procedural abstraction, but no conditionals.
However, BAGS allows the user to write C code stubs that can be compiled into the system and
can then be called from SCEFO.

BAGS was succeeded by UGA, the “Unified Graphics Architecture” [28, 10]. UGA uses
an interpreted language called FLESH that is based on the prototype-and-delegation paradigm.
Scenes are modeled as collections of objects. Attached to each object is a list of “change
operators” or chops. Each chop defines some aspect of the appearance of an object, such as its
color, transformation, and even its shape. Moreover, chops are functions of time; they are the
basis for animation in UGA.

Alice [4, 5] is another rapid prototyping system for creating 3D animations. It uses Python
as its embedded interpreted language. There are many commonalities between Alice and Obliq-
3D. Both systems use an object-oriented interpreted language to allow for rapid prototyping.
Both separate the application from the rendering. (Alice uses a process to perform the rendering;
Obliq-3D uses a separate animation server thread.) Both systems allow for hierarchical geometry,
that is, graphical objects that contain other graphical objects. However, the two systems differ
in their basic animation model: Alice treats a scene as a hierarchy of graphical objects, each
of which has a list of action routines which are called each frame of the simulation, and which
are responsible for changing the internal state of the object. New animation effects are created
by defining new action routines and adding them to the graphical object. Obliq-3D, on the
other hand, uses properties to specify the appearance of objects; these properties are inherenty
time-variant. In other words, Alice performs frame-based animation, whereas Obliq-3D has an
explicit notion of time.

Finally, TBAG [7, 20] is a very recent toolkit for rapid prototyping of interactive 3D anima-

1.1 Related Work 3

tions. TBAG provides two programmer interfaces: an interpreted functional language, intended
to allow casual users to utilize the existing functionality of the system; and a compiled, object-
oriented language, namely C++, to allow more sophisticated users to extend the system. On the
surface, TBAG and Obliq-3D look different, mainly due to the different paradigms underlying
their embedded languages. Closer examination, however, uncovers a fair number of similarities:
Both systems distinguish between values that define geometry and values that define attributes
(such as color); both allow the user to impose a hierarchical structure on the geometry of the
scene; both systems treat light sources like any other geometric primitive; both systems have the
notion of time-varying values; and both support constraints (however, TBAG allows for a more
general class of constraints than Obliq-3D).

4 2. TUTORIAL

2 Tutorial

The tutorial section of this report develops the fundamental concepts of Obliq-3D, using a series
of gradated examples. We start with the smallest program that actually generates a 3D image
(Obliq-3D’s equivalent of “Hello World!”), and we work our way up to a level where we show
how parts of the functionality of the system could be reimplemented.

The reader should be able to work his way through the tutorial within the course of a morning.
All the examples are self-contained and short enough to be tried out during this reading1.

2.1 Obliq-3D in a Nutshell

Obliq-3D (and Anim3D) is founded on three basic concepts: graphical objects for constructing
scenes, time-variant properties for animating various aspects of a scene, and callbacks for
providing interactive behavior.

Graphical objects subsume geometric shapes (spheres, cones, cylinders, and the like), light
sources, cameras, groups for composing complex graphical objects out of simpler ones, and
roots for displaying graphical objects on the screen.

Properties describe attributes of graphical objects, such as their color, size, location, or
orientation. A property consists of a name that determines what attribute is affected, and a
value that determines how it is affected. Property values are not simply scalar values, but rather
functions that take a time and return a scalar value. Thus, property values form the basis for
animation.

Callbacks can be attached to graphical objects; they define how these objects react to events
such as key strokes or mouse position changes. Callbacks form the basis for interactive behavior.

2.2 A First Example

The following program is the smallest Obliq-3D program that actually creates a three-dimensional
image. It opens up a graphics window on the screen, and displays a white sphere (see Figure 1a):

let r = RootGO_NewStd();
r.add(SphereGO_New([0,0,0],0.5));

(Program 1)

The first line creates a root object, which is a special kind of graphical object, and assigns it
to the variable r. Associated with each root object is a window on the screen, and creating the
root object creates this window and installs it on the screen.

1If you read this document using the LECTERN Virtual Paper viewer, you can cut and paste the examples directly
from the document into a window running an Obliq-3D interpreter.

2.2 A First Example 5

RootGO
r

SphereGO

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 1: Scene and Scene Graph created by Program 1

The expression SphereGO_New([0,0,0],0.5) creates a sphere object, which is another
kind of graphical object. This particular sphere object represents a sphere whose center lies at
the origin of the coordinate system, and whose radius is 0:5 units.

Finally, r.add(� � �) adds the sphere object to the root object, and thereby causes it to be
displayed in the window associated with the root object. The user can manipulate the scene
interactively, that is, he can move and rotate the displayed objects through mouse controls. This
interactive behavior is not innate to root objects, but rather added to the root object by the
function RootGO_NewStd(). This function also creates (in addition to the root itself) a camera
through which the scene is viewed, and several light sources.

The add method, which makes an object part of a larger object, is understood by all objects
of type GroupGO. In particular, it is understood by objects of type RootGO, which is the type of
root objects and a subtype of GroupGO. This ability to group objects together into larger objects
allows us to build up hierarchies of graphical objects. In general, these hierarchies must form a
directed acyclic graph, called the scene graph. Figure 1b shows the scene graph corresponding
to Program 1. For the sake of simplicity, the camera and the light sources that were created by
the call to RootGO_NewStd() are omitted.

We can display a cone together with the sphere by adding the cone object to the root object.
Here is a program that does this:

let r = RootGO_NewStd();
r.add(SphereGO_New([0,0,0],0.5));
r.add(ConeGO_New([0,0,0],[1,1,1],0.5));

(Program 2)

6 2. TUTORIAL

RootGO
r

SphereGO ConeGO

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 2: Scene and Scene Graph created by Program 2

The expression ConeGO_New([0,0,0],[1,1,1],0.5) creates an object that represents
a cone whose base is centered at the origin and is of radius 0:5, and whose tip lies at point
(1; 1; 1). Figure 2 shows the window associated with r, and the scene graph.

All the scene graphs we have seen so far have been trees. Associated with the root of the
tree was a window for viewing the scene. But it is possible to have several windows viewing the
same scene. The following program creates two windows that display a scene consisting of a
sphere and a cone:

let g = GroupGO_New();
RootGO_NewStd().add(g);
RootGO_NewStd().add(g);
g.add(SphereGO_New([0,0,0],0.5));
g.add(ConeGO_New([0,0,0],[1,1,1],0.5));

(Program 3)

The first line creates a group object and assigns it to the variable g. The next two lines create
two root objects, and add g to each. Creating the two roots also creates two windows on the
screen. Finally, the last two lines create the sphere and the cone, just as in the previous example.
This time, however, the sphere and the cone are not added directly to the roots, but to the group
g instead. Figure 3 shows the two windows and the scene graph.

2.3 Properties

The graphical objects in a scene graph describe what types of objects are contained in the scene.
But there are other attributes to an object besides its shape: its color, location, size, etc. These

2.3 Properties 7

RootGO RootGO

GroupGO
g

SphereGO ConeGO

(a) The two Windows created by Program 3 (b) Corresponding Scene Graph

Figure 3: The two Windows and the Scene Graph created by Program 3

aspects of an object are described by properties.
Let’s assume we want to create a scene that contains a red sphere. We can create such a

scene by modifying Program 1 as follows:

let r = RootGO_NewStd();
r.add(SphereGO_New([0,0,0],0.5));
SurfaceGO_SetColor(r,"red");

(Program 4)

The first two lines create a root object which contains a sphere object. The last line “attaches”
the color property “red” to the root object and all objects contained in it. Figure 4a shows the
resulting scene.

The SurfaceGO prefix indicates that the color property is associated with surfaces, that is,
objects that are composed of polygons. (Sphere objects are actually approximated by polyhedra.)

A property consists of two parts: a name and a value. The name describes what aspect of a
graphical object is affected by the property, and the value describes what this aspect looks like.
In Program 4, the name of the property is SurfaceGO_Color, and the value is the color “red”.

Many properties can be attached to a graphical object. These properties form a mapping —
a partial function from names to values.

In the scene graphs shown throughout this report, we represent property values through
boxes. For each property that is attached to a graphical object, we draw an arrow from the oval
representing the graphical object to the box representing the property value. The arrow is labeled
with the property name. Figure 4b shows the scene graph created by the program above.

Properties affect not only the graphical object they are attached to, but also all those objects
that are contained in this object and that do not “override” this property. Consider the following

8 2. TUTORIAL

RootGO
r

SphereGO

ColorPropConstVal

red
SurfaceGO_Color

(a) Window displaying the Scene (b) Corresponding Scene Graph

Figure 4: Scene and Scene Graph created by Program 4

modification of Program 2:

let r = RootGO_NewStd();
let s = SphereGO_New([0,0,0],0.5);
r.add(s);
let c = ConeGO_New([0,0,0],[1,1,1],0.5);
r.add(c);
SurfaceGO_SetColor(r,"red");

(Program 5)

The first five lines create a root object that contains a sphere and a cone. (This time, we
created names for the sphere and the cone.) The last line attaches the color property “red” to the
root object. This turns the root (and with it, the sphere and the cone) red. Figure 5a shows the
result. Adding the statement

SurfaceGO_SetColor(c,"yellow");
(Program 5— continued)

to Program 5 attaches the color property yellow to the cone. This property “overrides” the color
of the root: The cone turns yellow, while the rest of the root (i.e. the sphere) remains red (see
Figure 5b).

2.3 Properties 9

(a) Initial Scene (b) After setting the Color of the Cone

RootGO
r

SphereGO
s

ConeGO
c

ColorPropConstVal

red

ColorPropConstVal

yellow

SurfaceGO_Color

SurfaceGO_Color

(c) Final Scene Graph

Figure 5: Scenes and Scene Graph created by Program 5

10 2. TUTORIAL

Note that the sequence of the statements is immaterial2 (except that a variable cannot be
referenced before it is declared). The following program creates exactly the same scene:

let r = RootGO_NewStd();
let s = SphereGO_New([0,0,0],0.5);
let c = ConeGO_New([0,0,0],[1,1,1],0.5);
SurfaceGO_SetColor(c,"yellow");
SurfaceGO_SetColor(r,"red");
r.add(c);
r.add(s);

(Program 6)

Color properties are one kind of property. Other kinds include boolean properties, real
properties, point properties, and so on.

Recall that properties control not only surface attributes of an object, such as its color and
transparency, but also spatial attributes, such as its location and size. For example, the center of a
sphere is controlled by a point property named SphereGO_Center, and the radius is controlled
by a real property named SphereGO_Radius. The expression SphereGO_New(c,r) creates a
sphere object, and attaches a property with name SphereGO_Center and value c and a property
with name SphereGO_Radius and value r to the new sphere object.

It is possible to detach these properties from the sphere object, using the unsetPropmethod.
Consider the following program:

let r = RootGO_NewStd();
let s = SphereGO_New([0,0,0],0.5);
r.add(s);
s.unsetProp(SphereGO_Center);
s.unsetProp(SphereGO_Radius);
SphereGO_SetCenter(r,[1,0,0]);
SphereGO_SetRadius(r,0.3);

(Program 7)

The first three lines create a root object r and a sphere object s, and add s to r. The center
of the sphere is at point (0; 0; 0), and its radius is 0:5. So far, the program is equivalent to
Program 1.

The next two lines detach the center and the radius property from the sphere object. As
these properties are not defined for the root object either, the sphere is now displayed at a default
location and with a default radius.

The last two lines attach a center property and a radius property to the root object. The
sphere is displayed centered at point (1; 0; 0), and with a radius of 0:3.

2This is one of the key differences between Anim3D and Inventor [24, 25, 26]. Inventor uses a very similar model:
scenes are described by a scene graph composedof nodes. However, it does not distinguish between graphical objects
and properties; both are nodes in the scene graph. A property node in a scene graph affects all its “right” siblings,
until it is “overridden” by another property node. So, the order of nodes in the scene graph becomes important.

2.4 The On-Line Help Facility 11

So, the center property and the color property behave exactly the same: A property attached
to an object (be it a group or a sphere) affects that object and all objects contained in it, except
those that have a property with the same name attached.

It should also be noted that any property can be attached to any object, but that the way an
object is displayed does not necessarily depend on every property. For example, it is perfectly
legal to attach a SphereGO_Center property to a cone, but this will not affect the appearance
of the cone.

2.4 The On-Line Help Facility

Obliq has a built-in facility that provides on-line help to the user. Typing

help;

shows a list of all preloaded libraries. You can also obtain more information on a particular
library. For example, typing “help SphereGO;” reveals the types and functions exported by
the SphereGO module:

- help SphereGO;
SphereGO_New(p: PointVal, rad: RealVal): SphereGO
SphereGO_NewWithPrec(p: PointVal, rad: RealVal, prec: Int): SphereGO
SphereGO_Center: PointPropName
SphereGO_Radius: RealPropName
SphereGO_SetCenter(go: GO, center: PointVal): Ok
SphereGO_SetRadius(go: GO, radius: RealVal): Ok

WHERE
SphereGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

The type notation follows the one described in [3]; it is reviewed at the beginning of the reference
manual.

2.5 Non-Tree Scene Graphs

We mentioned before that scene graphs are directed acyclic graphs, and not simply trees.
Program 3 created a scene graph with two roots (where “root” refers to a node with in-degree
0), which allowed us to view the same scene from two different vantage points.

There are also meaningful scene graphs that contain more than one path between a pair of
nodes. For example, consider the following program:

12 2. TUTORIAL

SphereGO_Center
PointPropConstVal

(0,0,0)

RootGO
r

GroupGO
g1

GroupGO
g2

SphereGO
s

(a) Initial Scene (b) Corresponding Scene Graph

SphereGO_Center SphereGO_Center
PointPropConstVal

(0,1,1)

PointPropConstVal

(1,0,0)

RootGO
r

GroupGO
g1

GroupGO
g2

SphereGO
s

(c) Final Scene (d) Corresponding Scene Graph

Figure 6: Scenes and Scene Graph created by Program 8

2.6 More on Property Values 13

let r = RootGO_NewStd();
let g1 = GroupGO_New();
r.add(g1);
let g2 = GroupGO_New();
r.add(g2);
let s = SphereGO_New([0,0,0],0.5);
g1.add(s);
g2.add(s);

(Program 8)

This program creates a root object that contains two group objects that in turn both contain
the same sphere object. The program so far displays a scene that apparently contains a single
sphere (see Figure 6a). However, adding the following three lines reveals that there are really
two spheres in the scene, which just happen to be superimposed:

s.unsetProp(SphereGO_Center);
SphereGO_SetCenter(g1,[1,0,0]);
SphereGO_SetCenter(g2,[0,1,1]);

(Program 8— continued)

These statements detach the center property from the sphere object, and attach two differing
center properties to the groups g1 and g2. This causes the sphere to be shown at the location
described by the center property attached to g1, and also at the location described by the center
property attached to g2 (see Figure 6c).

We can describe the semantics of scene graphs with multiple paths between any pair of nodes
in a procedural fashion: For each path between a root node r and a leaf node l, l is rendered
once, using the current value of the properties attached to the nodes along this path.

We can also describe it in a more declarative way: Every scene graph can be “unfolded” into
a forest of scene trees. Table 1 gives an algorithm for performing the unfolding, and Figure 7
shows an example of an unfolding.

2.6 More on Property Values

Let’s take a closer look at property values. A property value represents a time-variant value. It
is implemented as an Obliq object that has a method value which takes a time and returns the
value at that time.

So far, we have seen only constant property values, that is, property values that do not
change over time. The expression RealProp_NewConst(0.5) creates a new real property
value, whose value is 0:5 regardless of the current time.

The same property value may be attached to several graphical objects. Consider the following
program:

14 2. TUTORIAL

INPUT: Scene graph G. G is a directed acyclic graph.
OUTPUT: Unfolded scene graph G0. G0 is a forest of trees.

1. Let G0 be the empty graph.

2. Add an artificial source vertex s to G. Add artificial arcs from s to every vertex in
G with in-degree 0.

3. For every vertex u in G and each path p from s to u, add a vertex up to G0. We say
that up corresponds to u.

4. For each arc (u; v) in G, and for all vertices up, vp0 in G0 such that up corresponds
to u, vp0 corresponds to v, and p0 = pv, add an arc (up; vp0) to G0. We say that
(up; vp0) corresponds to (u; v).

5. Remove the artificial source vertex and arcs from G, and the corresponding vertex
and arcs from G0.

Table 1: Unfolding of Scene Graphs

a b

c

d e

f

g h

a b

c c’

d e d’ e’

f f’ f’’ f’’’

g h g’ h’ g’’ h’’ g’’’ h’’’

before unfolding after unfolding

Figure 7: Example Unfolding of a Scene Graph

2.7 Overloading 15

RealPropConstVal

0.5

RootGO
r

SphereGO SphereGOSphereGO_Radius SphereGO_Radius

(a) Window displaying the scene (b) Corresponding Scene Graph

Figure 8: Scene and Scene Graph created by Program 9

let r = RootGO_NewStd();
let rad = RealProp_NewConst(0.5);
r.add(SphereGO_New([-1,0,0],rad));
r.add(SphereGO_New([1,0,0],rad));

(Program 9)

Figure 8 shows the scene displayed by the program, together with the corresponding scene
graph. The scene contains two spheres; the radius of each sphere is controlled by the real
property value rad. Changing rad affects both spheres.

The ability to attach the same property value to several graphical objects provides us with
an alternative to “property inheritance”. In the example above, instead of attaching rad to each
sphere, we could have attached it to their common ancestor r instead. If no other radius property
were attached to either sphere, then the radius of both spheres would have been “inherited” from
r. However, there are many cases in which the “natural” structure of the scene graph prevents
us from using property inheritance. For example, in a scene describing a car, we might want to
put two tires and an axle into the same group, but we also want the four tires to have the same
color, and the two axles to have a different color. Having the tires and the axle in the same
group prevents us from using property inheritance to describe their color; in such a case, shared
property values are the best solution.

2.7 Overloading

You may have noticed that in Program 1, we invoked the function SphereGO_New with a real
number as the second argument, whereas in Program 9, we used a real property value for the
second argument. SphereGO_New is what is called an overloaded function: a function that

16 2. TUTORIAL

a property value (e.g. a RealPropVal)

raw
extend

getBeh
setBeh

value
get

a behavior (e.g. a RealPropConstBeh)

raw
extend

set

Figure 9: Properties and Behaviors

accepts arguments of different types. SphereGO_New accepts either points or point property
values as the first argument, and either integers, reals, or real property values as the second
argument. A point, in turn, is an array of three elements, which can be either integers or reals.

It is important to remember that only the 3D functions of Obliq-3D are overloaded. The
rest of Obliq distinguishes between, say, integers and reals, and these types cannot be freely
interchanged. For example, the expression 1 + 0.1 will cause a run-time error.

2.8 Behaviors

There are many different ways in which a property value might change over time. It might
remain constant, it might change perpetually, it might start to change from one value to another
when signaled, and so on.

When a property value is attached to a single graphical object, we can change the way this
property value changes over time simply by replacing it with another one. But this approach
is impractical when the property value is attached to many graphical objects. So, instead of
replacing the entire property value by a new one (and having to update every graphical object
that uses this property value), we simply change the behavior of the property value.

Behaviors, just like property values, are represented by Obliq objects. In a sense, property
values serve merely as “clerks” for behaviors: they forward value-inquiring messages from the
client program or the animation server to the behavior. Replacing one behavior with another one
is transparent to the client program and the animation server because the property value acts as
an intermediary. Figure 9 illustrates this encapsulation.

Constant property values are really property values that contain constant behaviors. A
property value might change from being constant to being time-variant during its lifetime, while
a constant behavior will remain constant for its entire existence.

The expression RealProp_NewConstBeh(0.5) creates a new real-valued constant behav-
ior object b, which encapsulates the value 0:5, and returns it. b understands the message set.

2.9 Asynchronous Behaviors 17

Figure 10: Snapshots of the animation created by Program 10

The call b.set(0.7) will change b’s value from 0:5 to 0:7.
We can access the behavior of a property value by sending the message getBeh() to the

property value. Recall Program 9, which displays two spheres whose radius is controlled by the
constant property value rad. The following statement changes the radius of the two spheres to
0:3:

rad.getBeh().set(0.3);

We can replace the behavior of a property value by sending it thesetBeh message. For example,

rad.setBeh(RealProp_NewConstBeh(0.7));

will replace the existing behavior of rad with a new behavior that always evaluates to 0:7.

2.9 Asynchronous Behaviors

As we said before, both property values and behaviors represent time-variant values. A behavior
implements a function from a moment in time to the actual value at that time3; the property value
serves as an intermediary between graphical objects and behaviors, allowing us to exchange
behaviors without having to update graphical objects.

In the previous section, we encountered the most primitive form of behaviors, namely
constant behaviors, that is, behaviors whose value does not change (unless explicitly changed
through a set message).

Asynchronous behaviors are the second class of behaviors in our system. Asynchronous
behaviors change over time; and they change throughout their entire lifetime. They do not
depend on other property values, and they do not synchronize their changes with them.

The following program displays a sphere, whose radius oscillates between 0:3 and 0:7:

let root = RootGO_NewStd();
let rad = RealProp_NewAsync(meth(self,time) 0.5 + math_sin(time) * 0.2 end);
root.add(SphereGO_New([0,0,0],rad));

(Program 10)
3This is a slight simplification, as behaviors, unlike mathematical functions, can have local state.

18 2. TUTORIAL

The second line creates a new real property value rad with an asynchronous behavior. This
behavior is defined by a method that takes two arguments, the behavior itself and the current
time, and returns a real. In this case, the value of rad at time t is defined to be 0:2 sin(t) + 0:5.4

rad is attached as the radius property to a sphere object, which causes the sphere to pulse.
Figure 10 shows a “film-strip” of successive snapshots of the scene generated by this program.

2.10 Synchronous Behaviors

A synchronous behavior represents a value that does not change continuously, but rather upon
being signaled. Each synchronous behavior is connected to a synchronization object, called an
animation handle. We say that the animation handle controls the behavior. Many synchronous
behaviors can be controlled by the same handle.

Conceptually, a synchronous behavior consists of a current value and a request queue.
Requests are objects that change the current value of the behavior. For each type of behavior,
there is a set of predefined requests that perform linear interpolations between the current value
of the behavior and a new one; in addition, the client program can define arbitrary new requests.
Each synchronous behavior has methods for adding predefined and user-defined requests to
its request queue; these requests will be processed once the animation handle controlling the
behavior is signaled.

Associated with each request is a start time and a duration. A request with start time s and
duration d starts to affect the value of the behavior s seconds after the controlling animation
handle is signaled, and ceases to do so d seconds later.

The following program demonstrates the use of synchronous behaviors:

let ah = AnimHandle_New();
let p = PointProp_NewSync(ah,[0,0,0]);
let c = ColorProp_NewSync(ah,"red");
let r = RootGO_NewStd();
let s = SphereGO_New(p,0.5);
r.add(s);
SurfaceGO_SetColor(s,c);
p.getBeh().linMoveTo([0,1,0],1,3);
c.getBeh().rgbLinChangeTo("green",0,4);
ah.animate();

(Program 11)

The first line creates a new animation handle ah. The next two lines create a point property
value p whose initial value is (0; 0; 0), and a color property value c whose initial value is “red”.
Both p and c are synchronous property values (that is, property values containing a synchronous
behavior), and both are controlled by the animation handle ah.

4It should be noted that Obliq differs from many other languages with infix operators in that all operators have
the same precedence, and associate to the right. So, 4*7+3 evaluates to 40, not 31.

2.10 Synchronous Behaviors 19

SurfaceGO_Color

SphereGO_Center

RootGO
r

SphereGO
s

ColorPropVal c

a ColorPropSyncBeh

current value: red

request queue:

PointPropVal p

a PointPropSyncBeh

current value: (0,0,0)

request queue:

AnimHandle ah
rgbLinChangeTo request

target value: green
start time: 0
duration: 4

linMoveTo request

target value: (0,1,0)
start time: 1
duration: 3

Figure 11: Scene Graph created by Program 11

The next three lines create a root object, which contains a sphere object. The center of the
sphere depends on the current value of p, and its color depends on the current value of c. So,
initially the sphere is red, and centered at the origin.

In the next line, we send the message linMoveTo to the behavior of p, asking it to change
from its present value to (0; 1; 0). This change will start 1 second after the animation handle is
signaled, and will take 3 seconds to complete. Similarly, we send a message rgbLinChangeTo
to the behavior of c, asking it to change from its present value (that is, red) to green. The change
will start right when the animation handle is signaled, and will take 4 seconds to complete.
Figure 11 shows the state of the scene graph after this message.

Up to this point, no changes have actually taken place. Sending the message animate to
the animation handle ah causes the requests to be processed. The ah.animate() call returns
only after all requests have been processed, that is, it will run for 4 seconds.

Many requests can be added to the request queue of a synchronous behavior. However, the
time intervals of these requests must not overlap. So,

let c = ColorProp_NewSync(ah, "red");
c.getBeh().rgbLinChangeTo("green",0,2);
c.getBeh().rgbLinChangeTo("blue",2,2);

is legal, as the intervals (0; 0+ 2) and (2; 2 + 2) do not overlap. On the other hand,

20 2. TUTORIAL

let c = ColorProp_NewSync(ah, "red");
c.getBeh().rgbLinChangeTo("green",0,2);
c.getBeh().rgbLinChangeTo("blue",1,2);

is illegal, and will cause an Obliq exception to be raised. It should also be noted that zero-duration
intervals are closed, whereas others are open. So

let c = ColorProp_NewSync(ah, "red");
c.getBeh().rgbLinChangeTo("green",0,0);
c.getBeh().rgbLinChangeTo("blue",0,2);

is legal, as the intervals [0; 0] and (0; 2) do not overlap, whereas

let c = ColorProp_NewSync(ah, "red");
c.getBeh().rgbLinChangeTo("green",0,0);
c.getBeh().rgbLinChangeTo("blue",0,0);

is illegal, because [0; 0] and [0; 0] overlap.

2.11 Dependent Behaviors

A dependent behavior is a behavior whose value depends on other property values. Dependent
behaviors allow us to specify functional dependencies between property values. Such depen-
dencies are often called one-way constraints. It is a checked run-time error if the dependency
graph induced by the dependent behaviors includes any cycles.

A dependent behavior is defined just like an asynchronous behavior, through a method that
is passed to its creation function. This method takes the behavior itself and the current time as
arguments, and returns the value for the behavior at that time.

The following program creates a sphere and a torus. The radius of the sphere is defined by
an asynchronous property value, which causes the sphere to pulsate. The radius of the torus is
dependent on the radius of the sphere; it will always be 1.5 times as large.

let root = RootGO_NewStd();
let rad1 = RealProp_NewAsync(meth(self,time) 0.5 + math_sin(time) * 0.2 end);
root.add (SphereGO_New ([0,0,0],rad1));
let rad2 = RealProp_NewDep (meth(self,time) rad1.value(time) * 1.5 end);
root.add (TorusGO_New([0,0,0], [0,1,0], rad2, 0.1));

(Program 12)

The first three lines of this program are identical to Program 10. The fourth line defines a
new dependent property value rad2, whose value at a given time is 1.5 times the value of rad1
at that time. The last line creates a torus, whose center is (0; 0; 0) and whose normal vector is
(0; 1; 0). The major radius of the torus is defined to be rad1, and the minor radius has a constant
value of 0:1.

Figure 12 shows a “film-strip” of successive scenes created by this program.

2.12 Locking 21

Figure 12: Snapshots of the animation created by Program 12

2.12 Locking

You may have noticed that none of the programs we have shown contained an explicit statement
to draw the scene. Obliq-3D is based on a damage-repair model: modifying the scene graph
damages the scene, that is, the scene shown on the screen is no longer consistent with the scene
graph. An animation server thread detects any damage, and repairs it by redrawing the scene.

This model is intriguing because of its simplicity, and because it minimizes the amount of
Obliq-3D code a user has to write. However, there are cases where we would like a set of
changes to the scene graph to be atomic; that is, we do not want the animation server to redraw
the scene before we have performed all the changes.

We can declare a set of operations to be atomic by surrounding them with a locking construct.
There is a global lock Anim3D_lock, which the animation server must hold in order to perform
any redrawing. So, acquiring this lock prevents the animation server from redrawing the scene.

The following program demonstrates the use of this locking facility. The aim of this program
is to visualize a simple data structure, namely a binary search tree. We want to show each key
as a color-coded sphere, where colors range from yellow over green, cyan, blue, and magenta to
red. Yellow corresponds to a small key, whereas red corresponds to a large key.

There are two ways in which this could be done: we could write a visualization function
that incrementally updates the scene graph whenever a new element is inserted into the tree, or
we could write a function that, given a tree, computes the entire scene graph from scratch. The
latter method implies that we have to discard the old scene graph and replace it with a new one.
Such an action should certainly be atomic, otherwise the display might occasionally be empty.

22 2. TUTORIAL

let rec Insert =
proc (tr, el)

if tr is ok then
{key => el, left => ok, right => ok}

elsif tr.key > el then
{key => tr.key, left => Insert (tr.left, el), right => tr.right}

else
{key => tr.key, left => tr.left, right => Insert (tr.right, el)}

end
end;

let maxkey = 10;

let KeyColor =
proc (key) color_hsv(real_float(key)/real_float(maxkey), 1.0, 1.0) end;

let leftXf = Matrix4_Translate(Matrix4_Scale(Matrix4_Id,0.5,0.5,0.5),-1,-2,0);
let rightXf = Matrix4_Translate(Matrix4_Scale(Matrix4_Id,0.5,0.5,0.5), 1,-2,0);

let rec VisTree =
proc (tr)

let g = GroupGO_New();
if tr isnot ok then

let node = SphereGO_New ([0,0,0],0.4);
SurfaceGO_SetColor(node, KeyColor (tr.key));
g.add(node);
if tr.left isnot ok then
g.add(LineGO_New([0,0,0],[-1,-2,0]));
let left = VisTree(tr.left);
GO_SetTransform(left,leftXf);
g.add(left);

end;
if tr.right isnot ok then
g.add(LineGO_New([0,0,0],[1,-2,0]));
let right = VisTree(tr.right);
GO_SetTransform(right,rightXf);
g.add(right);

end;
end;
g;

end;
(Program 13)

2.12 Locking 23

let Run =
proc (keylist)

var tree = ok;
let root = RootGO_NewStd();
let treeRoot = GroupGO_New();
root.add (treeRoot);
foreach key in keylist do
tree := Insert (tree, key);
lock Anim3D_lock do

treeRoot.flush();
treeRoot.add(VisTree(tree));

end;
thread_pause(2.0);

end;
end;

Run ([5,3,7,2,10,8,4,6,1,9]);
(Program 13— continued)

Trees are represented as objects with three fields: key for the key, left for the left subtree,
andright for the right subtree. The empty tree is represented by the valueok (Obliq’s equivalent
of NIL).

Insert is a function that takes a binary search tree tr and an element el to be inserted, and
returns the tree that results from inserting el into tr as a leaf node. Insert has no side effects.

Keycolor is a function that takes a key (i.e. a number) and returns a color corresponding
to this number. KeyColor relies on the constant maxkey, which indicates the largest key that
should be expected.

VisTree is a function that takes a tree and returns a graphical object representing the tree.
VisTree works as follows: First, it creates a new group object g. If the tree is empty, it simply
returns the empty group, otherwise, it creates a sphere centered at the origin, attaches a color
corresponding to the key of the root to the sphere, and adds the sphere to g. If the left subtree is
not empty, it also adds a line from the sphere to the position where the root of the left subtree
is. It then calls itself recursively, obtaining a graphical object left containing the left subtree.
The sphere representing the root of this left subtree again lies at the origin. VisTree attaches
a transformation matrix leftXf to left, which shifts the entire subtree down and to the left,
and also scales it down to half its size. Then, VisTree adds left to g. The right subtree is
visualized analogously. Finally, VisTree returns the group g, which now contains graphical
objects visualizing the entire tree. It should be noted that VisTree is entirely functional; it has
no side-effects whatsoever.

Run is the main procedure of the program. It takes an array of keys as an argument. It
starts out by creating an empty tree tree, a root object root, and a group object treeRoot to
contain the visualization of tree. treeRoot is added as a child to root. The main loop of
Run iterates over the array of keys. Each key is inserted into the tree, and then the scene graph

24 2. TUTORIAL

Figure 13: Final state of the animation created by Program 13

is updated. The update consists of two steps: first, we flush treeRoot, discarding the previous
visualization of the tree. Second, we call VisTree to obtain a graphical object showing the
new tree, and add this object to treeRoot. To prevent flicker, these two steps must be atomic,
so they are protected by a locking construct that acquires Anim3D_lock. The main loop ends
with a call to thread_pause, which causes the program to pause for two seconds during each
iteration, making the visualization easier to follow.

The last line invokes our program on a small test case. Figure 13 shows the scene visualizing
the final state of the tree.

2.13 Callbacks

So far, we have encountered two major concepts: graphical objects, which provide various
geometric primitives and which allow us to arrange the primitives into hierarchies; and properties,
which determine the appearance of graphical objects (apart from their intrinsic shape), and which
are the basic vehicle for animation. The third major concept in Obliq-3D are callbacks: objects
which are used to specify the way a graphical object reacts to input events.

We distinguish between three different kinds of events: mouse events, which are triggered by
mouse button transitions; position events, which are triggered by changes in the mouse position;
and key events, which are triggered by keyboard key transitions. For each kind of event, there is
a corresponding type of callback object.

Let’s take a detailed look at how mouse events are processed. When the user presses or
releases a mouse button while a rendering window is selected, a mouse event is generated. This
event causes the message invokeMouseCB(mr) to be sent to the root object associated with
that window. mr is a mouse event record, an Obliq object that contains information about the
mouse event (such as which button was pressed or released, whether the transition was a button

2.13 Callbacks 25

press or a release, what the position of the mouse was, and what other buttons or option keys
were pressed at this time).

Associated with every graphical object is a mouse callback stack, that is, a stack for mouse
callback objects. When a graphical object receives an invokeMouseCB(mr)message, it checks
if there are any callback objects on its mouse callback stack. If there is one, it sends the message
invoke(mr) to the topmost callback object; if not, the mouse event is ignored.

Each mouse callback object has a corresponding invoke method that takes two arguments:
the callback object itself and a mouse event record. The invoke method is responsible for
deciding what action should be taken in order to respond to the callback. Possibilities are to
simply ignore it, to forward it to other graphical objects (this makes sense particularly for group
objects), or to change some property values (for instance transformation properties, to rotate the
scene).

Mouse callback objects are created through the MouseCB_New function, which takes a
method as its argument and assigns it to the invoke field of the new mouse callback object.

The client program can push new mouse callback objects onto the mouse callback stack
of a graphical object by sending the pushMouseCB method to that object, and it can remove
the top or an arbitrary callback object from the stack by sending the messages popMouseCB or
removeMouseCB to the graphical object. Pushing a callback object means establishing a new
reactive behavior, and popping the stack means reverting back to a previous behavior.

The following example demonstrates the use of a mouse callback. The program initially
shows a sphere. Whenever the user presses the left mouse button, the sphere is replaced by a
box, and when he releases the button, the sphere reappears.

let root = RootGO_NewStd();
let ball = SphereGO_New ([0,0,0], 1);
let box = BoxGO_New ([-1,-1,-1],[1,1,1]);
root.add(ball);
let M = meth(self,mr)

if (mr.change is "Left") then
if (mr.clickType is "FirstDown") or

(mr.clickType is "OtherDown") then
root.remove(ball);
root.add(box);

else
root.remove(box);
root.add(ball);

end;
end;

end;
root.pushMouseCB(MouseCB_New(M));

(Program 14)

Position events and key events are handled similarly.

26 2. TUTORIAL

Obliq
ProxiedObj

opaque
Obliq
value

Modula-3
ProxiedObj.T

Modula-3
forwarder

object

Figure 14: Obliq and Modula-3 counterparts of a Proxied Object

2.14 Extending Objects

Obliq has a clone construct, which takes an arbitrary number of objects and returns a new object
which is the “concatenation” of the arguments. More precisely, clone requires the sets of field
names of the argument objects to be pairwise disjoint, and it returns a new object whose set of
field names is the union of the sets of field names of the arguments, and whose field contents are
identical to the contents of the corresponding fields of the argument objects.

The clone construct fulfills several purposes: it provides a mechanism for performing a
shallow copy of an object, and it allows us to extend objects (that is, add additional fields).

There is a restriction in Obliq-3D that certain objects must not be cloned. To understand
the reason for this, we have to understand the connection between Obliq-3D and the underlying
Modula-3 animation library Anim3D.

Obliq-3D provides a variety of different object types: graphical objects (objects of type
GO), property names (PropName), property values (PropVal), property behaviors (PropBeh),
and so on. All of these are subtypes of ProxiedObj, the type of proxied objects. In our
terminology, a proxied object is an Obliq object with a Modula-3 counterpart. Conversely, on
the Anim3D side, there is a type ProxiedObj.Twith subtypes GO.T, Prop.Name, Prop.Val,
Prop.Beh, and so on. The two objects are connected to each other: the Obliq ProxiedObj

will forward certain messages to the Modula-3 ProxiedObj.T, and the Modula-3 object can in
turn invoke methods of the Obliq object. Figure 14 illustrates the relationship.

Each ProxiedObj has (at least) two fields: raw and extend. The raw field contains
an opaque Obliq value, which in turn contains a reference to the corresponding Modula-
3 ProxiedObj.T. The Modula-3 object could in turn contain a pointer back to the Obliq
ProxiedObj. However, one of our goals in designing Anim3D was to allow for an embedded
language, but to make it independent of any particular one. Therefore, we put a forwarder

2.14 Extending Objects 27

opaque
Obliq
value

Modula-3
ProxiedObj.T

Modula-3
forwarder

object

original
Obliq

ProxiedObj

opaque
Obliq
value

Modula-3
ProxiedObj.T

Modula-3
forwarder

object

original
Obliq

ProxiedObj

cloned
Obliq

ProxiedObj

(a) Before calling clone (b) After calling clone

Figure 15: The effect of clone on Proxied Objects

object, whose signature is not Obliq-specific, between the Modula-3 ProxiedObj.T and the
Obliq ProxiedObj.

The important point to remember is that an ObliqProxiedObjand a Modula-3ProxiedObj.T
refer to each other, and that there is a one-to-one relationship between them. So what would
happen if we clone an Obliq object? Assume we have a behavior object beh with a Modula-3
counterpart x. The relationship between the two objects is shown in Figure 15a. Executing the
statement

let beh2 = clone (beh, {newField => ...});

will create a new behavior beh2, which has an extra field newField. But the raw field of beh2
still refers to the same opaque value and therefore to the same Modula-3 object x. x in turn still
refers to beh, not to beh2 (see Figure 15b). This might have fatal consequences. For instance,
we would expect that

pv.setBeh(beh2);

should make beh2 the behavior of the property value pv. However, pv.getBeh() will return
beh instead of beh2, as the Modula-3 counterpart of beh2 still points back to beh.

To overcome this problem, Obliq-3D offers an alternative way to extend ProxiedObj

objects. Each ProxiedObj p has a method extend, which takes a second Obliq object o
(which must not be a ProxiedObj), and returns a new object p’, whose set of field names is the
union of the field names of p and o. In other words, the result of p.extend(o) is the same as
the result of clone(p,o). However, extend also modifies the forwarder to point to p’ instead
of p. So, after calling p.extend(o), p should not be used any more. Figure 16 illustrates the

28 2. TUTORIAL

original
Obliq

ProxiedObj

opaque
Obliq
value

Modula-3
ProxiedObj.T

Modula-3
forwarder

object

original
Obliq

ProxiedObj

opaque
Obliq
value

Modula-3
ProxiedObj.T

Modula-3
forwarder

object

extended
Obliq

ProxiedObj

(a) Before calling extend (b) After calling extend

Figure 16: The effect of extend on Proxied Objects

effect of extend.

2.15 Naming Graphical Objects

There are cases where it would be convenient to find a particular graphical object within a scene
graph, without having to traverse the graph.

In order to build such a facility for finding objects in a scene graph, we have to decide on
how to identify the object we are searching for. We could use the object itself as a search key,
but that would be somewhat useless: if we already have the object, why search for it?

An alternative is to attach a symbolic label, a name, to graphical objects, and then search
for them by name. In Obliq-3D, a name n is simply a value of type Text. We can attach n

to a graphical object g by calling g.setName(n). We can also inquire the name of a given
graphical object: g.getName() returns the name of g if it is defined, and ok otherwise. Finally,
g.findName(n) traverses the scene graph to see if g or any of its descendants are named n;
if so, it returns the object named n, otherwise, it returns ok. If there are several nodes with the
same name in the scene graph, findName will return the one it finds first.

We have indicated before (see page 5) that the expression RootGO_NewStd(), which
creates a new root object and returns it, also attaches a camera and several light sources to it.
The naming facility give us the ability to access these objects. The name of the camera that
comes with the standard root object is default-camera, the name of the first light source is
default-ambient-light, and the name of the second is default-vector-light.

2.16 Requests 29

2.16 Requests

Section 2.10 explained how synchronous behaviors can be used to change a property value from
its current value to a new one. At least for continuous property values (e.g. reals, points, colors,
and transformations), this implies that some interpolation between the initial value and the new
one must be performed, in order to make the transition appear smooth. Each synchronous
behavior provides one or more default interpolation methods. These methods create a request
object for performing the interpolation, and they add the request to the behavior’s request queue.

Synchronous real behaviors have a method linChangeTo, which performs a linear, i.e.
constant-speed, interpolation between the two values. Synchronous point behaviors have meth-
ods linMoveTo and linMoveBy which move at a constant speed and over a straight path
through 3-space, either to a specified point, or by a specified amount. Synchronous color behav-
iors provide a method rgbLinChangeTo which interpolates between the two colors such that
the intermediate values move at a constant speed over a straight path through RGB space5. Syn-
chronous transformations provide a method changeTo that interpolates between two (slightly
restricted) transformation matrices by using a rather complicated technique.

But what if you want to use a different interpolation method? For instance, you might want
to change a color property value from its current value to a new one, but move on a straight path
through HSV-space6 instead of RGB-space. Obliq-3D enables you to do just that by allowing
you to create arbitrary request objects, which encapsulate an interpolation method. All the
interpolation methods that are provided by default are implemented in terms of request objects.

A color request object is created by calling the function ColorProp_NewRequest. This
function takes the desired start time of the interpolation (relative to the time at which the
controlling animation handle is signaled), its desired duration, and a method m, which will
be used to interpolate between the initial color value and the desired new one. m takes three
arguments: the request itself, a color that shall be the value to start interpolating from, and the
time that has elapsed since the controlling animation handle was signaled. It returns the value
the color shall have at this time.

Color request objects have three methods in addition to the normal raw and extend fields,
which contain the values passed to ColorProp_NewRequest. The method start returns the
time at which the interpolation shall start, the method dur returns its desired duration, and the
method value performs the actual interpolation. Virtually every request object will be extended
to contain some additional fields, such as the target value of the interpolation.

A request object r can be added to the request queue of a synchronous behavior b by calling

5RGB stands for “Red-Green-Blue”. An RGB value consists of a red, a green, and a blue component, indicating
the intensity of these primary colors.

6HSV stands for “Hue-Saturation-Value”. An HSV value consists of a hue, a saturation, and a value component.
The hue component identifies a rainbow color, and the saturation and value components indicate how much white
and black is mixed into this rainbow color.

30 2. TUTORIAL

b.addRequest(r). The time intervals of requests in the request queue must not overlap.
Let us extend the type of synchronous color behaviors by adding a new method

hsvLinChangeTo to it. This method shall have the same signature as rgbLinChangeTo,
but shall interpolate on a straight line through HSV space instead of RGB space.

In order to do this, we have to replace the functions ColorProp_NewSync and
ColorProp_NewSyncBeh by new versions, which create the extended version of the color
behavior. So, we have to “re-open” the ColorProp module and add to it:

module MyColorProp for ColorProp;

let valueMeth =
meth (self, startcol, reltime)

let frac = (if (self.dur() isnot 0.0) then
(reltime - self.start()) / self.dur();

else
1.0;

end);
let h = color_h(startcol), s = color_s(startcol), v = color_v(startcol);
color_hsv (h + ((self.h - h) * frac),

s + ((self.s - s) * frac),
v + ((self.v - v) * frac));

end;

let hsvLinChangeTo =
meth (self, col, start, dur)

let c = ColorProp_NewConst (col).get(); (* make the 1st arg overloaded *)
self.addRequest (ColorProp_NewRequest(start, dur, valueMeth).extend(

{h => color_h(c),
s => color_s(c),
v => color_v(c)}));

end;

let NewSync =
proc (ah, col)

let pv = ColorProp_NewSync(ah, col);
pv.setBeh(pv.getBeh().extend ({hsvLinChangeTo => hsvLinChangeTo}));
pv;

end;

let NewSyncBeh =
proc (ah, col)

ColorProp_NewSyncBeh(ah, col).extend({hsvLinChangeTo => hsvLinChangeTo});
end;

end module;
(Program 15)

2.16 Requests 31

valueMeth is the interpolation method. It takes three arguments: self, startcol, the
initial value of the color, and reltime, the time that has elapsed since the animation handle
was signaled. The request object self contains the usual methods start, dur, and value;
it also contains three extra fields h, s, and v, which hold the hue, saturation, and value of the
target color of the interpolation. valueMeth first computes what fraction of the interpolation
has already elapsed. If the interpolation has a zero duration, then this fraction is assumed to be 1.
Next, valueMeth extracts the h, s, and v components of the initial color. Finally, it interpolates
between the h, s, and v components of the initial and the final color, and returns the resulting
intermediate color.

The method hsvLinChangeTo takes a behavior self, a target color col, a start time
start, and a duration dur. We would like to allow col to be overloaded, that is, to be either
a Color or a Text denoting a color. But as the operations in the color module cannot deal
with such overloading, we have first to convert col into a value that is guaranteed to be a
color. We do so by using the overloaded function ColorProp_NewConst to create a constant
ColorPropVal, and then extract its current value. Then, we call ColorProp_NewRequest
to create a new request object with start time start, duration dur, and interpolation method
valueMeth. We extend this object by three fields h, s, and v, which contain the hue, saturation,
and value components of col, and finally we return the extended object.

The last two procedures NewSync and NewSyncBeh replace the default procedures for
creating synchronous color property values and behaviors. NewSync first invokes the original
version of NewSync to create a new property value pv. It then extracts the behavior of pv,
extends this behavior by a new method hsvLinChangeTo, and replaces the original behavior
with the extended one. Finally, it returns pv.

NewSyncBeh simply invokes the original version of NewSyncBeh to create a new syn-
chronous behavior, extends this behavior by a new method hsvLinChangeTo, and returns the
extended behavior.

Ending the module causes NewSync and NewSyncBeh to be accessible as
ColorProp_NewSync and ColorProp_NewSyncBeh, thereby truly hiding the default pro-
cedures.

We can test the extended version of color property values with the following program:

let root = RootGO_NewStd();
let ball = SphereGO_New ([0,0,0], 0.5);
root.add (ball);
let ah = AnimHandle_New();
let col = ColorProp_NewSync (ah, "yellow");
SurfaceGO_SetColor (ball, col);
col.getBeh().hsvLinChangeTo ("blue", 0, 2);
ah.animate ();

(Program 15— continued)

32 2. TUTORIAL

This program creates a root object, which contains a sphere. Attached to the sphere is a
synchronous color property value,which is initially yellow. This color property value differs from
the normal ones in that its behavior understands one extra method, namely hsvLinChangeTo.
We send such a message to the behavior, asking it to turn blue, over the course of two seconds. If
we had used the rgbLinChangeTo request, the color would have changed from yellow over grey
to blue. The hsvLinChangeTo message, however, causes it to move “through the rainbow”,
that is, from yellow over green to blue.

2.17 Depth Cueing

Depth cueing (also known as “fog”) simulates the effects of atmosphere and the dimming of
objects as they become more distant. Objects “fade” towards a color, called the depth cue color,
the further they are away from the viewer.

Depth cueing can be switched on or off. If it is on, its effect is determined by five parameters:
a front planePf , a back plane Pb, a front scale factorSf , a back scale factor Sb, and a depth cue
color Cd.

The part of the scene that is displayed by a given root object is surrounded by a “bounding
box”7. The front face of the bounding box is orthogonal to the viewing direction of the camera.
The box is treated as a unit cube; the z-coordinate of its front face is 1, and the z-coordinate of
its back face is 0. Pf and Pb are two real numbers that describe the z-coordinates of two planes
within this unit cube, so they can range between 0 and 1.

Given an object (or a part of an object) whose z-coordinate (normalized to the bounding box)
is z and whose reflected color (i.e. the color determined by lighting and shading computations)
is Cr, the color after depth cueing of this object is �Cr + (1� �)Cd, where:

� =

8><
>:

Sb if z � Pb (i.e. the part is behind the back plane)
Sb + (Sf � Sb)

z�Pb

Pf�Pb
if Pb < z < Pf

Sf if Pf � z

Figure 17 plots the value of � as a function of z.
Depth cueing is associated with a root object. It affects all the objects shown in the window

that corresponds to this root. Cd is controlled by the color property named RootGO_Depthcue-
Color; Pf and Pb are controlled by the real properties RootGO_DepthcueFrontPlane

and RootGO_DepthcueBackPlane; Sf and Sb are controlled by the real properties
RootGO_DepthcueFrontScale and RootGO_DepthcueBackScale; and whether depth
cueing is in effect or not is controlled by the boolean property namedRootGO_DepthcueSwitch.

The following program shows how depth cueing can be used. It also makes clear that,
because depth cueing is controlled by properties, all the standard mechanisms for animation

7In the current implementation, this bounding box is more conservative than necessary.

2.18 Light Objects 33

0 1
0

1

Pb Pf

bS

fS

z

α

Back Front

Figure 17: Relationship between fading factor � and depth z in depth cueing

are available to control it. The program constructs a scene that shows a cone. Depth cueing is
switched on, and the back scaling factor is made to oscillate between 0 (far objects fade almost
fully into black) and 1 (objects do not fade away).

let root = RootGO_NewStd();
root.add (ConeGO_New([0,0,0],[0,0,50],1));
let bs = RealProp_NewAsync(meth(self,time) 0.5 + math_sin(time) * 0.5 end);
RootGO_SetDepthcueBackScale(root, bs);
RootGO_SetDepthcueSwitch(root, true);

(Program 16)

2.18 Light Objects

In Section 2.2 and again in Section 2.15, we mentioned that the function RootGO_NewStd()

creates two light sources along with a root object, and adds these light sources to the new root.
Light sources are treated as ordinary graphical objects: they can be added to groups, prop-

erties can be attached to them, and their effect is controlled by properties.
In particular, light sources are affected by the GO_Transform property. This feature allows

us make a light source part of a more complex graphical object, say a car. Moving the car by
changing a transformation property attached to it moves the light just like the other parts of the
car. The following program illustrates the point:

34 2. TUTORIAL

Figure 18: Snapshots of the animation created by Program 17

let root = RootGO_NewStd();
root.remove(root.findName("default-vector-light"));
root.add(CylinderGO_New([0,0,-0.5],[0,0,0.5],1));
let g = GroupGO_New();
root.add(g);
g.add(ConeGO_New([0.5,0,0],[0,0,0],0.2));
g.add(SpotLightGO_New("white",[0,0,0],[0.5,0,0],1,1,0.5,0.5));
let rot = TransformProp_NewAsync (meth(self, time)

Matrix4_RotateZ(Matrix4_Id, time)
end);

GO_SetTransform(g, rot);
(Program 17)

First, we call RootGO_NewStd() to create a root object root. This call also creates an
ambient and a vector light source. We remove the vector light source (which is named
"default-vector-light") from root, and add a cylinder to root.

Next, we create a group object g, add g to root, and add a cone and a spot light source to
g. The tip and the central axis of the cone object and the light cone emitted by the spot light
coincide.

Finally, we create an asynchronous transformation property value,which continuously rotates
around the z axis, and attach it to g. This causes g and all objects contained in it (i.e. the cone
and the spot light) to rotate around the z axis.

The animation created by this program shows that the cone of light emitted by the spot light
sweeps across the walls of the cylinder. Figure 18 shows a series of snapshots of the animation
in progress.

2.19 Camera Objects

In Section 2.2 and again in Section 2.15, we mentioned that the function RootGO_NewStd()

creates not only a root object, but also a camera object. This camera is used to view the graphical
objects that occur below the root node in the scene graph.

Cameras (just like light sources) are treated as graphical objects. They can be added to
groups, properties can be attached to them, and their appearance is controlled by properties. The

2.19 Camera Objects 35

camera that is used to view a scene can be, but does not have to be, a descendant of a root object.
However, if it is a descendant of a root node, there must be a unique path from the root node to
the camera. The camera “inherits” the current values of properties that are attached along the
path from the root to the camera, just like any other graphical object does (see Section 2.3).

In particular, cameras are affected by the GO_Transform property. This feature allows us
to make a camera part of a more complex graphical object, say an airplane. Moving the plane
by changing a transformation property attached to it moves the camera as well. This allows us
to view a scene from inside the planes’s cockpit.

The following program illustrates the concept:

let root = RootGO_NewStd();
root.add (SphereGO_New ([0,1,0],0.3));
root.add (SphereGO_New ([1,0,0],0.3));
root.add (SphereGO_New ([0,-1,0],0.3));
root.add (SphereGO_New ([-1,0,0],0.3));
var cam1 = root.findName ("default-camera");
var cam2 = PerspCameraGO_New ([0,0,0],[0.5,0,0],[0,1,0],1.0);

let g = GroupGO_New();
root.add (g);
g.add (ConeGO_New ([0.5,0,0],[0,0,0],0.2));
g.add (cam2);

let rot = TransformProp_NewAsync (meth (self, time)
Matrix4_RotateZ (Matrix4_Id, time)

end);
GO_SetTransform (g, rot);

let cb = KeyCB_New(meth (self, kr)
if (kr.change is "c") and (kr.wentDown is true) then
let tmp = cam1; cam1 := cam2; cam2 := tmp;
root.changeCamera(cam1);

end
end);

root.pushKeyCB(cb);
(Program 18)

The first five lines create a root object and four spheres that are arranged in a diamond formation.
The next line finds the default camera that was created by RootGO_NewStd(), and binds it
to the variable cam1. The following line creates a new perspective camera, and binds it to the
variable cam2.

The next next four lines create a group g, add g to the root object, and add a cone and cam2

to g. The tip of the cone coincides with the location of cam2, and the camera views along the
central axis of the cone.

Next, we create an asynchronous transformation property value, which continuously rotates

36 2. TUTORIAL

Figure 19: Snapshots of the animation created by Program 18

around the z axis, and attach it to g. This causes g and all objects contained in it (i.e. the cone
and the camera) to rotate around the z axis.

Finally, we create a key callback object, and push it onto the root object’s key callback stack.
The invoke method of the callback object checks whether the ‘c’ key was pressed, and if so,
toggles between the stationary camera and the rotating camera.

Figure 19 shows a series of snapshots of the animation in progress. The upper row of pictures
shows the scene as observed by the stationary camera; the lower row shows the scene as observed
by the rotating camera.

Program 18 demonstrated one way to move a camera: by modifying a transformation
property that affects the camera. But all the relevant parameters of a camera, including its
location and its target point (the point the camera is looking at) are controlled by properties, so
instead of changing a transformation matrix, we can change the values of these properties.

The following program demonstrates this technique. It creates a scene that contains a
stationary torus, and a cone that moves around in a circle. On its way, the cone passes through
the torus; it "jumps through the hoop", so to speak. A perspective camera is mounted at the tip
of the cone, and is set to point in the direction of movement. The program allows the user to
switch between the stationary default camera and the camera mounted at the tip of the cone.

2.19 Camera Objects 37

Figure 20: Snapshots of the animation created by Program 19

let p1 = PointProp_NewAsync (meth (self, time)
[math_sin(time), math_cos(time), 0]

end);
let p2 = PointProp_NewAsync (meth (self, time)

[math_sin(time+0.1), math_cos(time+0.1), 0]
end);

let p3 = PointProp_NewDep (meth (self, time)
let v1 = p1.value(time), v2 = p2.value(time);
Point3_Plus (v2, Point3_Minus (v2, v1))

end);

let r = RootGO_NewStd ();
r.add (TorusGO_New([1,0,0],[0,1,0],0.5,0.1));
r.add (ConeGO_New (p1, p2, 0.1));

var cam1 = r.findName ("default-camera");
var cam2 = PerspCameraGO_New(p2,p3,[0,0,1],1);

r.pushKeyCB(KeyCB_New(meth (self, kr)
if (kr.change is "c") and (kr.wentDown is true) then

let tmp = cam1; cam1 := cam2; cam2 := tmp;
r.changeCamera(cam1);

end
end));

(Program 19)

The first few lines of the program create three point property values p1, p2, and p3. p1 and
p2 rotate around the origin of the coordinate system, at a radius of 1 unit. The angle between
the two points is 0:1 degrees radian. The third point is a point reflection of p1 on p2.

38 2. TUTORIAL

The next three lines create a root object, and add a cone and a torus to it. The parameters of
the torus are constant, while the base of the cone is controlled by p1, and its tip is controlled by
p2.

Next, a perspective camera is created. Its location is controlled by p2, and its target point is
controlled by p3.

The last few lines are identical to those of Program 18; they attach a callback object to the
root that allows the user to toggle between the stationary and the moving camera.

Figure 20 shows a series of snapshots of the animation in progress. The upper row of pictures
shows the scene, when viewed from the stationary camera; the lower row shows the scene, when
viewed from the rotating camera.

2.20 Creating Root Objects

In all examples so far, we have used the function RootGO_NewStd() to create new root objects.
RootGO_NewStd() calls a function in the underlying Modula-3 layer, which creates a graphics
base, a perspective camera, and a root object, connects the root object to the graphics base, and
attaches the camera to the root such that all objects in the scene graph below the root are viewed
through the camera. It also creates an ambient and a vector light source, and adds them to the
root. Finally, it creates mouse and position callback objects that allow the user to interactively
manipulate the scene, that is, move, scale and rotate it.

AlthoughRootGO_NewStd() is defined in the Modula-3 layer, there is no “magic” involved
in it. At this point, we have encountered all the machinery needed to reimplement the function
at the Obliq level. We start out by reopening the RootGOmodule, and by redefining the function
NewStd:

module RootGOExtension for RootGO;

let NewStd =
proc ()

let base = X‘PEX‘Base_New ("Anim3D Viewer", 10, 10, 500, 500);
let cam = PerspCameraGO_New ([0, 0, 100], [0, 0, 0], [0, 1, 0], 0.05);
cam.setName ("default-camera");
let root = RootGO_New (cam, base);
let light1 = AmbientLightGO_New ("white");
light1.setName ("default-ambient-light");
root.add (light1);
let light2 = VectorLightGO_New ("white", [-1, -1, -1]);
light2.setName ("default-vector-light");
root.add (light2);
GO_SetTransform (root, TransformProp_NewConst (Matrix4_Id));

(Program 20)

2.20 Creating Root Objects 39

let posMeth =
meth (self, pr)

let isin =
proc (e, l)

var res = false;
foreach x in l do res := res or (x is e) end;
res

end;
let dx = real_float (pr.pos[0] - self.pos[0]);
let dy = real_float (pr.pos[1] - self.pos[1]);
let beh = GO_GetTransform (root).getBeh();
if isin ("Shift", pr.modifiers) then

if self.but is "Left" then
beh.translate (dx * 0.01, (-dy) * 0.01, 0.0);

elsif self.but is "Middle" then
beh.scale (1.0 + dx * 0.01, 1.0 + dx * 0.01, 1.0 + dx * 0.01)

elsif self.but is "Right" then
beh.translate (0.0, 0.0, dx * 0.01)

end;
else

if self.but is "Left" then
beh.rotateX (dx * 0.01);

elsif self.but is "Middle" then
beh.rotateY (dx * 0.01);

elsif self.but is "Right" then
beh.rotateZ (dx * 0.01);

end;
end;
self.pos := pr.pos;

end;
let posCB = PositionCB_New (posMeth).extend ({pos => ok, but => ok});
let mouseMeth =
meth (self, mr)

if mr.clickType is "FirstDown" then
posCB.pos := mr.pos;
posCB.but := mr.change;
root.pushPositionCB (posCB);

elsif mr.clickType is "LastUp" then
root.popPositionCB ();

end;
end;

root.pushMouseCB (MouseCB_New (mouseMeth));
root

end;

end module;
(Program 20— continued)

40 2. TUTORIAL

The first few lines create an X‘PEX‘Base object and a perspective camera named
"default-camera". Next, a RootGO object root is created. The RootGO creation func-
tion takes two arguments: the X‘PEX‘Base (meaning all graphical objects below root are
displayed in an X window, using the PEX 3D protocol), and the camera (meaning all graphical
objects below root are viewed through this camera).

Next, an ambient light source named "default-ambient-light" and a vector light
source named "default-vector-light" are created, and added to the root object. This
causes all objects below root to be illuminated by these two light sources.

Next, a constant transformation property value is created and attached as the GO_Transform
property to root.

Next, a position callback object and a mouse callback object are created. The mouse callback
object is immediately pushed onto root’s mouse callback stack, whereas the position callback
object is assigned to the variable posCB. Finally, the new object is returned.

The invoke method (see Section 2.13) of the mouse callback object is called when a mouse
button is pressed or released. It checks whether the button is the first button to go down, or the
last button to go up. In the first case, it saves the button and the current mouse position in two
fields of posCB, and pushes posCB onto root’s position callback stack. In the second case, it
pops posCB from the root’s position callback stack. So, the invoke method of posCB will be
called only when a mouse button is pressed.

In order for a callback object to be active, it must be on top of a callback stack. So, posCB is
active only when it is on top of root’s position callback stack, that is, only if a mouse button is
pressed. In this case, its invoke method is called whenever the position of the mouse changes.
posCB checks whether the shift key is held down or not, and whether the left, middle, or right
mouse button is pressed, and changes the value of root’s GO_Transform property accordingly.
Holding the left button while moving the mouse causes a rotation around theX axis, holding the
middle button causes a rotation around the Y axis, and holding the right button causes a rotation
around the Z axis. The angle of the rotation depends on how much the mouse was moved in
the x dimension. If the shift key is pressed, holding the left button while moving the mouse
causes a translation in the XY plane (depending on the xy movement of the mouse), holding
the middle button causes a uniform scaling, and holding the right button causes a translation in
the Z direction (both depending on the x movement of the mouse).

This version of RootGO_NewStd is completely equivalent to the default one. In other
words, including this code fragment before any of the programs we have encountered before
would cause no observable difference in their behavior.

So, this function is not interesting per se, but because it can be used as a template to create
alternative RootGO creation functions with slightly different behavior. As an exercise, the reader
might try to construct a RootGO creation function whose callback functions transform all the
objects in the scene, except the light sources.

41

3 Reference Manual

The remainder of this report contains a reference manual for Obliq-3D. As in the first part, we
assume the reader is familiar with Obliq [3]. Furthermore, we assume that the reader has read
the tutorial part of the report, and understands the basic concepts of Obliq-3D.

The reference manual contains a section for each module. We show the interface description
provided by the on-line help system (see Section 2.4), and we explain the types and functions
exported by the module in more detail. Explanations are terse, but contain references to the
tutorial part where appropriate.

Notation for Obliq Types

To paraphrase Cardelli, “Although Obliq is an untyped language, every Obliq program, like any
other program, respects the type discipline in the programmer’s mind.” [3] Obliq enables the
programmer to make this discipline explicit by allowing for type comments, which are parsed
according to a fixed grammar, but have no effect after parsing. This type notation is described
in the Obliq report [3]. The following section excerpts the pieces relevant to Obliq-3D:

Top � The type of all values.

Ok � Contains a single value, ok. This value should be considered as having every
type, so it can be used to initialize variables; however, its normal type is Ok.

Bool � The type of boolean values. Contains the two values true and false.

Int � The type of integer values.

Real � The type of real values.

Text � The type of text values.

Color � The type of color values.

Mutex � The type of mutex values.

Exception � The type of exceptions.

A1 +A2 � The union of the types A1 and A2. This is an extension of the notation presented
in [3].

A1 &A2 � The concatenation of the object types A1 and A2. This is an extension of the
notation presented in [3].

[A] � The type of arrays of As.

[n*A] � The type of arrays of As of length n (where n is an integer).

42 3. REFERENCE MANUAL

(A1,...,An)->A!exc1...excm � The type of procedures of argument types Ai (n� 0), re-
sult type A, and exceptions exci (where !exc1...excm

may be omitted).

(A1,...,An)=>A!exc1...excm � The type of methods of argument types Ai (n� 0), result
typeA, and exceptionsexci (where! exc1...excm may
be omitted). The type of the self argument is not included
in Ai.

fx1:A1,...,xn:Ang � The type of objects with components named xi of field
type or method type Ai.

Self(X)BfXg � Where BfXg is a method type with possible covariant
occurrences ofX. This construction is used to give a name
(X) to the type of the method’s self (e.g. for methods
that return self) This is a modification of the notation
presented in [3].

All(X<:A)BfXg � Where BfXg is any type with possible occurrences of X.
This is the type of values that, for all subtypes A0 of A,
have type BfA0g. If <:A is omitted, it stands for <:Top.

A<:B is read as “A is a subtype of B”. It implies that every value of type A is also a value of type
B. In particular, A<:Top holds for any type A, and B<:fg holds for any object type B.

The notation for giving the type of a procedure within an interface is as follows:

p(x1:A1,...,xn:An):A!exc1...excm

indicates that procedure p has formal parameters xi of type Ai (n � 0), result type A, and
exceptions exci (where !exc1...excm may be omitted).

We extended the type notation of [3] with two new type operators: the type union operator
+ and the object type concatenation operator &.

The type union operator is used to describe ad-hoc polymorphism. The type A+B denotes
the union of the types A and B. A value of this type belongs to either A or B. We can use the type
union operator to describe the type of the overloaded function real_float:

real_float(n:Int+Real):Real

Note that Obliq provides no construct for discriminating between types. So, it is not possible
for the user to define overloaded procedures that work for arbitrary type unions; all overloaded
procedures eventually have to invoke some built-in facilities to discriminate between the possible
types.

The object type concatenation operator is used to describe the type aspects of operations
that merge several objects. The type A&B denotes the concatenation of the object types A

43

and B. If A=fx1:A1,...,xm:Amg, B= fy1:B1,...,yn:Bng, and xi 6= yj for all i, j, then
A&B = fx1:A1,...,xm:Am,y1:B1,...,yn:Bng.

We can use the object type concatenation operator to give a type to the clone con-
struct: If each of the expressions xi is of type Ai<:fg (for 1 � i � n), then the expression
clone(x1,...,xn) is of type A1 &...&An.

Coercion Functions for Overloaded Procedures and Methods

Many of the functions and methods of Obliq-3D are overloaded, that is, the same formal
parameter can be bound to arguments of different types. We introduced the type union notation
to be able to describe this overloading.

It turns out that all our uses of overloading are uniform enough to allow us to define a very
simple way for resolving overloading. For each type union A1 +...+An, we declare one of the
Ai (by convention A1) to be the desired type, and we give coercion functions from A2,� � �,An to
A1. Below are the union types used in Obliq-3D, and the corresponding coercion functions:

Num = Real + Int

Int is coerced to Real via real_float
Col = Color + Text

Text is coerced to Color via color_named
BooleanVal = BooleanPropVal + Bool

Bool is coerced to BooleanPropVal via BooleanProp_NewConst
RealVal = RealPropVal + Num

Num is coerced to RealPropVal via RealProp_NewConst
ColorVal = ColorPropVal + Col

Col is coerced to ColorPropVal via ColorProp_NewConst
PointVal = PointPropVal + Point3

Point3 is coerced to PointPropVal via PointProp_NewConst
TransformVal = TransformPropVal + Matrix4

Matrix4 is coerced to TransformPropVal via TransformProp_NewConst
LineTypeVal = LineTypePropVal + LineType

LineType is coerced to LineTypePropVal via LineTypeProp_NewConst
MarkerTypeVal = MarkerTypePropVal + MarkerType

MarkerType is coerced to MarkerTypePropVal via MarkerTypeProp_NewConst
RasterModeVal = RasterModePropVal + RasterMode

RasterMode is coerced to RasterModePropVal via RasterModeProp_NewConst
ShadingVal = ShadingPropVal + Shading

Shading is coerced to ShadingPropVal via ShadingProp_NewConst

44 3. REFERENCE MANUAL

3.1 The Point3 Module

- help Point3;
Point3_Plus(a b: Point3): Point3
Point3_Minus(a b: Point3): Point3
Point3_ScaleToLen(a: Point3, s: Num): Point3
Point3_TimesScalar(a: Point3, s: Num): Point3
Point3_Length(a: Point3): Real
Point3_Distance(a b: Point3): Real
Point3_MidPoint(a b: Point3): Point3

WHERE
Point3 = [3*Num]
Num = Real + Int

A Point3 is an array of three numbers, where a number is an integer or a real. One can construct
a new point by writing an array constant: [x;y;z] denotes a point at position (x; y; z) in cartesian
3-space. Conversely, the components of a point can be accessed through Obliq’s standard array
indexing mechanism: given a point a of value [x;y;z], a[0] evaluates to x, a[1] evaluates to
y, and a[2] evaluates to z. The type Point3 is also used to denote vectors.

The following functions are provided by the Point3 module:

� Point3_Length(a) returns the length of the vector a.

� Point3_Plus(a,b) adds the two vectors a and b.

� Point3_Minus(a,b) subtracts vector b from vector a.

� Point3_Distance(a,b) returns the distance between the points a and b, that is, it is
equivalent to Point3_Length(Point3_Minus(a,b)).

� Point3_TimesScalar(a,s)multiplies the vector a with the scalar s.

� Point3_ScaleToLen(a,s) returns a vector parallel to a of length s, that is, it is
equivalent to Point3_TimesScalar(a,real_float(s)/Point3_Length(a)).

� Point3_MidPoint(a,b) returns the midpoint between the two points a and b, that is,
it is equivalent to Point3_TimesScalar(Point3_Plus(a,b),0.5).

3.2 The Matrix4 Module 45

3.2 The Matrix4 Module

- help Matrix4;
Matrix4_Id: Matrix4
Matrix4_Multiply(m1 m2: Matrix4): Matrix4
Matrix4_Translate(m: Matrix4, x y z: Num): Matrix4
Matrix4_Scale(m: Matrix4, x y z: Num): Matrix4
Matrix4_RotateX(m: Matrix4, a: Num): Matrix4
Matrix4_RotateY(m: Matrix4, a: Num): Matrix4
Matrix4_RotateZ(m: Matrix4, a: Num): Matrix4

WHERE
Matrix4 is opaque
Num = Real + Int

A Matrix4 can be viewed as a transformation function that takes a point in 3-space and maps
it onto another point in 3-space. Typical transformations are translation, scaling, and rotation.
Internally, values of type Matrix4 are represented as a 4� 4 array of reals.

Matrix4_Id is the identity transformation, the transformation that maps every point onto
itself.

Matrix4_Multiply(m1,m2) returns a transformation m that is the composition of m1

and m2. Applyingm to a point p is the same as first applying m2 to p and then applying m1 to
the resulting point.

Matrix4_Translate(m,a,b,c) creates a transformation m0 that maps a point [x;y;z]
onto a point [x+ a;y + b;z + c], composes m0 with m, and returns the resulting transformation.

Matrix4_Scale(m,a,b,c) creates a transformation m0 that maps a point [x;y;z] onto a
point [ax;by;cz], composes m0 with m, and returns the resulting transformation. The scaling
operation is called uniform if a = b = c.

Matrix4_RotateX(m,a) creates a transformation m0 that takes a point p and returns p
rotated by a degrees (radian) around the x-axis. It then composes m0 with m, and returns the
resulting transformation. Matrix4_RotateY(m,a) and Matrix4_RotateZ(m,a) perform
similar rotations around the y- and z-axis, respectively.

46 3. REFERENCE MANUAL

3.3 The Anim3D Module

- help Anim3D;
Anim3D_lock: Mutex

The Anim3D module provides resources that are global to the entire animation session. There
is only one such resource: the mutex Anim3D_lock, which is used to ensure that a batch of
operations on the scene graph is “atomic” (see Section 2.12).

Our animation library is based on a damage-repair model, where operations on the scene
graph “damage” the scene. These damages are repaired by a dedicated animation server thread.
Normally, damage-repair is transparent to the client program. However, the animation server
thread must acquire Anim3D_lock before performing any repairs. So, by locking this mutex,
the client program can prevent the animation server from updating the display. This is useful
for programs that modify the scene graph such that at some intermediate points the scene graph
does not reflect the intended scene.

3.4 The ProxiedObj Module

- help ProxiedObj;
TYPE ProxiedObj <: { extend: Self(X) All(Y<:{}) (Y) => X & Y }

Objects of this type also contain a field "raw",
which is for internal use only.

A ProxiedObj is an Obliq object that has a Modula-3 counterpart (see Section 2.14). All
animation-specific object types used in Obliq-3D are subtypes of ProxiedObj.

Each ProxiedObj contains (at least) two fields, raw and extend. The field raw contains
an opaque value that in turn contains a reference to the corresponding Modula-3 object. The
Modula-3 object contains a reference back to the ProxiedObj. The client program should not
attempt to modify raw.

The method extend is used to add additional fields to the object. Given a ProxiedObj

p and an ordinary object o, the expression p.extend(o) returns a new object p’, which is
equivalent to the object returned by clone(p,o). In addition, the corresponding Modula-3
object now refers to p’ instead of p.

The client program should never use clone on a ProxiedObj; calling extend is the only
legal way to add fields to such an object. Furthermore, after extending a ProxiedObj p, the
original object p must not be used any longer.

3.5 The GraphicsBase Module 47

3.5 The GraphicsBase Module

- help GraphicsBase;
TYPE GraphicsBase <: ProxiedObj

Associated with each root object is a window on the screen. This window is represented by a
GraphicsBase object. GraphicsBase is a subtype of ProxiedObj.

A GraphicsBase also serves as an abstraction of the underlying window system and
graphics system. Currently, Obliq-3D supports only the X window system [21] and the MPEX
graphics library (MPEX is Digital’s extension of PEX [8], the 3D extension of X).

GraphicsBase is an abstract class; the module does not provide any creation functions.

3.6 The X‘Pex‘Base Module

- help X‘PEX‘Base;
X‘PEX‘Base_Failure: Exception
X‘PEX‘Base_New(title: Text, x y w h: Int): X‘PEX‘Base ! X‘PEX‘Base_Failure
X‘PEX‘Base_NewStd(): X‘PEX‘Base ! X‘PEX‘Base_Failure

WHERE
X‘PEX‘Base <: GraphicsBase & { changeTitle: (Text) => Ok,

awaitDelete: () => Ok,
destroy: () => Ok }

An X‘PEX‘Base object represents a 3D rendering window that is displayed using the X window
system and the MPEX graphics library.

There are two functions for creatingX‘PEX‘Base objects: X‘PEX‘Base_New(t,x,y,w,h)
returns a new X‘PEX‘Base, and as a side effect it creates a window of width w and height h
(in pixels), x pixels right of and y pixels below the upper left corner of the screen. It also
puts the text t into the title bar of the window. X‘PEX‘Base_NewStd() is equivalent to
X‘PEX‘Base_New("Anim3D Viewer",10,10,500,500).

X‘PEX‘Base objects contain three extra methods: b.changeTitle(t) changes the title
of the window associated with the base b to t; b.awaitDelete() suspends until the window
associated with b is deleted, and b.destroy() deletes the window associated with b.

48 3. REFERENCE MANUAL

3.7 The AnimHandle Module

- help AnimHandle;
AnimHandle_New(): AnimHandle

WHERE
AnimHandle <: ProxiedObj & { animate: () => Ok }

An AnimHandle (or animation handle) is an object that is used to synchronize a set of animation
requests. As described in Section 2.10, clients can create property values with synchronous
behaviors. Each synchronousbehavior is controlled by an animation handle, and many behaviors
can be controlled by the same handle. Clients can send animation requests to those behaviors.
These requests are not executed immediately, but instead are held in request queues. Requests
issued to a behavior are processed only when the animation handle controlling that behavior is
signaled.

AnimHandle_New() creates a new animation handle and returns it. In addition to the fields
common to all subtypes of ProxiedObj, an AnimHandle has one extra method, animate.
Given an animation handle ah, the call ah.animate() signals all the behaviors controlled by
ah to process their requests.

3.8 The GO Module 49

3.8 The GO Module

- help GO;
GO_PropUndefined: Exception
GO_StackError: Exception
GO_Transform: TransformPropName
GO_SetTransform(go: GO, xf: TransformVal): Ok
GO_GetTransform(go: GO): TransformPropVal ! GO_PropUndefined

WHERE
GO <: ProxiedObj &

{ setProp: (PropName,PropVal) => Ok
unsetProp: (PropName) => Ok ! GO_PropUndefined,
getProp: (PropName) => PropVal ! GO_PropUndefined,
setName: (Text) => Ok,
getName: () => Text,
findName: (Text) => GO,
pushMouseCB: (cb: MouseCB) => Ok,
popMouseCB: () => Ok ! GO_StackError,
removeMouseCB: (cb: MouseCB) => Ok ! GO_StackError,
invokeMouseCB: (mr: MouseRec) => Ok,
pushPositionCB: (cb: PositionCB) => Ok,
popPositionCB: () => Ok ! GO_StackError,
removePositionCB: (cb: PositionCB) => Ok ! GO_StackError,
invokePositionCB: (mr: PositionRec) => Ok,
pushKeyCB: (cb: KeyCB) => Ok,
popKeyCB: () => Ok ! GO_StackError,
removeKeyCB: (cb: KeyCB) => Ok ! GO_StackError,
invokeKeyCB: (mr: KeyRec) => Ok }

TransformVal = TransformPropVal + Matrix4

A GO (or graphical object) is an object that describes some part of the scene. Geometric
primitives, such as lines, spheres, tori, etc. are special kinds (and therefore subtypes) of graphical
objects, and so are light sources and cameras. There is also a subtype of GO, namely GroupGO,
that allows us to combine several graphical objects into a single one, thereby allowing us to
impose a hierarchical structure on the scene.

Graphical objects are subtypes of ProxiedObj. In addition to the fields and methods
common to all ProxiedObj’s, each graphical object g has a number of additional methods. We
can group these methods into three categories: property-related, name-related, and callback-
related methods.

50 3. REFERENCE MANUAL

How Properties Affect the Scene

A property describes some aspect of the appearance of a graphical object, such as its color, its
size, or its location. Properties consist of a name and a value. The name defines what aspect of
a graphical object is affected (for example, its color), and the value describes how this aspect
appears at a given time.

In order for a property (n; v) to influence the appearance of a graphical object g, (n; v) has
to be attached to g.

Conceptually, every graphical object contains a property mapping, a partial function from
property names to property values. The function is partial, as it may be undefined for some
property names. Attaching a property (n; v) to a graphical object means replacing the object’s
property mapping M by the extended mapping M [n! v].

Alternatively, we can assume that every graphical object contains an association list. Asso-
ciation lists are lists of name-value pairs such that each name is unique; they are commonly used
to implement finite functions. In this model, attaching a property to a graphical object means
adding it to the object’s association list.

If we view the graphical objects in a scene as nodes, and the containment relationships
induced by GroupGO objects as arcs, we obtain a directed graph, called a scene graph. Scene
graphs must be acyclic. If a group g contains another graphical object o, we say that g is a parent
of o, or conversely, that o is a child of g. We use the terms ancestor and descendant to describe
the transitive closures of the parent and the child relationship, respectively.

Our system uses a damage-repair model. A dedicated thread (called the animation server
thread) redisplays the scene when it changes. It does so by traversing the scene graph, starting
from the roots (the vertices with in-degree 0). So, whenever a graphical object G1 is drawn,
there is a path [g1,..,gn] from g1 to a root gn (Section 2.5 explains how scene graphs can be
“unfolded” into forests of trees).

The animation server has a state vector, which contains the current transformation, surface
color, line width, etc. For each property name, there is a corresponding element in the state
vector. Initially, the state vector contains default values. When the scene is rerendered, and the
traversal process reaches a particular graphical object, all properties attached to this object are
used to update the state vector. Upon backtracking, the state vector reverts back to its previous
state.

When a GO_Transform property is encountered, its current value m1 is multiplied with
the current transformation entry m0 of the state vector, that is, the new entry of the state vector
is Matrix4_Multiply(m1,m0). When any other property is encountered, its current value
simply replaces the current entry of the state vector.

The effect of all this is that properties that are attached to a graphical object affect the
appearance of this object and all those objects contained in it. However, if a descendant of
the graphical object has a property with the same name attached to it, then this property will

3.8 The GO Module 51

Val = Bool + Real + Point3 + Color + Matrix4 + � � � (ordinary values)
PropMap = PropName ! PropVal (property mappings)
PropVal = Time! Val (property values – functional view)

D : PropName ! Val

D(n) is the default value of property name n

P : GO! PropMap

P (g) is the property mapping of graphical object g

S : [GO]! PropName ! Time! Val

S([g1; � � � ; gn])(n)(t) is the value of property n at graphical object g1 and time t

S is defined as follows:

S([])(n)(t) = D(n) for all n; t

S([g1; � � � ; gm])(n)(t) =

8>>>>>>><
>>>>>>>:

S([g2; � � � ; gm])(n)(t)

if P (g1)(n) is undefined
P (g1)(n)(t)

if P (g1)(n) is defined and n is not GO_Transform
Matrix4_Multiply(S([g2; ::; gm])(n)(t); P (g1)(n)(t))

if P (g1)(n) is defined and n is GO_Transform

Table 2: From Properties to State

“override” the value of the ancestor (or, in the case of transformation properties, will modify it).
Table 2 formalizes how the current state is determined. For the purpose of this explanation,

we view property values not as objects, but simply as functions from time to some value.
We want to define the state function S. S takes a path [g1; :::; gm] in the scene graph

(represented as a list of graphical objects, with the root being the last element), a property name
n, and a time t, and returns the value of n at time t used for rendering object g1 during the
rendering traversal along the path [g1; :::; gm].

We define S in terms of two other functions,D and P . D is a function from property names
to values; it describes the default values for each property. For instance, the transformation
property is by default the identity matrix. P is a function from graphical objects to property
mappings. P (g) denotes the property mapping of g, that is, the set of properties attached to g.

52 3. REFERENCE MANUAL

Property-Related Methods

The following methods are used to manipulate the property mapping of a graphical object g:

� g.setProp(n,v) attaches a property with name n and value v to g. If there is already a
property named n attached to g, its value will be replaced by v.

� g.unsetProp(n) detaches the property named n from g. If no such property is attached
to g, the exception GO_PropUndefined is raised.

� g.getProp(n) checks whether a property named n is attached to g. If so, the value of
the property is returned; otherwise, the exception GO_PropUndefined is raised.

Name-Related Methods

Obliq-3D allows the client program to attach a name, a value of type Text, to a graphical object.
Names serve as symbolic labels, they are used to retrieve elements of a scene, without having to
traverse the scene graph explicitly.

Here are the name-related methods common to all graphical objects:

� g.setName(t) attaches the text t as a name to g (see Section 2.15). An existing name
will be replaced.

� g.getName(t) returns the name of g, and ok if no name is attached.

� g.findName(t) traverses the scene graph below g to see if g or any of its descendants
are named t. It returns the first graphical object named t that it finds; and ok if no such
object can be found.

Callback-Related Methods

Obliq-3D allows the client program to specify the interactive behavior of individual graphical
objects. Input actions (such as key presses or mouse movements) trigger events. We distinguish
between three different kinds of events: mouse events (caused by mouse button transitions),
position events (caused by mouse movements), and key events (caused by keystrokes). Events
are handled by callback objects, objects that specify what action should be taken in response to
an event. There are three types of callback objects (mouse, position, and key callback objects),
corresponding to the three kinds of events.

Events occur within the scope of a window w of the screen. The relevant data associated
with each event is wrapped into an event record, and sent to the root object associated with w.
Each graphical object (including root objects) contains three callback object stacks, one for each
type of callback object. When a mouse event record mr is sent to a graphical object g, g will
check whether it has any callback objects on its mouse callback stack. If so, it sends the message

3.8 The GO Module 53

invoke(mr) to the topmost object on the stack, otherwise, it ignores the event. Position and
key events are treated similarly.

Here are the methods that interact with the callback stacks:
� g.pushMouseCB(cb) pushes a mouse callback object cb onto the mouse callback stack

of g.

� g.popMouseCB() removes the topmost mouse callback object from the mouse callback
stack of g. If the stack is empty, the exception GO_StackError is raised.

� g.removeMouseCB(cb) removes the mouse callback object cb from the mouse callback
stack of g. If cb is not contained in the stack, the exception GO_StackError is raised.

� g.invokeMouseCB(mr) sends the message invoke(mr) to the topmost element of the
mouse callback stack of g.

� pushPositionCB, popPositionCB, removePositionCB, and invokePositionCB

provide similar functionality for the position callback stack.

� pushKeyCB,popKeyCB,removeKeyCB, andinvokeKeyCBprovide similar functionality
for the key callback stack.

Transformations

All graphical objects are affected by a property named GO_Transform, which describes how
the graphical object is transformed relative to its parent(s). GO_Transform associates with
TransformPropVal property values. These property values can compute a transformation
based on the current time.

A transformation is a mapping from points to points. Particular transformations are transla-
tions, which move points by a fixed amount, scalings, which move points towards or away from
the origin by a fixed factor, and rotations, which rotate points by a fixed angle around one of
the major axes of the coordinate system. Internally, transformations are represented as values of
type Matrix4 (see Section 3.2).

GO_SetTransform(g,t) takes a graphical object g and a transformation property value
t (or a matrix, which is coerced into a transformation property value, as described on page 43).
Modulo coercion, the expression is equivalent to g.setProp(GO_Transform,t). In other
words, the following equivalences hold:

GO_SetTransform(g,x)�

g.setProp(GO_Transform,x)

if x is a TransformPropVal
g.setProp(GO_Transform,TransformProp_NewConst(x))

if x is a Matrix4

GO_GetTransform(g,t) is a shortform for g.getProp(GO_Transform).

54 3. REFERENCE MANUAL

3.9 The GroupGO Module

- help GroupGO;
GroupGO_BadElement: Exception
GroupGO_New(): GroupGO
GroupGO_NewWithSizeHint(size: Int): GroupGO

WHERE
GroupGO <: GO & { add: (GO) => Ok,

remove: (GO) => Ok ! GroupGO_BadElement,
flush: () => Ok,
content: () => [GO] }

A GroupGO (or group object) is a graphical object that can contain other graphical objects.
Group objects are the basic mechanism for imposing a hierarchical structure onto the graphical
objects in a scene.

GroupGO is a subtype ofGO. It adds four extra methods: add, remove, flush, andcontent.

� g.add(o) adds a graphical object o to the group g. Afterwards, we say that o is contained
in g.

� g.remove(o) removes a graphical object o from the group g. If o is not contained in g,
the exception GO_BadElement is raised.

� g.flush() removes all graphical objects from g. g is empty afterwards.

� g.content() returns an array of the graphical objects contained in g.

GroupGO_New() creates a new group object and returns it. Initially, the group is empty.
Internally, a group object contains an array of pointers to its children. When a group is

created, a small initial array (5 elements) is allocated; when the array fills up, it is automatically
grown.

GroupGO_NewWithSizeHint(i) also creates and returns a new group. As a performance
optimization, it allows the client program to request the array of children to be i elements wide,
potentially avoiding the need for having to grow the array later on.

3.10 The RootGO Module 55

3.10 The RootGO Module

- help RootGO;
RootGO_New(cam: CameraGO, base: GraphicsBase): RootGO
RootGO_NewStd(): RootGO
RootGO_NewStdWithBase(base: GraphicsBase): RootGO
RootGO_Background: ColorPropName
RootGO_DepthcueSwitch: BooleanPropName
RootGO_DepthcueColor: ColorPropName
RootGO_DepthcueFrontPlane: RealPropName
RootGO_DepthcueBackPlane: RealPropName
RootGO_DepthcueFrontScale: RealPropName
RootGO_DepthcueBackScale: RealPropName
RootGO_SetBackground(go: GO, c: ColorVal): Ok
RootGO_SetDepthcueSwitch(go: GO, b: BooleanVal): Ok
RootGO_SetDepthcueColor(go: GO, c: ColorVal): Ok
RootGO_SetDepthcueFrontPlane(go: GO, r: RealVal): Ok
RootGO_SetDepthcueBackPlane(go: GO, r: RealVal): Ok
RootGO_SetDepthcueFrontScale(go: GO, r: RealVal): Ok
RootGO_SetDepthcueBackScale(go: GO, r: RealVal): Ok

WHERE
RootGO <: GroupGO & { changeCamera: (CameraGO) => Ok }
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

A RootGO (or root object) is a graphical object that forms a root in the scene graph.
Associated with each root object r is a GraphicsBase (see Section 3.5), which represents

a window on the screen, and a connection to the window system and to the graphics system.
Also associated with each root object r is a camera object cam (see Section 3.16). The

window associated with r shows the part of the scene graph below r, as seen through cam. The
camera can be, but does not have to be, part of the scene graph. If it is part of the scene graph,
then there must be a unique path from r to cam. Transformation properties along this path affect
the location and orientation of the camera.

There are three RootGO creation functions:

� RootGO_New(cam,base) creates and returns a new root object that is associated with a
graphics base base, and views the scene through a camera cam.

� RootGO_NewStd() creates and returns a new root object. The root object is associated
with the graphics base created by X‘PEX‘Base_NewStd(). The camera is set to be

56 3. REFERENCE MANUAL

PerspCameraGO_New([0,0,100],[0,0,0],[0,1,0],0.05). In addition, an am-
bient light source and a vector light source are created and added to the root, and mouse
and position callbacks for rotating, translating, and scaling the scene are attached to the
root. Program 20 shows how RootGO_NewStd could be implemented.

� RootGO_NewStdWithBase(base) is similar to RootGO_NewStd(), but allows the
client program to supply the graphics base.

RootGO is a subtype of GroupGO, and thus supports all the group-specific methods. In particular,
it allows the client program to add other graphical objects to the root object. In addition, it
provides one extra method: root.changeCamera(cam) changes the camera through which
the scene is viewed to be cam.

Root objects, like all graphical objects, are affected by the GO_Transform property. In
addition, there are a few more properties that affect root objects:

� The color property named RootGO_Background controls the color of the background of
the window associated with the root object. By default, this color is black.

� The boolean property named RootGO_DepthcueSwitch controls whether depth cueing
(see Section 2.17) is used or not. By default, depth cueing is off.

� The color property named RootGO_DepthcueColor controls the depth cue color. By
default, this color is black.

� The real property named RootGO_DepthcueFrontPlane controls the front plane z-
value Pf . By default, Pf is 1.

� The real property named RootGO_DepthcueBackPlane controls the back plane z-value
Pb. By default, Pb is 0.

� The real property named RootGO_DepthcueFrontScale controls the front scale factor
Sf . By default, Sf is 1.

� The real property named RootGO_DepthcueBackScale controls the back scale factor
Sb. By default, Sb is 0.

RootGO_SetBackground, RootGO_SetDepthcueSwitch, RootGO_SetDepthcueColor,
RootGO_SetDepthcueFrontPlane, RootGO_SetDepthcueBackPlane, RootGO_Set-

DepthcueFrontScale and RootGO_SetDepthcueBackScale are overloaded convenience
procedures for attaching the line-specific properties to graphical objects; they are similar to
GO_SetTransform (see Section 3.8).

3.11 The LightGO Module 57

3.11 The LightGO Module

- help LightGO;
LightGO_Color: ColorPropName
LightGO_Switch: BooleanPropName
LightGO_SetColor(go: GO, c: ColorVal): Ok
LightGO_SetSwitch(go: GO, b: Bool): Ok

WHERE
LightGO <: GO
ColorVal = ColorPropVal + Color + Text
BooleanVal = BooleanPropVal + Bool

A LightGO is a graphical object representing a light source. Like all graphical objects,
light sources are affected by transformation properties, that is, attaching a property named
GO_Transform to a light source object may affect the location and orientation of the light
source.

In addition, there are two other properties specific to light sources: The property named
LightGO_Color defines the color of the light emitted by the light source, and the property
LightGO_Switch determines whether the light source is on or off. LightGO_Color associates
with color property values, and LightGO_Switch associates with boolean property values.

LightGO_SetColor and LightGO_SetSwitch are overloaded convenience procedures
for attaching the LightGO_Color and LightGO_Switch properties to graphical objects; they
are similar to GO_SetTransform (see Section 3.8).

LightGO is an “abstract class”, therefore the module does not contain any function for
creating light sources.

3.12 The AmbientLightGO Module

- help AmbientLightGO;
AmbientLightGO_New(c: ColorVal): AmbientLightGO

WHERE
AmbientLightGO <: LightGO
ColorVal = ColorPropVal + Color + Text

An AmbientLightGO is a graphical object that describes an ambient light source, that is, a light
source that emits undirected, non-positional, non-attenuating light. Another way to describe
ambient light is that its effect on surfaces does not depend on their location or orientation.

58 3. REFERENCE MANUAL

AmbientLightGO is a subtype of LightGO; therefore, it is affected by theLightGO_Color
and LightGO_Switch properties. However, although it is (by transitivity) a subtype of GO, it
is not affected by the GO_Transform property, as it has no spatial attributes.

The function callAmbientLightGO_New(c) takes a valuec,which can be aColorPropVal,
a Color, or a Text identifying a color, and returns a new ambient light source, which emits
light of the specified color. One can imagine AmbientLightGO_New to be defined as:

proc(c)
let l= a new AmbientLightGO;
LightGO_SetColor(l,c);
LightGO_SetSwitch(l,true);
l

end

3.13 The VectorLightGO Module

- help VectorLightGO;
VectorLightGO_New(c: ColorVal, dir: PointVal): VectorLightGO
VectorLightGO_Direction: PointPropName
VectorLightGO_SetDirection(l: VectorLightGO, dir: PointVal): Ok

WHERE
VectorLightGO <: LightGO
PointVal = PointPropVal + Point3
ColorVal = ColorPropVal + Color + Text

A VectorLightGO is a graphical object that describes a vector light source, that is, a light
source that emits directed, non-positional, and non-attenuating light. One can think of vector
light sources as being infinitely far away (and extremely bright), so that all rays that reach the
scene are parallel to each other, and are of constant intensity. The closest real-life example of a
vector light source is the sun (sun rays that reach the earth are very close to being parallel and
non-attenuating; however, the sun has a well-defined position).

VectorLightGO is a subtype ofLightGO, and as such, it is affected by theLightGO_Color
and LightGO_Switch properties. It is also (by transitivity) a subtype of GO, and therefore is af-
fected by the GO_Transform property (the rotation component of the transformation affects the
direction of the light rays). In addition, there is a property named VectorLightGO_Direction
which affects only vector light sources. This property describes the direction of the light rays;
its value component is of type PointPropVal. A PointPropVal can be viewed as a function
that, given a time, returns a Point3; in this context, the point is interpreted as a vector.

VectorLightGO_SetDirection is an overloaded convenience procedure for attaching

3.14 The PointLightGO Module 59

VectorLightGO_Direction properties to graphical objects; it is similar toGO_SetTransform
(see Section 3.8).

VectorLightGO_New(c,d) is an overloaded function for creating new vector light sources.
c can be a ColorPropVal, a Color, or aText identifyinga color; d can be a PointPropVal or
a Point3. The new light object has LightGO_Color, LightGO_Switch, and VectorLight-
GO_Direction properties attached to it. One can imagine VectorLightGO_New to be defined
as:

proc(c,d)
let l= a new VectorLightGO;
LightGO_SetColor(l,c);
LightGO_SetSwitch(l,true);
VectorLightGO_SetDirection(l,d);
l

end

3.14 The PointLightGO Module

- help PointLightGO;
PointLightGO_New(c: ColorVal, orig: PointVal,

att0 att1: RealVal): PointLightGO
PointLightGO_Origin: PointPropName
PointLightGO_SetOrigin(go: GO, orig: PointVal): Ok
PointLightGO_Attenuation0: RealPropName
PointLightGO_SetAttenuation0(go: GO, att: RealVal): Ok
PointLightGO_Attenuation1: RealPropName
PointLightGO_SetAttenuation1(go: GO, att: RealVal): Ok

WHERE
PointLightGO <: LightGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

A PointLightGO is a graphical object that describes a point-shaped light source, which is
emitting directional light uniformly in all directions. The amount of light that strikes another
graphical object depends on the distance between this object and the point light source. This
phenomenon is called attenuation.

In a scene with positional light sources (vector lights or spot lights), there is an attenuation
factor associated with every point in the scene. The attenuation factor is the fraction of light
from the light sources that reaches this point.

60 3. REFERENCE MANUAL

Consider a scene with a single point light source. Given a point, let d be the distance
between this point and the light source. In real life, the attenuation factor is proportional to 1

d2
.

Unfortunately, computer-generated scenes that use this lighting model tend to look unnatural,
because real-life scenes are not only illuminated by light from a single source, but also by light
reflected from other scene objects.

Therefore, PEX and OpenGL use different formulas for the attenuation factor. In PEX, it
is defined to be 1

c0+c1d
; in OpenGL, it is defined to be 1

c0+c1d+c2d
2 . c0 is called the constant

attenuation coefficient,c1 is called the linear attenuation coefficient, and c2 is called the quadratic
attenuation coefficient.

Obliq-3D started out as a PEX-based animation system; therefore it allows the client program
to control only the constant and the linear attenuation coefficients. Control for the quadratic
attenuation coefficient is a likely extension.

PointLightGO is a subtype of LightGO, and as such, it is affected by the LightGO_Color
and LightGO_Switch properties. It is also (by transitivity) a subtype of GO, and therefore is
affected by the GO_Transformproperty. In addition, the module provides three extra properties:

� The point property named PointLightGO_Origin controls the location of the point
light source. By default, point lights are located at the origin.

� The real property named PointLightGO_Attenuation0 controls the constant attenu-
ation coefficient c0. By default, c0 is 1.

� The real property named PointLightGO_Attenuation1 controls the linear attenuation
coefficient c1. By default, c1 is 1.

PointLightGO_SetOrigin, PointLightGO_SetAttenuation0, and PointLight-

GO_SetAttenuation1 are overloaded convenience procedures for attaching the corresponding
properties to graphical objects; they are similar to GO_SetTransform (see Section 3.8).

PointLightGO_New(c,p,a0,a1) is an overloaded function for creating new point light
sources. c can be a ColorPropVal, a Color, or a Text identifying a color; p can be
a PointPropVal or a Point3; a0 and a1 can be RealPropVal, Real, or Int values.
The new light object has LightGO_Color, LightGO_Switch, PointLightGO_Origin,
PointLightGO_Attenuation0, and PointLightGO_Attenuation1 properties attached
to it. One can imagine PointLightGO_New to be defined as:

proc(c,p,a0,a1)
let l= a new PointLightGO;
LightGO_SetColor(l,c);
LightGO_SetSwitch(l,true);
PointLightGO_SetOrigin(l,p);
PointLightGO_SetAttenuation0(l,a0);

3.15 The SpotLightGO Module 61

PointLightGO_SetAttenuation1(l,a1);
l

end

3.15 The SpotLightGO Module

- help SpotLightGO;
SpotLightGO_New(c: ColorVal, orig dir: PointVal,

conc spread att0 att1: Real): SpotLightGO
SpotLightGO_Origin: PointPropName
SpotLightGO_SetOrigin(go: GO, orig: PointVal): Ok
SpotLightGO_Direction: PointPropName
SpotLightGO_SetDirection(go: GO, dir: PointVal): Ok
SpotLightGO_Concentration: RealPropName
SpotLightGO_SetConcentration(go: GO, conc: RealVal): Ok
SpotLightGO_SpreadAngle: RealPropName
SpotLightGO_SetSpreadAngle(go: GO, spread: RealVal): Ok
SpotLightGO_Attenuation0: RealPropName
SpotLightGO_SetAttenuation0(go: GO, att: RealVal): Ok
SpotLightGO_Attenuation1: RealPropName
SpotLightGO_SetAttenuation1(go: GO, att: RealVal): Ok

WHERE
SpotLightGO <: LightGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text

A SpotLightGO is a graphical object that describes a positional light source that is emitting a
cone of directed, colored light. Light from a spot light source attenuates with increasing distance.
Attenuation follows the same formula and is controlled by the same parameters as attenuation
of light emitted by point light sources (see Section 3.14).

The geometry of the cone of emitted light is determined by the position p of the light
source, the direction d of the light, and the spread angle � of the cone. Figure 21 illustrates the
relationship.

The concentration exponent
 determines if and by how much the intensityof a ray decreases,
the further it is away from the central axis of the cone. Given a ray whose angle to the main axis
is � (where 0 < � < �), the intensity of this ray is cos
(�) times the intensity of the light along
the central axis. Choosing
 to be 0 means that the intensity of the light is constant throughout
the cone (modulo attenuation), choosing a higher
 means that light rays are less intense the
more they are off-center.

SpotLightGO is a subtype of LightGO, and as such, it is affected by the LightGO_Color

62 3. REFERENCE MANUAL

α

β

position direction

Figure 21: Geometry of the light cone emitted by a spot light source

and LightGO_Switch properties. It is also (by transitivity) a subtype of GO, and therefore
is affected by the GO_Transform property. In addition, the module provides several extra
properties:

� The point property named SpotLightGO_Origin controls the location of the spot light
source. By default, spot lights are located at the origin.

� The point property named SpotLightGO_Direction controls the direction of the spot
light source. By default, spot lights point along the vector (1; 1; 1).

� The real property named SpotLightGO_Concentration controls the concentration
exponent
 of the spot light source. By default,
 is 1.

� The real property named SpotLightGO_SpreadAngle � controls the spread angle of
the spot light source. By default, � is 1.

� The real property named SpotLightGO_Attenuation0 controls the constant attenua-
tion coefficient c0. By default, c0 is 1.

� The real property named SpotLightGO_Attenuation1 controls the linear attenuation
coefficient c1. By default, c1 is 1.

SpotLightGO_SetOrigin, SpotLightGO_SetDirection, SpotLightGO_SetCon-

centration, SpotLightGO_SetSpreadAngle, SpotLightGO_SetAttenuation0, and
SpotLightGO_SetAttenuation1 are overloaded convenience procedures for attaching the
corresponding properties to graphical objects; they are similar to GO_SetTransform (see Sec-
tion 3.8).

3.16 The CameraGO Module 63

SpotLightGO_New(col,pos,dir,conc,sprd,a0,a1) is an overloaded function for
creating new spot light sources. col can be a ColorPropVal, a Color, or a Text identi-
fying a color; pos and dir can be PointPropVal or Point3 values; conc, sprd, a0 and
a1 can be RealPropVal, Real, or Int values. The new light object has LightGO_Color,
LightGO_Switch, SpotLightGO_Origin, SpotLightGO_Direction, SpotLight-

GO_Concentration, SpotLightGO_SpreadAngle, SpotLightGO_Attenuation0, and
SpotLightGO_Attenuation1properties attached to it. One can imagineSpotLightGO_New
to be defined as:

proc(col,pos,dir,conc,sprd,a0,a1)
let l= a new SpotLightGO;
LightGO_SetColor(l,col);
LightGO_SetSwitch(l,true);
SpotLightGO_SetOrigin(l,pos);
SpotLightGO_SetDirection(l,dir);
SpotLightGO_SetConcentration(l,conc);
SpotLightGO_SetSpreadAngle(l,sprd);
SpotLightGO_SetAttenuation0(l,a0);
SpotLightGO_SetAttenuation1(l,a1);
l

end

3.16 The CameraGO Module

- help CameraGO;
CameraGO_From: PointPropName
CameraGO_To: PointPropName
CameraGO_Up: PointPropName
CameraGO_Aspect: PointPropName
CameraGO_SetFrom(go: GO, PointVal): Ok
CameraGO_SetTo(go: GO, PointVal): Ok
CameraGO_SetUp(go: GO, PointVal): Ok
CameraGO_SetAspect(go: GO, RealVal): Ok

TYPE
CameraGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A CameraGO is a graphical object that describes a camera. Camera objects are used for viewing
the scene. Every root object has a window and a camera associated with it (see Section 3.10),
and the picture that is shown in the window is the part of the scene graph below the root, as seen

64 3. REFERENCE MANUAL

through the camera.
A scene can contain many cameras, but each root object uses only one camera at any given

time; however, the client program can change what camera is being used (see Section 3.10).
A camera behaves like any other graphical object. In particular, it may be part of a group, and

it is affected by the GO_Transform property. So, it is for instance possible to build a group that
describes a car, place a camera inside the car, then move the car by changing a transformation
property attached to it, and view the scene from inside the moving car. Program 18 shows a
similar (but simpler) program that moves a camera.

Cameras depend on several parameters: Their position, their target, their up-vector, and
their aspect ratio. The position is the point where the camera is located. The target is a point
in the center of the camera’s field of vision; in other words, it determines the viewing direction.
The up-vector determines what direction “up” is in the projected image. A line parallel to this
vector appears vertically in the viewing window. Finally, the aspect ratio controls width/height
distortion. Our use of the term “aspect ratio” differs from the standard usage. Normally, aspect
ratio refers to the ratio between width and height (for instance, NTSC TV has a 4-to-3 aspect
ratio). However, we define the aspect ratio not to be the absolute width/height ratio, but rather
the width/height distortion. An aspect ratio of 1, leaves the picture undistorted, an aspect ratio
of 2 flattens objects in the scene8.

CameraGO is a subclass of GO. Camera objects do not provide any additional methods,
however, they are affected by four properties in addition to GO_Transform.

� The point property named CameraGO_From controls the position of the camera. By
default, the camera is located at point (0; 0; 100).

� The point property named CameraGO_To controls the target point of the camera. By
default, the camera is looking at the origin.

� The point property named CameraGO_Upcontrols the up-vector of the camera. By default,
it is (0; 1; 0).

� The real property named CameraGO_Aspect controls the aspect ratio of the camera. By
default, it is 1.

CameraGO_SetFrom, CameraGO_SetTo, CameraGO_SetUp, and CameraGO_SetAspect

are overloaded convenience procedures for attaching the corresponding properties to graphical
objects; they are similar to GO_SetTransform (see Section 3.8).

CameraGO is an abstract class, hence there is no function for creating new camera objects.

8In the current system, the active area of the rendering window is always square.

3.17 The OrthoCameraGO Module 65

from toheight

up

Figure 22: Parameters of an Orthographic Camera

3.17 The OrthoCameraGO Module

- help OrthoCameraGO;
OrthoCameraGO_New(from to up: PointVal, height: RealVal): OrthoCameraGO
OrthoCameraGO_Height: RealPropName
OrthoCameraGO_SetHeight(go: GO, height: RealVal): Ok

WHERE
OrthoCameraGO <: CameraGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

An OrthoCameraGO is a graphical object describing an orthographic camera. An orthographic
camera uses an orthographic projection (or parallel projection) to map the scene onto the
viewing area. Lines that are parallel in the scene appear parallel in the image. The volume of
space observed by such a camera forms a parallelopiped. The geometry of the parallelopiped is
determined by the camera’s position (“from”), its viewing direction (specified through the target
point “to”), its up-vector (“up”), the parallelopiped’s height (“height”), and its width (determined
by the height of the parallelopiped, and the aspect ratio of the camera). Figure 22 illustrates the
role of these parameters.

OrthoCameraGO is a subclass of CameraGO. Orthographic camera objects do not provide
any additional methods. They observe all the properties defined for their supertypes GO and
CameraGO. In addition, they provide a real property named OrthoCameraGO_Height, which
controls the height of the volume of space observed by the camera. By default, orthographic
cameras are 10 units high.

OrthoCameraGO_SetHeight is an overloaded convenience procedure for attaching the
property OrthoCameraGO_Height to graphical objects; it is similar to GO_SetTransform

(see Section 3.8).

66 3. REFERENCE MANUAL

OrthoCameraGO_New(fr,to,up,ht) is an overloaded function for creating new or-
thographic cameras. fr, to, and up can be PointPropVal’s or Point3’s; ht can be a
RealPropVal, aReal, or anInt. The new camera object hasCameraGO_From,CameraGO_To,
CameraGO_Up, and OrthoCameraGO_Height properties attached to it. One can imagine
OrthoCameraGO_New to be defined as:

proc(fr,to,up,ht)
let c= a new OrthoCameraGO;
CameraGO_SetFrom(c,fr);
CameraGO_SetTo(c,to);
CameraGO_SetUp(c,up);
OrthoCameraGO_SetHeight(c,ht);
c

end

3.18 The PerspCameraGO Module

- help PerspCameraGO;
PerspCameraGO_New(from to up: PointVal, fovy: RealVal): PerspCameraGO
PerspCameraGO_Fovy: RealPropName
PerspCameraGO_SetFovy(go: GO, fovy: RealVal): Ok

WHERE
PerspCameraGO <: CameraGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A PerspCameraGO is a graphical object describing a perspective camera. A perspective
camera behaves like a real-world camera; it uses a perspective projection to map the scene onto
the viewing area. The volume of space observed by such a camera forms an (infinitely high)
pyramid. The geometry of the pyramid is determined by the camera’s position (“from”), its
viewing direction (specified through the target point “to”), its up-vector (“up”), the field-of-
vision (“fovy”), which is the angle between the “up” and the “down” wall of the pyramid, and
the width of the pyramid, which is determined by its height and the aspect ratio of the camera.
Figure 23 illustrates the role of these parameters.

PerspCameraGO is a subclass of CameraGO. Perspective camera objects do not provide
any additional methods. They observe all the properties defined for their supertypes GO and
CameraGO. In addition, they provide a real property named PerspCameraGO_Fovy, which
controls the field of vision of the pyramidal area of space observed by the camera. By default,
perspective cameras have a field of vision of 0:1 degrees radian.

3.18 The PerspCameraGO Module 67

from

to

up

fovy

Figure 23: Parameters of a Perspective Camera

PerspCameraGO_SetFovy is an overloaded convenience procedure for attaching the prop-
erty PerspCameraGO_Fovy to graphical objects; it is similar to GO_SetTransform (see
Section 3.8).

PerspCameraGO_New(fr,to,up,fv) is an overloaded function for creating new or-
thographic cameras. fr, to, and up can be PointPropVal’s or Point3’s; fv can be a
RealPropVal, aReal, or anInt. The new camera object hasCameraGO_From,CameraGO_To,
CameraGO_Up, and PerspCameraGO_Fovy properties attached to it. One can imagine
PerspCameraGO_New to be defined as:

proc(fr,to,up,fv)
let c= a new PerspCameraGO;
CameraGO_SetFrom(c,fr);
CameraGO_SetTo(c,to);
CameraGO_SetUp(c,up);
PerspCameraGO_SetFovy(c,fv);
c

end

68 3. REFERENCE MANUAL

3.19 The LineGO Module

- help LineGO;
LineGO_New(p1 p2: PointVal): LineGO
LineGO_Color: ColorPropName
LineGO_Width: RealPropName
LineGO_Type: LineTypePropName
LineGO_Point1: PointPropName
LineGO_Point2: PointPropName
LineGO_SetColor(o: GO, c: ColorVal): Ok
LineGO_SetWidth(o: GO, r: RealVal): Ok
LineGO_SetType(o: GO, t: LineType): Ok
LineGO_SetPoint1(o: GO, p: PointVal): Ok
LineGO_SetPoint2(o: GO, p: PointVal): Ok

WHERE
LineGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
LineTypeVal = LineTypePropVal + LineType

A LineGO object is a graphical object describing a line. It is a subtype of GO, and does not add
any extra fields or methods.

A line is a graphical object, and as such, it is affected by the GO_Transform property.
The two endpoints of a line are controlled by two point properties named LineGO_Point1 and
LineGO_Point2. If these two properties are undefined, the line goes from point (0; 0; 0) to
point (1; 0; 0)with respect to the local coordinate system. The line color is controlled by a color
property named LineGO_Color; by default, lines are white. The line width is controlled by a
real property named LineGO_Width; by default, lines are one pixel wide. Finally, the type of
the line (that is, whether it is solid, dashed, dotted, or dashed and dotted) is controlled by a line
type property named LineGO_Type; by default, lines are solid.

LineGO_SetPoint1, LineGO_SetPoint2, LineGO_SetColor, LineGO_SetWidth,
and LineGO_SetType are overloaded convenience procedures for attaching the line-specific
properties to graphical objects; they are similar to GO_SetTransform (see Section 3.8).

LineGO_New(p1,p2) creates a new line object and returns it. In the process, it attaches
p1 as property LineGO_Point1 and p2 as property LineGO_Point2 to the new line object,
thereby defining its two endpoints.

3.20 The MarkerGO Module 69

3.20 The MarkerGO Module

- help MarkerGO;
MarkerGO_New(point: PointVal): MarkerGO
MarkerGO_Center: PointPropName
MarkerGO_Color: ColorPropName
MarkerGO_Scale: RealPropName
MarkerGO_Type: MarkerTypePropName
MarkerGO_SetCenter(o: GO, p: PointVal): Ok
MarkerGO_SetColor(o: GO, c: ColorVal): Ok
MarkerGO_SetScale(o: GO, r: RealVal): Ok
MarkerGO_SetType(o: GO, t: MarkerTypeVal): Ok

WHERE
MarkerGO <: GO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int
ColorVal = ColorPropVal + Color + Text
MarkerTypeVal = MarkerTypePropVal + MarkerType

A MarkerGO object is a graphical object describing a marker, that is, a graphical representation
of a single point. It is a subtype of GO, and does not add any extra fields or methods.

A marker is a graphical object, and as such, it is affected by the GO_Transform property.
The location of a marker is controlled by a point property named MarkerGO_Point; if this
property is undefined, the marker is located at the origin of the local coordinate system. The
marker color is controlled by a color property named MarkerGO_Color; by default, markers
are white. The scale of the marker is controlled by a real property named MarkerGO_Scale;
the default scale factor is 1. Finally, the type of the marker (that is, whether it looks like a
dot, a circle, a cross, an asterisk, or an “X”) is controlled by a marker type property named
MarkerGO_Type; by default, markers are shown as asterisks.

MarkerGO_SetPoint, MarkerGO_SetColor, MarkerGO_SetScale, and
MarkerGO_SetType are overloaded convenience procedures for attaching the marker-specific
properties to graphical objects; they are similar to GO_SetTransform (see Section 3.8).

MarkerGO_New(p) creates a new marker object and returns it. In the process, it attaches p
as property MarkerGO_Point to the new marker object, thereby defining its center.

70 3. REFERENCE MANUAL

3.21 The SurfaceGO Module

- help SurfaceGO;
SurfaceGO_Color: ColorPropName
SurfaceGO_SetColor(o: GO, color: ColorVal): Ok
SurfaceGO_RasterMode: RasterModePropName
SurfaceGO_SetRasterMode(o: GO, t: RasterModeVal): Ok
SurfaceGO_AmbientReflectionCoeff: RealPropName
SurfaceGO_SetAmbientReflectionCoeff(o: GO, r: RealVal): Ok
SurfaceGO_DiffuseReflectionCoeff: RealPropName
SurfaceGO_SetDiffuseReflectionCoeff(o: GO, r: RealVal): Ok
SurfaceGO_SpecularReflectionCoeff: RealPropName
SurfaceGO_SetSpecularReflectionCoeff(o: GO, r: RealVal): Ok
SurfaceGO_SpecularReflectionConc: RealPropName
SurfaceGO_SetSpecularReflectionConc(o: GO, r: RealVal): Ok
SurfaceGO_TransmissionCoeff: RealPropName
SurfaceGO_SetTransmissionCoeff(o: GO, r: RealVal): Ok
SurfaceGO_SpecularReflectionColor: ColorPropName
SurfaceGO_SetSpecularReflectionColor(o: GO, color: ColorVal): Ok
SurfaceGO_Lighting: BooleanPropName
SurfaceGO_SetLighting(o: GO, t: BooleanVal): Ok
SurfaceGO_Shading: ShadingPropName
SurfaceGO_SetShading(o: GO, sh: ShadingVal): Ok
SurfaceGO_EdgeVisibility: BooleanPropName
SurfaceGO_SetEdgeVisibility(o: GO, b: BoolVal): Ok
SurfaceGO_EdgeColor: ColorPropName
SurfaceGO_SetEdgeColor(o: GO, color: ColorVal): Ok
SurfaceGO_EdgeType: LineTypePropName
SurfaceGO_SetEdgeType(o: GO, lt: LineTypeVal): Ok
SurfaceGO_EdgeWidth: RealPropName
SurfaceGO_SetEdgeWidth(o: GO, r: RealVal): Ok

TYPE
SurfaceGO <: GO
ColorVal = ColorPropVal + Color + Text
BooleanVal = BooleanPropVal + Bool
RealVal = RealPropVal + Real + Int
LineTypeVal = LineTypePropVal + LineType
RasterModeVal = RasterModePropVal + RasterMode
ShadingVal = ShadingPropVal + Shading

A surface is a graphical object that is made out of polygons. One important difference between
surfaces and non-surfaces (such as lines and markers) is that surfaces are affected by light
sources, whereas non-surfaces are not.

SurfaceGO, the abstract type of surface objects, is a subtype of GO. It does not add any

3.21 The SurfaceGO Module 71

extra fields or methods; however, it defines a number of extra property names that affect the
appearance of surfaces.

� The color property named SurfaceGO_Color controls the color of the surface.

� The raster mode property named SurfaceGO_RasterMode controls the rasterization
mode used for drawing the surface, that is, whether the interior or only the boundary is
drawn, or whether nothing is drawn at all.

� The boolean property named SurfaceGO_Lighting controls whether any lighting com-
putations are performed. If the property is false, no lighting computations are performed.
In this case, the surface is drawn in its natural color, unaffected by light sources (but still
affected by depth cueing).

� The shading property named SurfaceGO_Shading controls which surface shading
method is used. We support two shading methods: Flat Shading and Gouraud Shad-
ing. The Flat Shading method computes an intensity value for a single point of the
surface, and uses this intensity value for the entire surface. The Gouraud shading method
computes intensity values for each vertex of the polygons that make up the surface, and
then interpolates between these values to determine intensity values for the other points
on the surface.

� The real property named SurfaceGO_TransmissionCoeff controls the transparency
of a surface. A value of 0 means that the surface is completely opaque, while a value of 1
means that is it completely transparent.

� The real property named SurfaceGO_AmbientReflectionCoeff controls the amount
of ambient light reflected by the surface, as a fraction of the ambient light falling onto
the surface. A value of 0 indicates that no ambient light is reflected, while a value of 1
indicates that all ambient light striking the surface is reflected.

� The real property named SurfaceGO_DiffuseReflectionCoeff controls the amount
of non-ambient light reflected diffusely (in all directions), as a fraction of all the directional
light striking the surface. A value of 0 indicates that none of the directional light is reflected
diffusely; a value of 1 indicates that all of it is reflected.

� The real property named SurfaceGO_SpecularReflectionCoeffcontrols the bright-
ness of specular highlights. A value of 0 turns off specular reflection entirely; a value of
1 makes the highlights as pronounced as possible.

� The real property named SurfaceGO_SpecularReflectionConc controls how fo-
cused specular highlights are. A value of 1 creates a very blurry highlight; higher values
create increasingly more sharply focused highlights.

72 3. REFERENCE MANUAL

� The color property named SurfaceGO_SpecularReflectionColorcontrols the color
shift of specularly reflected light.

� The boolean property namedSurfaceGO_EdgeVisibilitycontrols whether the bound-
aries of the polygons that make up the surface are visible or not.

� The color property named SurfaceGO_EdgeColor controls the color of the boundary
lines.

� The color property named SurfaceGO_EdgeWidth controls the width of the boundary
lines.

� The line type property named SurfaceGO_EdgeType controls how the boundary lines
are drawn (sold, dashed, dotted, or dashed and dotted).

For each property name defined in the SurfaceGO module, there is an overloaded convenience
procedure for attaching the property to graphical objects; these procedures are all similar to
GO_SetTransform (see Section 3.8).

3.22 The PolygonGO Module

- help PolygonGO;
PolygonGO_New(pts: [PointVal]): PolygonGO
PolygonGO_NewWithShapeHint(pts: [PointVal], s: Shape): PolygonGO

WHERE
PolygonGO <: SurfaceGO
PointVal = PointPropVal + Point3
Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")

A PolygonGO object is a graphical object describing a polygon. PolygonGO is a subtype of
SurfaceGO, and does not add any extra fields, methods, or properties. A polygon is affected by
all the properties defined in the GO and SurfaceGO modules.

PolygonGO_New(pts) creates a new polygon object and returns it. pts is an array of
points. Each of these points can be a constant Point3 value or a time-variant PointPropVal
value.

PolygonGO_NewWithShapeHint(pts,s) is similar to PolygonGO_New(pts), but al-
lows the client program to supply a “shape hint” s, indicating the shape of the polygon . Possible
shape hints are "Convex" (the polygon is convex), "NonConvex" (the polygon is concave,
but not self-intersecting), "Complex" (the edges of the polygon are self-intersecting), and

3.23 The BoxGO Module 73

"Unknown" (the shape is unknown). Supplying a shape hint can increase rendering perfor-
mance. On the other hand, shape hints must be accurate. In particular, if the shape of a polygon
changes (that is, if the vertices defining the polygon change over time), the shape hint must
be conservative enough to be accurate for the entire lifetime of the polygon. Polygon_New

assumes the shape of the polygon to be unknown; in other words, it makes the safest, most
conservative choice.

3.23 The BoxGO Module

- help BoxGO;
BoxGO_New(p1 p2: PointVal): BoxGO
BoxGO_Corner1: PointPropName
BoxGO_Corner2: PointPropName
BoxGO_SetCorner1(o: GO, p: PointVal): Ok
BoxGO_SetCorner2(o: GO, p: PointVal): Ok

WHERE
BoxGO <: SurfaceGO
PointVal = PointPropVal + Point3

A BoxGO object is a graphical object describing a box, or more precisely, an axis-aligned
parallelopiped. The geometry of such an object can be specified in terms of two opposing corner
points.

BoxGO is a subtype of SurfaceGO, and does not add any extra fields or methods. A box is
affected by all the properties defined in the GO and SurfaceGO modules. In addition, the two
opposing corners of the box are controlled by the point properties named BoxGO_Corner1 and
BoxGO_Corner2.

BoxGO_SetCorner1 and BoxGO_SetCorner2 are overloaded convenience procedures for
attaching the box-specific properties to graphical objects; they are similar to GO_SetTransform
(see Section 3.8).

BoxGO_New(p1,p2) creates a new box object and returns it. In the process, it attaches
p1 as property BoxGO_Corner1 and p2 as property BoxGO_Corner2 to the new box object,
thereby defining its two corners.

74 3. REFERENCE MANUAL

3.24 The DiskGO Module

- help DiskGO;
DiskGO_New(center normal: PointVal, rad: RealVal): DiskGO
DiskGO_NewWithPrec(center normal: PointVal, rad: RealVal, prec: Int): DiskGO
DiskGO_Center: PointPropName
DiskGO_Normal: PointPropName
DiskGO_Radius: RealPropName
DiskGO_SetCenter(o: GO, p: PointVal): Ok
DiskGO_SetNormal(o: GO, p: PointVal3): Ok
DiskGO_SetRadius(o: GO, r: RealVal): Ok

WHERE
DiskGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A DiskGO object is a graphical object describing a disk. It is a subtype of SurfaceGO, and
does not add any extra fields or methods.

A disk is affected by all the properties defined in the GO and SurfaceGO modules as well
as by three additional, disk-specific properties: The center of a disk is controlled by a point
property named DiskGO_Center, its normal vector is affected by a point property named
DiskGO_Normal, and its radius is controlled by a real property named DiskGO_Radius.

DiskGO_SetCenter,DiskGO_SetNormal, andDiskGO_SetRadius are overloaded con-
venience procedures for attaching the disk-specific properties to graphical objects; they are
similar to GO_SetTransform (see Section 3.8).

DiskGO_New(p,n,r)creates a new disk object and returns it. In the process, it attaches p as
propertyDiskGO_Center, n as property DiskGO_Normal, andr as propertyDiskGO_Radius
to the new disk object, thereby defining its center, normal vector, and radius. Disks are approxi-
mated by polygons; by default, this polygon has 10 sizes.

DiskGO_NewWithPrec(p,n,r,i) behaves like DiskGO_New(p,n,r), but allows the
client program to specify the number of sides of the polygon. The new disk is approximated by
a polygon with i sides.

3.25 The SphereGO Module 75

3.25 The SphereGO Module

- help SphereGO;
SphereGO_New(p: PointVal, rad: RealVal): SphereGO
SphereGO_NewWithPrec(p: PointVal, rad: RealVal, prec: Int): SphereGO
SphereGO_Center: PointPropName
SphereGO_Radius: RealPropName
SphereGO_SetCenter(go: GO, center: PointVal): Ok
SphereGO_SetRadius(go: GO, radius: RealVal): Ok

WHERE
SphereGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A SphereGO object is a graphical object describing a sphere. It is a subtype of SurfaceGO,
and does not add any extra fields or methods.

A sphere is affected by all the properties defined in the GO and SurfaceGO modules as
well as by two additional, sphere-specific properties: The center of a sphere is controlled by
a point property named SphereGO_Center; its radius is controlled by a real property named
SphereGO_Radius.

SphereGO_SetCenter and SphereGO_SetRadius are overloaded convenience proce-
dures for attaching the sphere-specific properties to graphical objects; they are similar to
GO_SetTransform (see Section 3.8).

SphereGO_New(p,r) creates a new sphere object and returns it. In the process, it attaches p
as property SphereGO_Center and r as property SphereGO_Radius to the new sphere object,
thereby defining its center and radius. Spheres are approximated by polyhedra; by default, a
sphere consists of 30 strips, each one containing 30 triangles.

SphereGO_NewWithPrec(p,r,i) behaves like SphereGO_New(p,r), but allows the
client program to specify the precision of the polygonal approximation to a sphere. The new
sphere is composed of i2 triangles.

76 3. REFERENCE MANUAL

3.26 The CylinderGO Module

- help CylinderGO;
CylinderGO_New(p1 p2: PointVal, rad: RealVal): CylinderGO
CylinderGO_NewWithPrec(p1 p2: PointVal, rad: RealVal, prec: Int): CylinderGO
CylinderGO_Point1: PointPropName
CylinderGO_Point2: PointPropName
CylinderGO_Radius: RealPropName
CylinderGO_SetPoint1(o: GO, p: PointVal): Ok
CylinderGO_SetPoint2(o: GO, p: PointVal): Ok
CylinderGO_SetRadius(o: GO, r: RealVal): Ok

WHERE
CylinderGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A CylinderGO object is a graphical object describing a cylinder. It is a subtype of SurfaceGO,
and does not add any extra fields or methods.

A cylinder is affected by all the properties defined in the GO and SurfaceGO modules as
well as by three additional, cylinder-specific properties: The two endpoints of a cylinder are
controlled by two point properties named CylinderGO_Point1 and CylinderGO_Point2;
its radius is controlled by a real property named CylinderGO_Radius.

CylinderGO_SetPoint1,CylinderGO_SetPoint2, andCylinderGO_SetRadius are
overloaded convenience procedures for attaching the cylinder-specific properties to graphical
objects; they are similar to GO_SetTransform (see Section 3.8).

CylinderGO_New(p1,p2,r) creates a new cylinder object and returns it. In the process,
it attaches p1 as property CylinderGO_Point1, p2 as property CylinderGO_Point2, and
r as property CylinderGO_Radius to the new cylinder object, thereby defining its endpoints
and radius. Cylinders are approximated by polyhedra; by default, a cylinder consists of 30
rectangles.

CylinderGO_NewWithPrec(p1,p2,r,i) behaves like CylinderGO_New(p1,p2,r),
but allows the client program to specify the precision of the cylinder. The new cylinder is
composed of i rectangles.

3.27 The ConeGO Module 77

3.27 The ConeGO Module

- help ConeGO;
ConeGO_New(base tip: PointVal, rad: RealVal): ConeGO
ConeGO_NewWithPrec(base tip: PointVal, rad: RealVal, prec: Int): ConeGO
ConeGO_Base: PointPropName
ConeGO_Tip: PointPropName
ConeGO_Radius: RealPropName
ConeGO_SetBase(o: GO, p: PointVal): Ok
ConeGO_SetTip(o: GO, p: PointVal): Ok
ConeGO_SetRadius(o: GO, r: RealVal): Ok

WHERE
ConeGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A ConeGO object is a graphical object describing a cone. It is a subtype of SurfaceGO, and
does not add any extra fields or methods.

A cone is affected by all the properties defined in the GO and SurfaceGO modules as well
as by three additional, cone-specific properties: The base of a cone is controlled by a point
property named ConeGO_Base, its tip is controlled by a point property named ConeGO_Tip,
and its radius at the base is controlled by a real property named ConeGO_Radius.

ConeGO_SetBase, ConeGO_SetTip, and ConeGO_SetRadius are overloaded conve-
nience procedures for attaching the cone-specific properties to graphical objects; they are similar
to GO_SetTransform (see Section 3.8).

ConeGO_New(p1,p2,r) creates a new cone object and returns it. In the process, it attaches
p1 as propertyConeGO_Base, p2 as propertyConeGO_Tip, and r as propertyConeGO_Radius
to the new cone object, thereby defining its endpoints and radius. Cones are approximated by
polyhedra; by default, a cone consists of 30 triangles.

ConeGO_NewWithPrec(p1,p2,r,i) behaves like ConeGO_New(p1,p2,r), but allows
the client program to specify the precision of the cone. The newc one is composed of i triangles.

78 3. REFERENCE MANUAL

3.28 The TorusGO Module

- help TorusGO;
TorusGO_New(center normal: PointVal, rad1 rad2: RealVal): TorusGO
TorusGO_NewWithPrec(c n: PointVal, r1 r2: RealVal, prec: Int): TorusGO
TorusGO_Center: PointPropName
TorusGO_Normal: PointPropName
TorusGO_Radius1: RealPropName
TorusGO_Radius2: RealPropName

WHERE
TorusGO <: SurfaceGO
PointVal = PointPropVal + Point3
RealVal = RealPropVal + Real + Int

A TorusGO object is a graphical object describing a torus. It is a subtype of SurfaceGO, and
does not add any extra fields or methods.

A torus is an object that is shaped like a doughnut. It can be described as a surface of
revolution: if we rotate a circle C around an axis A that does not intersect C, the resulting
surface forms a torus. The radius of C is called the minor radius of the torus, the perpendicular
distance from the center ofC toA is called the major radius of the torus, the intersection between
A and the perpendicular vector from C to A is called the center of the torus, and the directional
vector of A is called the normal of the torus.

Alternatively, we can describe a torus as a cylinder which is bent such that its ends connect.
The axis of the cylinder, which was straight before, now forms a circle. The center of this circle
is called the center of the torus, the normal vector of the circle (in 3D) is called the normal of
the torus, the radius of the sphere is called the major radius of the torus, and the radius of the
cylinder is called the minor radius of the torus.

A torus is affected by all the properties defined in the GO and SurfaceGO modules as well
as by three additional, torus-specific properties: the center of the torus is controlled by a point
property named TorusGO_Center, its normal vector is controlled by a point property named
TorusGO_Normal, its major radius is controlled by a real property named TorusGO_Radius1,
and its minor radius is controlled by a real property named TorusGO_Radius2.

TorusGO_SetCenter, TorusGO_SetNormal, TorusGO_SetRadius1, and
TorusGO_SetRadius2 are overloaded convenience procedures for attaching the torus-specific
properties to graphical objects; they are similar to GO_SetTransform (see Section 3.8).

TorusGO_New(c,n,r1,r2) creates a new torus object and returns it. In the process, it
attaches c as property TorusGO_Center, n as property TorusGO_Normal, r1 as property
TorusGO_Radius1, and r2 as property TorusGO_Radius2 to the new torus object, thereby
defining its geometry. Tori are approximated by polyhedra; by default, a torus consists of 30

3.29 The QuadMeshGO Module 79

strips, each one with 30 rectangles.
TorusGO_NewWithPrec(c,n,r1,r2,i)behaves likeTorusGO_New(c,n,r1,r2), but

allows the client program to specify the precision of the torus. The new torus is composed of i
strips, each one with i rectangles.

3.29 The QuadMeshGO Module

- help QuadMeshGO;
QuadMeshGO_BadSize: Exception
QuadMeshGO_ColorsUndefined: Exception
QuadMeshGO_New(pts: [[Point3]]): QuadMeshGO
QuadMeshGO_NewWithShapeHint(pts: [[Point3]], s: Shape): QuadMeshGO

WHERE
QuadMeshGO <: SurfaceGO &

{ addFacetColors: ([[Col]]) => Ok ! QuadMeshGO_BadSize,
setColorOfFacet: (i j: Int, c: Col) => Ok ! QuadMeshGO_ColorsUndefined }

Shape = Text (one of "Unknown", "Convex", "NonConvex", "Complex")
Col = Color + Text

A QuadMeshGO is a graphical object that describes a quadrilateral mesh, a grid of four-sided
polygons (also called quadrilaterals). A quadrilateral mesh is defined by a two-dimensional
array of points 0

B@
p0;0 � � � p0;n

...
...

pm;0 � � � pm;n

1
CA

Neighboring points pi;j , pi;j�1, pi�1;j�1, pi�1;j (1 � i � m ; 1 � j � n) in the array define
a quadrilateral; the entire mesh consists of m� n quadrilaterals.

Assumingpts is an (m+1)�(n+1) array of points, the functionQuadMeshGO_New(pts)
creates and returns a new quadrilateral mesh, consisting of m� n quadrilaterals.

QuadMeshGO_NewWithShapeHint(pts,sh) acts similarly, but it allows the client to
supply a “shape hint”. Shape hints are described in Section 3.22.

By default, the color of a QuadMeshGO is the color defined by the current value of the
SurfaceGO_Color property. But QuadMeshGO objects have two methods (in addition to the
methods common to all SurfaceGO objects) that allow the client to attach an individual color
to each individual quadrilateral. Given a quad-mesh qm that consists of m � n quadrilaterals,
qm.addFacetColors(cols) takes an m� n array of colors, and sets the color of the quadri-
lateral (i; j) to be col[i][j] (for all 1 � i � m ; 1 � j � n). If cols has incompatible
dimensions, the exception QuadMeshGO_BadSize is raised.

80 3. REFERENCE MANUAL

qm.setColorOfFacet(i,j,c) assigns the color c to the quadrilateral (i; j) of the quad-
mesh qm. This method may be invoked only if a color-array was previously attached to the quad-
mesh (via addFacetColors), otherwise, the exception QuadMeshGO_ColorsUndefined is
raised.

QuadMeshGO objects are affected by all the properties defined in the GO and SurfaceGO

modules, and by no others.

3.30 The Prop Module

- help Prop;
Prop_BadMethod: Exception
Prop_BadInterval: Exception

TYPES
Prop <: ProxiedObj
PropName <: ProxiedObj
PropVal <: ProxiedObj
PropBeh <: ProxiedObj
PropRequest <: ProxiedObj & { start: () => Real, dur: () => Real }

A property is an object that describes the appearance of some particular aspect of a graphical
object (its color, size, location, etc). A property consists of two parts: a property name, which
states what aspect of the object is affected, and a property value, which states how it is affected.

Property names are objects of type PropName, or a subtype thereof. PropName in turn is
a subtype of ProxiedObj; it does not add any extra fields or methods. There is a fixed set of
property names; the client program cannot create new ones at run time.

Property values are objects which describe the value of a property at a given point in time.
They are represented by objects of type PropVal. PropVal is an “abstract class”; it has
subtypes that represent particular types of property values (such as real numbers or colors).

We just stated that property values encapsulate time-variant values. So, at a first approxima-
tion, they are functions from time to some value (reals, colors, etc). Because property values can
be shared by many properties, and be referred to by many other property values, it is desirable
to be able to change the function without having to create a new property value. For this reason,
property values contain a behavior, which describes this function, and which can be changed
without having to create a new property value.

Property behaviors are represented by objects of type PropBeh. This type is an “abstract
class”; its subtypes implement mappings to concrete values like real numbers or colors. These
subtypes have in turn several subtypes, for constant, asynchronous, synchronous, and dependent
behaviors.

3.30 The Prop Module 81

A constant behavior is a behavior whose value does not depend on the current time. An
asynchronous behavior is a behavior whose value changes perpetually and over its entire lifetime,
and does not depend on other property values. A dependent behavior is a behavior whose value
is dependent on other property values. The value of an asynchronous or dependent behavior is
computed using a method supplied by the client program. If this method is faulty (e.g. ill-typed),
the exception Prop_BadMethod is raised.

Finally, a synchronous behavior is a behavior that accepts requests to perform changes over
some finite period of time, and processes these changes only when a controlling animation
handle (see Section 3.7) is signaled. Each synchronous behavior has a few methods that enqueue
standard requests (such as “move at constant speed over a straight path”) into its request queue.
In addition, it allows the client program to enqueue arbitrary requests. Requests are represented
by objects of type PropRequest, or a subtype thereof. Each request has a well-specified start
time (relative to the time at which the controlling animation handle is signaled) and duration,
and these values can be accessed by the methods start and dur.

Start time and duration determine a time interval for each request. By definition, zero-
duration intervals are closed; all other intervals are open. Within the request queue of a
synchronous behavior, no two requests may have overlapping time intervals. If a request that
would cause an overlap is enqueued, the exception Prop_BadInterval is raised.

82 3. REFERENCE MANUAL

3.31 The BooleanProp Module

- help BooleanProp;
BooleanProp_NewConst(b: Bool): BooleanPropVal
BooleanProp_NewSync(ah: AnimHandle, b: Bool): BooleanPropVal
BooleanProp_NewAsync(beh: BooleanPropAsyncBeh): BooleanPropVal
BooleanProp_NewDep(beh: BooleanPropDepBeh): BooleanPropVal
BooleanProp_NewConstBeh(b: Bool): BooleanPropConstBeh
BooleanProp_NewSyncBeh(ah: AnimHandle, b: Bool): BooleanPropSyncBeh
BooleanProp_NewAsyncBeh(compute: M1):BooleanPropAsyncBeh
BooleanProp_NewDepBeh(compute: M2):BooleanPropDepBeh
BooleanProp_NewRequest(start dur: Num, value: M3): BooleanPropRequest

WHERE
BooleanPropName <: PropName & { bind: (v: BooleanPropVal) => Prop }
BooleanPropVal <: PropVal & { getBeh: () => BooleanPropBeh,

setBeh: (BooleanPropBeh) => Ok,
get: () => Bool,
value: (Num) => Bool }

BooleanPropBeh <: PropBeh
BooleanPropConstBeh <: BooleanPropBeh & { set: (Bool) => Ok }
BooleanPropSyncBeh <: BooleanPropBeh &

{ addRequest: (BooleanPropRequest) => Ok ! Prop_BadInterval,
change: (Bool,Num) => Ok ! Prop_BadInterval }

BooleanPropAsyncBeh <: BooleanPropBeh & { compute: M1 }
BooleanPropDepBeh <: BooleanPropBeh & { compute: M2 }
BooleanPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: BooleanPropAsyncBeh) (Real) => Bool
M2 = Self (X <: BooleanPropDepBeh) (Real) => Bool
M3 = Self (X <: BooleanPropRequest) (Bool,Real) => Bool
Num = Real + Int

A BooleanPropName is a property name that associates with a boolean property value.
BooleanPropName is a subtype of PropName (see Section 3.30). It has one extra method,
bind, which is for internal use only.

A BooleanPropVal is an object representing a boolean property value. BooleanPropVal
is a subtype of PropVal. In addition to the methods common to all PropVal and ProxiedObj
objects, a boolean property value v has four additional methods:

� v.get() returns the current value of v.

� v.value(t) returns the value of v at time t. 9

9Assuming that v has the same behavior at time t as it has now

3.31 The BooleanProp Module 83

� v.getBeh() returns the behavior of v.

� v.setBeh(beh) changes the behavior of v to beh.

A BooleanPropBeh represents the behavior of a boolean property value. It has four subtypes:

1. BooleanPropConstBeh objects represent constant boolean behaviors. The function
BooleanProp_NewConstBeh(b) takes a boolean b and returns a new constant behavior
object whose initial value is b. The function BooleanProp_NewConst(b) returns a
new boolean property value v whose behavior is BooleanProp_NewConstBeh(b). In
other words, v.get() evaluates to b.

BooleanPropConstBeh objects understand one extra message: beh.set(b) changes
the value of beh to b.

2. BooleanPropAsyncBeh represents asynchronous boolean behaviors. Objects of this
type have one extra method, compute. This method is supplied by the client program,
but meant to be called only by the animation server. The method defines the value of beh
over time; beh.compute(t) returns the value of beh at time t.

The function BooleanProp_NewAsyncBeh(m) takes a method m and returns a new
asynchronous behavior beh, such that beh.compute is set to m.

The function BooleanProp_NewAsync(m) returns a new boolean property value v

whose behavior is BooleanProp_NewAsyncBeh(m).

3. BooleanPropDepBeh objects represent dependent boolean behaviors, that is, boolean
behaviors whose value depends on other property values. Dependent boolean behaviors
have one extra method compute, just like asynchronous boolean behaviors; they also
have similar creation functions. The main difference between the two types is that
dependent boolean behaviors ensure that the dependency relationships are acyclic. Cyclic
dependencies cause the exception Prop_BadMethod to be raised.

4. BooleanPropSyncBeh objects represent synchronous boolean behaviors. The function
BooleanProp_NewSyncBeh(ah,b) takes an animation handle ah and a boolean b, and
returns a new synchronous boolean behavior that is controlled by ah and whose initial
value is b. BooleanProp_NewSync(ah,b) returns a new boolean property value whose
behavior is BooleanProp_NewSyncBeh(ah,b).

Synchronous boolean behaviors have two extra methods: beh.change(b,t) puts a
request into beh’s request queue that asks beh to change its current value to b, t seconds
after the controlling animation handle ah is signaled. beh.addRequest(r) puts a
client-defined request object r into beh’s request queue.

84 3. REFERENCE MANUAL

Recall that all request objects have start times and durations, and methods start and dur
to access them (see Section 3.30). Boolean request objects have one extra method, value,
which is supplied by the client program, but meant to be called only by the animation
server. Assume that the boolean request r has a start time of s and a duration of d, and
that it is enqueued in the request queue of a behavior beh whose controlling animation
handle ah was signaled at time t0. Then r.value(b0,t) returns the value beh should
have at time t0+t, assuming that its value was b0 at time t+s, just before r became active.
t can range between s and s+d.

BooleanProp_NewRequest(s,d,m) returns a new boolean request object whose start
time is s, whose duration is d, and whose value method is set to m.

3.32 The RealProp Module 85

3.32 The RealProp Module

- help RealProp;
RealProp_NewConst(r: Num): RealPropVal
RealProp_NewSync(ah: AnimHandle, r: Num): RealPropVal
RealProp_NewAsync(beh: RealPropAsyncBeh): RealPropVal
RealProp_NewDep(beh: RealPropDepBeh): RealPropVal
RealProp_NewConstBeh(r: Num): RealPropConstBeh
RealProp_NewSyncBeh(ah: AnimHandle, r: Num): RealPropSyncBeh
RealProp_NewAsyncBeh(compute: M1):RealPropAsyncBeh
RealProp_NewDepBeh(compute: M2):RealPropDepBeh
RealProp_NewRequest(start dur: Num, value: M3): RealPropRequest

WHERE
RealPropName <: PropName & { bind: (v: RealPropVal) => Prop }
RealPropVal <: PropVal & { getBeh: () => RealPropBeh,

setBeh: (RealPropBeh) => Ok,
get: () => Real,
value: (Num) => Real }

RealPropBeh <: PropBeh
RealPropConstBeh <: RealPropBeh & { set: (Num) => Ok }
RealPropSyncBeh <: RealPropBeh &

{ addRequest: (RealPropRequest) => Ok ! Prop_BadInterval,
linChangeTo: (Num,Num,Num) => Ok ! Prop_BadInterval,
linChangeBy: (Num,Num,Num) => Ok ! Prop_BadInterval }

RealPropAsyncBeh <: RealPropBeh & { compute: M1 }
RealPropDepBeh <: RealPropBeh & { compute: M2 }
RealPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: RealPropAsyncBeh) (Real) => Real
M2 = Self (X <: RealPropDepBeh) (Real) => Real
M3 = Self (X <: RealPropRequest) (Real,Real) => Real
Num = Real + Int

ARealPropName is a property name that associates with a real property value. ARealPropVal

is an object representing a real property value. A RealPropBeh represents the behavior of
a real property value. It has four subtypes: RealPropConstBeh, which represents con-
stant real behaviors; RealPropAsyncBeh, which represents asynchronous real behaviors;
RealPropDepBeh, which represents dependent real behaviors; and RealPropSyncBeh, which
represents synchronousreal behaviors. Finally, a RealPropRequest is an object that represents
a request to a synchronous real behavior.

The methods and creation functions associated with these types are completely analogous
to those provided by the BooleanPropmodule, except for the methods of RealPropSyncBeh
objects.

86 3. REFERENCE MANUAL

A synchronous real behavior is a RealPropBeh object that has three extra methods:
beh.linChangeTo(r,s,d) puts a request into beh’s request queue that asks beh to change
its current value to r. The change starts s seconds after the controlling animation handle ah

is signaled, and completes d seconds later. The interpolation is linear, that is, the intermediate
values move at constant speed through R. The method call beh.linChangeBy(r,s,d) is
similar, but changes the value of beh by r. Finally, beh.addRequest(r) puts a client-defined
request object r into beh’s request queue.

3.33 The PointProp Module

- help PointProp;
PointProp_NewConst(r: Point3): PointPropVal
PointProp_NewSync(ah: AnimHandle, r: Point3): PointPropVal
PointProp_NewAsync(beh: PointPropAsyncBeh): PointPropVal
PointProp_NewDep(beh: PointPropDepBeh): PointPropVal
PointProp_NewConstBeh(r: Point3): PointPropConstBeh
PointProp_NewSyncBeh(ah: AnimHandle, r: Point3): PointPropSyncBeh
PointProp_NewAsyncBeh(compute: M1):PointPropAsyncBeh
PointProp_NewDepBeh(compute: M2):PointPropDepBeh
PointProp_NewRequest(start dur: Num, value: M3): PointPropRequest

WHERE
PointPropName <: PropName & { bind: (v: PointPropVal) => Prop }
PointPropVal <: PropVal & { getBeh: () => PointPropBeh,

setBeh: (PointPropBeh) => Ok,
get: () => Point3,
value: (Num) => Point3 }

PointPropBeh <: PropBeh
PointPropConstBeh <: PointPropBeh & { set: (Point3) => Ok }
PointPropSyncBeh <: PointPropBeh &

{ addRequest: (PointPropRequest) => Ok ! Prop_BadInterval,
linMoveTo: (Point3,Num,Num) => Ok ! Prop_BadInterval,
linMoveBy: (Point3,Num,Num) => Ok ! Prop_BadInterval }

PointPropAsyncBeh <: PointPropBeh & { compute: M1 }
PointPropDepBeh <: PointPropBeh & { compute: M2 }
PointPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: PointPropAsyncBeh) (Real) => Point3
M2 = Self (X <: PointPropDepBeh) (Real) => Point3
M3 = Self (X <: PointPropRequest) (Point3,Real) => Point3
Num = Real + Int

APointPropName is a property name that associates with a point property value. APointProp-

Val is an object representing a point property value. A PointPropBeh represents the behavior

3.33 The PointProp Module 87

of a point property value. It has four subtypes: PointPropConstBeh, which represents con-
stant point behaviors; PointPropAsyncBeh, which represents asynchronous point behaviors;
PointPropDepBeh, which represents dependent point behaviors; and PointPropSyncBeh,
which represents synchronous point behaviors. Finally, a PointPropRequest is an object that
represents a request to a synchronous point behavior.

The methods and creation functions associated with these types are completely analogous to
those provided by the BooleanProp module, except for the methods of PointPropSyncBeh
objects.

A synchronous point behavior is a PointPropBeh that has three extra methods:
beh.linMoveTo(p,s,d) puts a request into beh’s request queue that asks beh to change
its current value to p. The change starts s seconds after the controlling animation handle ah

is signaled, and completes d seconds later. The interpolation is linear, that is, the intermediate
values move at constant speed through R3. The method call beh.linMoveBy(p,s,d) is
similar, but changes the value of beh by p. Finally, beh.addRequest(r) puts a client-defined
request object r into beh’s request queue.

88 3. REFERENCE MANUAL

3.34 The ColorProp Module

- help ColorProp;
ColorProp_NewConst(r: Col): ColorPropVal
ColorProp_NewSync(ah: AnimHandle, r: Col): ColorPropVal
ColorProp_NewAsync(beh: ColorPropAsyncBeh): ColorPropVal
ColorProp_NewDep(beh: ColorPropDepBeh): ColorPropVal
ColorProp_NewConstBeh(r: Col): ColorPropConstBeh
ColorProp_NewSyncBeh(ah: AnimHandle, r: Col): ColorPropSyncBeh
ColorProp_NewAsyncBeh(compute: M1):ColorPropAsyncBeh
ColorProp_NewDepBeh(compute: M2):ColorPropDepBeh
ColorProp_NewRequest(start dur: Num, value: M3): ColorPropRequest

WHERE
ColorPropName <: PropName & { bind: (v: ColorPropVal) => Prop }
ColorPropVal <: PropVal & { getBeh: () => ColorPropBeh,

setBeh: (ColorPropBeh) => Ok,
get: () => Color,
value: (Num) => Color }

ColorPropBeh <: PropBeh
ColorPropConstBeh <: ColorPropBeh & { set: (Col) => Ok }
ColorPropSyncBeh <: ColorPropBeh &

{ addRequest: (ColorPropRequest) => Ok ! Prop_BadInterval,
rgbLinChangeTo: (Col,Num,Num) => Ok ! Prop_BadInterval }

ColorPropAsyncBeh <: ColorPropBeh & { compute: M1 }
ColorPropDepBeh <: ColorPropBeh & { compute: M2 }
ColorPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: ColorPropAsyncBeh) (Real) => Color
M2 = Self (X <: ColorPropDepBeh) (Real) => Color
M3 = Self (X <: ColorPropRequest) (Color,Real) => Color
Col = Color + Text
Num = Real + Int

AColorPropName is a property name that associates with a color property value. AColorProp-

Val is an object representing a color property value. A ColorPropBeh represents the behavior
of a color property value. It has four subtypes: ColorPropConstBeh, which represents con-
stant color behaviors; ColorPropAsyncBeh, which represents asynchronous color behaviors;
ColorPropDepBeh, which represents dependent color behaviors; and ColorPropSyncBeh,
which represents synchronous color behaviors. Finally, a ColorPropRequest is an object that
represents a request to a synchronous color behavior.

The creation functions for these types are similar to those provided by the BooleanProp

module, except that they are overloaded: where the BooleanProp creation functions accepted
a boolean as an argument, these creation functions accept either a Color or a Text describ-

3.34 The ColorProp Module 89

ing a color. For example, the expression ColorProp_NewConst("red") is equivalent to
ColorProp_NewConst(color_named("red")).

The methods associated with these types are also analogous to those provided by the
BooleanProp module, except for the methods of ColorPropSyncBeh objects.

Synchronous color behaviors are ColorPropBeh objects that have two extra methods:
beh.addRequest(r) puts a client-defined request object r into beh’s request queue.
beh.rgbLinChangeTo(c,s,d) puts a predefined request object into beh’s request queue
that asks beh to change its current value to c. The change starts s seconds after the controlling
animation handle ah is signaled, and completes d seconds later. The interpolation is linear
through RGB space, that is, the intermediate colors move on a straight path and at a constant
speed through the RGB cube.

90 3. REFERENCE MANUAL

3.35 The TransformProp Module

- help TransformProp;
TransformProp_NewConst(m: Matrix4): TransformPropVal
TransformProp_NewSync(ah: AnimHandle, m: Matrix4): TransformPropVal
TransformProp_NewAsync(beh: TransformPropAsyncBeh): TransformPropVal
TransformProp_NewDep(beh: TransformPropDepBeh): TransformPropVal
TransformProp_NewConstBeh(m: Matrix4): TransformPropConstBeh
TransformProp_NewSyncBeh(ah: AnimHandle, m: Matrix4): TransformPropSyncBeh
TransformProp_NewAsyncBeh(compute: M1):TransformPropAsyncBeh
TransformProp_NewDepBeh(compute: M2):TransformPropDepBeh
TransformProp_NewRequest(start dur: Num, value: M3): TransformPropRequest

WHERE
TransformPropName <: PropName & { bind: (v: TransformPropVal) => Prop }
TransformPropVal <: PropVal & { getBeh: () => TransformPropBeh,

setBeh: (TransformPropBeh) => Ok,
get: () => Matrix4,
value: (Num) => Matrix4 }

TransformPropBeh <: PropBeh
TransformPropConstBeh <: TransformPropBeh &

{ set: (Matrix4) => Ok,
compose: (Matrix4) => Ok,
reset: () => Ok,
translate: (Num,Num,Num) => Ok,
scale: (Num,Num,Num) => Ok,
rotateX: (Num) => Ok,
rotateY: (Num) => Ok,
rotateZ: (Num) => Ok }

TransformPropSyncBeh <: TransformPropBeh &
{ addRequest: (TransformPropRequest) => Ok ! Prop_BadInterval,

reset: (Num) => Ok ! Prop_BadInterval,
changeTo: (Matrix4,Num,Num) => Ok ! Prop_BadInterval,
translate: (Num,Num,Num,Num,Num) => Ok ! Prop_BadInterval,
scale: (Num,Num,Num,Num,Num) => Ok ! Prop_BadInterval,
rotateX: (Num,Num,Num) => Ok ! Prop_BadInterval,
rotateY: (Num,Num,Num) => Ok ! Prop_BadInterval,
rotateZ: (Num,Num,Num) => Ok ! Prop_BadInterval }

TransformPropAsyncBeh <: TransformPropBeh & { compute: M1 }
TransformPropDepBeh <: TransformPropBeh & { compute: M2 }
TransformPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: TransformPropAsyncBeh) (Real) => Matrix4
M2 = Self (X <: TransformPropDepBeh) (Real) => Matrix4
M3 = Self (X <: TransformPropRequest) (Matrix4,Real) => Matrix4
Num = Real = Int

3.35 The TransformProp Module 91

A TransformPropName is a property name that associates with a transformation property
value. A TransformPropVal is an object representing a transformation property value. A
TransformPropBeh represents the behavior of a transformation property value. It has four sub-
types: TransformPropConstBeh represents constant transformation behaviors;Transform-
PropAsyncBeh represents asynchronous transformation behaviors; TransformPropDepBeh
represents dependent transformation behaviors; and TransformPropSyncBeh represents syn-
chronous transformation behaviors. Finally, a TransformPropRequest is an object that
represents a request to a synchronous transformation behavior.

The methods and creation functions associated with these types are completely analogous to
those provided by the BooleanPropmodule, except for the methods of PointPropConstBeh
and PointPropSyncBeh objects.

TransformPropConstBeh is a subtype of TransformPropBeh that adds 8 extra methods.
In the following, assume that n denotes the current value (a Matrix4; see Section 3.2) of the
constant transformation behavior beh:

� beh.set(m) changes the value of beh to m.

� beh.reset() changes the value of beh to Matrix4_Id.

� beh.compose(m) changes the value of beh to Matrix4_Multiply(m,n).

� beh.translate(x,y,z) changes the value ofbeh toMatrix4_Translate(n,x,y,z).

� beh.scale(x,y,z) changes the value of beh to Matrix4_Scale(n,x,y,z).

� beh.rotateX(a) changes the value of beh to Matrix4_RotateX(n,a).

� beh.rotateY(a) changes the value of beh to Matrix4_RotateY(n,a).

� beh.rotateZ(a) changes the value of beh to Matrix4_RotateZ(n,a).

TransformPropSyncBeh is another subtype of TransformPropBeh that also adds 8 extra
methods. The first method, beh.addRequest(r), puts a client-defined request object r into
beh’s request queue. The remaining seven methods all put predefined request objects into the
behavior’s request queue, asking it to change its current value (call it n) to a new value. The
methods take arguments s and d, indicating that the requested change should start s seconds
after the controlling animation handle is signaled, and should be completed d seconds later.

� beh.reset(s) enqueues a request to change to the value Matrix4_Id. This method
has no argument d, so there is no interpolation between n and Matrix4_Id.

92 3. REFERENCE MANUAL

� beh.changeTo(m,s,d) enqueues a request to change to the value m. The interpolation
between the two matrices is done so that it leads to a smooth-looking motion of the scene.
Both m and n must be matrices that can be constructed using only translation, rotation,
and uniform scaling operations.

� beh.translate(x,y,z,s,d) enqueues a request to change to the value
Matrix4_Translate(n,x,y,z).

� beh.scale(x,y,z,s,d) enqueues a request to change to the value
Matrix4_Scale(n,x,y,z).

� beh.rotateX(a,s,d) enqueues a request to change to the value
Matrix4_RotateX(n,a).

� beh.rotateY(a,s,d) enqueues a request to change to the value
Matrix4_RotateY(n,a).

� beh.rotateZ(a,s,d) enqueues a request to change to the value
Matrix4_RotateZ(n,a).

3.36 The LineTypeProp Module 93

3.36 The LineTypeProp Module

- help LineTypeProp;
LineTypeProp_NewConst(lt: LineType): LineTypePropVal
LineTypeProp_NewSync(ah: AnimHandle, lt: LineType): LineTypePropVal
LineTypeProp_NewAsync(beh: LineTypePropAsyncBeh): LineTypePropVal
LineTypeProp_NewDep(beh: LineTypePropDepBeh): LineTypePropVal
LineTypeProp_NewConstBeh(lt: LineType): LineTypePropConstBeh
LineTypeProp_NewSyncBeh(ah: AnimHandle, lt: LineType): LineTypePropSyncBeh
LineTypeProp_NewAsyncBeh(compute: M1):LineTypePropAsyncBeh
LineTypeProp_NewDepBeh(compute: M2):LineTypePropDepBeh
LineTypeProp_NewRequest(start dur: Num, value: M3): LineTypePropRequest

WHERE
LineTypePropName <: PropName & { bind: (v: LineTypePropVal) => Prop }
LineTypePropVal <: PropVal & { getBeh: () => LineTypePropBeh,

setBeh: (LineTypePropBeh) => Ok,
get: () => LineType,
value: (Num) => LineType }

LineTypePropBeh <: PropBeh
LineTypePropConstBeh <: LineTypePropBeh & { set: (LineType) => Ok }
LineTypePropSyncBeh <: LineTypePropBeh &

{ addRequest: (LineTypePropRequest) => Ok ! Prop_BadInterval,
change: (LineType,Num) => Ok ! Prop_BadInterval }

LineTypePropAsyncBeh <: LineTypePropBeh & { compute: M1 }
LineTypePropDepBeh <: LineTypePropBeh & { compute: M2 }
LineTypePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: LineTypePropAsyncBeh) (Real) => LineType
M2 = Self (X <: LineTypePropDepBeh) (Real) => LineType
M3 = Self (X <: LineTypePropRequest) (LineType,Real) => LineType
LineType = Text (one of "Solid", "Dashed", "Dotted", "DashDot")
Num = Real + Int

There are two types of graphical objects that use lines: LineGO objects, which represent lines
themselves, and SurfaceGO objects (including spheres, cones, etc). The latter are composed of
individual polygons, and the outline of a polygon can be surrounded by a line.

Obliq-3D supports four different line styles: solid, dashed, dotted, and alternatingly dashed
and dotted lines. We identify these line types by the strings "Solid", "Dashed", "Dotted",
and "DashDot", and refer to the set of these four strings as the type LineType.

The LineTypeProp module supplies line type property names, values, behaviors, and
request objects. All of the types and functions exported by the module are completely analogous
to those exported by the BooleanProp module, with all occurrences of Bool replaced by
LineType.

94 3. REFERENCE MANUAL

3.37 The MarkerTypeProp Module

- help MarkerTypeProp;
MarkerTypeProp_NewConst(lt: MarkerType): MarkerTypePropVal
MarkerTypeProp_NewSync(ah: AnimHandle, lt: MarkerType): MarkerTypePropVal
MarkerTypeProp_NewAsync(beh: MarkerTypePropAsyncBeh): MarkerTypePropVal
MarkerTypeProp_NewDep(beh: MarkerTypePropDepBeh): MarkerTypePropVal
MarkerTypeProp_NewConstBeh(lt: MarkerType): MarkerTypePropConstBeh
MarkerTypeProp_NewSyncBeh(ah: AnimHandle,

t: MarkerType): MarkerTypePropSyncBeh
MarkerTypeProp_NewAsyncBeh(compute: M1):MarkerTypePropAsyncBeh
MarkerTypeProp_NewDepBeh(compute: M2):MarkerTypePropDepBeh
MarkerTypeProp_NewRequest(start dur: Num, value: M3): MarkerTypePropRequest

WHERE
MarkerTypePropName <: PropName & { bind: (v: MarkerTypePropVal) => Prop }
MarkerTypePropVal <: PropVal & { getBeh: () => MarkerTypePropBeh,

setBeh: (MarkerTypePropBeh) => Ok,
get: () => MarkerType,
value: (Num) => MarkerType }

MarkerTypePropBeh <: PropBeh
MarkerTypePropConstBeh <: MarkerTypePropBeh & { set: (MarkerType) => Ok }
MarkerTypePropSyncBeh <: MarkerTypePropBeh &

{ addRequest: (MarkerTypePropRequest) => Ok ! Prop_BadInterval,
change: (MarkerType,Num) => Ok ! Prop_BadInterval }

MarkerTypePropAsyncBeh <: MarkerTypePropBeh & { compute: M1 }
MarkerTypePropDepBeh <: MarkerTypePropBeh & { compute: M2 }
MarkerTypePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: MarkerTypePropAsyncBeh) (Real) => MarkerType
M2 = Self (X <: MarkerTypePropDepBeh) (Real) => MarkerType
M3 = Self (X <: MarkerTypePropRequest) (MarkerType,Real) => MarkerType
MarkerType = Text (one of "Dot", "Circle", "Cross", "Asterisk", "X")
Num = Real + Int

MarkerGO objects represent markers, that is, objects that mark a single point. Obliq-3D supports
five different marker styles: �, �, +, �, and �. We identify these marker types by the strings
"Dot", "Circle", "Cross", "Asterisk", and "X", and refer to the set of these five strings
as the type MarkerType.

The MarkerTypePropmodule supplies marker type property names, values, behaviors, and
request objects. All of the types and functions exported by the module are completely analogous
to those exported by the BooleanProp module, with all occurrences of Bool replaced by
MarkerType.

3.38 The RasterModeProp Module 95

3.38 The RasterModeProp Module

- help RasterModeProp;
RasterModeProp_NewConst(lt: RasterMode): RasterModePropVal
RasterModeProp_NewSync(ah: AnimHandle, lt: RasterMode): RasterModePropVal
RasterModeProp_NewAsync(beh: RasterModePropAsyncBeh): RasterModePropVal
RasterModeProp_NewDep(beh: RasterModePropDepBeh): RasterModePropVal
RasterModeProp_NewConstBeh(lt: RasterMode): RasterModePropConstBeh
RasterModeProp_NewSyncBeh(ah: AnimHandle,

lt: RasterMode): RasterModePropSyncBeh
RasterModeProp_NewAsyncBeh(compute: M1):RasterModePropAsyncBeh
RasterModeProp_NewDepBeh(compute: M2):RasterModePropDepBeh
RasterModeProp_NewRequest(start dur: Num, value: M3): RasterModePropRequest

WHERE
RasterModePropName <: PropName &

{ bind: (v: RasterModePropVal) => Prop }
RasterModePropVal <: PropVal & { getBeh: () => RasterModePropBeh,

setBeh: (RasterModePropBeh) => Ok,
get: () => RasterMode,
value: (Num) => RasterMode }

RasterModePropBeh <: PropBeh
RasterModePropConstBeh <: RasterModePropBeh &

{ set: (RasterMode) => Ok }
RasterModePropSyncBeh <: RasterModePropBeh &

{ addRequest: (RasterModePropRequest) => Ok ! Prop_BadInterval,
change: (RasterMode,Num) => Ok ! Prop_BadInterval }

RasterModePropAsyncBeh <: RasterModePropBeh & { compute: M1 }
RasterModePropDepBeh <: RasterModePropBeh & { compute: M2 }
RasterModePropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: RasterModePropAsyncBeh) (Real) => RasterMode
M2 = Self (X <: RasterModePropDepBeh) (Real) => RasterMode
M3 = Self (X <: RasterModePropRequest) (RasterMode,Real) => RasterMode
RasterMode = Text (one of "Hollow", "Solid", "Empty")
Num = Real + Int

SurfaceGO objects represent surfaces, and these surfaces are composed of polygons. Obliq-3D
supports three different rendering styles for polygons: they can be solid, meaning that the entire
surface is shown, they can be hollow, meaning that only the edges are shown, or they can be
empty, meaning that neither interior nor edges are shown. We identify these styles by the strings
"Solid", "Hollow", and "Empty", and refer to the set of these three strings as the type
RasterMode.

The RasterModePropmodule supplies raster mode property names, values, behaviors, and
request objects. All of the types and functions exported by the module are completely analogous

96 3. REFERENCE MANUAL

to those exported by the BooleanProp module, with all occurrences of Bool replaced by
RasterMode.

3.39 The ShadingProp Module

- help ShadingProp;
ShadingProp_NewConst(lt: Shading): ShadingPropVal
ShadingProp_NewSync(ah: AnimHandle, lt: Shading): ShadingPropVal
ShadingProp_NewAsync(beh: ShadingPropAsyncBeh): ShadingPropVal
ShadingProp_NewDep(beh: ShadingPropDepBeh): ShadingPropVal
ShadingProp_NewConstBeh(lt: Shading): ShadingPropConstBeh
ShadingProp_NewSyncBeh(ah: AnimHandle, lt: Shading): ShadingPropSyncBeh
ShadingProp_NewAsyncBeh(compute: M1):ShadingPropAsyncBeh
ShadingProp_NewDepBeh(compute: M2):ShadingPropDepBeh
ShadingProp_NewRequest(start dur: Num, value: M3): ShadingPropRequest

WHERE
ShadingPropName <: PropName & { bind: (v: ShadingPropVal) => Prop }
ShadingPropVal <: PropVal & { getBeh: () => ShadingPropBeh,

setBeh: (ShadingPropBeh) => Ok,
get: () => Shading,
value: (Num) => Shading }

ShadingPropBeh <: PropBeh
ShadingPropConstBeh <: ShadingPropBeh & { set: (Shading) => Ok }
ShadingPropSyncBeh <: ShadingPropBeh &

{ addRequest: (ShadingPropRequest) => Ok ! Prop_BadInterval,
change: (Shading,Num) => Ok ! Prop_BadInterval }

ShadingPropAsyncBeh <: ShadingPropBeh & { compute : M1 }
ShadingPropDepBeh <: ShadingPropBeh & { compute: M2 }
ShadingPropRequest <: PropRequest & { value: M3 }
M1 = Self (X <: ShadingPropAsyncBeh) (Real) => Shading
M2 = Self (X <: ShadingPropDepBeh) (Real) => Shading
M3 = Self (X <: ShadingPropRequest) (Shading,Real) => Shading
Shading = Text ("Flat" or "Gouraud")
Num = Real + Int

Obliq-3D supports two shading methods for polygonal surfaces: Flat shading and Gouraud
shading. We identify these styles by the strings "Flat" and "Gouraud", and refer to the set of
these two strings as the type Shading.

The PEX 5.0 standard provides for two other shading methods,namely “dot-product” shading
and Phong shading. However, since most implementations of PEX (including the ones available
to us) do not support these two shading methods, and since OpenGL does not provide them at
all, we did not include them in Obliq-3D.

3.40 The MouseCB Module 97

The ShadingPropmodule supplies shading property names, values, behaviors, and request
objects. All of the types and functions exported by the module are completely analogous to those
exported by the BooleanProp module, with all occurrences of Bool replaced by Shading.

3.40 The MouseCB Module

- help MouseCB;
MouseCB_New(invoke: M): MouseCB

WHERE
MouseCB <: ProxiedObj & { invoke: M }
M = Self (X <: MouseCB) (MouseRec) => Ok
MouseRec = { pos: Point2, change: Button,

modifiers: [Modifier], clickType: ClickType }
Point2 = [2*Int]
Button = Text (one of "Left", "Middle", "Right")
Modifier = Text (a Button or one of "Shift", "Lock", "Control", "Option")
ClickType = Text (one of "FirstDown", "OtherDown", "OtherUp", "LastUp")

Section 3.8 described Obliq-3D’s basic model of how to specify interactive behavior. User
actions (such as key strokes or mouse actions) that occur within the scope of an animation
window cause events to be forwarded to the root object associated with the window. Each
graphical object (including the root object) contains a stack of callback objects for each event
type. Callback objects are used to encapsulate reactive behavior. The topmost callback object
on each stack determines how the graphical object reacts to an event of the corresponding type.
One possible response is to forward the event to the children of the graphical object.

A MouseCB, or mouse callback object, describes the reactive behavior of a graphical object
in response to a mouse button transition. MouseCB is a subtype of ProxiedObj; it adds one
extra method, invoke, which is supplied by the client, and called by the animation server in
response to a mouse button transition. invoke takes two arguments, the mouse callback object
self that is receiving the message, and a mouse event record mr.

A mouse event record is an object with four fields, pos, change, modifiers, and
clickType. Note that MouseRec has no supertype and does not contain any methods; in
other words, its Modula-3 equivalent would be a record rather than an object.

The pos field contains a Point2, an array of two integers. pos describes the position of
the mouse pointer when the button transition occurred.

The change field contains one of the following strings: "Left", "Middle", or "Right".
It describes which mouse button was pressed or released.

The modifiers field contains an array of strings; each string can have one of the following
values: "Left", "Middle", or "Right", "Shift", "Lock", "Control", or "Option".

98 3. REFERENCE MANUAL

The modifiers field describes which other mouse buttons and keyboard modifier keys were
depressed while the mouse button transition occurred.

Finally, the clickType field contains one of the following strings: "FirstDown",
"OtherDown", "OtherUp", or "LastUp". It describes whether the mouse button went up
or down, and whether any other mouse buttons were pressed at that time.

MouseCB_New(m) creates a new mouse callback object, sets its invoke method to m, and
returns it.

3.41 The PositionCB Module

- help PositionCB;
PositionCB_New(invoke: M): PositionCB

WHERE
PositionCB <: ProxiedObj & { invoke: M }
M = Self (X <: PositionCB) (PositionRec) => Ok
PositionRec = { pos: Point2, modifiers: [Modifier] }
Point2 = [2*Int]
Modifier = Text (one of "Left", "Middle", "Right",

"Shift", "Lock", "Control", "Option")

A PositionCB, or position callback object, describes the reactive behavior of a graphical object
in response to a change in mouse position. PositionCB is a subtype of ProxiedObj; it adds
one extra method, invoke, which is supplied by the client, and called by the animation server in
response to a position change. invoke takes two arguments, the position callback object self
that is receiving the message, and a position event record pr.

A position event record is an object (really a record) with two fields, pos and modifiers.
pos describes the new position of the mouse pointer; modifiers describes which other mouse
buttons and keyboard modifier keys were depressed while the position change occurred. The
two fields have the same types as the corresponding MouseRec fields (see Section 3.40).

PositionCB_New(m) creates a new position callback object, sets its invoke method to m,
and returns it.

3.42 The KeyCB Module 99

3.42 The KeyCB Module

- help KeyCB;
KeyCB_New(invoke: M): KeyCB

WHERE
KeyCB <: ProxiedObj & { invoke: M }
M = Self (X <: KeyCB) (KeyRec) => Ok
KeyRec = { change: Text, wentDown: Bool, modifiers: [Modifier] }
Modifier = Text (one of "Left", "Middle", "Right",

"Shift", "Lock", "Control", "Option")

A KeyCB, or key callback object, describes the reactive behavior of a graphical object in response
to a keyboard key transition. KeyCB is a subtype of ProxiedObj; it adds one extra method,
invoke, which is supplied by the client, and called by the animation server in response to a
key transition. invoke takes two arguments, the key callback object self that is receiving the
message, and a key event record kr.

A key event record is an object (really a record) with three fields, change, wentDown, and
modifiers. The change field contains a string indicating which key was pressed or released.
The wentDown field contains a boolean indicating whether the key went down or up. Finally,
the modifiers field describes which other mouse buttons and keyboard modifier keys were
depressed while the key transition occurred. Its type is the same as the type of the modifiers
field of MouseRec (see Section 3.40).

KeyCB_New(m) creates a new key callback object, sets its invokemethod to m, and returns
it.

100 3. REFERENCE MANUAL

Acknowledgments

Anim3D and Obliq-3D were designed jointly with Marc Brown. The final design of the
system owes much to Marc’s taste for solutions that are both simple and elegant. Stephen
Harrison made some important contributions to the early design of the system. Luca Cardelli
designed and implemented Obliq, the interpreted language used by our animation system. Luca
also helped in embedding the Obliq interpreter into Obliq-3D. Lyle Ramshaw explained the
relationship between transformation matrices and quaternions to us. All drawings in this report
were produced using Juno-II, a constraint-based drawing editor developed by Allan Heydon and
Greg Nelson. Marc, Allan, and Luca read various drafts of this report; their comments improved
both technical accuracy and clarity of the exposition. Finally, thanks to Cynthia Hibbard for
helping to improve the presentation, and for explaining the subtleties of the defining relative in
the process.

REFERENCES 101

References

[1] American National Standards Institute. American National Standard for Informa-
tion Processing Systems — Programmer’s Hierarchical Interactive Graphics Sys-
tem (PHIGS) Functional Description, Archive File Format, Clear-Text Encoding of
Archive File, X3.144-1988, American National Standards Institute, New York, NY, 1988.

[2] Marc H. Brown and Marc A. Najork. Algorithm Animation using 3D Interactive Graph-
ics. In ACM Symposium on User Interface Software and Technology, 93 – 100 (November
1993). Also appeared as Research Report 110a, Digital Equipment Corp., Systems Re-
search Center, Palo Alto, CA (September 1993). There is an accompanying video tape,
SRC Research Report 110b.

[3] Luca Cardelli. Obliq — A Language with Distributed Scope. Research Report 122,
Digital Equipment Corp., Systems Research Center, Palo Alto, CA (June 1994).

[4] Matthew Conway: Randy Pausch, Rich Gossweiler, and Tommy Burnette. Alice: A Rapid
Prototyping System for Building Virtual Environments. In Conference Companion,
CHI’94, 295–296 (April 1994).

[5] Robert DeLine. Alice: A Rapid Prototyping System for Three-Dimensional Interactive
Graphical Environments. University of Virginia, Dept. of Computer Science (May 1993).

[6] Parris Egbert and William Kubitz. Application Graphics Modelling Support Through
Object Orientation. IEEE Computer, 84–91 (October 1992).

[7] Conal Elliott, Greg Schechter, Ricky Yeung, Salim Abi-Ezzi. TBAG: A High Level
Framework for Interactive, Animated 3D Graphics Applications. Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH ’94 Proceedings), 421–434 (July
1994).

[8] Tom Gaskins. PEXlib Programming Manual. O’Reilly & Associates, Inc., 1992.

[9] Graphics Standards Planning Committee. Status Report of the Graphics Standards
Planning Committee. Computer Graphics, 13(3) (August 1979).

[10] Philip M. Hubbard, Matthias M. Wloka, and Robert C. Zeleznik. UGA: A Unified Graph-
ics Architecture. Technical Report CS-91-30, Brown University, Dept. of Computer Sci-
ence, Providence, RI (June 1991).

[11] International Standards Organization. International Standard Information Processing
Systems — Computer Graphics — Graphical Kernel System for Three Dimensions

102 REFERENCES

(GKS–3D) Functional Description, ISO Document Number 8805:1988(E), American
National Standards Institute, New York, NY, 1988.

[12] Larry Koved and Wayne Wooten. GROOP: An object-oriented toolkit for animated 3D
graphics. ACM SIGPLAN Notices (OOPSLA ’93 Proceedings) 28(10):309–325 (October
1993).

[13] Doré Programmer’s Guide, Release 5.0, Kubota Pacific Computer Inc., Santa Clara, CA,
1991.

[14] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Research Report 68,
Digital Equipment Corp., Systems Research Center, Palo Alto, CA (December 1991).

[15] Mark S. Manasse and Greg Nelson. Trestle Tutorial. Research Report 69, Digital Equip-
ment Corp., Systems Research Center, Palo Alto, CA (May 1992).

[16] Marc A. Najork and Marc H. Brown. A Library for Visualizing Combinatorial Struc-
tures. In IEEE Visualization ’94 (1994). Also appeared as Research Report 128a, Digital
Equipment Corp., Systems Research Center, Palo Alto, CA (September 1994). There is an
accompanying video tape, SRC Research Report 128b.

[17] Greg Nelson (Editor). Systems Programming with Modula-3. Prentice-Hall, 1991.

[18] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley,
1992.

[19] PHIGS+ Committee, Andies van Dam, chair. PHIGS+ Functional Description, Revision
3.0. Computer Graphics, 22(3):125–218 (July 1988).

[20] Greg Schechter, Conal Elliott, Ricky Yeung, and Salim Abi-Ezzi. Functional 3D Graphics
in C++ — with an Object-Oriented, Multiple Dispatching Implementation. In Proc.4th
Eurographics Workshop on Object-Oriented Graphics, 1994.

[21] Robert W. Scheifler and James Gettys. X Window System. Third Edition. Digital Press,
1992.

[22] Graphics Library Programming Guide. Silicon Graphics Inc., Mountain View, CA,
1991.

[23] Paul S. Strauss. BAGS: The Brown Animation Generation System. Technical Report
No. CS-88-22, Brown University, Dept. of Computer Science, Providence, RI (May 1988).

[24] Paul S. Strauss. IRIS Inventor, a 3D Graphics Toolkit. ACM SIGPLAN Notices (OOPSLA
’93 Proceedings) 28(10):192–200 (October 1993).

REFERENCES 103

[25] Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit. ACM Com-
puter Graphics (SIGGRAPH ’92) 26(2):341–349 (July 1992).

[26] Josie Wernecke. The Inventor Mentor. Addison-Wesley, 1994.

[27] Gary Wiegand and Bob Bovey. HOOPS Reference Manual, Version 3.0, Ithaca Software,
1991.

[28] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Daniel G. Aliaga, Nathan
T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes and Andries
van Dam. An Object-Oriented Framework for the Integration of Interactive Animation
Techniques. Computer Graphics (SIGGRAPH ’91 Proceedings) 25(4):105–112 (July
1991).

104 REFERENCES

INDEX 105

Index

add method, 5, 54
addFacetColors method, 79
addRequest method

of BooleanPropSyncBeh type, 83
of ColorPropSyncBeh type, 89
of LineTypePropSyncBeh type, 93
ofMarkerTypePropSyncBeh type,94
of PointPropSyncBeh type, 87
ofRasterModePropSyncBeh type,95
of RealPropSyncBeh type, 86
of ShadingPropSyncBeh type, 96
of TransformPropSyncBeh type, 91

AmbientLightGO module, 57
AmbientLightGO type, 57
AmimHandle module, 48
AmimHandle type, 48
Anim3D animation library, 1

connection to Obliq-3D, 26–28
Anim3D module, 21–24, 46
animate method, 48
animation handle, 18, 48, 81
attenuation coefficient

constant, 60
linear, 60
quadratic, 60

attenuation factor, 59
awaitDelete method, 47

behavior, 16, 80
asynchronous, 17, 81
constant, 16, 81
dependent, 20, 81
synchronous, 18, 29, 48, 81
within property value

accessing, 17, 83
updating, 17, 83

bind method
of BooleanPropName type, 82
of ColorPropName type, 88
of LineTypePropName type, 93
of MarkerTypePropName type, 94
of PointPropName type, 86
of RasterModePropName type, 95
of RealPropName type, 85
of ShadingPropName type, 96
of TransformPropName type, 91

BooleanProp module, 82
BooleanPropAsyncBeh type, 83
BooleanPropBeh type, 83
BooleanPropConstBeh type, 83
BooleanPropDepBeh type, 83
BooleanPropName type, 82
BooleanPropRequest type, 84
BooleanPropSyncBeh type, 83
BooleanPropVal type, 82
BooleanVal type, 43
box, 73
BoxGO module, 73
BoxGO type, 73
Button type, 97

callback object, 4, 52
key, 99
mouse, 97
position, 98

callback stack, 25
camera, 5, 63

orthographic, 65
perspective, 66

CameraGO module, 63
CameraGO type, 63
change field

106 INDEX

of KeyRec type, 99
of MouseRec type, 97

change method
of BooleanPropSyncBeh type, 83
of LineTypePropSyncBeh type, 93
ofMarkerTypePropSyncBeh type,94
ofRasterModePropSyncBeh type,95
of ShadingPropSyncBeh type, 96

changeCamera method, 56
changeTitle method, 47
changeTo method

of TransformPropSyncBeh type, 92
clickType field

of MouseRec type, 98
Col type, 43
ColorProp module, 88
ColorPropAsyncBeh type, 88
ColorPropBeh type, 88
ColorPropConstBeh type, 88
ColorPropDepBeh type, 88
ColorPropName type, 88
ColorPropRequest type, 88
ColorPropSyncBeh type, 88
ColorPropVal type, 88
ColorVal type, 43
compose method

ofTransformPropConstBeh type,91
compute method

of BooleanPropAsyncBeh type, 83
of BooleanPropDepBeh type, 83
of ColorPropAsyncBeh type, 88
of ColorPropDepBeh type, 88
of LineTypePropAsyncBeh type, 93
of LineTypePropDepBeh type, 93
of MarkerTypePropAsyncBeh type,

94
of MarkerTypePropDepBeh type, 94
of PointPropAsyncBeh type, 86
of PointPropDepBeh type, 86

of RasterModePropAsyncBeh type,
95

of RasterModePropDepBeh type, 95
of RealPropAsyncBeh type, 85
of RealPropDepBeh type, 85
of ShadingPropAsyncBeh type, 96
of ShadingPropDepBeh type, 96
ofTransformPropAsyncBeh type,91
of TransformPropDepBeh type, 91

cone, 6, 77
ConeGO module, 77
ConeGO type, 77
content method, 54
cylinder, 76
CylinderGO module, 76
CylinderGO type, 76

default-ambient-light name, 28, 40
default-camera name, 28, 40
default-vector-light name, 28, 40
destroy method, 47
disk, 74
DiskGO module, 74
DiskGO type, 74
dur method, 81

event, 52, 97
key, 24, 52
mouse, 24, 52
position, 24, 52

event record, 52
key, 99
mouse, 24, 52, 97
position, 98

extend method, 46

findName method, 52
flush method, 54

get method

INDEX 107

of BooleanPropVal type, 82
of ColorPropVal type, 88
of LineTypePropVal type, 93
of MarkerTypePropVal type, 94
of PointPropVal type, 86
of RasterModePropVal type, 95
of RealPropVal type, 85
of ShadingPropVal type, 96
of TransformPropVal type, 91

getBeh method
of BooleanPropVal type, 83
of ColorPropVal type, 88
of LineTypePropVal type, 93
of MarkerTypePropVal type, 94
of PointPropVal type, 86
of RasterModePropVal type, 95
of RealPropVal type, 85
of ShadingPropVal type, 96
of TransformPropVal type, 91

getName method, 52
getProp method, 52
GO module, 49
GO type, 49
graphical object, 4, 49
GraphicsBase module, 47
GraphicsBase type, 47
group, 4, 54
GroupGO module, 54
GroupGO type, 54

invoke method
of KeyCB type, 99
of MouseCB type, 97
of PositionCB type, 98

invokeKeyCB method, 53
invokeMouseCB message, 24
invokeMouseCB method, 53
invokePositionCB method, 53

KeyCB module, 99
KeyCB type, 99
KeyRec type, 99

light source, 5, 57
ambient, 57
point, 59
spot, 61
vector, 58

LightGO module, 57
LightGO type, 57
linChangeBy method

of RealPropSyncBeh type, 86
linChangeTo method

of RealPropSyncBeh type, 86
line, 68
LineGO module, 68
LineGO type, 68, 93
LineType type, 93
LineTypeProp module, 93
LineTypePropAsyncBeh type, 93
LineTypePropBeh type, 93
LineTypePropConstBeh type, 93
LineTypePropDepBeh type, 93
LineTypePropName type, 93
LineTypePropRequest type, 93
LineTypePropSyncBeh type, 93
LineTypePropVal type, 93
LineTypeVal type, 43
linMoveBy method

of PointPropSyncBeh type, 87
linMoveTo method

of PointPropSyncBeh type, 87

marker, 69
MarkerGO module, 69
MarkerGO type, 69, 94
MarkerType type, 94
MarkerTypeProp module, 94

108 INDEX

MarkerTypePropAsyncBeh type, 94
MarkerTypePropBeh type, 94
MarkerTypePropConstBeh type, 94
MarkerTypePropDepBeh type, 94
MarkerTypePropName type, 94
MarkerTypePropRequest type, 94
MarkerTypePropSyncBeh type, 94
MarkerTypePropVal type, 94
MarkerTypeVal type, 43
Matrix4 module, 45
Matrix4 type, 43, 45, 53, 91
Modifier type, 97
modifiers field

of KeyRec type, 99
of MouseRec type, 97
of PositionRec type, 98

MouseCB module, 97
MouseCB type, 97
MouseRec type, 97

Num type, 43

OrthoCameraGO module, 65
OrthoCameraGO type, 65

parallelopiped, see box
PerspCameraGO module, 66
PerspCameraGO type, 66
point

constant value, 4
type, see Point3

Point2 type, 97
Point3 module, 44
Point3 type, 43, 44
PointLightGO module, 59
PointLightGO type, 59
PointProp module, 86
PointPropAsyncBeh type, 87
PointPropBeh type, 86
PointPropConstBeh type, 87

PointPropDepBeh type, 87
PointPropName type, 86
PointPropRequest type, 87
PointPropSyncBeh type, 87
PointPropVal type, 86
PointVal type, 43
polygon, 72
PolygonGO module, 72
PolygonGO type, 72
popKeyCB method, 53
popMouseCB method, 53
popPositionCB method, 53
pos field

of MouseRec type, 97
of PositionRec type, 98

PositionCB module, 98
PositionCB type, 98
PositionRec type, 98
projection

orthographic, 65
perspective, 66

Prop module, 80
PropBeh type, 80
property, 4, 7, 50, 80
property mapping, 7
property name, 4, 7, 50, 80
property value, 4, 7, 50, 80
PropName type, 80
PropRequest type, 81
PropVal type, 80
proxied object, 26, 46
ProxiedObj module, 46
ProxiedObj type, 26, 46
pushKeyCB method, 53
pushMouseCB method, 53
pushPositionCB method, 53

QuadMeshGO module, 79
QuadMeshGO type, 79

INDEX 109

quadrilateral mesh, 79

RasterMode type, 95
RasterModeProp module, 95
RasterModePropAsyncBeh type, 95
RasterModePropBeh type, 95
RasterModePropConstBeh type, 95
RasterModePropDepBeh type, 95
RasterModePropName type, 95
RasterModePropRequest type, 95
RasterModePropSyncBeh type, 95
RasterModePropVal type, 95
RasterModeVal type, 43
raw field, 46
RealProp module, 85
RealPropAsyncBeh type, 85
RealPropBeh type, 85
RealPropConstBeh type, 85
RealPropDepBeh type, 85
RealPropName type, 85
RealPropRequest type, 85
RealPropSyncBeh type, 85
RealPropVal type, 85
RealVal type, 43
remove method, 54
removeKeyCB method, 53
removeMouseCB method, 53
removePositionCB method, 53
request, 18–20, 29–32, 48, 81, 83

time interval of, 19–20, 81
reset method

ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 91

rgbLinChangeTo method
of ColorPropSyncBeh type, 89

root, 4, 55
RootGO module, 55
RootGO type, 55
rotateX method

ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 92

rotateY method
ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 92

rotateZ method
ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 92

rotation, see transformation, rotation

scale method
ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 92

scaling, see transformation, scaling
scene graph, 5, 50
set method

of BooleanPropConstBeh type, 83
of ColorPropConstBeh type, 88
of LineTypePropConstBeh type, 93
of MarkerTypePropConstBeh type,

94
of PointPropConstBeh type, 86
of RasterModePropConstBeh type,

95
of RealPropConstBeh type, 85
of ShadingPropConstBeh type, 96
ofTransformPropConstBeh type,91

setBeh method, 17
of BooleanPropVal type, 83
of ColorPropVal type, 88
of LineTypePropVal type, 93
of MarkerTypePropVal type, 94
of PointPropVal type, 86
of RasterModePropVal type, 95
of RealPropVal type, 85
of ShadingPropVal type, 96
of TransformPropVal type, 91

setColorOfFacet method, 80
setName method, 52

110 INDEX

setProp method, 52
Shading type, 96
ShadingProp module, 96
ShadingPropAsyncBeh type, 96
ShadingPropBeh type, 96
ShadingPropConstBeh type, 96
ShadingPropDepBeh type, 96
ShadingPropName type, 96
ShadingPropRequest type, 96
ShadingPropSyncBeh type, 96
ShadingPropVal type, 96
ShadingVal type, 43
shape hint, 72, 79
Shape type, 72, 79
sphere, 5, 75

center property of, 10
radius property of, 10

SphereGO module, 75
SphereGO type, 75
SpotLightGO module, 61
SpotLightGO type, 61
start method, 81
surface, 7, 70

color property of, 8
SurfaceGO module, 70
SurfaceGO type, 70, 93, 95, 96

torus, 78
TorusGO module, 78
TorusGO type, 78
transformation

rotation, 45
scaling, 45

uniform, 45, 92
translation, 45

transformation matrix, see Matrix4
TransformProp module, 90
TransformPropAsyncBeh type, 91
TransformPropBeh type, 91

TransformPropConstBeh type, 91
TransformPropDepBeh type, 91
TransformPropName type, 91
TransformPropRequest type, 91
TransformPropSyncBeh type, 91
TransformPropVal type, 91
TransformVal type, 43
translate method

ofTransformPropConstBeh type,91
of TransformPropSyncBeh type, 92

translation, see transformation, translation

unsetProp method, 52

value method
of BooleanPropRequest type, 84
of BooleanPropVal type, 82
of ColorPropRequest type, 88
of ColorPropVal type, 88
of LineTypePropRequest type, 93
of LineTypePropVal type, 93
ofMarkerTypePropRequest type,94
of MarkerTypePropVal type, 94
of PointPropRequest type, 86
of PointPropVal type, 86
ofRasterModePropRequest type,95
of RasterModePropVal type, 95
of RealPropRequest type, 85
of RealPropVal type, 85
of ShadingPropRequest type, 96
of ShadingPropVal type, 96
of TransformPropRequest type, 91
of TransformPropVal type, 91

VectorLightGO module, 58
VectorLightGO type, 58

wentDown field, 99

X‘PEX‘Base module, 47
X‘PEX‘Base type, 47

